1
|
Pierreux CE. Shaping the thyroid: From peninsula to de novo lumen formation. Mol Cell Endocrinol 2021; 531:111313. [PMID: 33961919 DOI: 10.1016/j.mce.2021.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/06/2023]
Abstract
A challenging and stimulating question in biology deals with the formation of organs from groups of undifferentiated progenitor cells. Most epithelial organs indeed derive from the endodermal monolayer and evolve into various shape and tridimensional organization adapted to their specialized adult function. Thyroid organogenesis is no exception. In most mammals, it follows a complex and sequential process initiated from the endoderm and leading to the development of a multitude of independent closed spheres equipped and optimized for the synthesis, storage and production of thyroid hormones. The first sign of thyroid organogenesis is visible as a thickening of the anterior foregut endoderm. This group of thyroid progenitors then buds and detaches from the foregut to migrate caudally and then laterally. Upon reaching their final destination in the upper neck region on both sides of the trachea, thyroid progenitors mix with C cell progenitors and finally organize into hormone-producing thyroid follicles. Intrinsic and extrinsic factors controlling thyroid organogenesis have been identified in several species, but the fundamental cellular processes are not sufficiently considered. This review focuses on the cellular aspects of the key morphogenetic steps during thyroid organogenesis and highlights similarities and common mechanisms with developmental steps elucidated in other endoderm-derived organs, despite different final architecture and functions.
Collapse
|
2
|
Gonay L, Spourquet C, Baudoin M, Lepers L, Lemoine P, Fletcher AG, Hanert E, Pierreux CE. Modelling of Epithelial Growth, Fission and Lumen Formation During Embryonic Thyroid Development: A Combination of Computational and Experimental Approaches. Front Endocrinol (Lausanne) 2021; 12:655862. [PMID: 34163435 PMCID: PMC8216395 DOI: 10.3389/fendo.2021.655862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Organogenesis is the phase of embryonic development leading to the formation of fully functional organs. In the case of the thyroid, organogenesis starts from the endoderm and generates a multitude of closely packed independent spherical follicular units surrounded by a dense network of capillaries. Follicular organisation is unique and essential for thyroid function, i.e. thyroid hormone production. Previous in vivo studies showed that, besides their nutritive function, endothelial cells play a central role during thyroid gland morphogenesis. However, the precise mechanisms and biological parameters controlling the transformation of the multi-layered thyroid epithelial primordium into a multitude of single-layered follicles are mostly unknown. Animal studies used to improve understanding of organogenesis are costly and time-consuming, with recognised limitations. Here, we developed and used a 2-D vertex model of thyroid growth, angiogenesis and folliculogenesis, within the open-source Chaste framework. Our in silico model, based on in vivo images, correctly simulates the differential growth and proliferation of central and peripheral epithelial cells, as well as the morphogen-driven migration of endothelial cells, consistently with our experimental data. Our simulations further showed that reduced epithelial cell adhesion was critical to allow endothelial invasion and fission of the multi-layered epithelial mass. Finally, our model also allowed epithelial cell polarisation and follicular lumen formation by endothelial cell abundance and proximity. Our study illustrates how constant discussion between theoretical and experimental approaches can help us to better understand the roles of cellular movement, adhesion and polarisation during thyroid embryonic development. We anticipate that the use of in silico models like the one we describe can push forward the fields of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Leolo Gonay
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
| | | | - Matthieu Baudoin
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
| | - Ludovic Lepers
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
| | | | - Alexander G. Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Emmanuel Hanert
- Earth and Life Institute, UCLouvain, Louvain-La-Neuve, Belgium
| | - Christophe E. Pierreux
- de Duve Institute, UCLouvain, Woluwé-Saint-Lambert, Belgium
- *Correspondence: Christophe E. Pierreux,
| |
Collapse
|
3
|
López-Márquez A, Carrasco-López C, Fernández-Méndez C, Santisteban P. Unraveling the Complex Interplay Between Transcription Factors and Signaling Molecules in Thyroid Differentiation and Function, From Embryos to Adults. Front Endocrinol (Lausanne) 2021; 12:654569. [PMID: 33959098 PMCID: PMC8095082 DOI: 10.3389/fendo.2021.654569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Thyroid differentiation of progenitor cells occurs during embryonic development and in the adult thyroid gland, and the molecular bases of these complex and finely regulated processes are becoming ever more clear. In this Review, we describe the most recent advances in the study of transcription factors, signaling molecules and regulatory pathways controlling thyroid differentiation and development in the mammalian embryo. We also discuss the maintenance of the adult differentiated phenotype to ensure the biosynthesis of thyroid hormones. We will focus on endoderm-derived thyroid epithelial cells, which are responsible for the formation of the thyroid follicle, the functional unit of the thyroid gland. The use of animal models and pluripotent stem cells has greatly aided in providing clues to the complicated puzzle of thyroid development and function in adults. The so-called thyroid transcription factors - Nkx2-1, Foxe1, Pax8 and Hhex - were the first pieces of the puzzle identified in mice. Other transcription factors, either acting upstream of or directly with the thyroid transcription factors, were subsequently identified to, almost, complete the puzzle. Among them, the transcription factors Glis3, Sox9 and the cofactor of the Hippo pathway Taz, have emerged as important players in thyroid differentiation and development. The involvement of signaling molecules increases the complexity of the puzzle. In this context, the importance of Bmps, Fgfs and Shh signaling at the onset of development, and of TSH, IGF1 and TGFβ both at the end of terminal differentiation in embryos and in the adult thyroid, are well recognized. All of these aspects are covered herein. Thus, readers will be able to visualize the puzzle of thyroid differentiation with most - if not all - of the pieces in place.
Collapse
Affiliation(s)
- Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Pilar Santisteban,
| |
Collapse
|
4
|
Liu Z, Chen Y, Chen G, Mao X, Wei X, Li X, Xu Y, Jiang F, Wang K, Liu C. Impaired Glucose Metabolism in Young Offspring of Female Rats with Hypothyroidism. J Diabetes Res 2019; 2019:4713906. [PMID: 30918900 PMCID: PMC6409023 DOI: 10.1155/2019/4713906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/29/2018] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Because thyroid hormones from the maternal thyroid glands are known to influence the growth, development, and metabolic functioning of offspring, we used a rat model to preliminarily investigate the effects of maternal hypothyroidism on glucose metabolism, pancreas cell proliferation, and insulin production in young male offspring and the possible underlying mechanisms. METHODS Female rats were divided into a maternal hypothyroidism (MH) group, which received water containing 0.02% 6-propyl-2-thiouracil before and during pregnancy to induce hypothyroidism, and a control group which consumed tap water. RESULTS Our results showed that there were no differences of islets structure between the offspring from the two groups, but glucose metabolism was impaired with higher plasma glucose concentrations at 0 and 15 min in the OGTT in 8-week-old offspring of the MH group. From birth to 8 weeks, pancreatic TRβ1 and TRβ2 mRNA level declined significantly in MH offspring, accompanied by decreased Ki67 and insulin mRNA expression. CONCLUSIONS Maternal hypothyroidism results in impaired pancreatic insulin synthesis and pancreatic cell proliferation in neonatal offspring and subsequent glucose intolerance in young offspring, which may be related to TRβ gene downregulation in the pancreas.
Collapse
Affiliation(s)
- Zhoujun Liu
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Mao
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Wei
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingjia Li
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yijiao Xu
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Jiang
- The Third College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Wang
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Abstract
Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden
| | - Henrik Fagman
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden
| |
Collapse
|
6
|
Szczepanek-Parulska E, Zybek-Kocik A, Wartofsky L, Ruchala M. Thyroid Hemiagenesis: Incidence, Clinical Significance, and Genetic Background. J Clin Endocrinol Metab 2017; 102:3124-3137. [PMID: 28666345 DOI: 10.1210/jc.2017-00784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
Abstract
CONTEXT Thyroid hemiagenesis (THA) constitutes a rare, congenital disorder that is characterized by an absence of one thyroid lobe. Because the pathogenesis and clinical significance of this malformation remain undefined, specific clinical recommendations are lacking, especially for asymptomatic cases. EVIDENCE ACQUISITION The PubMed database was searched (years 1970 to 2017), and the following terms were used to retrieve the results: "thyroid hemiagenesis," "thyroid hemiaplasia," "one thyroid lobe agenesis," and "one thyroid lobe aplasia." Subsequently, reference sections of the retrieved articles were searched. EVIDENCE SYNTHESIS There is a noticeable susceptibility of subjects with THA to develop additional thyroid and nonthyroidal pathologies. In pathogenesis of concomitant thyroid pathologies, a chronic elevation in thyroid-stimulating hormone values may play an important role. Thus far, genetic studies failed to find a common genetic background of the anomaly, and the potential underlying cause was identified in a minority of the cases. CONCLUSIONS Patients with THA are prone to develop additional thyroid pathologies and theoretically might benefit from l-thyroxine treatment to lower the thyrotropin levels to those observed in the normal population. However, further research should be done to ascertain whether such intervention early in life would prevent development of associated thyroid conditions. At least, increased vigilance should be maintained to reveal all of the concomitant disorders as soon as possible during follow-up examinations. Application of high-throughput technologies enabling a genome-wide search for novel factors involved in thyroid embryogenesis might be the next step to expand the knowledge on THA pathogenesis.
Collapse
Affiliation(s)
- Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Ariadna Zybek-Kocik
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Leonard Wartofsky
- Department of Medicine, Washington Hospital Center, Washington, District of Columbia 20010
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
7
|
Loebel DAF, Plageman TF, Tang TL, Jones VJ, Muccioli M, Tam PPL. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open 2016; 5:130-9. [PMID: 26772200 PMCID: PMC4823982 DOI: 10.1242/bio.014415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development of the gut endoderm and its subsequent remodeling for the formation of organ buds are accompanied by changes to epithelial cell shape and polarity. Members of the Rho-related family of small GTPases and their interacting proteins play multiple roles in regulating epithelial morphogenesis. In this study we examined the role of Cdc42 in foregut development and organ bud formation. Ablation of Cdc42 in post-gastrulation mouse embryos resulted in a loss of apical-basal cell polarity and columnar epithelial morphology in the ventral pharyngeal endoderm, in conjunction with a loss of apical localization of the known CDC42 effector protein PARD6B. Cell viability but not proliferation in the foregut endoderm was impaired. Outgrowth of the liver, lung and thyroid buds was severely curtailed in Cdc42-deficient embryos. In particular, the thyroid bud epithelium did not display the apical constriction that normally occurs concurrently with the outgrowth of the bud into the underlying mesenchyme. SHROOM3, a protein that interacts with Rho GTPases and promotes apical constriction, was strongly expressed in the thyroid bud and its sub-cellular localization was disrupted in Cdc42-deficient embryos. In Shroom3 gene trap mutant embryos, the thyroid bud epithelium showed no apical constriction, while the bud continued to grow and protruded into the foregut lumen. Our findings indicate that Cdc42 is required for epithelial polarity and organization in the endoderm and for apical constriction in the thyroid bud. It is possible that the function of CDC42 is partly mediated by SHROOM3. Summary: Conditional Cdc42 knockout revealed requirements for Cdc42 in endoderm polarity, and in thyroid apical constriction and morphogenesis. Shroom3 mutant embryos also displayed thyroid bud abnormalities, suggesting a possible functional interaction.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Timothy F Plageman
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Theresa L Tang
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Vanessa J Jones
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Maria Muccioli
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
8
|
Lv N, Gao Y, Guan H, Wu D, Ding S, Teng W, Shan Z. Inflammatory mediators, tumor necrosis factor-α and interferon-γ, induce EMT in human PTC cell lines. Oncol Lett 2015; 10:2591-2597. [PMID: 26622895 DOI: 10.3892/ol.2015.3518] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 06/11/2015] [Indexed: 11/05/2022] Open
Abstract
Inflammatory mediators, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, promote adverse outcomes in numerous types of cancer; however, their role in papillary thyroid cancer (PTC) remains unclear. The aim of the present study was to investigate the influence of TNF-α and IFN-γ on the migration, invasion and epithelial-mesenchymal transition (EMT) of the three PTC cell lines, TPC-1, BCPAP and K1. The effect of TNF-α and IFN-γ on cell migration and invasion was assessed by wound-healing and Transwell assays. In addition, the mRNA and protein expression levels of the EMT makers, E-cadherin, N-cadherin and vimentin, were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunoblot analysis. The wound-healing and Transwell experiments revealed that TNF-α and IFN-γ increased the migratory and invasive behavior of PTC cells (P<0.05). RT-qPCR revealed that TNF-α and IFN-γ downregulated E-cadherin mRNA, while they upregulated N-cadherin and vimentin mRNA expression levels. These results were further confirmed by the immunoblot analysis. The results of the present study suggest that TNF-α and IFN-γ induce EMT and malignant progression in human PTC cells.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun Gao
- Research Center of Stem Cell, He Eye Hospital, He University, Shenyang, Liaoning 110163, P.R. China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dan Wu
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuangning Ding
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
9
|
Retinoic acid remodels extracellular matrix (ECM) of cultured human fetal palate mesenchymal cells (hFPMCs) through down-regulation of TGF-β/Smad signaling. Toxicol Lett 2014; 225:208-15. [DOI: 10.1016/j.toxlet.2013.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 01/28/2023]
|
10
|
Abstract
The most frequent cause of congenital hypothyroidism is thyroid dysgenesis. Thyroid dysgenesis summarizes a spectrum of developmental abnormalities of the embryonic thyroid ranging from complete absence of the thyroid gland (athyreosis), to a normally located but too small thyroid (hypoplasia), or an abnormally located thyroid gland (ectopy). Although considered a sporadic disease, distinct genetic forms of isolated or syndromic thyroid dysgenesis have been described in recent years. However, genetics of thyroid dysgenesis (TD) are mostly not following simple Mendelian patterns, and beside monogenic, multigenic and epigenetic mechanisms need to be considered. The review will highlight the molecular mechanisms of thyroid organogenesis, clinical and genetic features of the different monogenetic forms of thyroid dysgenesis, the aspects relevant for diagnosis and counseling of affected families and current research strategies to get more insight into the non-Medelian mechanisms of normal and abnormal thyroid development.
Collapse
Affiliation(s)
- Gabor Szinnai
- Division of Paediatric Endocrinology and Diabetology, University Children's Hospital Basel UKBB, Spitalstrasse 33, CH-4031 Basel, Switzerland; Department of Biomedicine, University Basel, Spitalstrasse 33, CH-4031 Basel, Switzerland.
| |
Collapse
|
11
|
Abstract
The embryonic foregut of the mouse embryo is lined by a layer of endoderm cells whose architecture changes during development. The transition from a squamous to columnar epithelial morphology is accompanied by the upregulation of an atypical Rho GTPase, Rhou. Subsequently, multi-layering of the epithelium at the site of organ bud formation is associated with the downregulation of Rhou. Rho-related small GTPases are known to play multiple roles in establishing and maintaining epithelial polarity, cytoskeletal organization, morphogenesis and differentiation of epithelial tissues, but their role in the early development of the endoderm in mammals is largely unexplored. Our recent study has shown that Rhou is required for maintaining F-actin polarization, epithelial morphogenesis and differentiation of the endoderm. Rhou expression responds to canonical WNT signaling and its activity influences the cytoskeletal organization and differentiation of endodermal cells, possibly via activation of JNK-mediated pathways. In this context, Rhou provides a possible link between β-catenin dependent WNT signaling and cellular processes normally associated with WNT/PCP pathways.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute and Sydney Medical School, The University of Sydney, Sydney, NSW Australia.
| | | |
Collapse
|
12
|
Nilsson M, Fagman H. Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy. Curr Top Dev Biol 2013; 106:123-70. [PMID: 24290349 DOI: 10.1016/b978-0-12-416021-7.00004-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thyroid dysgenesis is the most common cause of congenital hypothyroidism that affects 1 in 3000 newborns. Although a number of pathogenetic mutations in thyroid developmental genes have been identified, the molecular mechanism of disease is unknown in most cases. This chapter summarizes the current knowledge of normal thyroid development and puts the different developmental stages in perspective, from the time of foregut endoderm patterning to the final shaping of pharyngeal anatomy, for understanding how specific malformations may arise. At the cellular level, we will also discuss fate determination of follicular and C-cell progenitors and their subsequent embryonic growth, migration, and differentiation as the different thyroid primordia evolve and merge to establish the final size and shape of the gland.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
13
|
Opitz R, Maquet E, Huisken J, Antonica F, Trubiroha A, Pottier G, Janssens V, Costagliola S. Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. Dev Biol 2012; 372:203-16. [PMID: 23022354 DOI: 10.1016/j.ydbio.2012.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 07/22/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022]
Abstract
Among the various organs derived from foregut endoderm, the thyroid gland is unique in that major morphogenic events such as budding from foregut endoderm, descent into subpharyngeal mesenchyme and growth expansion occur in close proximity to cardiovascular tissues. To date, research on thyroid organogenesis was missing one vital tool-a transgenic model that allows to track the dynamic changes in thyroid size, shape and location relative to adjacent cardiovascular tissues in live embryos. In this study, we generated a novel transgenic zebrafish line, tg(tg:mCherry), in which robust and thyroid-specific expression of a membrane version of mCherry enables live imaging of thyroid development in embryos from budding stage throughout formation of functional thyroid follicles. By using various double transgenic models in which EGFP expression additionally labels cardiovascular structures, a high coordination was revealed between thyroid organogenesis and cardiovascular development. Early thyroid development was found to proceed in intimate contact with the distal ventricular myocardium and live imaging confirmed that thyroid budding from the pharyngeal floor is tightly coordinated with the descent of the heart. Four-dimensional imaging of live embryos by selective plane illumination microscopy and 3D-reconstruction of confocal images of stained embryos yielded novel insights into the role of specific pharyngeal vessels, such as the hypobranchial artery (HA), in guiding late thyroid expansion along the pharyngeal midline. An important role of the HA was corroborated by the detailed examination of thyroid development in various zebrafish models showing defective cardiovascular development. In combination, our results from live imaging as well es from 3D-reconstruction of thyroid development in tg(tg:mCherry) embryos provided a first dynamic view of late thyroid organogenesis in zebrafish-a critical resource for the design of future studies addressing the molecular mechanisms of these thyroid-vasculature interactions.
Collapse
Affiliation(s)
- Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Calì G, Gentile F, Mogavero S, Pallante P, Nitsch R, Ciancia G, Ferraro A, Fusco A, Nitsch L. CDH16/Ksp-cadherin is expressed in the developing thyroid gland and is strongly down-regulated in thyroid carcinomas. Endocrinology 2012; 153:522-34. [PMID: 22028439 DOI: 10.1210/en.2011-1572] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cadherin (CDH)16/kidney-specific-cadherin was first described as a kidney-specific adhesion molecule and thereafter found expressed also in the thyroid gland. We show here that CDH16 fully colocalizes with CDH1/E-cadherin on the basolateral plasma membrane of mouse and human thyrocytes. In thyrocyte cultures, the expression of CDH16 is dependent upon TSH, as other thyroid differentiation markers. In the developing mouse thyroid, CDH16 is expressed at embryonic day 10.5, 1-2 d after the main thyroid-specific transcription factors involved in thyroid cell differentiation. In human thyroid carcinomas, as determined by quantitative RT-PCR, CDH16 expression decreases in papillary, follicular, and anaplastic thyroid carcinomas, and the decrease is more pronounced than that of CDH1. Moreover, by immunofluorescence and confocal microscopy, it appears that although CDH16-negative tumor cells may still be positive for CDH1, CDH1-negative cells are also negative for CDH16, indicating a more extensive loss of the latter and suggesting that CDH16 loss might precede that of CDH1. Loss of CDH16 appears to be a marker of epithelial-mesenchymal transition as indicated by its decrease in cultured thyroid cells after TGF-β treatment. Finally, the decrease in CDH16 is paralleled in part by the decrease in α B-crystallin, which was proposed to mediate the interaction of CDH16 cytosolic tail with the cell cytoskeleton. In conclusion, CDH16 is a thyroid-selective and hormone-dependent adhesion protein that might play a role during thyroid development and that may be a useful marker to monitor thyroid carcinomas.
Collapse
Affiliation(s)
- Gaetano Calì
- Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Loebel DAF, Studdert JB, Power M, Radziewic T, Jones V, Coultas L, Jackson Y, Rao RS, Steiner K, Fossat N, Robb L, Tam PPL. Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm. Development 2011; 138:4511-22. [PMID: 21903671 DOI: 10.1242/dev.063867] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhou encodes a Cdc42-related atypical Rho GTPase that influences actin organization in cultured cells. In mouse embryos at early-somite to early-organogenesis stages, Rhou is expressed in the columnar endoderm epithelium lining the lateral and ventral wall of the anterior intestinal portal. During foregut development, Rhou is downregulated in regions where the epithelium acquires a multilayered morphology heralding the budding of organ primordia. In embryos generated from Rhou knockdown embryonic stem (ES) cells, the embryonic foregut displays an abnormally flattened shape. The epithelial architecture of the endoderm is disrupted, the cells are depleted of microvilli and the phalloidin-stained F-actin content of their sub-apical cortical domain is reduced. Rhou-deficient cells in ES cell-derived embryos and embryoid bodies are less efficient in endoderm differentiation. Impaired endoderm differentiation of Rhou-deficient ES cells is accompanied by reduced expression of c-Jun/AP-1 target genes, consistent with a role for Rhou in regulating JNK activity. Downregulation of Rhou in individual endoderm cells results in a reduced ability of these cells to occupy the apical territory of the epithelium. Our findings highlight epithelial morphogenesis as a required intermediate step in the differentiation of endoderm progenitors. In vivo, Rhou activity maintains the epithelial architecture of the endoderm progenitors, and its downregulation accompanies the transition of the columnar epithelium in the embryonic foregut to a multilayered cell sheet during organ formation.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
De Felice M, Di Lauro R. Minireview: Intrinsic and extrinsic factors in thyroid gland development: an update. Endocrinology 2011; 152:2948-56. [PMID: 21693675 DOI: 10.1210/en.2011-0204] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vertebrates the portion of the thyroid gland synthesizing the thyroid hormones develops from a small group of endodermal cells in the foregut. The nature of the signals that lead to the biochemical and morphogenetic events responsible for the organization of these cells into the adult thyroid gland has only recently become evident. In this review we summarize recent developments in the understanding of these processes, derived from evidence collected in several organisms.
Collapse
|
17
|
Abu-Khudir R, Paquette J, Lefort A, Libert F, Chanoine JP, Vassart G, Deladoëy J. Transcriptome, methylome and genomic variations analysis of ectopic thyroid glands. PLoS One 2010; 5:e13420. [PMID: 20976176 PMCID: PMC2955549 DOI: 10.1371/journal.pone.0013420] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 09/17/2010] [Indexed: 01/05/2023] Open
Abstract
Background Congenital hypothyroidism from thyroid dysgenesis (CHTD) is predominantly a sporadic disease characterized by defects in the differentiation, migration or growth of thyroid tissue. Of these defects, incomplete migration resulting in ectopic thyroid tissue is the most common (up to 80%). Germinal mutations in the thyroid-related transcription factors NKX2.1, FOXE1, PAX-8, and NKX2.5 have been identified in only 3% of patients with sporadic CHTD. Moreover, a survey of monozygotic twins yielded a discordance rate of 92%, suggesting that somatic events, genetic or epigenetic, probably play an important role in the etiology of CHTD. Methodology/Principal Findings To assess the role of somatic genetic or epigenetic processes in CHTD, we analyzed gene expression, genome-wide methylation, and structural genome variations in normal versus ectopic thyroid tissue. In total, 1011 genes were more than two-fold induced or repressed. Expression array was validated by quantitative real-time RT-PCR for 100 genes. After correction for differences in thyroid activation state, 19 genes were exclusively associated with thyroid ectopy, among which genes involved in embryonic development (e.g. TXNIP) and in the Wnt pathway (e.g. SFRP2 and FRZB) were observed. None of the thyroid related transcription factors (FOXE1, HHEX, NKX2.1, NKX2.5) showed decreased expression, whereas PAX8 expression was associated with thyroid activation state. Finally, the expression profile was independent of promoter and CpG island methylation and of structural genome variations. Conclusions/Significance This is the first integrative molecular analysis of ectopic thyroid tissue. Ectopic thyroids show a differential gene expression compared to that of normal thyroids, although molecular basis could not be defined. Replication of this pilot study on a larger cohort could lead to unraveling the elusive cause of defective thyroid migration during embryogenesis.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Department of Pediatrics, Endocrinology Service and Research Center, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Gordon J, Patel SR, Mishina Y, Manley NR. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol 2010; 339:141-54. [PMID: 20043899 DOI: 10.1016/j.ydbio.2009.12.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 01/09/2023]
Abstract
The thymus and parathyroids are pharyngeal endoderm-derived organs that develop from common organ primordia, which undergo a series of morphological events resulting in separate organs in distinct locations in the embryo. Previous gene expression and functional analyses have suggested a role for BMP4 signaling in early thymus organogenesis. We have used conditional deletion of Bmp4 or Alk3 from the pharyngeal endoderm and/or the surrounding mesenchyme using Foxg1-Cre, Wnt1-Cre or Foxn1-Cre. Deleting Bmp4 from both neural crest cells (NCC) and early endoderm-derived epithelial cells in Foxg1-Cre;Bmp4 conditional mutants resulted in defects in thymus-parathyroid morphogenesis. Defects included reduced condensation of mesenchymal cells around the epithelium, partial absence of the thymic capsule, a delay in thymus and parathyroid separation, and failed or dramatically reduced organ migration. Patterning of the primordia and initial organ differentiation were not affected in any of the mutants. Deleting Bmp4 from NCC-derived mesenchyme or differentiating thymic epithelial cells (TECs) had no effects on thymus-parathyroid development, while loss of Alk3 from either neural crest cells or TECs resulted in only a mild thymic hypoplasia. these results show that the processes of cell specification and morphogenesis during thymus-parathyroid development are independently controlled, and suggest a specific temporal and spatial role for BMP4-mediated epithelial-mesenchymal interactions during early thymus and parathyroid morphogenesis.
Collapse
Affiliation(s)
- Julie Gordon
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Congenital hypothyroidism is mainly due to structural defects of the thyroid gland, collectively known as thyroid dysgenesis. The two most prevalent forms of this condition are abnormal localization of differentiated thyroid tissue (thyroid ectopia) and total absence of the gland (athyreosis). The clinical picture of thyroid dysgenesis suggests that impaired specification, proliferation and survival of thyroid precursor cells and loss of concerted movement of these cells in a distinct spatiotemporal pattern are major causes of malformation. In normal development the thyroid primordium is first distinguished as a thickening of the anterior foregut endoderm at the base of the prospective tongue. Subsequently, this group of progenitors detaches from the endoderm, moves caudally and ultimately differentiates into hormone-producing units, the thyroid follicles, at a distant location from the site of specification. In higher vertebrates later stages of thyroid morphogenesis are characterized by shape remodeling into a bilobed organ and the integration of a second type of progenitors derived from the caudal-most pharyngeal pouches that will differentiate into C-cells. The present knowledge of thyroid developmental dynamics has emerged from embryonic studies mainly in chicken, mouse and more recently also in zebrafish. This review will highlight the key morphogenetic steps of thyroid organogenesis and pinpoint which crucial regulatory mechanisms are yet to be uncovered. Considering the co-incidence of thyroid dysgenesis and congenital heart malformations the possible interactions between thyroid and cardiovascular development will also be discussed.
Collapse
|
20
|
Abstract
BACKGROUND Thyroid gland development and function are essential for life, and recent findings indicate the presence of stem/progenitor cells within the thyroid gland as a potential source of tissue regeneration and cancer formation. SUMMARY This review summarizes the current knowledge on early differentiation of thyroid cells from embryonic stem cells and highlights exciting concepts and recent novel findings on adult thyroid stem/progenitor cells in the normal thyroid gland and in thyroid cancer. Other potential sources and markers of stem/progenitor cells in the thyroid include bone marrow, microchimerism, and embryological remnant-derived multifocal solid cell nests. Finally, we discuss new therapeutic strategies that target thyroid cancer stem cells. CONCLUSIONS Thyroid stem/progenitor cell populations are present in the normal and diseased thyroid gland. Advances in normal and cancer thyroid stem cell biology will be essential for future targeted therapies.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba , Winnipeg, Canada.
| | | | | |
Collapse
|
21
|
Ramos HE, Nesi-França S, Maciel RMB. [New aspects of genetics and molecular mechanisms on thyroid morphogenesis for the understanding of thyroid dysgenesia]. ACTA ACUST UNITED AC 2009; 52:1403-15. [PMID: 19197448 DOI: 10.1590/s0004-27302008000900003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/09/2008] [Indexed: 11/21/2022]
Abstract
The elucidation of the molecular mechanisms underlying the very early steps of thyroid organogenesis and the etiology of most cases of thyroid dysgenesis are poorly understood. Many genes have been identified as important contributors to survival, proliferation and migration of thyroid cells precursors, acting as an integrated and complex regulatory network. Moreover, by generation of mouse mutants, the studies have provided better knowledge of the role of these genes in the thyroid morphogenesis. In addition, it is likely that a subset of patients has thyroid dysgenesis as a result of mutations in regulatory genes expressed during embryogenesis. This review summarizes molecular aspects of thyroid development, describes the animal models and phenotypes known to date and provides information about novel insights into the ontogeny and pathogenesis of human thyroid dysgenesis.
Collapse
Affiliation(s)
- Helton E Ramos
- Laboratório de Endocrinologia Molecular, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
22
|
Lania G, Zhang Z, Huynh T, Caprio C, Moon AM, Vitelli F, Baldini A. Early thyroid development requires a Tbx1-Fgf8 pathway. Dev Biol 2009; 328:109-17. [PMID: 19389367 PMCID: PMC2705775 DOI: 10.1016/j.ydbio.2009.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/21/2022]
Abstract
The thyroid develops within the pharyngeal apparatus from endodermally-derived cells. The many derivatives of the pharyngeal apparatus develop at similar times and sometimes from common cell types, explaining why many syndromic disorders express multiple birth defects affecting different structures that share a common pharyngeal origin. Thus, different derivatives may share common genetic networks during their development. Tbx1, the major gene associated with DiGeorge syndrome, is a key player in the global development of the pharyngeal apparatus, being required for virtually all its derivatives, including the thyroid. Here we show that Tbx1 regulates the size of the early thyroid primordium through its expression in the adjacent mesoderm. Because Tbx1 regulates the expression of Fgf8 in the mesoderm, we postulated that Fgf8 mediates critical Tbx1-dependent interactions between mesodermal cells and endodermal thyrocyte progenitors. Indeed, conditional ablation of Fgf8 in Tbx1-expressing cells caused an early thyroid phenotype similar to that of Tbx1 mutant mice. In addition, expression of an Fgf8 cDNA in the Tbx1 domain rescued the early size defect of the thyroid primordium in Tbx1 mutants. Thus, we have established that a Tbx1->Fgf8 pathway in the pharyngeal mesoderm is a key size regulator of mammalian thyroid.
Collapse
Affiliation(s)
- Gabriella Lania
- Telethon Institute of Genetics and Medicine, and University Federico II, Naples, Italy
- Institute of Genetics and Biophysics, National Research Council (CNR), via Pietro Castellino 111, Naples, Italy
| | - Zhen Zhang
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030, USA
| | - Tuong Huynh
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030, USA
| | - Cinzia Caprio
- Telethon Institute of Genetics and Medicine, and University Federico II, Naples, Italy
- Institute of Genetics and Biophysics, National Research Council (CNR), via Pietro Castellino 111, Naples, Italy
| | - Anne M. Moon
- Departments of Pediatrics, Neurobiology and Anatomy and Program in Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Francesca Vitelli
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030, USA
| | - Antonio Baldini
- Telethon Institute of Genetics and Medicine, and University Federico II, Naples, Italy
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030, USA
- Institute of Genetics and Biophysics, National Research Council (CNR), via Pietro Castellino 111, Naples, Italy
| |
Collapse
|
23
|
A study on the relationship between intraglandular arterial distribution and thyroid lobe shape: Implications for biotechnology of a bioartificial thyroid. Ann Anat 2008; 190:432-41. [DOI: 10.1016/j.aanat.2008.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/23/2008] [Accepted: 07/04/2008] [Indexed: 11/21/2022]
|
24
|
Kameda Y, Nishimaki T, Chisaka O, Iseki S, Sucov HM. Expression of the epithelial marker E-cadherin by thyroid C cells and their precursors during murine development. J Histochem Cytochem 2007; 55:1075-88. [PMID: 17595340 DOI: 10.1369/jhc.7a7179.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies of chick-quail chimeras have reported that avian ultimobranchial C cells originate from the neural crest. It has consequently been assumed, without much supporting evidence, that mammalian thyroid C cells also originate from the neural crest. To test this notion, we employed both Connexin43-lacZ and Wnt1-Cre/R26R transgenic mice, because their neural crest cells can be marked. We also examined the immunohistochemical expression of a number of markers that identify migratory or postmigratory neural crest cells, namely, TuJ1, neurofilament 160, nestin, P75NTR, and Sox10. Moreover, we examined the expression of E-cadherin, an epithelial cell marker. At embryonic day (E)10.5, the neural crest cells densely populated the pharyngeal arches but were not distributed in the pharyngeal pouches, including the fourth pouch. At E11.5, the ultimobranchial rudiment formed from the fourth pouch and was located close to the fourth arch artery. At E13.0, this organ came into contact with the thyroid lobe, and at E13.5, it fused with this lobe. However, the ultimobranchial body was not colonized by neural crest-derived cells at any of these developmental stages. Instead, all ultimobranchial cells, as well as the epithelium of the fourth pharyngeal pouch, were intensely immunoreactive for E-cadherin. Furthermore, confocal microscopy of newborn mouse thyroid glands revealed colocalization of calcitonin and E-cadherin in the C cells. The cells, however, were not marked in the Wnt-Cre/R26R mice. These results indicated that murine thyroid C cells are derived from the endodermal epithelial cells of the fourth pharyngeal pouch and do not originate from neural crest cells.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | |
Collapse
|
25
|
Calì G, Zannini M, Rubini P, Tacchetti C, D'Andrea B, Affuso A, Wintermantel T, Boussadia O, Terracciano D, Silberschmidt D, Amendola E, De Felice M, Schütz G, Kemler R, Di Lauro R, Nitsch L. Conditional inactivation of the E-cadherin gene in thyroid follicular cells affects gland development but does not impair junction formation. Endocrinology 2007; 148:2737-46. [PMID: 17347311 DOI: 10.1210/en.2006-1344] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have conditionally inactivated the E-cadherin gene in the thyroid follicular cells of mouse embryo to unravel its role in thyroid development. We used the Cre-loxP system in which the Cre-recombinase was expressed under the control of the tissue-specific thyroglobulin promoter that becomes active at embryonic d 15. At postnatal d 7, thyroid follicle lumens in the knockout mice were about 30% smaller with respect to control mice and had an irregular shape. E-cadherin was almost completely absent in thyrocytes, beta-catenin was significantly reduced, whereas no change in gamma-catenin was detected. alpha-Catenin was also reduced on the cell plasma membrane. Despite the dramatic loss of E-cadherin and beta-catenin, cell-cell junctions were not affected, the distribution of tight junction proteins was unaltered, and no increase of thyroglobulin circulating in the blood was observed. In addition, we found that other members of the cadherin family, the R-cadherin and the Ksp-cadherin, were expressed in thyrocytes and that their membrane distribution was not altered in the E-cadherin conditional knockout mouse. Our results indicate that E-cadherin has a role in the development of the thyroid gland and in the expression of beta-catenin, but it is not essential for the maintenance of follicular cell adhesion.
Collapse
Affiliation(s)
- Gaetano Calì
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Richerche, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Semler EJ, Dasgupta A, Moghe PV. Cytomimetic engineering of hepatocyte morphogenesis and function by substrate-based presentation of acellular E-cadherin. ACTA ACUST UNITED AC 2006; 11:734-50. [PMID: 15998215 DOI: 10.1089/ten.2005.11.734] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although cadherin-mediated intercellular contacts can be integral to the maintenance of functionally competent hepatocytes in vitro, the ability to engineer hepatocellular differentiated function via acellular E-cadherin has yet to be thoroughly explored. To investigate the potential of substrate-presented, acellular E-cadherin to modulate hepatocellular self-assembly and functional fate, rat hepatocytes were cultured at sparse densities on surfaces designed to display recombinant E-cadherin/Fc chimeras. On these substrates, hepatocytes were observed to recognize microdisplayed E-cadherin/Fc and responded by modulating the spatial distribution of the intracellular cadherin-complexing protein beta-catenin. Substrate-presented E-cadherin/Fc was also found to markedly alter patterns of hepatocyte morphogenesis, as cellular spreading and two-dimensional reorganization were significantly inhibited under these conditions, leading to multicellular aggregates that were considerably more three-dimensional in nature. Increasing cadherin exposure was also associated with elevated levels of albumin and urea secretion, two markers of hepatocyte differentiation, over control cultures. This suggested that cell-substrate cadherin engagement established more functionally competent hepatocellular phenotypes, coinciding with the notion that E-cadherin is a differentiation-inducing ligand for these cells. The morphogenetic and function-promoting effects of substrate-bound E-cadherin/Fc were further enhanced under conditions in which protein A was utilized as an anchoring molecule to present cadherin molecules, suggesting that ligand mobility may play an important role in the effective establishment of cell-to-substrate cadherin interactions. Interestingly, the percent increase in function detected for conditions of high cadherin exposure versus control cultures was found to be substantially higher at extremely low cell densities. This observation indicated that hepatocytes respond to substrate-presented E-cadherin even in the absence of native intercellular interactions and associated juxtacrine signaling. The incorporation of acellular E-cadherin on biomaterial substrates may thus potentially present a means to prevent hepatocellular dedifferentiation by maintaining liver-specific function in otherwise severely functionally repressive culture conditions.
Collapse
Affiliation(s)
- Eric J Semler
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
27
|
Fagman H, Andersson L, Nilsson M. The developing mouse thyroid: Embryonic vessel contacts and parenchymal growth pattern during specification, budding, migration, and lobulation. Dev Dyn 2006; 235:444-55. [PMID: 16331648 DOI: 10.1002/dvdy.20653] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Normal mouse thyroid development has been revised to identify critical morphogenetic events. The early thyroid primordium associates with the aortic sac endothelium at the time of specification and budding. The vascular contact is lost after the thyroid buds from the pharyngeal endoderm, but is resumed before the gland divides to form two lobes. Lateral expansion of parenchyma takes place along the course of the third pharyngeal arch arteries. Thyroid precursor cells expressing Titf1/Nkx2.1 do not proliferate until the migration stage, implicating that progenitors likely are recruited from outside the thyroid placode. Early lobulation involves engulfment of the entire ultimobranchial bodies by the growing midline thyroid. At the same time, proliferation of the ultimobranchial body epithelium is silenced preceding the differentiation of C cells. Before folliculogenesis, thyroid lobe enlargement is reminiscent of a budding-branching-like growth pattern. It is suggested that thyroid inductive signals arise from embryonic vessels, and that this provides ideas to conceptually new pathogenetic mechanisms of thyroid dysgenesis.
Collapse
Affiliation(s)
- Henrik Fagman
- Institute of Anatomy and Cell Biology, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | |
Collapse
|
28
|
Abstract
A 19-year-old woman was treated with bronchodilators for new-onset dyspnea with exercise. Her symptoms progressively worsened, culminating 4 months later in acute shortness of breath at rest. Flow-volume loops suggested a fixed obstruction and a computed tomography scan of the neck revealed a large subglottic mass. The patient underwent emergent tracheostomy and laryngoscopy and a near-obstructing intratracheal mass was found. Biopsy showed ectopic thyroid tissue. Magnetic resonance imaging of the neck showed a 1.4-cm tracheal lesion and a normally located thyroid gland. The intratracheal mass was resected endoscopically. Pathology revealed hyperplastic ectopic thyroid tissue. The patient has been maintained on thyroid hormone suppression therapy for 2 years without growth of the residual intratracheal thyroid tissue. She recently underwent a surgical palate expansion. We present this case, along with a literature review of ectopic intratracheal thyroid, its epidemiology, possible etiologies, genetic underpinnings, presentation, and treatment. The co-occurrence of an ectopic thyroid, a functioning orthotopic gland, and a high arched palate is also discussed.
Collapse
Affiliation(s)
- Hazel E Bowen-Wright
- Division of Endocrinology and Metabolism, Georgetown University, Washington, DC 20007, USA
| | | |
Collapse
|
29
|
Ward RD, Raetzman LT, Suh H, Stone BM, Nasonkin IO, Camper SA. Role of PROP1 in pituitary gland growth. Mol Endocrinol 2004; 19:698-710. [PMID: 15591534 DOI: 10.1210/me.2004-0341] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mutations in the PROP1 transcription factor gene lead to reduced production of thyrotropin, GH, prolactin, and gonadotropins as well as to pituitary hypoplasia in adult humans and mice. Some PROP1-deficient patients initially exhibit pituitary hyperplasia that resolves to hypoplasia. To understand this feature and to explore the mechanism whereby PROP1 regulates anterior pituitary gland growth, we carried out longitudinal studies in normal and Prop1-deficient dwarf mice from early embryogenesis through adulthood, examining the volume of Rathke's pouch and its derivatives, the position and number of dividing cells, the rate of apoptosis, and cell migration by pulse labeling. The results suggest that anterior pituitary progenitors normally leave the perilumenal region of Rathke's pouch and migrate to form the anterior lobe as they differentiate. Some of the cells that seed the anterior lobe during organogenesis have proliferative potential, supporting the expansion of the anterior lobe after birth. Prop1-deficient fetal pituitaries are dysmorphic because mutant cells are retained in the perilumenal area and fail to differentiate. After birth, mutant pituitaries exhibit enhanced apoptosis and reduced proliferation, apparently because the mutant anterior lobe is not seeded with progenitors. These studies suggest a mechanism for Prop1 action and an explanation for some of the clinical findings in human patients.
Collapse
Affiliation(s)
- Robert D Ward
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109-0638, USA
| | | | | | | | | | | |
Collapse
|
30
|
Makarenkova H, Sugiura H, Yamagata K, Owens G. Alternatively spliced variants of protocadherin 8 exhibit distinct patterns of expression during mouse development. ACTA ACUST UNITED AC 2004; 1681:150-6. [PMID: 15627506 DOI: 10.1016/j.bbaexp.2004.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 09/08/2004] [Accepted: 11/02/2004] [Indexed: 11/17/2022]
Abstract
Protocadherins, a subgroup of the cadherin superfamily of calcium-dependent cell adhesion molecules, are considered to play important roles in the developing embryo particularly in the central nervous system. The Protocadherin 8 (Pcdh8) gene comprises three coding exons in both human and mouse, and the exon junctions are precisely conserved between these two species. Alternative splicing of Pcdh8 RNA leads to the formation of two isoforms that differ in the length of the cytoplasmic domains. We have investigated the expression of these short and long variants of Pcdh8 during early mouse development by RT/PCR and in situ hybridization. We found that both isoforms were predominantly expressed in the nervous system, and that their expression patterns appeared to be developmentally regulated. However, the short variant had a broader pattern of expression than the long variant and was found in some non-neuronal tissues, such as paraxial mesoderm, developing somites, and in limb interdigital mesenchyme where massive programmed cell death occurs. The differential expression of two alternative cytoplasmic domain variants suggests that Pcdh8 may regulate cell adhesion in a variety of developmental processes, and that this may involve different intracellular interactions.
Collapse
Affiliation(s)
- Helen Makarenkova
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Thyroid gland organogenesis results in an organ the shape, size, and position of which are largely conserved among adult individuals of the same species, thus suggesting that genetic factors must be involved in controlling these parameters. In humans, the organogenesis of the thyroid gland is often disturbed, leading to a variety of conditions, such as agenesis, ectopy, and hypoplasia, which are collectively called thyroid dysgenesis (TD). The molecular mechanisms leading to TD are largely unknown. Studies in murine models and in a few patients with dysgenesis revealed that mutations in regulatory genes expressed in the developing thyroid are responsible for this condition, thus showing that TD can be a genetic and inheritable disease. These studies open the way to a novel working hypothesis on the molecular and genetic basis of this frequent human condition and render the thyroid an important model in the understanding of molecular mechanisms regulating the size, shape, and position of organs.
Collapse
Affiliation(s)
- Mario De Felice
- Stazione Zoologica Anton Dohrn, University of Naples Federico II, 80121 Naples, Italy
| | | |
Collapse
|
32
|
Fagman H, Grände M, Gritli-Linde A, Nilsson M. Genetic deletion of sonic hedgehog causes hemiagenesis and ectopic development of the thyroid in mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1865-72. [PMID: 15111333 PMCID: PMC1615667 DOI: 10.1016/s0002-9440(10)63745-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thyroid dysgenesis encountered in 85% of patients with congenital hypothyroidism is a morphologically heterogeneous condition with primarily unknown pathogenesis. Here we identify sonic hedgehog (Shh) as a novel regulator of thyroid development. In Shh knockout mice the thyroid primordium is correctly specified in the pharyngeal endoderm, but budding and dislocation are slightly delayed. In late development the thyroid fails to form a bilobed gland. Instead a single thyroid mass is found unilaterally and mostly to the left of the midline. Thyroid-specific transcription factors (TTF-1 and TTF-2) and thyroglobulin are expressed indicating terminal differentiation. Strikingly, TTF-1- and TTF-2-positive cells aberrantly develop in the presumptive trachea of Shh-/- embryos. The ectopic tissue buds ventrolaterally into the adjacent mesenchyme, and less extensively into the tracheal lumen, forming follicle-like structures that accumulate thyroglobulin. Shh mRNA is not expressed in the thyroid precursor cells at any developmental stage. The results indicate that Shh signaling indirectly governs the symmetric bilobation of the thyroid during late organogenesis. Shh also seems to repress inappropriate thyroid differentiation in nonthyroid embryonic tissues. This study provides clues to the molecular mechanisms that might be dysregulated in thyroid hemiagenesis and development of ectopic thyroid tissue outside the thyroglossal duct.
Collapse
Affiliation(s)
- Henrik Fagman
- Institute of Anatomy and Cell Biology, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|