1
|
Müller P, Leow MKS, Dietrich JW. Minor perturbations of thyroid homeostasis and major cardiovascular endpoints—Physiological mechanisms and clinical evidence. Front Cardiovasc Med 2022; 9:942971. [PMID: 36046184 PMCID: PMC9420854 DOI: 10.3389/fcvm.2022.942971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
It is well established that thyroid dysfunction is linked to an increased risk of cardiovascular morbidity and mortality. The pleiotropic action of thyroid hormones strongly impacts the cardiovascular system and affects both the generation of the normal heart rhythm and arrhythmia. A meta-analysis of published evidence suggests a positive association of FT4 concentration with major adverse cardiovascular end points (MACE), but this association only partially extends to TSH. The risk for cardiovascular death is increased in both subclinical hypothyroidism and subclinical thyrotoxicosis. Several published studies found associations of TSH and FT4 concentrations, respectively, with major cardiovascular endpoints. Both reduced and elevated TSH concentrations predict the cardiovascular risk, and this association extends to TSH gradients within the reference range. Likewise, increased FT4 concentrations, but high-normal FT4 within its reference range as well, herald a poor outcome. These observations translate to a monotonic and sensitive effect of FT4 and a U-shaped relationship between TSH and cardiovascular risk. Up to now, the pathophysiological mechanism of this complex pattern of association is poorly understood. Integrating the available evidence suggests a dual etiology of elevated FT4 concentration, comprising both ensuing primary hypothyroidism and a raised set point of thyroid function, e. g. in the context of psychiatric disease, chronic stress and type 2 allostatic load. Addressing the association between thyroid homeostasis and cardiovascular diseases from a systems perspective could pave the way to new directions of research and a more personalized approach to the treatment of patients with cardiovascular risk.
Collapse
Affiliation(s)
- Patrick Müller
- Department for Electrophysiology, Medical Hospital I, Klinikum Vest, Recklinghausen, NRW, Germany
| | - Melvin Khee-Shing Leow
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Metabolic Disorders Research Programme, Lee Kong Chian School of Medicine, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, NRW, Germany
- Diabetes Centre Bochum/Hattingen, St. Elisabeth-Hospital Blankenstein, Hattingen, NRW, Germany
- Centre for Rare Endocrine Diseases, Ruhr Centre for Rare Diseases (CeSER), Ruhr University Bochum and Witten/Herdecke University, Bochum, NRW, Germany
- Centre for Diabetes Technology, Catholic Hospitals Bochum, Ruhr University Bochum, Bochum, NRW, Germany
- *Correspondence: Johannes W. Dietrich
| |
Collapse
|
2
|
Hoermann R, Cheung AS, Milne M, Grossmann M. Hypothalamic-Pituitary-Thyroid Axis Set Point Alterations Are Associated With Body Composition in Androgen-Deprived Men. J Endocr Soc 2017; 1:874-885. [PMID: 29264538 PMCID: PMC5686654 DOI: 10.1210/js.2017-00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022] Open
Abstract
Objective: Androgen deprivation therapy (ADT) given to men with prostate cancer is associated with metabolically adverse changes in body composition leading to insulin resistance, but the underlying mechanisms are not fully understood. We investigated prospectively whether androgen deprivation or its consequences may be associated with alterations in thyroid function in men. Design: We performed a prespecified secondary analysis of a prospective case control study. Methods: We prospectively followed men with nonmetastatic prostate cancer newly commencing ADT (n = 34) and age-matched controls (n = 29) for 12 months. We assessed secondary outcomes on thyrotropin (TSH) and thyroid hormones using a linear mixed model to determine mean adjusted differences (MADs) between groups. Results: After a 12-month follow-up period, TSH increased in cases compared with control subjects [MAD, 0.69 mIU/L; 95% confidence interval (CI), 0.58–0.82; P < 0.001]. This was accompanied by a rise in FT4 (MAD, 2.2 pmol/L; 95% CI, 1.1–3.2; P < 0.001), reduced FT3-FT4 conversion (MAD, −0.07; 95% CI, −0.10 to −0.4; P < 0.001), and stable FT3. TSH change correlated significantly with changes in weight, body mass index, and fat mass in cases but not with waist circumference, lean mass, visceral fat, insulin resistance, testosterone, sex hormone binding globulin, and estradiol. The rise in TSH after 12 months was strongly associated with changes in leptin. Conclusions: A profound rise in TSH in the absence of peripheral hypothyroidism under ADT suggests set point adaptations of the hypothalamic-pituitary-thyroid axis. This appears to be mediated by body composition changes and by the fat-associated hormone leptin rather than by androgen deficiency. Further studies are required to determine the causality and biological implications of these findings.
Collapse
Affiliation(s)
- Rudolf Hoermann
- Department of Medicine, The University of Melbourne, Heidelberg 3084, Victoria, Australia
| | - Ada S Cheung
- Department of Medicine, The University of Melbourne, Heidelberg 3084, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Michele Milne
- Department of Medicine, The University of Melbourne, Heidelberg 3084, Victoria, Australia
| | - Mathis Grossmann
- Department of Medicine, The University of Melbourne, Heidelberg 3084, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg 3084, Victoria, Australia
| |
Collapse
|
3
|
Chatzitomaris A, Hoermann R, Midgley JE, Hering S, Urban A, Dietrich B, Abood A, Klein HH, Dietrich JW. Thyroid Allostasis-Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming. Front Endocrinol (Lausanne) 2017; 8:163. [PMID: 28775711 PMCID: PMC5517413 DOI: 10.3389/fendo.2017.00163] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus-pituitary-thyroid feedback control is a dynamic, adaptive system. In situations of illness and deprivation of energy representing type 1 allostasis, the stress response operates to alter both its set point and peripheral transfer parameters. In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospitalized patients, displays a historically well-studied pattern of allostatic thyroid response. This is characterized by decreased total and free thyroid hormone concentrations and varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations. An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the far more complex molecular alterations associated with chronic illness frequently lead to allostatic overload. The latter is associated with poor outcome, independently of the underlying disease. Adaptive responses of thyroid homeostasis extend to alterations in thyroid hormone concentrations during fetal life, periods of weight gain or loss, thermoregulation, physical exercise, and psychiatric diseases. The various forms of thyroid allostasis pose serious problems in differential diagnosis of thyroid disease. This review article provides an overview of physiological mechanisms as well as major diagnostic and therapeutic implications of thyroid allostasis under a variety of developmental and straining conditions.
Collapse
Affiliation(s)
- Apostolos Chatzitomaris
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- *Correspondence: Apostolos Chatzitomaris,
| | - Rudolf Hoermann
- Private Consultancy, Research and Development, Yandina, QLD, Australia
| | | | - Steffen Hering
- Department for Internal Medicine, Cardiology, Endocrinology, Diabetes and Medical Intensive Care Medicine, Krankenhaus Bietigheim-Vaihingen, Bietigheim-Bissingen, Germany
| | - Aline Urban
- Department for Anesthesiology, Intensive Care and Palliative Medicine, Eastern Allgäu-Kaufbeuren Hospitals, Kaufbeuren, Germany
| | | | - Assjana Abood
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
| | - Harald H. Klein
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| | - Johannes W. Dietrich
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| |
Collapse
|
4
|
Lau J, Shi YC, Herzog H. Temperature dependence of the control of energy homeostasis requires CART signaling. Neuropeptides 2016; 59:97-109. [PMID: 27080622 DOI: 10.1016/j.npep.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 01/22/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a key neuropeptide with predominant expression in the hypothalamus central to the regulation of diverse biological processes, including food intake and energy expenditure. While there is considerable information on CART's role in the control of feeding, little is known about its thermoregulatory potential. Here we show the consequences of lack of CART signaling on major parameters of energy homeostasis in CART-/- mice under standard ambient housing (RT, 22°C), which is considered a mild cold exposure for mice, and thermoneutral conditions (TN, 30°C). WT mice kept at RT showed an increase in food intake, energy expenditure, BAT UCP-1 expression, and physical activity compared with TN condition, reflecting the augmented energy demand for thermogenesis at RT. On the molecular level, RT housing led to upregulated mRNA expression of TH, CRH, and TRH at the PVN, while NPY, AgRP and CART mRNA levels in the Arc were downregulated. CART-/- mice displayed elevated adiposity and diminished lean mass across both RT and TN. At RT, CART-/- mice showed unchanged food consumption yet greater body weight gain. In addition, an increase in energy expenditure and heightened BAT thermogenesis marked by UCP-1 protein expression was observed in the CART-/- mice. In contrast, TN-housed CART-/- mice exhibited lower weight gain than WT mice accompanied with pronounced reduction in basal feeding. These findings were correlated with reduced BAT temperature, but unchanged energy expenditure and UCP-1 levels. Interestingly, the respiratory exchange ratio for CART-/- mice, which shifted from lower at RT to higher at TN with respect to WT controls, indicates a transition of relative fuel source preference from fat to carbohydrate in the absence of CART signaling. Taken together, these results demonstrate that CART is a critical regulator of energy expenditure, energy partitioning and utilization dependent on the thermal environment.
Collapse
Affiliation(s)
- Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia.
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia.
| |
Collapse
|
5
|
Hoermann R, Midgley JEM, Larisch R, Dietrich JW. Homeostatic Control of the Thyroid-Pituitary Axis: Perspectives for Diagnosis and Treatment. Front Endocrinol (Lausanne) 2015; 6:177. [PMID: 26635726 PMCID: PMC4653296 DOI: 10.3389/fendo.2015.00177] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022] Open
Abstract
The long-held concept of a proportional negative feedback control between the thyroid and pituitary glands requires reconsideration in the light of more recent studies. Homeostatic equilibria depend on dynamic inter-relationships between thyroid hormones and pituitary thyrotropin (TSH). They display a high degree of individuality, thyroid-state-related hierarchy, and adaptive conditionality. Molecular mechanisms involve multiple feedback loops on several levels of organization, different time scales, and varying conditions of their optimum operation, including a proposed feedforward motif. This supports the concept of a dampened response and multistep regulation, making the interactions between TSH, FT4, and FT3 situational and mathematically more complex. As a homeostatically integrated parameter, TSH becomes neither normatively fixed nor a precise marker of euthyroidism. This is exemplified by the therapeutic situation with l-thyroxine (l-T4) where TSH levels defined for optimum health may not apply equivalently during treatment. In particular, an FT3-FT4 dissociation, discernible FT3-TSH disjoint, and conversion inefficiency have been recognized in l-T4-treated athyreotic patients. In addition to regulating T4 production, TSH appears to play an essential role in maintaining T3 homeostasis by directly controlling deiodinase activity. While still allowing for tissue-specific variation, this questions the currently assumed independence of the local T3 supply. Rather it integrates peripheral and central elements into an overarching control system. On l-T4 treatment, altered equilibria have been shown to give rise to lower circulating FT3 concentrations in the presence of normal serum TSH. While data on T3 in tissues are largely lacking in humans, rodent models suggest that the disequilibria may reflect widespread T3 deficiencies at the tissue level in various organs. As a consequence, the use of TSH, valuable though it is in many situations, should be scaled back to a supporting role that is more representative of its conditional interplay with peripheral thyroid hormones. This reopens the debate on the measurement of free thyroid hormones and encourages the identification of suitable biomarkers. Homeostatic principles conjoin all thyroid parameters into an adaptive context, demanding a more flexible interpretation in the accurate diagnosis and treatment of thyroid dysfunction.
Collapse
Affiliation(s)
- Rudolf Hoermann
- Department of Nuclear Medicine, Klinikum Luedenscheid, Luedenscheid, Germany
| | | | - Rolf Larisch
- Department of Nuclear Medicine, Klinikum Luedenscheid, Luedenscheid, Germany
| | - Johannes W. Dietrich
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
- *Correspondence: Johannes W. Dietrich,
| |
Collapse
|
6
|
Gutiérrez-Mariscal M, Sánchez E, García-Vázquez A, Rebolledo-Solleiro D, Charli JL, Joseph-Bravo P. Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity. ACTA ACUST UNITED AC 2012; 179:61-70. [PMID: 22960404 DOI: 10.1016/j.regpep.2012.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/04/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
The activity of the hypothalamus-pituitary-thyroid (HPT) axis is essential for energy homeostasis and is differentially modulated by physical and by psychological stress. Contradictory effects of stressful behavioral paradigms on TSH or thyroid hormone release are due to type, length and controllability of the stressor. We hypothesized that an additional determinant of the activity of the HPT axis is the energy demand due to physical activity. We thus evaluated the response of thyrotropin releasing hormone (TRH) neurons of the hypothalamic paraventricular nucleus (PVN) in Wistar male rats submitted to the elevated plus maze (EPM), the open field test (OFT), or restraint, and sacrificed within 1h after test completion; the response to OFT was compared during light (L) or dark (D) phases. Locomotion and anxiety behaviors were similar if animals were tested in L or D phases but their relation to the biochemical parameters differed. All paradigms increased serum corticosterone concentration; the levels of corticotropin releasing hormone receptor 1 and of glucocorticoid receptor (GR) mRNAs in the PVN were enhanced after restraint or OFT-L. Levels of proTRH mRNA increased in the PVN after exposure to EPM-L or OFT-D; serum levels of thyrotropin (TSH) and T(4) only after OFT-D. In contrast, restraint decreased TRH mRNA and serum TSH levels, while it increased TRH content in the mediobasal hypothalamus, implying reduced release. Expression of proTRH in the PVN varied proportionally to the degree of locomotion in OFT-D, while inversely to anxiety in the EPM-L, and to corticosterone in EPM-L and OFT-D. TRH mRNA levels were analyzed by in situ hybridization in the rostral, middle and caudal zones of the PVN in response to OFT-D; they increased in the middle PVN, where most TRH hypophysiotropic neurons reside; levels correlated positively with the velocity attained in the periphery of the OF and negatively, with anxiety. Variations of serum TSH levels correlated positively with locomotor activity in EPM-L and OFT-L or -D, while negatively to serum corticosterone levels in all paradigms. These results support the proposal that the hypophysiotropic PVN TRH neurons are activated by short term physical activity but that this response may be blunted by the inhibitory effect of stress.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Mariscal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca MOR, México
| | | | | | | | | | | |
Collapse
|
7
|
Cabral A, Valdivia S, Reynaldo M, Cyr NE, Nillni EA, Perello M. Short-term cold exposure activates TRH neurons exclusively in the hypothalamic paraventricular nucleus and raphe pallidus. Neurosci Lett 2012; 518:86-91. [DOI: 10.1016/j.neulet.2012.04.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/21/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
8
|
Chapter 6 Regulation And Contribution Of The Corticotropic, Melanotropic And Thyrotropic Axes To The Stress Response In Fishes. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28006-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Ebling FJP, Wilson D, Wood J, Hughes D, Mercer JG, Morgan PJ, Barrett P. The thyrotropin-releasing hormone secretory system in the hypothalamus of the Siberian hamster in long and short photoperiods. J Neuroendocrinol 2008; 20:576-86. [PMID: 18363803 DOI: 10.1111/j.1365-2826.2008.01702.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thyrotropin-releasing hormone (TRH) is not only essential for the regulation of the pituitary-thyroid axis, but also exerts complementary effects on energy metabolism within the brain. We hypothesised that increased activity of the TRH secretory system may contribute to seasonal adaptations in the Siberian hamster whereby food intake is decreased in winter, and catabolism of fat stores is increased to support thermogenesis. We determined the distribution of TRH producing neurones and TRH-R1 receptor expressing cells in the hypothalamus, and investigated whether photoperiod regulated this system. TRH-immunoreactive (ir) cell somata and preproTRH mRNA expression were found to be widely distributed throughout the medial hypothalamus, with particular clusters in the paraventricular nucleus, the medial preoptic area and periventricular nucleus, and in the dorsomedial hypothalamus extending into the lateral hypothalamic area. A partial sequence encoding TRH-R1 was cloned from hamster hypothalamic cDNA and used to generate a riboprobe for in situ hybridisation studies. TRH-R1 mRNA expressing cells were abundant throughout the hypothalamus, corresponding to the widespread presence of TRH-ir fibres. Photoperiod did not affect the expression of preproTRH mRNA in any region, and the only significant change in TRH-R1 expression was in the dorsomedial posterior arcuate region. This wide distribution of TRH-producing and receptive cells in the hypothalamus is consistent with its hypothesised neuromodulatory roles in the short-term homeostatic control of appetite, thermoregulation and energy expenditure, but the lack of photoperiodic change in TRH mRNA expression does not support the hypothesis that changes in this system underlie long-term seasonal changes in body weight.
Collapse
Affiliation(s)
- F J P Ebling
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
The PKC and ERK/MAPK Pathways Regulate Glucocorticoid Action on TRH Transcription. Neurochem Res 2008; 33:1582-91. [DOI: 10.1007/s11064-008-9698-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
11
|
Bays HE, González-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, Rodbard HW, Henry RR. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther 2008; 6:343-68. [PMID: 18327995 DOI: 10.1586/14779072.6.3.343] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When caloric intake exceeds caloric expenditure, the positive caloric balance and storage of energy in adipose tissue often causes adipocyte hypertrophy and visceral adipose tissue accumulation. These pathogenic anatomic abnormalities may incite metabolic and immune responses that promote Type 2 diabetes mellitus, hypertension and dyslipidemia. These are the most common metabolic diseases managed by clinicians and are all major cardiovascular disease risk factors. 'Disease' is traditionally characterized as anatomic and physiologic abnormalities of an organ or organ system that contributes to adverse health consequences. Using this definition, pathogenic adipose tissue is no less a disease than diseases of other body organs. This review describes the consequences of pathogenic fat cell hypertrophy and visceral adiposity, emphasizing the mechanistic contributions of genetic and environmental predispositions, adipogenesis, fat storage, free fatty acid metabolism, adipocyte factors and inflammation. Appreciating the full pathogenic potential of adipose tissue requires an integrated perspective, recognizing the importance of 'cross-talk' and interactions between adipose tissue and other body systems. Thus, the adverse metabolic consequences that accompany fat cell hypertrophy and visceral adiposity are best viewed as a pathologic partnership between the pathogenic potential adipose tissue and the inherited or acquired limitations and/or impairments of other body organs. A better understanding of the physiological and pathological interplay of pathogenic adipose tissue with other organs and organ systems may assist in developing better strategies in treating metabolic disease and reducing cardiovascular disease risk.
Collapse
Affiliation(s)
- Harold E Bays
- L-MARC Research Center, 3288 Illinois Avenue, Louisville, KY 40213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gutiérrez-Mariscal M, de Gortari P, López-Rubalcava C, Martínez A, Joseph-Bravo P. Analysis of the anxiolytic-like effect of TRH and the response of amygdalar TRHergic neurons in anxiety. Psychoneuroendocrinology 2008; 33:198-213. [PMID: 18079066 DOI: 10.1016/j.psyneuen.2007.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/16/2022]
Abstract
Thyrotropin-releasing hormone (TRH) was first described for its neuroendocrine role in controlling the hypothalamus-pituitary-thyroid axis (HPT). Anatomical and pharmacological data evidence its participation as a neuromodulator in the central nervous system. Administration of TRH induces various behavioural effects including arousal, locomotion, analepsy, and in certain paradigms, it reduces fear behaviours. In this work we studied the possible involvement of TRHergic neurons in anxiety tests. We first tested whether an ICV injection of TRH had behavioural effects on anxiety in the defensive burying test (DBT). Corticosterone serum levels were quantified to evaluate the stress response and, the activity of the HPT axis to distinguish the endocrine response of TRH injection. Compared to a saline injection, TRH reduced cumulative burying, and decreased serum corticosterone levels, supporting anxiolytic-like effects of TRH administration. The response of TRH neurons was evaluated in brain regions involved in the stress circuitry of animals submitted to the DBT and to the elevated plus maze (EPM), tests that allow to correlate biochemical parameters with anxiety-like behaviour. In the DBT, the response of Wistar rats was compared with that of the stress-hypersensitive Wistar Kyoto (WKY) strain. Behavioural parameters were analysed in recorded videos. Animals were sacrificed 30 or 60min after test completion. In various limbic areas, the relative mRNA levels of TRH, its receptors TRH-R1 and -R2, and its inactivating ectoenzyme pyroglutamyl peptidase II (PPII), were determined by RT-PCR, TRH tissue content by radioimmunoassay (RIA). The extent of the stress response was evaluated by measuring the expression profile of CRH, CRH-R1 and GR mRNA in the paraventricular nucleus (PVN) of the hypothalamus and in amygdala, corticosterone levels in serum. As these tests demand increased physical activity, the response of the HPT axis was also evaluated. Both tasks increased the levels of serum corticosterone. WKY rats showed higher anxiety-like behaviour in the DBT than Wistar, as well as increased PVN mRNA levels of CRH and GR. TRH mRNA levels increased in the PVN and TSH values remained unchanged in both strains although TRH content decreased in the medial basal hypothalamus of Wistar rats only. TRH content was measured in several limbic regions but only amygdala showed specific task-related changes after DBT exposure of both strains: increased TRH content. Expression of TRH mRNA decreased in the amygdala of Wistar, suggesting inhibition of TRHergic neuronal activity in this region. The participation of amygdalar TRH neurons in anxiety was confirmed in the EPM where TRH expression and release correlated with the number of entries, and the % of time spent in open arms, supporting an anxiolytic role of these TRH-neurons. These results contribute to the understanding of the involvement of TRH during emotionally charged situations and shed light on the participation of particular circuits in related behaviours.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Mariscal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca, MOR 62210, México
| | | | | | | | | |
Collapse
|
13
|
Abstract
Hypothalamic neurons that express agouti-related protein (AgRP) and neuropeptide Y (NPY) are thought to be important for regulation of feeding, especially under conditions of negative energy balance. The expression of NPY and AgRP increases during lactation and may promote the hyperphagia that ensues. We explored the role of AgRP neurons in reproduction and lactation, using a mouse model in which AgRP-expressing neurons were selectively ablated by the action of diphtheria toxin. We show that ablation of AgRP neurons in neonatal mice does not interfere with pregnancy, parturition, or lactation, suggesting that early ablation allows compensatory mechanisms to become established. However, ablation of AgRP neurons after lactation commences results in rapid starvation, indicating that both basal feeding and lactation-induced hyperphagia become dependent on AgRP neurons in adulthood. We also show that constitutive inactivation of Npy and Agrp genes does not prevent pregnancy or lactation, nor does it protect lactating dams from diphtheria toxin-induced starvation.
Collapse
Affiliation(s)
- Colin T Phillips
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
14
|
Madsen L, Liaset B, Kristiansen K. Macronutrients and obesity: views, news and reviews. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.1.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Schuhler S, Warner A, Finney N, Bennett GW, Ebling FJP, Brameld JM. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters. J Neuroendocrinol 2007; 19:239-49. [PMID: 17355315 DOI: 10.1111/j.1365-2826.2006.01524.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thyrotrophin-releasing hormone (TRH) is known to play an important role in the control of food intake and energy metabolism in addition to its actions on the pituitary-thyroid axis. We have previously shown that central administration of TRH decreases food intake in Siberian hamsters. This species is being increasingly used as a physiological rodent model in which to understand hypothalamic control of long-term changes in energy balance because it accumulates fat reserves in long summer photoperiods, and decreases food intake and body weight when exposed to short winter photoperiods. The objectives of our study in Siberian hamsters were: (i) to investigate whether peripheral administration of TRH would mimic the effects of central administration of TRH on food intake and whether these effects would differ dependent upon the ambient photoperiod; (ii) to determine whether TRH would have an effect on energy expenditure; and (iii) to investigate the potential sites of action of TRH. Both peripheral (5-50 mg/kg body weight; i.p.) and central (0.5 microg/ml; i.c.v.) administration of TRH decreased food intake, and increased locomotor activity, body temperature and oxygen consumption in the Siberian hamster, with a rapid onset and short duration of action. Systemic treatment with TRH was equally effective in suppressing feeding regardless of ambient photoperiod. The acute effects of TRH are likely to be centrally mediated and independent of its role in the control of the production of thyroid hormones. We conclude that TRH functions to promote a catabolic energetic state by co-ordinating acute central and chronic peripheral (thyroid-mediated) function.
Collapse
Affiliation(s)
- S Schuhler
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Yarbrough G, Kamath J, Winokur A, Prange A. Thyrotropin-releasing hormone (TRH) in the neuroaxis: Therapeutic effects reflect physiological functions and molecular actions. Med Hypotheses 2007; 69:1249-56. [DOI: 10.1016/j.mehy.2007.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
|
17
|
de Gortari P, Uribe RM, García-Vázquez A, Aguilar-Valles A, Martínez A, Valdés A, Charli JL, Fernández-Guardiola A, Joseph-Bravo P. Amygdala kindling differentially regulates the expression of the elements involved in TRH transmission. Neurochem Int 2005; 48:31-42. [PMID: 16213061 DOI: 10.1016/j.neuint.2005.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 12/26/2022]
Abstract
Subthreshold electrical stimulation of the amygdala (kindling) activates neuronal pathways increasing the expression of several neuropeptides including thyrotropin releasing-hormone (TRH). Partial kindling enhances TRH expression and the activity or its inactivating ectoenzyme; once kindling is established (stage V), TRH and its mRNA levels are further increased but TRH-binding and pyroglutamyl aminopeptidase II (PPII) activity decreased in epileptogenic areas. To determine whether variations in TRH receptor binding or PPII activity are due to regulation of their synthesis, mRNA levels of TRH receptors (R1, R2) and PPII were semi-quantified by RT-PCR in amygdala, frontal cortex and hippocampus of kindled rats sacrificed at stage II or V. Increased mRNA levels of PPII were found at stage II in amygdala and frontal cortex, and of pro-TRH and TRH-R2, in amygdala and hippocampus. At stage V, pro-TRH mRNA levels increased and those of PPII, decreased in the three regions; TRH-R2 mRNA levels diminished in amygdala and frontal cortex and of TRH-R1 only in amygdala. In situ hybridization analyses revealed, at stage II, enhanced TRH-R1 mRNA levels in dentate gyrus and amygdala while decreased in piriform cortex; those of TRH-R2 increased in amygdala, CA2, dentate gyrus, piriform cortex, thalamus and subiculum and of PPII, in CAs and piriform cortex. In contrast, at stage V decreased expression of TRH-R1 occurred in amygdala, CA2/3, dentate gyrus and piriform cortex; of TRH-R2 in CA2, thalamus and piriform cortex, and of PPII in CA2, and amygdala. The magnitude of changes differed between ipsi and contralateral side. These results support a trans-synaptic modulation of all elements involved in TRH transmission in conditions that stimulate the activity of TRHergic neurons. They show that reported changes in PPII activity or TRH-binding caused by kindling relate to regulation of the expression of TRH receptors and degrading enzyme.
Collapse
Affiliation(s)
- P de Gortari
- Dept. Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Czda. México-Xochimilco 102, Sn. Lorenzo Huipulco, México D.F. 14370, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|