1
|
Wang Z, Qi Y, Xiao N, She L, Zhang Y, Lu J, Jiang Q, Luo C. Identification of crucial LncRNAs associated with testicular development and LOC108635509 as a potential regulator in black goat spermatogenesis. BMC Genomics 2024; 25:1195. [PMID: 39695400 PMCID: PMC11654314 DOI: 10.1186/s12864-024-11094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
The establishment and maintenance of spermatogenesis is a complex process involving a vast of regulatory pathways. There is growing evidence revealing that long noncoding RNAs (lncRNA) play important roles in regulating testicular development and spermatogenesis in a stage-specific way. However, our understanding of how lncRNA regulates testicular development and spermatogenesis in black goats is quite limited. In the current study, we screened the transcriptomes (lncRNA and mRNA) of testicular from Guangxi black goats before puberty (3 days old, D3; 30 days old, D30), puberty (90 days old, D90) and postpuberty (180 days old, D180), in order to identify the lncRNA interaction with mRNAs contributes to goat spermatogenesis. The RNA-sequencing (RNA-seq) analysis showed that there were 1211, 12,180, 834 differential lncRNAs and 1196, 8838,269 differential mRNAs at the ages of D30 vs. D3, D90 vs. D30, and D180 vs. D90. The lncRNAs showed the most significantly changes from D30 to D90, which indicated that D90 was a key node of lncRNAs participated in the regulation of testicular development and spermatogenesis in black goat. According to functional enrichment analysis of GO and KEGG, we found that differentially expressed lncRNAs (DE lncRNAs) and their target genes regulated spermatogenesis through signal pathways including MAPK, Ras, and PI3K-Akt. Using cis- and trans-acting, 39 DE lncRNAs-targeted genes were found to be enriched for male reproduction. Of these, LOC108635509, which specific expressed in testis and upregulated the expression levels at D90, was found participated in the regulation of testicular development through promoting the proliferation of Sertoli cells (SCs). Overall, this study provides new insight into the regulatory mechanisms that support spermatogenesis and testicular development in black goats.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Yunjia Qi
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Nan Xiao
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Liu She
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Yunchuang Zhang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Junzhi Lu
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Qinyang Jiang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| | - Chan Luo
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| |
Collapse
|
2
|
Zhao Y, Zhang L, Wang L, Zhang J, Shen W, Ma Y, Ding C, Wu G. Identification and Analysis of Genes Related to Testicular Size in 14-Day-Old Piglets. Animals (Basel) 2024; 14:172. [PMID: 38200903 PMCID: PMC10778417 DOI: 10.3390/ani14010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The RNA-Seq technology was used to screen the key genes that affect the early development of the testes of Duroc × Landrace × Yorkshire piglets, to determine the regulatory pathway and provide reference for subsequent reproductive performance research, breeding, and other production practices. This study selected 14-day-old Duroc × Landrace × Yorkshire piglets as the trial animals. Testes from piglets with similar weights and no pathological changes were divided into small testis (ST) and large testis (LT) groups, and the RNA-Seq screening of differentially expressed genes (DEGs) was performed to find candidate genes and regulatory pathways related to early testicular development. The results show that 570 DEGs were found in the ST and LT groups, with 281 upregulated and 289 downregulated. The DEGs were mainly enriched on 47 gene ontology (GO) functional items. The Kyoto encyclopedia of genes and genotypes (KEGG) enrichment analysis found that there were 44 significantly enriched KEGG signal pathways, and the regulation of testicular development mainly focused on the arachidonic acid metabolism, Wnt signaling pathway and GnRH secretion pathways. The PTGES, SFRP1, SPP1, PLA2G4E, KCNJ5, PTGS2, and HCN1 genes were found to be as closely related to the testicular development of these Duroc × Landrace × Yorkshire piglets, and the differential gene expression was consistent with the real-time quantitative reverse transcription PCR (real-time qRT-PCR) validation results. This study was validated by high-throughput sequencing analysis and real-time qRT-PCR, and showed that the PTGES, SFRP1, SPP1, PLA2G4E, KCNJ5, PTGS2, and HCN1 genes may be involved in the regulation of germ cell development, spermatogenesis and semen traits. These should be further studied as candidate genes for early testicular development and reproductive trait regulation in boars.
Collapse
Affiliation(s)
- Yunjiao Zhao
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Liangzhi Zhang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining 810008, China;
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Wenjuan Shen
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Yuhong Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Chengxiang Ding
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| |
Collapse
|
3
|
Amh/Amhr2 Signaling Causes Masculinization by Inhibiting Estrogen Synthesis during Gonadal Sex Differentiation in Japanese Flounder ( Paralichthys olivaceus). Int J Mol Sci 2023; 24:ijms24032480. [PMID: 36768803 PMCID: PMC9917198 DOI: 10.3390/ijms24032480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The anti-Müllerian hormone (Amh) is a protein belonging to the TGF-β superfamily, the function of which has been considered important for male sex differentiation in vertebrates. The Japanese flounder (Paralichthys olivaceus) is a teleost fish that has an XX/XY sex determination system and temperature-dependent sex determination. In this species, amh expression is up-regulated in genetic males and in temperature-induced masculinization during the sex differentiation period. However, to the best of our knowledge, no reports on the Amh receptor (Amhr2) in flounder have been published, and the details of Amh signaling remain unclear. In this study, we produced amhr2-deficient mutants using the CRISPR/Cas9 system and analyzed the gonadal phenotypes and sex-related genes. The results revealed that the gonads of genetically male amhr2 mutants featured typical ovaries, and the sex differentiation-related genes showed a female expression pattern. Thus, the loss of Amhr2 function causes male-to-female sex reversal in Japanese flounder. Moreover, the treatment of genetically male amhr2 mutants with an aromatase inhibitor fadrozole, which inhibits estrogen synthesis, resulted in testicular formation. These results strongly suggest that Amh/Amhr2 signaling causes masculinization by inhibiting estrogen synthesis during gonadal sex differentiation in the flounder.
Collapse
|
4
|
Awang-Junaidi AH, Fayaz MA, Goldstein S, Honaramooz A. Using a testis regeneration model, FGF9, LIF, and SCF improve testis cord formation while RA enhances gonocyte survival. Cell Tissue Res 2022; 389:351-370. [PMID: 35596812 DOI: 10.1007/s00441-022-03641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Implantation of testis cell aggregates from various donors under the back skin of recipient mice results in de novo formation of testis tissue. We used this implantation model to study the putative in vivo effects of six different growth factors on testis cord development. Recipient mice (n = 7/group) were implanted with eight neonatal porcine testis cell aggregates that were first exposed to a designated growth factor: FGF2 at 1 µg/mL, FGF9 at 5 µg/mL, VEGF at 3.5 µg/mL, LIF at 5 µg/mL, SCF at 3.5 µg/mL, retinoic acid (RA) at 3.5 × 10-5 M, or no growth factors (control). The newly developed seminiferous cords (SC) were classified based on their morphology into regular, irregular, enlarged, or aberrant. Certain treatments enhanced implant weight (LIF), implant cross-sectional area (SCF) or the relative cross-sectional area covered by SC within implants (FGF2). RA promoted the formation of enlarged SC and FGF2 led to the highest ratio of regular SC and the lowest ratio of aberrant SC. Rete testis-like structures appeared earlier in implants treated with FGF2, FGF9, or LIF. These results show that even brief pre-implantation exposure of testis cells to these growth factors can have profound effects on morphogenesis of testis cords using this implantation model.
Collapse
Affiliation(s)
- Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.,Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Savannah Goldstein
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
5
|
Suen AA, Kenan AC, Williams CJ. Developmental exposure to phytoestrogens found in soy: New findings and clinical implications. Biochem Pharmacol 2022; 195:114848. [PMID: 34801523 PMCID: PMC8712417 DOI: 10.1016/j.bcp.2021.114848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Exposure to naturally derived estrogen receptor activators, such as the phytoestrogen genistein, can occur at physiologically relevant concentrations in the human diet. Soy-based infant formulas are of particular concern because infants consuming these products have serum genistein levels almost 20 times greater than those seen in vegetarian adults. Comparable exposures in animal studies have adverse physiologic effects. The timing of exposure is particularly concerning because infants undergo a steroid hormone-sensitive period termed "minipuberty" during which estrogenic chemical exposure may alter normal reproductive tissue patterning and function. The delay between genistein exposure and reproductive outcomes poses a unique challenge to collecting epidemiological data. In 2010, the U.S. National Toxicology Program monograph on the safety of the use of soy formula stated that the use of soy-based infant formula posed minimal concern and emphasized a lack of data from human subjects. Since then, several new human and animal studies have advanced our epidemiological and mechanistic understanding of the risks and benefits of phytoestrogen exposure. Here we aim to identify clinically relevant findings regarding phytoestrogen exposure and female reproductive outcomes from the past 10 years, with a focus on the phytoestrogen genistein, and explore the implications of these findings for soy infant formula recommendations. Research presented in this review will inform clinical practice and dietary recommendations for infants based on evidence from both clinical epidemiology and basic research advances in endocrinology and developmental biology from mechanistic in vitro and animal studies.
Collapse
Affiliation(s)
- Alisa A Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anna C Kenan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
6
|
See SZ, Bana SA, Ather N, Haberman A. Adrenocortical carcinoma arising from the colonic mesentery. Proc AMIA Symp 2021; 35:239-240. [DOI: 10.1080/08998280.2021.2010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Samuel Z. See
- Texas A&M University College of Medicine, Bryan, Texas
| | - Sinan Ali Bana
- Department of Radiology, Baylor University Medical Center, Dallas, Texas
| | - Nuvaira Ather
- Department of Pathology, Baylor University Medical Center, Dallas, Texas
| | - Amy Haberman
- Department of Radiology, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
7
|
Zhang B, Yan Z, Wang P, Yang Q, Huang X, Shi H, Tang Y, Ji Y, Zhang J, Gun S. Identification and Characterization of lncRNA and mRNA in Testes of Landrace and Hezuo Boars. Animals (Basel) 2021; 11:ani11082263. [PMID: 34438721 PMCID: PMC8388364 DOI: 10.3390/ani11082263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Precocious puberty is an excellent reproductive trait in domestic animals, which can generate higher breeding benefits in livestock production. However, regulators associated with this sexual maturation process remain largely unknown. Chinese Hezuo (HZ) boars are known for their early sexual maturity. In this work, the characteristics of precocious puberty in HZ pigs were confirmed by histological analysis, and some important long noncoding RNA (lncRNA) and mRNA were identified in the testes of immature (30-day-old) and mature (120-day-old) HZ boars, which could play a key role in precocious puberty. These results will provide a theoretical basis for further research on the regulatory mechanism of precocious puberty, which is important for accelerating the breeding process of highly fertile animals. Abstract Chinese HZ boars are typical plateau miniature boars characterized by precocious puberty, which is closely related to testicular development and spermatogenesis. Accumulating evidence indicates that lncRNA is involved in the testicular development and regulation of spermatogenesis. However, little is known about the lncRNA precocious regulation in testicular development and spermatogenesis on early sexual maturity of HZ boars. Thus, we investigated the expression and characterization of lncRNA and mRNA in 30-day-old and 120-day-old HZ boar testes using transcriptome to explore precocious puberty. Landrace (LC) boar was treated as the control. Histological analyses indicated that HZ boar underwent puberty development at an earlier stage than LC boar and had achieved sexual maturity at 120 days old. RNA-Seq yielded a total of 187 lncRNAs and 984 mRNAs; these molecules were identified as possible candidates for precocious puberty. GO terms and KEGG pathways enrichment analyses revealed that the differentially expressed lncRNA and their targeted genes were involved in metabolic pathways regulating testis development and spermatogenesis, such as the PI3K-Akt, TGF-beta and Wnt pathways. Further screening, some lncRNA (such as LOC102166140, LOC110259451, and MSTRG.15011.2), and mRNA (such as PDCL2, HSD17B4, SHCBP1L, CYP21A2, and SPATA3) were found to be possibly associated with precocious puberty, which would add to our understanding of the molecular regulatory mechanisms of precocious puberty. This study provided valuable information for further study of the role of lncRNA and mRNA in the process of precocious puberty.
Collapse
Affiliation(s)
- Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Yanan Ji
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Juanli Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1804
| |
Collapse
|
8
|
Ali MA, Maalman RSE, Donkor YO, Mensah JE. Ambiguous genitalia: clinical management of adult female with male assigned gender: a case report. J Med Case Rep 2021; 15:362. [PMID: 34253226 PMCID: PMC8273980 DOI: 10.1186/s13256-021-02914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disorders of sex development are anomalies in which the development of urogenital ridge is undifferentiated for the male and female child. Imaging plays a vital role in investigating the gross anatomy and associated anomalies. Ultrasonography, such as genitography and magnetic resonance, is the primary modality for demonstrating internal gonads and genitalia. Early multidisciplinary approach in the management of ambiguous genitalia including early surgical intervention is the predominant practice, with few current considerations on deferral of genital reconstruction until adolescent age. CASE PRESENTATION We report the rare case of a 24-year-old adult female from a majority ethnic group of the Volta region, Ghana who was diagnosed and raised as male, now requiring surgical restoration to the female gender. The surgical team decided to assign external genitalia to correspond with the already intact internal organs, thus constructing the vulva. Consent was given by the client and her family members for management and surgical intervention. The surgery was scheduled and duly performed with a successful outcome. Understanding and consent was sought from the patient for the purpose of using her images for teaching, scientific publication, and demonstrations. CONCLUSION The advantages of deferring surgical reconstruction with psychological counseling after early assessment need to be considered to prevent inappropriate gender assignment.
Collapse
Affiliation(s)
- Mahamudu Ayamba Ali
- Department of Basic Medical Sciences, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana.,Consultant Urologist, Department of Surgery, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Raymond Saa-Eru Maalman
- Department of Basic Medical Sciences, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Yaw Otchere Donkor
- Department of Basic Medical Sciences, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana.
| | - James Edward Mensah
- Consultant Urologist, Department of Surgery, Korle Bu Teaching Hospital, Accra, Ghana.,School of medicine and Dentistry, University of Ghana, College of Health Sciences, Accra, Ghana
| |
Collapse
|
9
|
Gan RH, Wang Y, Li Z, Yu ZX, Li XY, Tong JF, Wang ZW, Zhang XJ, Zhou L, Gui JF. Functional Divergence of Multiple Duplicated Foxl2 Homeologs and Alleles in a Recurrent Polyploid Fish. Mol Biol Evol 2021; 38:1995-2013. [PMID: 33432361 PMCID: PMC8097289 DOI: 10.1093/molbev/msab002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evolutionary fates of duplicated genes have been widely investigated in many polyploid plants and animals, but research is scarce in recurrent polyploids. In this study, we focused on foxl2, a central player in ovary, and elaborated the functional divergence in gibel carp (Carassius gibelio), a recurrent auto-allo-hexaploid fish. First, we identified three divergent foxl2 homeologs (Cgfoxl2a-B, Cgfoxl2b-A, and Cgfoxl2b-B), each of them possessing three highly conserved alleles and revealed their biased retention/loss. Then, their abundant sexual dimorphism and biased expression were uncovered in hypothalamic-pituitary-gonadal axis. Significantly, granulosa cells and three subpopulations of thecal cells were distinguished by cellular localization of CgFoxl2a and CgFoxl2b, and the functional roles and the involved process were traced in folliculogenesis. Finally, we successfully edited multiple foxl2 homeologs and/or alleles by using CRISPR/Cas9. Cgfoxl2a-B deficiency led to ovary development arrest or complete sex reversal, whereas complete disruption of Cgfoxl2b-A and Cgfoxl2b-B resulted in the depletion of germ cells. Taken together, the detailed cellular localization and functional differences indicate that Cgfoxl2a and Cgfoxl2b have subfunctionalized and cooperated to regulate folliculogenesis and gonad differentiation, and Cgfoxl2b has evolved a new function in oogenesis. Therefore, the current study provides a typical case of homeolog/allele diversification, retention/loss, biased expression, and sub-/neofunctionalization in the evolution of duplicated genes driven by polyploidy and subsequent diploidization from the recurrent polyploid fish.
Collapse
Affiliation(s)
- Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Xi Yu
- Ningxia Fisheries Research Institute, Yinchuan, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Meng L, Yu H, Ni F, Niu J, Liu X, Wang X. Roles of two cyp11 genes in sex hormone biosynthesis in Japanese flounder (Paralichthys olivaceus). Mol Reprod Dev 2019; 87:53-65. [PMID: 31746503 DOI: 10.1002/mrd.23301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
The P450 side-chain cleavage enzymes P450scc (Cyp11a) and 11β-hydroxylase (Cyp11b) play important roles in sex steroid and cortisol production. Here, two duplicates of cyp11 genes were identified in Japanese flounder (Paralichthys olivaceus): Pocyp11a and Pocyp11b, respectively. Phylogenetic analysis and amino acid sequence alignment revealed that Pocyp11a and Pocyp11b shared significant identity with sequences of other teleost fish species. The quantitative real-time polymerase chain reaction (qRT-PCR) results indicated that among the studied tissues, brain tissue showed the highest expression of Pocyp11a, followed by kidney and testis tissues, whereas Pocyp11b expression was highest in the testis. The expression patterns of these two genes showed sexual dimorphism, with both genes showing higher expression in the testis than in the ovary. In-situ hybridization analysis demonstrated that Pocyp11a and Pocyp11b mRNA were both detected in oocytes, spermatocytes, and Sertoli cells, indicating that they might be involved in hormone synthesis. The expression levels of Pocyp11a and Pocyp11b were significantly downregulated by treatment with 17α-methyltestosterone (17α-MT) in the testis and ovary in both in vivo and studies. In vivo studies showed that Pocyp11a and Pocyp11b transcripts were suppressed by 17β-estradiol (E2 ) treatment in both the testis and ovary. In addition, in vitro studies showed that the expression level of Pocyp11b was decreased by treatment with E2 , whereas that of Pocyp11a was largely unaffected. Moreover, the expression levels of Pocyp11a and Pocyp11b in the testis cell line were significantly upregulated after NR0b1 and NR5a2 (p < .05) treatment. These results indicate that Pocyp11a and Pocyp11b might play important roles in sex hormone biosynthesis. Our research can assist future studies of the mechanisms of steroid biosynthesis and functional differences between cyp11a and cyp11b in Japanese flounder.
Collapse
Affiliation(s)
- Lihui Meng
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Ministry of Education, Shandong, China.,Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Ministry of Education, Shandong, China
| | - Feifei Ni
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Ministry of Education, Shandong, China
| | - Jingjing Niu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Ministry of Education, Shandong, China
| | - Xiumei Liu
- Department of Life Science and Technology, College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Ministry of Education, Shandong, China
| |
Collapse
|
11
|
Abstract
In the classic androgen biosynthesis pathway, testosterone is converted to 5α-dihydrotestosterone, a step crucially required for normal male genital virilization. Congenital adrenal hyperplasia (CAH) due to P450 oxidoreductase deficiency (PORD) is an inborn disorder that disrupts classic androgen biosynthesis. However, some affected girls present with severe genital virilization at birth. We hypothesized that this is explained by a prenatally active, alternative biosynthesis pathway to 5α-dihydrotestosterone. We show that adrenals and genital skin cooperate to produce androgens via the alternative pathway during the major period of human sexual differentiation and that neonates with PORD still produce alternative pathway androgens during the first weeks of life. This indicates that alternative pathway androgen biosynthesis drives prenatal virilization in CAH due to PORD. Androgen biosynthesis in the human fetus proceeds through the adrenal sex steroid precursor dehydroepiandrosterone, which is converted to testosterone in the gonads, followed by further activation to 5α-dihydrotestosterone in genital skin, thereby facilitating male external genital differentiation. Congenital adrenal hyperplasia due to P450 oxidoreductase deficiency results in disrupted dehydroepiandrosterone biosynthesis, explaining undervirilization in affected boys. However, many affected girls are born virilized, despite low circulating androgens. We hypothesized that this is due to a prenatally active, alternative androgen biosynthesis pathway from 17α-hydroxyprogesterone to 5α-dihydrotestosterone, which bypasses dehydroepiandrosterone and testosterone, with increased activity in congenital adrenal hyperplasia variants associated with 17α-hydroxyprogesterone accumulation. Here we employ explant cultures of human fetal organs (adrenals, gonads, genital skin) from the major period of sexual differentiation and show that alternative pathway androgen biosynthesis is active in the fetus, as assessed by liquid chromatography–tandem mass spectrometry. We found androgen receptor expression in male and female genital skin using immunohistochemistry and demonstrated that both 5α-dihydrotestosterone and adrenal explant culture supernatant induce nuclear translocation of the androgen receptor in female genital skin primary cultures. Analyzing urinary steroid excretion by gas chromatography–mass spectrometry, we show that neonates with P450 oxidoreductase deficiency produce androgens through the alternative androgen pathway during the first weeks of life. We provide quantitative in vitro evidence that the corresponding P450 oxidoreductase mutations predominantly support alternative pathway androgen biosynthesis. These results indicate a key role of alternative pathway androgen biosynthesis in the prenatal virilization of girls affected by congenital adrenal hyperplasia due to P450 oxidoreductase deficiency.
Collapse
|
12
|
Meng L, Yu H, Qu J, Niu J, Ni F, Han P, Yu H, Wang X. Two cyp17 genes perform different functions in the sex hormone biosynthesis and gonadal differentiation in Japanese flounder (Paralichthys olivaceus). Gene 2019; 702:17-26. [PMID: 30898704 DOI: 10.1016/j.gene.2019.02.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 11/25/2022]
Abstract
P450c17, a key enzyme in the steroid generation pathway, plays an important role in the production of sex steroid and cortisol. In this study, two cyp17 gene isoforms, Pocyp17-I and Pocyp17-II were isolated from Paralichthys olivaceus gonads. Domain architecture analysis of Pocyp17-I and Pocyp17-II revealed that they had three regions important to enzymatic function. Structural analysis showed that Pocyp17-I and Pocyp17-II had 8 and 9 exons respectively, and the difference was caused by the insertion of an extra intron (intron1) in the latter. Quantitative real-time polymerase chain reaction results indicated that the expression of these two genes showed sexually dimorphism that Pocyp17-I and Pocyp17-II were highest expressed in testis and ovary, respectively. The in situ hybridization analysis of gonads indicated that Pocyp17-I and Pocyp17-II mRNA were both detected in oocytes, spermatocytes and Sertoli cells. After injection of androgen and estrogen (17α-methyltestosterone, 17β-estradiol) of different concentrations, the expression level of Pocyp17-I decreased significantly (P < 0.01), whereas estrogen had no influence on Pocyp17-II, but androgen upregulated the expression of Pocyp17-II (P < 0.05). Moreover, Pocyp17-I expression level was down-regulated significantly by NR0b1 but up-regulated by NR5a2 (P < 0.05), whereas Pocyp17-II expression level was down-regulated significantly by NR0b1 and NR5a2 (P < 0.05). All these results demonstrated that there were differences in expression patterns, feedback actions of sex hormones and transcriptional regulations between cyp17-I and cyp17-II, which revealed that cyp17-I and cyp17-II might perform different functions in sex hormones biosynthesis and gonadal differentiation in Japanese flounder.
Collapse
Affiliation(s)
- Lihui Meng
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jingjing Niu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Feifei Ni
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
13
|
Fan Z, Zou Y, Jiao S, Tan X, Wu Z, Liang D, Zhang P, You F. Significant association of cyp19a promoter methylation with environmental factors and gonadal differentiation in olive flounder Paralichthys olivaceus. Comp Biochem Physiol A Mol Integr Physiol 2017; 208:70-79. [DOI: 10.1016/j.cbpa.2017.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
|
14
|
Racca JD, Chen YS, Yang Y, Phillips NB, Weiss MA. Human Sex Determination at the Edge of Ambiguity: INHERITED XY SEX REVERSAL DUE TO ENHANCED UBIQUITINATION AND PROTEASOMAL DEGRADATION OF A MASTER TRANSCRIPTION FACTOR. J Biol Chem 2016; 291:22173-22195. [PMID: 27576690 DOI: 10.1074/jbc.m116.741959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Indexed: 12/15/2022] Open
Abstract
A general problem is posed by analysis of transcriptional thresholds governing cell fate decisions in metazoan development. A model is provided by testis determination in therian mammals. Its key step, Sertoli cell differentiation in the embryonic gonadal ridge, is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in human SRY cause gonadal dysgenesis leading to XY female development (Swyer syndrome). Here, we have characterized an inherited mutation compatible with either male or female somatic phenotypes as observed in an XY father and XY daughter, respectively. The mutation (a crevice-forming substitution at a conserved back surface of the SRY high mobility group box) markedly destabilizes the domain but preserves specific DNA affinity and induced DNA bend angle. On transient transfection of diverse human and rodent cell lines, the variant SRY exhibited accelerated proteasomal degradation (relative to wild type) associated with increased ubiquitination; in vitro susceptibility to ubiquitin-independent ("default") cleavage by the 20S core proteasome was unchanged. The variant's gene regulatory activity (as assessed in a cellular model of the rat embryonic XY gonadal ridge) was reduced by 2-fold relative to wild-type SRY at similar levels of mRNA expression. Chemical proteasome inhibition restored native-like SRY expression and transcriptional activity in association with restored occupancy of a sex-specific enhancer element in principal downstream gene Sox9, demonstrating that the variant SRY exhibits essentially native activity on a per molecule basis. Our findings define a novel mechanism of impaired organogenesis, accelerated ubiquitin-directed proteasomal degradation of a master transcription factor leading to a developmental decision poised at the edge of ambiguity.
Collapse
Affiliation(s)
- Joseph D Racca
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yen-Shan Chen
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yanwu Yang
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nelson B Phillips
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael A Weiss
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
15
|
Ho SM, Cheong A, Adgent MA, Veevers J, Suen AA, Tam NNC, Leung YK, Jefferson WN, Williams CJ. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol 2016; 68:85-104. [PMID: 27421580 DOI: 10.1016/j.reprotox.2016.07.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Accepted: 07/09/2016] [Indexed: 12/31/2022]
Abstract
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of "Developmental Origins of Health and Disease" (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p'-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States; Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, OH, United States.
| | - Ana Cheong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Margaret A Adgent
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Veevers
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Alisa A Suen
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States; Curriculum in Toxicology, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Neville N C Tam
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Yuet-Kin Leung
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Wendy N Jefferson
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Carmen J Williams
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.
| |
Collapse
|
16
|
David RM. Proposed Mode of Action for In Utero Effects of Some Phthalate Esters on the Developing Male Reproductive Tract. Toxicol Pathol 2016; 34:209-19. [PMID: 16698716 DOI: 10.1080/01926230600642625] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phthalate esters containing a straight-chain backbone of 4–6 carbons have demonstrated testicular toxicity and infertility in adult and pre-adolescent rats, mice, hamsters, and ferrets. In recent years, these same phthalates have been shown to interfere with the normal development of the male reproductive tract in rodents and rabbits. The review presented here summarizes studies that provide evidence of a mode of action for these effects. The data indicate that C4–C6 phthalate esters inhibit processes in the Leydig cell, such as the synthesis of testosterone (T) and production of insulin-like factor 3 (insl3), both of which are required for normal development of male genitalia. A proposed secondary effect of reduced androgen production is on Sertoli cells, resulting in failure to proliferate and interference with cell-cell communication (gap-junction intracellular communication) leading to the development of large multinucleate gonocytes. The possibility that phthalates act directly on the Sertoli cells to interfere with intracellular communication is not excluded. The strength, consistency, and plausibility of the proposed mode of action and alternate modes of action are discussed.
Collapse
Affiliation(s)
- Raymond M David
- K&D Scientific Consulting, Inc., Pittsford, New York 14534, USA.
| |
Collapse
|
17
|
Li Y, Li J, Fang C, Shi L, Tan J, Xiong Y, Bin Fan, Li C. Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages. Sci Rep 2016; 6:26852. [PMID: 27229484 PMCID: PMC4882596 DOI: 10.1038/srep26852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
Some documented evidences proved small RNAs (sRNA) and targeted genes are involved in mammalian testicular development and spermatogenesis. However, the detailed molecular regulation mechanisms of them remain largely unknown so far. In this study, we obtained a total of 10,716 mRNAs, 67 miRNAs and 16,953 piRNAs which were differentially expressed between LC and LW pig breeds or between the two sexual maturity stages. Of which, we identified 16 miRNAs and 28 targeted genes possibly related to spermatogenesis; 14 miRNA and 18 targeted genes probably associated with cell adhesion related testis development. We also annotated 579 piRNAs which could potentially regulate cell death, nucleosome organization and other basic biology process, which implied that those piRNAs might be involved in sexual maturation difference. The integrated network analysis results suggested that some differentially expressed genes were involved in spermatogenesis through the ECM-receptor interaction, focal adhesion, Wnt and PI3K-Akt signaling pathways, some particular miRNAs have the negative regulation roles and some special piRNAs have the positive and negative regulation roles in testicular development. Our data provide novel insights into the molecular expression and regulation similarities and diversities of spermatogenesis and testicular development in different pig breeds at different stages of sexual maturity.
Collapse
Affiliation(s)
- Yao Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jialian Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liang Shi
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Jiajian Tan
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Yuanzhu Xiong
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bin Fan
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
18
|
Lanza DG, Dawson EP, Rao P, Heaney JD. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation. Cell Cycle 2016; 15:919-30. [PMID: 26901436 DOI: 10.1080/15384101.2016.1149272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis.
Collapse
Affiliation(s)
- Denise G Lanza
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Emily P Dawson
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Priya Rao
- b Department of Pathology , MD Anderson Cancer Center, The University of Texas , Houston , TX , USA
| | - Jason D Heaney
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,c Dan L Duncan Cancer Center, Baylor College of Medicine , Houston , TX , USA.,d Center For Reproductive Medicine, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
19
|
Taketo T. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes? Asian J Androl 2016; 17:360-6. [PMID: 25578929 PMCID: PMC4430933 DOI: 10.4103/1008-682x.143306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.
Collapse
Affiliation(s)
- Teruko Taketo
- Department of Surgery, Research Institute of MUHC; Department of Biology; Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Liu W, Li SZ, Li Z, Wang Y, Li XY, Zhong JX, Zhang XJ, Zhang J, Zhou L, Gui JF. Complete depletion of primordial germ cells in an All-female fish leads to Sex-biased gene expression alteration and sterile All-male occurrence. BMC Genomics 2015; 16:971. [PMID: 26582363 PMCID: PMC4652418 DOI: 10.1186/s12864-015-2130-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023] Open
Abstract
Background Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. Results To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. Conclusions Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2130-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shi-Zhu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Xiang Zhong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
21
|
Weinberg-Shukron A, Renbaum P, Kalifa R, Zeligson S, Ben-Neriah Z, Dreifuss A, Abu-Rayyan A, Maatuk N, Fardian N, Rekler D, Kanaan M, Samson AO, Levy-Lahad E, Gerlitz O, Zangen D. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis. J Clin Invest 2015; 125:4295-304. [PMID: 26485283 DOI: 10.1172/jci83553] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/03/2015] [Indexed: 11/17/2022] Open
Abstract
Ovarian development and maintenance are poorly understood; however, diseases that affect these processes can offer insights into the underlying mechanisms. XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder that is characterized by underdeveloped, dysfunctional ovaries, with subsequent lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism. Here, we report an extended consanguineous family of Palestinian origin, in which 4 females exhibited XX-GD. Using homozygosity mapping and whole-exome sequencing, we identified a recessive missense mutation in nucleoporin-107 (NUP107, c.1339G>A, p.D447N). This mutation segregated with the XX-GD phenotype and was not present in available databases or in 150 healthy ethnically matched controls. NUP107 is a component of the nuclear pore complex, and the NUP107-associated protein SEH1 is required for oogenesis in Drosophila. In Drosophila, Nup107 knockdown in somatic gonadal cells resulted in female sterility, whereas males were fully fertile. Transgenic rescue of Drosophila females bearing the Nup107D364N mutation, which corresponds to the human NUP107 (p.D447N), resulted in almost complete sterility, with a marked reduction in progeny, morphologically aberrant eggshells, and disintegrating egg chambers, indicating defective oogenesis. These results indicate a pivotal role for NUP107 in ovarian development and suggest that nucleoporin defects may play a role in milder and more common conditions such as premature ovarian failure.
Collapse
|
22
|
Wang L, You F, Weng S, Wen A, Wu Z, Zou Y, Xin M, Zhang P. Molecular cloning and sexually dimorphic expression patterns of nr0b1 and nr5a2 in olive flounder, Paralichthys olivaceus. Dev Genes Evol 2015; 225:95-104. [PMID: 25758177 DOI: 10.1007/s00427-015-0495-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 03/03/2015] [Indexed: 01/25/2023]
Abstract
The nr0b1 and nr5a2 genes, members of the nuclear receptor superfamily, are strong candidate genes involved in gonadal differentiation in several vertebrate species. In this study, an nr0b1 complementary DNA (cDNA) of 1446 bp, which encodes a predicted 298 amino acid protein, and an nr5a2 cDNA of 2425 bp, which encodes a deduced 523 amino acid protein, were obtained from olive flounder Paralichthys olivaceus. Both genes were expressed in multiple organ tissues of adult flounder, with a higher expression in ovary than in testis. Quantitative real-time RT-PCR was performed to investigate their temporal expression profiles in gonads during differentiation and at five development stages. Results indicated that nr0b1 and nr5a2 were expressed in primitive gonad and in the ensuing gonadal differentiation periods. In general, both genes were more highly expressed in ovary than in testis at all observed development stages. The expression level of cyp19a correlated with the nr5a2/nr0b1 ratio over the course of flounder gonadal differentiation; hence, nr0b1 and nr5a2 genes may be involved in flounder ovarian differentiation by regulating the expression of cyp19a.
Collapse
Affiliation(s)
- Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kanimozhi V, Palanivel K, Kadalmani B, Krikun G, Taylor HS. Apolipoprotein E Induction in Syrian Hamster Testis Following Tributyltin Exposure. Reprod Sci 2014; 21:1006-1014. [DOI: 10.1177/1933719114522519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- V. Kanimozhi
- Department of Animal Science, School of life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - K. Palanivel
- Department of Animal Science, School of life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - B. Kadalmani
- Department of Animal Science, School of life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Graciela Krikun
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Rocco L. Sex-related genomic sequences in cartilaginous fish: an overview. Cytogenet Genome Res 2013; 141:169-76. [PMID: 24052041 DOI: 10.1159/000354773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sex determination and differentiation are key events in the development of either the testis or ovary in fish. Sex determination mechanisms include environmental and genetic regulation. Research on sex determination systems and their related genes have been implemented in the teleost species, but the amount of information about these genes in cartilaginous fish is very scarce. This paper summarizes the few available data on molecular studies and chromosome localization of specific sequences useful to discriminate between various chromosome pairs in the common torpedo, Torpedo torpedo, and in the scyliorhinid coral catshark, Atelomycterus marmoratus, species that do not have morphologically distinct sex chromosomes. In addition, recent results obtained by sequence analysis of foxl2, a female-specific gene expressed during early phases of gonadal development in interesting key-species, such as the holocephalian Callorhinchus milii, is discussed. Nevertheless, the mechanism of sex determination in cartilaginous fish remains largely unknown. Further research needs to be carried out regarding the importance of basic and applied sex determination studies in fish, including chromosomal distribution of sex-related sequences.
Collapse
Affiliation(s)
- L Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| |
Collapse
|
25
|
Abstract
Successful outcome of pregnancy depends upon genetic, cellular, and hormonal interactions, which lead to implantation, placentation, embryonic, and fetal development, parturition and fetal adaptation to extrauterine life. The fetal endocrine system commences development early in gestation and plays a modulating role on the various physiological organ systems and prepares the fetus for life after birth. Our current article provides an overview of the current knowledge of several aspects of this vast field of fetal endocrinology and the role of endocrine system on transition to extrauterine life. We also provide an insight into fetal endocrine adaptations pertinent to various clinically important situations like placental insufficiency and maternal malnutrition.
Collapse
Affiliation(s)
- Sunil Kumar Kota
- Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India
| | - Kotni Gayatri
- Department of Obstetrics and Gynecology, Riyadh Care Hospital, Riyadh, Saudi Arabia
| | - Sruti Jammula
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, Orissa, India
| | - Lalit Kumar Meher
- Department of Medicine, MKCG Medical College, Berhampur, Orissa, India
| | - Siva Krishna Kota
- Department of Anesthesia, Central Security Hospital, Riyadh, Saudi Arabia
| | - S. V. S. Krishna
- Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India
| | - Kirtikumar D. Modi
- Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
26
|
Charania JS, Salaskar VV. 46XY Disorder of Sexual Development in Menstrual Dysfunction. J Obstet Gynaecol India 2013; 63:190-3. [DOI: 10.1007/s13224-012-0303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/14/2012] [Indexed: 10/27/2022] Open
|
27
|
Hersmus R, van der Zwan YG, Stoop H, Bernard P, Sreenivasan R, Oosterhuis JW, Brüggenwirth HT, de Boer S, White S, Wolffenbuttel KP, Alders M, McElreavy K, Drop SLS, Harley VR, Looijenga LHJ. A 46,XY female DSD patient with bilateral gonadoblastoma, a novel SRY missense mutation combined with a WT1 KTS splice-site mutation. PLoS One 2012; 7:e40858. [PMID: 22815844 PMCID: PMC3399878 DOI: 10.1371/journal.pone.0040858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/14/2012] [Indexed: 12/18/2022] Open
Abstract
Patients with Disorders of Sex Development (DSD), especially those with gonadal dysgenesis and hypovirilization are at risk of developing malignant type II germ cell tumors/cancer (GCC) (seminoma/dysgerminoma and nonseminoma), with either carcinoma in situ (CIS) or gonadoblastoma (GB) as precursor lesion. In 10–15% of 46,XY gonadal dysgenesis cases (i.e., Swyer syndrome), SRY mutations, residing in the HMG (High Mobility Group) domain, are found to affect nuclear transport or binding to and bending of DNA. Frasier syndrome (FS) is characterized by gonadal dysgenesis with a high risk for development of GB as well as chronic renal failure in early adulthood, and is known to arise from a splice site mutation in intron 9 of the Wilms’ tumor 1 gene (WT1). Mutations in SRY as well as WT1 can lead to diminished expression and function of SRY, resulting in sub-optimal SOX9 expression, Sertoli cell formation and subsequent lack of proper testicular development. Embryonic germ cells residing in this unfavourable micro-environment have an increased risk for malignant transformation. Here a unique case of a phenotypically normal female (age 22 years) is reported, presenting with primary amenorrhoea, later diagnosed as hypergonadotropic hypogonadism on the basis of 46,XY gonadal dygenesis with a novel missense mutation in SRY. Functional in vitro studies showed no convincing protein malfunctioning. Laparoscopic examination revealed streak ovaries and a normal, but small, uterus. Pathological examination demonstrated bilateral GB and dysgerminoma, confirmed by immunohistochemistry. Occurrence of a delayed progressive kidney failure (focal segmental glomerular sclerosis) triggered analysis of WT1, revealing a pathogenic splice–site mutation in intron 9. Analysis of the SRY gene in an additional five FS cases did not reveal any mutations. The case presented shows the importance of multi-gene based diagnosis of DSD patients, allowing early diagnosis and treatment, thus preventing putative development of an invasive cancer.
Collapse
Affiliation(s)
- Remko Hersmus
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | - Yvonne G. van der Zwan
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
- Department of Pediatric Endocrinology, Erasmus MC - University Medical Center Rotterdam, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | - Pascal Bernard
- Molecular Genetics and Development Division, Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
| | - Rajini Sreenivasan
- Molecular Genetics and Development Division, Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Victoria, Australia
| | - J. Wolter Oosterhuis
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | - Hennie T. Brüggenwirth
- Department of Clinical Genetics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Suzan de Boer
- Centre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Stefan White
- Centre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Katja P. Wolffenbuttel
- Department of Pediatric Urology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Stenvert L. S. Drop
- Department of Pediatric Endocrinology, Erasmus MC - University Medical Center Rotterdam, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Vincent R. Harley
- Molecular Genetics and Development Division, Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Haugen T, Almeida FFL, Andersson E, Bogerd J, Male R, Skaar KS, Schulz RW, Sørhus E, Wijgerde T, Taranger GL. Sex differentiation in Atlantic cod (Gadus morhua L.): morphological and gene expression studies. Reprod Biol Endocrinol 2012; 10:47. [PMID: 22709434 PMCID: PMC3433390 DOI: 10.1186/1477-7827-10-47] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In differentiated gonochoristic species, a bipotential gonad develops into an ovary or testis during sex differentiation. Knowledge about this process is necessary to improve methods for masculinizing genetically female Atlantic cod for the subsequent purpose of producing all-female populations. METHODS Gonads were examined histologically in juveniles from 14 to 39 mm total body length (TL). Number and size of germ cells were determined in a subset of the samples. Relevant genes were cloned, and mRNA levels determined by qPCR of amh, cyp19a1a; dax1 (nr0b2); shp (nr0b2a) and sox9b in a mixed-sex and an all-female population ranging from 12-49 mm TL. RESULTS Individuals between 14-20 mm TL could be separated in two subgroups based on gonad size and germ cell number. Ovarian cavity formation was observed in some individuals from 18-20 mm TL. The mixed sex population displayed bimodal expression patterns as regards cyp19a1a (starting at 12 mm TL) and amh (starting at 20 mm TL) mRNA levels. After approximately 30 mm TL, cyp19a1a and amh displayed a gradual increase in both sexes. No apparent, sex-dependent expression patterns were found for dax1, shp or sox9b transcripts. However, shp levels were high until the larvae reached around 35 mm TL and then dropped to low levels, while dax1 remained low until 35 mm TL, and then increased sharply. CONCLUSIONS The morphological sex differentiation in females commenced between 14-20 mm TL, and ovarian cavities were evident by 18-20 mm TL. Testis development occurred later, and was morphologically evident after 30 mm TL. This pattern was corroborated with sexually dimorphic expression patterns of cyp19a1a from 12-13 mm TL, and a male-specific increase in amh from 20 mm TL.
Collapse
Affiliation(s)
- Trine Haugen
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | - Fernanda FL Almeida
- Utrecht University, Science Faculty, Department of Biology, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
- Embrapa Western Amazon, Rodovia AM-10, Km 29, PO Box 319, Manaus, AM-Brazil-69010-970, Brazil
| | - Eva Andersson
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | - Jan Bogerd
- Utrecht University, Science Faculty, Department of Biology, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
| | - Rune Male
- University of Bergen, Department of Molecular Biology, HiB, Thormøllensgt. 55, N-5020, Bergen, Norway
| | - Katrine S Skaar
- University of Bergen, Department of Molecular Biology, HiB, Thormøllensgt. 55, N-5020, Bergen, Norway
| | - Rüdiger W Schulz
- Utrecht University, Science Faculty, Department of Biology, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
| | - Elin Sørhus
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | - Tim Wijgerde
- Utrecht University, Science Faculty, Department of Biology, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
| | - Geir L Taranger
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| |
Collapse
|
29
|
Heaney JD, Anderson EL, Michelson MV, Zechel JL, Conrad PA, Page DC, Nadeau JH. Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development 2012; 139:1577-86. [PMID: 22438569 DOI: 10.1242/dev.076851] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19(MOLF/Ei)), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Jefferson WN, Patisaul HB, Williams CJ. Reproductive consequences of developmental phytoestrogen exposure. Reproduction 2012; 143:247-60. [PMID: 22223686 PMCID: PMC3443604 DOI: 10.1530/rep-11-0369] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytoestrogens, estrogenic compounds derived from plants, are ubiquitous in human and animal diets. These chemicals are generally much less potent than estradiol but act via similar mechanisms. The most common source of phytoestrogen exposure to humans is soybean-derived foods that are rich in the isoflavones genistein and daidzein. These isoflavones are also found at relatively high levels in soy-based infant formulas. Phytoestrogens have been promoted as healthy alternatives to synthetic estrogens and are found in many dietary supplements. The aim of this review is to examine the evidence that phytoestrogen exposure, particularly in the developmentally sensitive periods of life, has consequences for future reproductive health.
Collapse
Affiliation(s)
- Wendy N. Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Heather B. Patisaul
- Department of Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Carmen J. Williams
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
31
|
Angelopoulou R, Lavranos G, Manolakou P. Sex determination strategies in 2012: towards a common regulatory model? Reprod Biol Endocrinol 2012; 10:13. [PMID: 22357269 PMCID: PMC3311596 DOI: 10.1186/1477-7827-10-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 02/22/2012] [Indexed: 12/21/2022] Open
Abstract
Sex determination is a complicated process involving large-scale modifications in gene expression affecting virtually every tissue in the body. Although the evolutionary origin of sex remains controversial, there is little doubt that it has developed as a process of optimizing metabolic control, as well as developmental and reproductive functions within a given setting of limited resources and environmental pressure. Evidence from various model organisms supports the view that sex determination may occur as a result of direct environmental induction or genetic regulation. The first process has been well documented in reptiles and fish, while the second is the classic case for avian species and mammals. Both of the latter have developed a variety of sex-specific/sex-related genes, which ultimately form a complete chromosome pair (sex chromosomes/gonosomes). Interestingly, combinations of environmental and genetic mechanisms have been described among different classes of animals, thus rendering the possibility of a unidirectional continuous evolutionary process from the one type of mechanism to the other unlikely. On the other hand, common elements appear throughout the animal kingdom, with regard to a) conserved key genes and b) a central role of sex steroid control as a prerequisite for ultimately normal sex differentiation. Studies in invertebrates also indicate a role of epigenetic chromatin modification, particularly with regard to alternative splicing options. This review summarizes current evidence from research in this hot field and signifies the need for further study of both normal hormonal regulators of sexual phenotype and patterns of environmental disruption.
Collapse
Affiliation(s)
- Roxani Angelopoulou
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, Athens University, Athens, Greece
| | - Giagkos Lavranos
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, Athens University, Athens, Greece
| | - Panagiota Manolakou
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, Athens University, Athens, Greece
| |
Collapse
|
32
|
Leet JK, Gall HE, Sepúlveda MS. A review of studies on androgen and estrogen exposure in fish early life stages: effects on gene and hormonal control of sexual differentiation. J Appl Toxicol 2011; 31:379-98. [PMID: 21557264 DOI: 10.1002/jat.1682] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 11/09/2022]
Abstract
Teleost fish are unique among vertebrates in that phenotypic sex or onset of sex inversion can be easily manipulated by hormonal treatments. In recent years, researchers have begun reporting concentrations of synthetic and natural hormones in the environment. Although concentrations are very low (in the parts per trillion to low parts per billion), they are still of concern because of the high potency of synthetic hormones and the enhanced susceptibility of teleost fishes, especially early life stages, to hormonal exposures. In this review, we will focus on sex differentiation in teleost fishes and how these processes in fish early life stages may be impacted by environmental hormones which are known to contaminate aquatic environments. We will start by reviewing information on sources and concentrations of hormones in the environment and continue by summarizing the state of knowledge of sex differentiation in teleost gonochoristic fishes, including information on genes involved (e.g. cyp19, dmrt1, sox9 and foxl2). We will end our review with a summary of studies that have examined the effects of androgens and estrogens on fish sex differentiation after exposure of fish embryos and larvae and with ideas for future research.
Collapse
Affiliation(s)
- Jessica K Leet
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
33
|
von Schalburg KR, Yasuike M, Yazawa R, de Boer JG, Reid L, So S, Robb A, Rondeau EB, Phillips RB, Davidson WS, Koop BF. Regulation and expression of sexual differentiation factors in embryonic and extragonadal tissues of Atlantic salmon. BMC Genomics 2011; 12:31. [PMID: 21232142 PMCID: PMC3034696 DOI: 10.1186/1471-2164-12-31] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/13/2011] [Indexed: 12/14/2022] Open
Abstract
Background The products of cyp19, dax, foxl2, mis, sf1 and sox9 have each been associated with sex-determining processes among vertebrates. We provide evidence for expression of these regulators very early in salmonid development and in tissues outside of the hypothalamic-pituitary-adrenal/gonadal (HPAG) axis. Although the function of these factors in sexual differentiation have been defined, their roles in early development before sexual fate decisions and in tissues beyond the brain or gonad are essentially unknown. Results Bacterial artificial chromosomes containing salmon dax1 and dax2, foxl2b and mis were isolated and the regulatory regions that control their expression were characterized. Transposon integrations are implicated in the shaping of the dax and foxl2 loci. Splice variants for cyp19b1 and mis in both embryonic and adult tissues were detected and characterized. We found that cyp19b1 transcripts are generated that contain 5'-untranslated regions of different lengths due to cryptic splicing of the 3'-end of intron 1. We also demonstrate that salmon mis transcripts can encode prodomain products that present different C-termini and terminate before translation of the MIS hormone. Regulatory differences in the expression of two distinct aromatases cyp19a and cyp19b1 are exerted, despite transcription of their transactivators (ie; dax1, foxl2, sf1) occurring much earlier during embryonic development. Conclusions We report the embryonic and extragonadal expression of dax, foxl2, mis and other differentiation factors that indicate that they have functions that are more general and not restricted to steroidogenesis and gonadogenesis. Spliced cyp19b1 and mis transcripts are generated that may provide regulatory controls for tissue- or development-specific activities. Selection of cyp19b1 transcripts may be regulated by DAX-1, FOXL2 and SF-1 complexes that bind motifs in intron 1, or by signals within exon 2 that recruit splicing factors, or both. The potential translation of proteins bearing only the N-terminal MIS prodomain may modulate the functions of other TGF β family members in different tissues. The expression patterns of dax1 early in salmon embryogenesis implicate its role as a lineage determination factor. Other roles for these factors during embryogenesis and outside the HPAG axis are discussed.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bettegowda A, Wilkinson MF. Transcription and post-transcriptional regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1637-51. [PMID: 20403875 DOI: 10.1098/rstb.2009.0196] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Spermatogenesis in mammals is achieved by multiple players that pursue a common goal of generating mature spermatozoa. The developmental processes acting on male germ cells that culminate in the production of the functional spermatozoa are regulated at both the transcription and post-transcriptional levels. This review addresses recent progress towards understanding such regulatory mechanisms and identifies future challenges to be addressed in this field. We focus on transcription factors, chromatin-associated factors and RNA-binding proteins necessary for spermatogenesis and/or sperm maturation. Understanding the molecular mechanisms that govern spermatogenesis has enormous implications for new contraceptive approaches and treatments for infertility.
Collapse
Affiliation(s)
- Anilkumar Bettegowda
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0864, La Jolla, CA 92093-0864, USA
| | | |
Collapse
|
35
|
Abstract
Sexually reproducing metazoans establish a cell lineage during development that is ultimately dedicated to gamete production. Work in a variety of animals suggests that a group of conserved molecular determinants act in this germ line maintenance and function. The most universal of these genes are Vasa and Vasa-like DEAD-box RNA helicase genes. However, recent evidence indicates that Vasa genes also function in other cell types, distinct from the germ line. Here we evaluate our current understanding of Vasa function and its regulation during development, addressing Vasa's emerging role in multipotent cells. We also explore the evolutionary diversification of the N-terminal domain of this gene and how this impacts the association of Vasa with nuage-like perinuclear structures.
Collapse
Affiliation(s)
- Eric A. Gustafson
- Providence Institute of Molecular Oogenesis, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912
| | - Gary M. Wessel
- Providence Institute of Molecular Oogenesis, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
36
|
Schlessinger D, Garcia-Ortiz JE, Forabosco A, Uda M, Crisponi L, Pelosi E. Determination and stability of gonadal sex. ACTA ACUST UNITED AC 2009; 31:16-25. [PMID: 19875493 DOI: 10.2164/jandrol.109.008201] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery that the SRY gene induces male sex in humans and other mammals led to speculation about a possible equivalent for female sex. But females are proving to be more complicated. Several master genes appear to be autonomously involved, and female sex determination seems to remain relatively labile. Partial loss of function of the transcription factor FOXL2 leads to premature ovarian failure in women; and in animal models, Foxl2 is required for folliculogenesis as well as for maintenance, and possibly induction, of female sex determination. In the germ line, oocytes apparently form normally even in the absence of Foxl2, dependent on genes that include female-specific factors such as Fig-alpha, Nobox, etc. In the soma, ablation of Foxl2 or the independently expressed gene Wnt4 (likely downstream of Rspo1) can produce partial testis differentiation in XX mice, and the double knockout results in the formation of tubules and spermatogonia. This indicates that at least 2 autonomous ovarian pathways are required to antagonize testis differentiation in females, a finding that is being increasingly corroborated by studies in goats and nonmammalian vertebrates. In recent expression profiling of mouse ovaries that lack Foxl2 alone or in combination with Wnt4 or Kit/c-Kit, we found that following Foxl2 loss, early testis genes (including the downstream effector of Sry, Sox9) and several novel ovarian genes were consistently dysregulated during embryo-fetal development. The results support the proposal of dose-dependent Foxl2 function and antitestis action. A partial working model for somatic development and sex determination is presented in which Sox9 is a direct antagonist of Foxl2 in the supporting cell lineage.
Collapse
Affiliation(s)
- David Schlessinger
- Laboratory of Genetics, National Institute on Aging-IRP, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bouma GJ, Hudson QJ, Washburn LL, Eicher EM. New candidate genes identified for controlling mouse gonadal sex determination and the early stages of granulosa and Sertoli cell differentiation. Biol Reprod 2009; 82:380-9. [PMID: 19864314 DOI: 10.1095/biolreprod.109.079822] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian gonadal sex-determining (GSD) genes are expressed in a unique population of somatic cells that differentiate into granulosa cells in XX gonads or Sertoli cells in XY gonads. The ability to efficiently isolate these somatic support cells (SSCs) during the earliest stages of gonad development would facilitate identifying 1) new candidate GSD genes that may be involved in cases of unexplained abnormal gonad development and 2) genes involved in the earliest stages of granulosa and Sertoli cell differentiation. We report the development of a unique mouse carrying two transgenes that allow XX and XY mice to be distinguished as early as Embryonic Day 11.5 (E11.5) and allow SSCs to be isolated from undifferentiated (E11.5) and early differentiated (E12.5) fetal gonads. The Mouse Genome 430v2.0 GeneChip (Affymetrix) was used to identify transcripts exhibiting a sexual dimorphic expression pattern in XX and XY isolated SSCs. The analysis revealed previously unidentified sexually dimorphic transcripts, including low-level expressed genes such as Sry, a gene not identified in other microarray studies. Multigene real-time PCR analysis of 57 genes verified that 53 were expressed in fetal gonads in a sexually dimorphic pattern, and whole-mount in situ hybridization analysis verified 4930563E18Rik, Pld1, and Sprr2d are expressed in XX gonads, and Fbln2, Ppargc1a, and Scrn1 are expressed in XY gonads. Taken together, the data provide a comprehensive resource for the spatial-temporal expression pattern of genes that are part of the genetic network underlying the early stages of mammalian fetal gonadal development, including the development of granulosa and Sertoli cells.
Collapse
|
38
|
Ewen K, Baker M, Wilhelm D, Aitken RJ, Koopman P. Global survey of protein expression during gonadal sex determination in mice. Mol Cell Proteomics 2009; 8:2624-41. [PMID: 19617587 DOI: 10.1074/mcp.m900108-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development.
Collapse
Affiliation(s)
- Katherine Ewen
- Division of Molecular Genetics and Development, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
39
|
Tomy S, Wu GC, Huang HR, Chang CF. Age-dependent differential expression of genes involved in steroid signalling pathway in the brain of protandrous black porgy,Acanthopagrus schlegeli. Dev Neurobiol 2009; 69:299-313. [DOI: 10.1002/dneu.20705] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Feng Y, Peng X, Li S, Gong Y. Isolation and characterization of sexual dimorphism genes expressed in chicken embryonic gonads. Acta Biochim Biophys Sin (Shanghai) 2009; 41:285-94. [PMID: 19352543 DOI: 10.1093/abbs/gmp012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In chicken, the bipotential embryonic gonad differentiates into either a pair of testes or an ovary, but few genes that underlying the gonadal sex differentiation have been identified and the sex-determination gene is still unknown. To identify more genes involved in chicken sex differentiation, we employed suppression subtractive hybridization to isolate differentially expressed genes between sexes from chicken gonads during a period of E3.5-E6. A total of 152 cDNA clones corresponding to 88 genes (41 from F-M library and 47 from M-F library) were screened using dot-blot analysis. These genes are located mainly on the macrochromosomes (1-5) with five in the sex chromosomes (one in W and four in Z), encoding four dominating molecular categories belonging to enzyme, DNA association, RNA association, and structural protein. Comparing the obtained cDNA sequences with those in chicken EST database, it showed that cDNAs of 32 genes from F-M library and 16 from M-F library have homologs in two reported embryonic gonad cDNA libraries. Quantitative real-time PCR analysis of eight genes involved in epigenetic and transcription regulation showed significantly different expression between sexes of CDK2AP1, SMARCE1, SAP18, SUDS3, and PQBP1 appeared at the early stage in gonad development (E4). Based on the functional comparison of sexual differentially expressed genes, the roles of some putatively important genes including ATP5A1W, CDK2AP1, mitochondrial transcripts, etc. have been analyzed. In conclusion, characterization of isolated genes would provide valuable clues to identify potential candidates involved in genetic mechanisms of chicken sex differentiation and gonad development.
Collapse
Affiliation(s)
- Yanping Feng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
41
|
Pérez-Enciso M, Ferraz ALJ, Ojeda A, López-Béjar M. Impact of breed and sex on porcine endocrine transcriptome: a bayesian biometrical analysis. BMC Genomics 2009; 10:89. [PMID: 19239697 PMCID: PMC2656523 DOI: 10.1186/1471-2164-10-89] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 02/24/2009] [Indexed: 11/17/2022] Open
Abstract
Background Transcriptome variability is due to genetic and environmental causes, much like any other complex phenotype. Ascertaining the transcriptome differences between individuals is an important step to understand how selection and genetic drift may affect gene expression. To that end, extant divergent livestock breeds offer an ideal genetic material. Results We have analyzed with microarrays five tissues from the endocrine axis (hypothalamus, adenohypophysis, thyroid gland, gonads and fat tissue) of 16 pigs from both sexes pertaining to four extreme breeds (Duroc, Large White, Iberian and a cross with SinoEuropean hybrid line). Using a Bayesian linear model approach, we observed that the largest breed variability corresponded to the male gonads, and was larger than at the remaining tissues, including ovaries. Measurement of sex hormones in peripheral blood at slaughter did not detect any breed-related differences. Not unexpectedly, the gonads were the tissue with the largest number of sex biased genes. There was a strong correlation between sex and breed bias expression, although the most breed biased genes were not the most sex biased genes. A combined analysis of connectivity and differential expression suggested three biological processes as being primarily different between breeds: spermatogenesis, muscle differentiation and several metabolic processes. Conclusion These results suggest that differences across breeds in gene expression of the male gonads are larger than in other endocrine tissues in the pig. Nevertheless, the strong presence of breed biased genes in the male gonads cannot be explained solely by changes in spermatogenesis nor by differences in the reproductive tract development.
Collapse
Affiliation(s)
- Miguel Pérez-Enciso
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | | | |
Collapse
|
42
|
Chen M, Cai H, Yang JL, Lu CL, Liu T, Yang W, Guo J, Hu XQ, Fan CH, Hu ZY, Gao F, Liu YX. Effect of heat stress on expression of junction-associated molecules and upstream factors androgen receptor and Wilms' tumor 1 in monkey sertoli cells. Endocrinology 2008; 149:4871-82. [PMID: 18535113 DOI: 10.1210/en.2007-1093] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sertoli cells are important in determining the fate of spermatogenic cells by providing nutrition and structural support via cell junctions. In this study, we sought to examine the effect of 43 C warming on cell junctions in seminiferous epithelium and the expression of junction-associated molecules in Sertoli cells. Electron microscopy showed the appearance of large vacuoles between Sertoli and germ cells and adjacent Sertoli cells, leading to disruption of corresponding cell junctions 24 h after terminating the heat treatment. Using primary Sertoli cells isolated from pubertal monkey testes, we demonstrated that expression of adherens junction-associated molecules, such as N-cadherin and beta-catenin, and tight junction-associated molecule zonula occludens protein 1 was significantly reduced in 24-48 h after heat treatment. In contrast, intermediate filament vimentin expression was up-regulated in 6-48 h. Androgen receptor (AR) and Wilms' tumor gene 1 expression dramatically decreased after heat treatment. Both proteins completely disappeared immediately after terminating heat treatment and began to recover after 6 h. Treatment of the monkey Sertoli cells with an AR antagonist, flutamide, could mimic the heat-induced changes in the expression of junction-associated molecules in Sertoli cells. Furthermore, overexpression of AR in the Sertoli cells up-regulated the expression of N-cadherin, beta-catenin, and zonula occludens protein 1 and down-regulated vimentin expression. Their expression after heat treatment could be rescued by the AR overexpression. These results indicate that the decreased AR expression after heat treatment is involved in heat-induced cell junction disruption.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schumacher V, Gueler B, Looijenga LH, Becker JU, Amann K, Engers R, Dotsch J, Stoop H, Schulz W, Royer-Pokora B. Characteristics of testicular dysgenesis syndrome and decreased expression ofSRYandSOX9in Frasier syndrome. Mol Reprod Dev 2008; 75:1484-94. [DOI: 10.1002/mrd.20889] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Heaney JD, Nadeau JH. Testicular germ cell tumors in mice: new ways to study a genetically complex trait. Methods Mol Biol 2008; 450:211-31. [PMID: 18370062 DOI: 10.1007/978-1-60327-214-8_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Testicular germ cell tumors (TGCTs) are the most common cancer affecting young men. Although TGCTs are common and the genetic component of susceptibility is unusually strong, discovery of TGCT susceptibility genes in humans has been challenging. The 129/Sv inbred mouse strain is an important experimental model for studying the genetic control of TGCT susceptibility. It is the only inbred mouse strain with an appreciable frequency of spontaneous TGCTs. TGCTs in 129/Sv males share various developmental and histological characteristics with human pediatric TGCTs. As in humans, susceptibility in 129/Sv is a genetically complex trait that is too complex for conventional genetic approaches. However, several genetic variants, when congenic or isogenic on the 129/Sv background, act as genetic modifiers of TGCT susceptibility. Alternative experimental approaches based on these modifier genes can be used to unravel the complex genetic control of TGCT susceptibility. We discuss the application of modifier genes in genetic interaction tests and sensitized polygenic trait analyses toward the understanding of the complex genetics and biology of TGCT susceptibility in mice.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
45
|
Clark BJ, Cochrum RK. The steroidogenic acute regulatory protein as a target of endocrine disruption in male reproduction. Drug Metab Rev 2007; 39:353-70. [PMID: 17786626 DOI: 10.1080/03602530701519151] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of the adult male reproductive tract requires proper spatial-temporal expression of the sex hormones testosterone and estrogen during fetal developmental stages and at puberty. Exogenous agents that disrupt the production and/or actions of the testosterone and estrogen and cause aberrant reproductive tract development can be thought of as endocrine disruptors (ED). This review will focus on the impact of ED on testosterone production by Leydig cells during fetal development and in the adult. In particular, the genes encoding the steroidogenic acute regulatory protein (StAR) and cytochrome P450 17 alpha hydroxylase/17,20 lyase (CYP17A1) within the steroid hormone biosynthetic pathway are highlighted as ED targets. We begin with an overview of steroidogenesis and regulation of StAR then summarize the published literature on the effects of diethylstibesterol, phthalate esters, and arsenite on male reproduction with a focus on the expression and function of StAR.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky 40202, USA.
| | | |
Collapse
|
46
|
Abstract
Sexual dimorphism is a term describing morphological differences between the sexes, but is often extended to include all differences observed between females and males. Sex differentiation in vertebrates is by definition sexually dimorphic and starts at the level of the sex chromosomes. In this review the sexual dimorphism of gonadal differentiation is discussed, with a focus on human development. In the embryo, the indifferent gonadal anlagen harbours four different cell lineages with bipotential fates dependent on the sex of the individual. The different paths taken by these cell lineages in male and female development are reviewed, along with other sexually dimorphic features of gonadal development. These include sex-determining genes, timing of events, dependence on germ cells, spatial organization of stromal cells, steroidogenic cells types, and other aspects.
Collapse
Affiliation(s)
- Olle Söder
- Department of Woman and Child Health, Paediatric Endocrinology Unit, Karolinska Institutet & University Hospital, SE-11130 Stockholm, Sweden.
| |
Collapse
|
47
|
Morinaga C, Saito D, Nakamura S, Sasaki T, Asakawa S, Shimizu N, Mitani H, Furutani-Seiki M, Tanaka M, Kondoh H. The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc Natl Acad Sci U S A 2007; 104:9691-6. [PMID: 17535919 PMCID: PMC1887600 DOI: 10.1073/pnas.0611379104] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Indexed: 12/13/2022] Open
Abstract
We previously performed mutant screens in the medaka for defects in gonadal development and identified a mutant of interest in this regard, which was designated as hotei (hot). This mutant manifests a number of remarkable phenotypic abnormalities including: (i) excessive proliferation of germ cells that initiates at around the hatching stage regardless of the genetic sex of the fish; (ii) initiation of premature meiosis in phenotypically male hot homozygotes; (iii) one-half of the hot-homozygous XY fish undergo sex reversal, which accompanies the expression of the female-characteristic aromatase gene in the somatic cells of the gonad; and (iv) in phenotypically female homozygotes, follicular development is arrested at an early stage. We have also performed genetic mapping, chromosome walking, and candidate gene sequencing analysis of hot and demonstrate that the underlying mutation occurs in the recently identified medaka anti-Müllerian hormone (Amh) receptor type II (amhrII) gene. Moreover, this gene was found to be responsible for each of the hot phenotypes, as an amhrII transgene rescues these abnormalities. In addition, the amhrII gene is expressed in the somatic cells of the gonads of both sexes. The phenotypes of the hot homozygotes indicate that there are multiple regulatory functions of the AMH/AMHRII signaling system in the development of the gonad, including the sex-dependent regulation of germ cell proliferation and follicular development. These presumably represent the basic roles of Amh, which precede Müllerian duct evolution during phylogeny.
Collapse
Affiliation(s)
- Chikako Morinaga
- *Japan Science and Technology Agency, Solution Oriented Research for Science and Technology Kondoh Research Team, Kyoto 606-8305, Japan
| | - Daisuke Saito
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Higashiyama 5-1, Okazaki 444-8787, Japan
| | - Shuhei Nakamura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Higashiyama 5-1, Okazaki 444-8787, Japan
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Sasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shuichi Asakawa
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate school of Frontier Science, University of Tokyo, Chiba 277-8562, Japan; and
| | - Makoto Furutani-Seiki
- *Japan Science and Technology Agency, Solution Oriented Research for Science and Technology Kondoh Research Team, Kyoto 606-8305, Japan
| | - Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Higashiyama 5-1, Okazaki 444-8787, Japan
| | - Hisato Kondoh
- *Japan Science and Technology Agency, Solution Oriented Research for Science and Technology Kondoh Research Team, Kyoto 606-8305, Japan
- **Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
48
|
Li W, Zhang J, Liu X, Xu R, Zhang Y. Correlation of appearance of metastasis-associated protein1 (Mta1) with spermatogenesis in developing mouse testis. Cell Tissue Res 2007; 329:351-62. [PMID: 17401724 DOI: 10.1007/s00441-007-0412-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 03/05/2007] [Indexed: 12/20/2022]
Abstract
Mta1, a representative of the MTA gene family, is believed to be involved in the metastasis of malignant tumors. However, a systematic study of its physiological function has not been performed. It has been found in normal mouse organs at relatively low levels, except for in testis, suggesting a potential function in the male reproductive system. In order to explore the role of Mta1 protein during spermatogenesis, its expression in adult mouse testis was compared with that in developing mouse testis and in testis from adult mice treated with methoxyacetic acid, which selectively depletes primary spermatocytes. Quantitative analysis revealed that Mta1 protein gradually increased in the testis from 14 days postnatally. Immunolocalization analysis demonstrated strong signals in the seminiferous tubules, and Mta1 was predominantly present in the nucleus of primary spermatocytes and spermatogonia from 14 days postnatally. The most intensive staining was located in the nucleus of pachytene spermatocytes in mature testes. The expression pattern of Mta1 during spermatogenesis was also shown to be stage-specific by immunohistochemistry analysis. Finally, dramatic loss of Mta1 expression from pachytene spermatocytes was observed in the spermatogenic-arrested adult mouse testis. These results collectively demonstrate that Mta1 appears during postnatal testis development and suggest that this expression may be crucial for spermatogenesis.
Collapse
Affiliation(s)
- Wei Li
- Department of Histology and Embryology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Tsukamoto H, Takizawa T, Takamori K, Ogawa H, Araki Y. Genomic organization and structure of the 5'-flanking region of the TEX101 gene: alternative promoter usage and splicing generate transcript variants with distinct 5'-untranslated region. Mol Reprod Dev 2007; 74:154-62. [PMID: 16941676 DOI: 10.1002/mrd.20584] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel germ cell-specific antigen, TEX101 (TES101-reactive protein), was previously identified using a monoclonal antibody directed against mouse testicular cells. TEX101 is specifically located on the plasma membrane of germ cells, and its expression in gonadal organs is sexually dimorphic. To understand the fundamental mechanism directing gene expression, the genomic organization of TEX101 was studied. The gene consists of five translated exons (exons 2-6) and three 5'-untranslated exons (exon 1a, 1b, and 1c), respectively. TEX101 forms three major transcripts classified by usage of the three 5'-untranslated exons. One form of TEX101 mRNA is transcribed from exon 1c and spliced to the common acceptor site in exon 2. In the second form of the transcript, exon 1a is spliced to exon 1b and exon 2 in a sequential manner. Splicing from exon 1a to exon 2, arises the third form of transcript. Reverse Transcription (RT)-polymerase chain reaction (PCR) analysis demonstrated differential expression pattern of the TEX101 transcripts between testis and ovary. Whereas the expression of transcript-1 is constitutive in male and female gonads, the transcript-2 and -3 are detected only after starting of the spermatogenesis. Luciferase reporter assays using GC-2spd(ts) cells, a cell line from immortalized mouse testicular cells, showed that the 5'-flanking sequence of exon 1c has higher promoter activity than exon 1a. Deletion analysis of the chimeric structures indicated that sequences essential to gene expression are present on the 5'-flanking region between -3186 and +14, where the cluster of five CAAT boxes is located. Taken together, these findings should facilitate an understanding of the regulation of TEX101 expression during gametogenesis.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu City, Chiba, Japan
| | | | | | | | | |
Collapse
|
50
|
Wilson CA, Davies DC. The control of sexual differentiation of the reproductive system and brain. Reproduction 2007; 133:331-59. [PMID: 17307903 DOI: 10.1530/rep-06-0078] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes current knowledge of the genetic and hormonal control of sexual differentiation of the reproductive system, brain and brain function. While the chromosomal regulation of sexual differentiation has been understood for over 60 years, the genes involved and their actions on the reproductive system and brain are still under investigation. In 1990, the predicted testicular determining factor was shown to be theSRYgene. However, this discovery has not been followed up by elucidation of the actions of SRY, which may either stimulate a cascade of downstream genes, or inhibit a suppressor gene. The number of other genes known to be involved in sexual differentiation is increasing and the way in which they may interact is discussed. The hormonal control of sexual differentiation is well-established in rodents, in which prenatal androgens masculinize the reproductive tract and perinatal oestradiol (derived from testosterone) masculinizes the brain. In humans, genetic mutations have revealed that it is probably prenatal testosterone that masculinizes both the reproductive system and the brain. Sexual differentiation of brain structures and the way in which steroids induce this differentiation, is an active research area. The multiplicity of steroid actions, which may be specific to individual cell types, demonstrates how a single hormonal regulator, e.g. oestradiol, can exert different and even opposite actions at different sites. This complexity is enhanced by the involvement of neurotransmitters as mediators of steroid hormone actions. In view of current environmental concerns, a brief summary of the effects of endocrine disruptors on sexual differentiation is presented.
Collapse
Affiliation(s)
- C A Wilson
- Basic Medical Sciences, Clinical Developmental Sciences, St George's, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK.
| | | |
Collapse
|