1
|
Vienot A, Vernerey D, Bouard A, Klajer E, Kim S, Tournigand C, Louvet C, André T, Rousseau B, Wespiser M, Spehner L, Wang YA, Weispfenning A, Dochy E, Borg C. Stanniocalcin 1 in Patients with Refractory Colorectal Cancer Treated with Regorafenib: A Post Hoc Biomarker Analysis of the TEXCAN and CORRECT Trials. CANCER RESEARCH COMMUNICATIONS 2025; 5:287-294. [PMID: 39807836 PMCID: PMC11811826 DOI: 10.1158/2767-9764.crc-24-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/27/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
SIGNIFICANCE STC1 is a protein secreted by intratumor endothelial cells in which plasma concentrations increase in patients with chemorefractory mCRC. Based on analyses of patients with refractory mCRC in the TEXCAN and CORRECT trials, we found that STC1 plasma levels had a prognostic role for OS, with high levels associated with poor outcome. A predictive role for baseline STC1 levels was pointed out for regorafenib efficacy.
Collapse
Affiliation(s)
- Angélique Vienot
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Dewi Vernerey
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Adeline Bouard
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Elodie Klajer
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | | | | | - Thierry André
- Sorbonne Université and Hôpital Saint-Antoine, Paris, France
| | | | - Mylène Wespiser
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Laurie Spehner
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Ying A. Wang
- Bayer HealthCare Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| |
Collapse
|
2
|
Kambe G, Kobayashi M, Ishikita H, Koyasu S, Hammond EM, Harada H. ZBTB7A forms a heterodimer with ZBTB2 and inhibits ZBTB2 homodimerization required for full activation of HIF-1. Biochem Biophys Res Commun 2024; 733:150604. [PMID: 39197198 DOI: 10.1016/j.bbrc.2024.150604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Hypoxia-inducible factor 1 (HIF-1), recognized as a master transcription factor for adaptation to hypoxia, is associated with malignant characteristics and therapy resistance in cancers. It has become clear that cofactors such as ZBTB2 are critical for the full activation of HIF-1; however, the mechanisms downregulating the ZBTB2-HIF-1 axis remain poorly understood. In this study, we identified ZBTB7A as a negative regulator of ZBTB2 by analyzing protein sequences and structures. We found that ZBTB7A forms a heterodimer with ZBTB2, inhibits ZBTB2 homodimerization necessary for the full expression of ZBTB2-HIF-1 downstream genes, and ultimately delays the proliferation of cancer cells under hypoxic conditions. The Cancer Genome Atlas (TCGA) analyses revealed that overall survival is better in patients with high ZBTB7A expression in their tumor tissues. These findings highlight the potential of targeting the ZBTB7A-ZBTB2 interaction as a novel therapeutic strategy to inhibit HIF-1 activity and improve treatment outcomes in hypoxia-related cancers.
Collapse
Affiliation(s)
- Gouki Kambe
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Chu H, Xie W, Guo C, Shi H, Gu J, Qin Z, Xie Y. Inhibiting stanniocalcin 2 reduces sunitinib resistance of Caki-1 renal cancer cells under hypoxia condition. Ann Med Surg (Lond) 2023; 85:5963-5971. [PMID: 38098599 PMCID: PMC10718379 DOI: 10.1097/ms9.0000000000001450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
Background Our previous study has suggested that blocking stanniocalcin 2 (STC2) could reduce sunitinib resistance in clear cell renal cell carcinoma (ccRCC) under normoxia. The hypoxia is a particularly important environment for RCC occurrence and development, as well as sunitinib resistance. The authors proposed that STC2 also plays important roles in RCC sunitinib resistance under hypoxia conditions. Methods The ccRCC Caki-1 cells were treated within the hypoxia conditions. Real-time quantitative PCR and Western blotting were applied to detect the STC2 expression in ccRCC Caki-1 cells. STC2-neutralizing antibodies, STC2 siRNA, and the recombinant human STC2 (rhSTC2) were used to identify targeting regulation on STC2 in modulating sunitinib resistance, proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion. In addition, autophagy flux and the lysosomal acidic environment were investigated by Western blotting and fluorescence staining, and the accumulation of sunitinib in cells was observed with the addition of STC2-neutralizing antibodies and autophagy modulators. Results Under hypoxia conditions, sunitinib disrupted the lysosomal acidic environment and accumulated in Caki-1 cells. Hypoxia-induced the STC2 mRNA and protein levels in Caki-1 cells. STC2-neutralizing antibodies and STC2 siRNA effectively aggravated sunitinib-reduced cell viability and proliferation, which were reversed by rhSTC2. In addition, sunitinib promoted EMT, migration, and invasion, which were reduced by STC2-neutralizing antibodies. Conclusion Inhibiting STC2 could reduce the sunitinib resistance of ccRCC cells under hypoxia conditions.
Collapse
Affiliation(s)
- Hezhen Chu
- Department of Urology, Yixing Traditional Chinese Medicine Hospital
| | - Wenchao Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Zhenqian Qin
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| | - Yimin Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| |
Collapse
|
4
|
Liu G, Zhang T, Gui D, Liu Q. Clinical significance and immune landscape of angiogenesis-related genes in bladder cancer. Aging (Albany NY) 2023; 15:13118-13133. [PMID: 37988196 DOI: 10.18632/aging.205222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Angiogenesis is a major promotor of tumor progression and metastasis. Nevertheless, it is undetermined how angiogenesis-related genes (ARGs) influence bladder cancer. METHODS The profiles of bladder cancer gene expression were collected from the TCGA-BLCA cohort. The LASSO regression analysis was used to build an angiogenesis-related signature (ARG_score) with the prognostic ARGs. Verification analyses were conducted across the GSE48075 dataset to demonstrate the robustness of the signature. Differences between the two risk groups based on clinical outcomes, immune landscape, mutation status, chemotherapeutic effectiveness for anticancer drugs, and immunotherapy efficacy were analyzed. A nomogram was developed to improve the clinical efficacy of this predictive tool. The expression levels of model genes in normal bladder epithelial cell lines (SV-HUC-1) and bladder cancer cell lines (T24 and 5637) were detected by qRT-PCR assay. RESULTS Four angiogenesis-associated gene signature was constructed based on the LASSO regression algorithm. The signature showed independent risk factors of overall survival for bladder cancer, validated using two external survival datasets. Additionally, we built a prognostic nomogram to improve the practicality of the ARG_score. High-risk individuals showed stronger immunocyte infiltration, immune-related functions, elevated expression of immune checkpoints, reduced TIDE score, and higher combined IPS-PD-1 and IPS-CTLA4 scores, suggesting a heightened responsiveness to immune checkpoint inhibitors. Furthermore, patients with low and high risk showed distinct responsiveness to anticancer drugs. The expression levels of 5 model genes (COL5A2, JAG1, MSX1, OLR1, and STC) were significantly increased in bladder cancer cell lines (T24 and 5637) compared with the normal bladder epithelial cell line SV-HUC-1. CONCLUSIONS The model constructed based on ARGs may have wide application in predicting outcomes and therapeutic responses.
Collapse
Affiliation(s)
- Gang Liu
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, People’s Republic of China
| | - Tingting Zhang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, People’s Republic of China
| | - Dingwen Gui
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, People’s Republic of China
| | - Qin Liu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, People’s Republic of China
| |
Collapse
|
5
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
6
|
Zhang R, Liu Q, Zhou S, He H, Zhao M, Ma W. Mesenchymal stem cell suppresses the efficacy of CAR-T toward killing lymphoma cells by modulating the microenvironment through stanniocalcin-1. eLife 2023; 12:82934. [PMID: 36779699 PMCID: PMC10019890 DOI: 10.7554/elife.82934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
Stem cells play critical roles both in the development of cancer and therapy resistance. Although mesenchymal stem cells (MSCs) can actively migrate to tumor sites, their impact on chimeric antigen receptor modified T cell (CAR-T) immunotherapy has been little addressed. Using an in vitro cell co-culture model including lymphoma cells and macrophages, here we report that CAR-T cell-mediated cytotoxicity was significantly inhibited in the presence of MSCs. MSCs caused an increase of CD4+ T cells and Treg cells but a decrease of CD8+ T cells. In addition, MSCs stimulated the expression of indoleamine 2,3-dioxygenase and programmed cell death-ligand 1 which contributes to the immune-suppressive function of tumors. Moreover, MSCs suppressed key components of the NLRP3 inflammasome by modulating mitochondrial reactive oxygen species release. Interestingly, all these suppressive events hindering CAR-T efficacy could be abrogated if the stanniocalcin-1 (STC1) gene, which encodes the glycoprotein hormone STC-1, was knockdown in MSC. Using xenograft mice, we confirmed that CAR-T function could also be inhibited by MSC in vivo, and STC1 played a critical role. These data revealed a novel function of MSC and STC-1 in suppressing CAR-T efficacy, which should be considered in cancer therapy and may also have potential applications in controlling the toxicity arising from the excessive immune response.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Qingxi Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai UniversityTianjinChina
- Qilu Institute of TechnologyShandongChina
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and TechnologyTianjinChina
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and TechnologyTianjinChina
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Wenjian Ma
- Qilu Institute of TechnologyShandongChina
- College of Biotechnology, Tianjin University of Science and TechnologyTianjinChina
| |
Collapse
|
7
|
Koyasu S, Horita S, Saito K, Kobayashi M, Ishikita H, Chow CCT, Kambe G, Nishikawa S, Menju T, Morinibu A, Okochi Y, Tabuchi Y, Onodera Y, Takeda N, Date H, Semenza GL, Hammond EM, Harada H. ZBTB2 links p53 deficiency to HIF-1-mediated hypoxia signaling to promote cancer aggressiveness. EMBO Rep 2023; 24:e54042. [PMID: 36341521 PMCID: PMC9827547 DOI: 10.15252/embr.202154042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Aberrant activation of the hypoxia-inducible transcription factor HIF-1 and dysfunction of the tumor suppressor p53 have been reported to induce malignant phenotypes and therapy resistance of cancers. However, their mechanistic and functional relationship remains largely unknown. Here, we reveal a mechanism by which p53 deficiency triggers the activation of HIF-1-dependent hypoxia signaling and identify zinc finger and BTB domain-containing protein 2 (ZBTB2) as an important mediator. ZBTB2 forms homodimers via its N-terminus region and increases the transactivation activity of HIF-1 only when functional p53 is absent. The ZBTB2 homodimer facilitates invasion, distant metastasis, and growth of p53-deficient, but not p53-proficient, cancers. The intratumoral expression levels of ZBTB2 are associated with poor prognosis in lung cancer patients. ZBTB2 N-terminus-mimetic polypeptides competitively inhibit ZBTB2 homodimerization and significantly suppress the ZBTB2-HIF-1 axis, leading to antitumor effects. Our data reveal an important link between aberrant activation of hypoxia signaling and loss of a tumor suppressor and provide a rationale for targeting a key mediator, ZBTB2, to suppress cancer aggressiveness.
Collapse
Affiliation(s)
- Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological MedicineFukushima Medical UniversityFukushimaJapan
| | - Keisuke Saito
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Christalle CT Chow
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Gouki Kambe
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Shigeto Nishikawa
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Akiyo Morinibu
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Yasushi Okochi
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Faculty of MedicineKyoto UniversityKyotoJapan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research CenterUniversity of ToyamaToyamaJapan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of MedicineHokkaido UniversitySapporoJapan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular MedicineJichi Medical UniversityTochigiJapan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Gregg L Semenza
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ester M Hammond
- MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| |
Collapse
|
8
|
Otarola GA, Hu JC, Athanasiou KA. Ion modulatory treatments toward functional self-assembled neocartilage. Acta Biomater 2022; 153:85-96. [PMID: 36113725 PMCID: PMC11575480 DOI: 10.1016/j.actbio.2022.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Signals that recapitulate in vitro the conditions found in vivo, such as hypoxia or mechanical forces, contribute to the generation of tissue-engineered hyaline-like tissues. The cell regulatory processes behind hypoxic and mechanical stimuli rely on ion concentration; iron is required to degrade the hypoxia inducible factor 1a (HIF1α) under normoxia, whereas the initiation of mechanotransduction requires the cytoplasmic increase of calcium concentration. In this work, we propose that ion modulation can be used to improve the biomechanical properties of self-assembled neocartilage constructs derived from rejuvenated expanded minipig rib chondrocytes. The objectives of this work were 1) to determine the effects of iron sequestration on self-assembled neocartilage constructs using two doses of the iron chelator deferoxamine (DFO), and 2) to evaluate the performance of the combined treatment of DFO and ionomycin, a calcium ionophore that triggers cytoplasmic calcium accumulation. This study employed a two-phase approach. In Phase I, constructs treated with a high dose of DFO (100 µM) exhibited an 87% increase in pyridinoline crosslinks, a 57% increase in the Young's modulus, and a 112% increase in the ultimate tensile strength (UTS) of the neotissue. In Phase II, the combined use of both ion modulators resulted in 150% and 176% significant increases in the Young's modulus and UTS of neocartilage constructs, respectively; for the first time, neocartilage constructs achieved a Young's modulus of 11.76±3.29 MPa and UTS of 4.20±1.24 MPa. The results of this work provide evidence that ion modulation can be employed to improve the biomechanical properties in engineered neotissues. STATEMENT OF SIGNIFICANCE: The translation of tissue-engineered products requires the development of strategies capable of producing biomimetic neotissues in a replicable, controllable, and cost-effective manner. Among other functions, Fe2+ and Ca2+ are involved in the control of the hypoxic response and mechanotransduction, respectively. Both stimuli, hypoxia and mechanical forces, are known to favor chondrogenesis. This study utilized ion modulators to improve the mechanical properties self-assembled neocartilage constructs derived from expanded and rejuvenated costal chondrocytes via Fe2+ sequestration and Ca2+ influx, alone or in combination. The results indicate that ion modulation induced tissue maturation and a significant improvement of the mechanical properties, and holds potential as a tool to mitigate the need for bioreactors and engineer hyaline-like tissues.
Collapse
Affiliation(s)
- Gaston A Otarola
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Jerry C Hu
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Kyriacos A Athanasiou
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
9
|
Sengun S, Korkmaz H, Ciris M, Yüceer RO, Boyluboy SM, Kiran M. Diagnostic and prognostic value of Stanniocalcin 1 expression in papillary thyroid cancer. Endocrine 2022; 78:95-103. [PMID: 35788886 DOI: 10.1007/s12020-022-03126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate the potential role of immunohistochemical changes in stanniocalcin 1 (STC1) and stanniocalcin 2 (STC2) expressions in papillary thyroid cancer (PTC) tissues in the disease's diagnosis and to investigate their relationship with classical clinicopathological prognostic factors. METHODS The study included 100 patients with PTC. Normal thyroid tissue adjacent to the tumor was taken as the control group. Clinicopathological prognostic features at the time of diagnosis of patients were recorded. STC1 and STC2 expressions of tumor tissue and adjacent normal tissue were determined immunohistochemically. RESULTS The sensitivity of STC1 in the diagnosis of PTC was 93%, the specificity was 94%, positive predictive value (PPV) 93.9%, and negative predictive value (NPV) 93.1%. It was determined that the STC1 staining score in tumor tissue was positively correlated with the disease TNM stage score (r = 0.259, p = 0.009) and the increase in STC1 staining score were independent risk factors that increased the risk of lymph node metastasis (R2 = 0.398, p < 0.001). While 21% of the tumor tissues were stained with STC2, none of the normal thyroid tissues adjacent to the tumor tissue showed any staining with STC2. No correlation was found between STC2 immunohistochemical staining of tumor tissue and clinicopathological risk factors for the disease. CONCLUSION Increased STC1 expression in thyroid lesions may be helpful in diagnosing PTC. In addition, since increased STC1 expression in PTC tissues is associated with the risk of lymph node metastasis, it may be an efficient marker for predicting the prognosis of the disease.
Collapse
Affiliation(s)
- Sevinç Sengun
- Department of Internal Medicine, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| | - Hakan Korkmaz
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey.
| | - Metin Ciris
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| | - Ramazan Oguz Yüceer
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| | - Serife Mehtap Boyluboy
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| | - Mehmet Kiran
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| |
Collapse
|
10
|
Zhao F, Yang G, Qiu J, Liu Y, Tao J, Chen G, Su D, You L, Zheng L, Zhang T, Zhao Y. HIF-1α-regulated stanniocalcin-1 mediates gemcitabine resistance in pancreatic ductal adenocarcinoma via PI3K/AKT signaling pathway. Mol Carcinog 2022; 61:839-850. [PMID: 35785493 DOI: 10.1002/mc.23420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 11/07/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor response to the first-line chemotherapy drug gemcitabine. We previously identified stanniocalcin-1 as a gemcitabine-resistant-related gene, but its specific role and function in pancreatic cancer remain unclear. RT-qPCR and Western blot were used to evaluate differential protein and mRNA expressions. The biological functions of genes were determined using proliferation and drug-resistance experiments. Subcutaneous tumorigenesis experiment was performed on nude mice. Prognostic analysis was performed using public databases and our clinical data. We found HIF-1α-regulated STC1 expression mediated chemoresistance in pancreatic cancer. Deeper, we explored the action mechanism of STC1 and identified PI3K/AKT as the downstream signaling pathway of STC1. Furthermore, we analyzed clinical data and found that STC1 expression was related to the prognosis of gemcitabine-treated patients after surgery. In general, we proved the HIF-1α/STC1/PI3K-AKT axis participated in PDAC progression and chemoresistance, and STC1 may serve as a potential prognostic factor and therapeutic target for PDAC treatment.
Collapse
Affiliation(s)
- Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Ail D, Samardzija M, Chang ACM, Keck J, Reddel RR, Grimm C. Stanniocalcin2, but Not Stanniocalcin1, Responds to Hypoxia in a HIF1-Dependent Manner in the Retina. Front Neurosci 2022; 16:882559. [PMID: 35812222 PMCID: PMC9259883 DOI: 10.3389/fnins.2022.882559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
The quest for neuroprotective factors that can prevent or slow down the progression of retinal degeneration is still ongoing. Acute hypoxic stress has been shown to provide transient protection against subsequent damage in the retina. Stanniocalcins – STC1 and STC2 – are secreted glycoproteins that are hypoxia-regulated and were shown to be cytoprotective in various in vitro studies. Hence, we investigated the expression of stanniocalcins in the normal, degenerating and hypoxic retina. We show that the expression of Stc1 and Stc2 in the retina was detectable as early as postnatal day 10 and persisted during aging. Retinal expression of Stc2, but not Stc1, was induced in mice in an in vivo model of acute hypoxia and a genetic model of chronic hypoxia. Furthermore, we show that HIF1, not HIF2, is responsible for regulating Stc2 in cells with the molecular response to hypoxia activated due to the absence of von Hippel Lindau protein. Surprisingly, Stc2 was not normally expressed in photoreceptors but in the inner retina, as shown by laser capture microdissection and immunofluorescence data. The expression of both Stc1 and Stc2 remained unchanged in the degenerative retina with an almost complete loss of photoreceptors, confirming their expression in the inner retina. However, the absence of either Stc1 or Stc2 had no effect on retinal architecture, as was evident from retinal morphology of the respective knockout mice. Taken together our data provides evidence for the differential regulation of STC1 and STC2 in the retina and the prospect of investigating STC2 as a retinal neuroprotective factor.
Collapse
Affiliation(s)
- Divya Ail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andy C. M. Chang
- Faculty of Medicine and Health, Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Jadwiga Keck
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger R. Reddel
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- *Correspondence: Christian Grimm,
| |
Collapse
|
12
|
Li R, Liu R, Wu S, Zheng S, Ye L, Shao Y. Prognostic value of STC1 in solid tumors: a meta-analysis. Biomark Med 2022; 16:253-263. [PMID: 35176895 DOI: 10.2217/bmm-2021-0835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: The prognostic value of STC1 has been evaluated in solid tumors. However, the results remain controversial. Materials & methods: Relevant studies published up to 27 February 2021 were identified by a comprehensive search of the PubMed, EMBASE and Web of Science databases. Hazard ratios (HRs) and odds ratios with 95% CIs were applied to explore the association between STC1 and survival outcome and clinical characteristics. Results: Sixteen articles involving 2942 participants were included in this meta-analysis. The pooled analysis showed that high STC1 expression was significantly associated with worse overall survival (HR: 1.91; 95% CI: 1.63-2.24) and disease-free survival/progression-free survival/relapse-free survival (HR: 2.01; 95% CI: 1.34-3.02). Conclusion: STC1 may be an effective prognostic marker in solid tumors.
Collapse
Affiliation(s)
- Rongqi Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Department of Hepatobiliary Surgery, Foshan hospital of Traditional Chinese Medical University, Foshan, Guangdong, 528000, China
| | - Rongqiang Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510220, China
| | - Shinan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shiyang Zheng
- Department of breast surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
13
|
Chan KKS, Hon TC, Au KY, Choi HL, Wong DKH, Chan ACY, Yuen MF, Lai CL, Lo RCL. Stanniocalcin 1 is a serum biomarker and potential therapeutic target for HBV-associated liver fibrosis. J Pathol 2022; 257:227-238. [PMID: 35122667 DOI: 10.1002/path.5880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/09/2022] [Accepted: 02/03/2022] [Indexed: 11/06/2022]
Abstract
Stanniocalcin 1 (STC1), a secreted protein, is upregulated in human cancers including hepatocellular carcinoma (HCC). While most HCCs develop from chronic liver disease which involves progressive parenchymal injury and fibrosis, the role of STC1 in this pre-neoplastic stage remains poorly understood. In this study, we investigated the clinical relevance and functional significance of secreted STC1 in liver fibrosis. To this end, STC1 level was determined in the serum samples of chronic hepatitis B patients and correlated with the degree of liver fibrosis. Diagnostic performance of STC1 was analysed by area under receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value, and negative predictive value. The results were compared with other well-characterised serum biomarkers for liver fibrosis, aspartate transaminase to Platelet Ratio Index (APRI) and Fibrosis-4 (FIB-4). The functional role of STC1 was interrogated by in vitro experiments using cell line models. Expression of fibrogenic markers was quantified by RT-qPCR and western blotting. Our results showed that serum STC1 level in chronic hepatitis B patients was positively correlated with the degree of liver fibrosis and showed a stepwise increase in accordance with the severity of fibrosis. The AUROCs for detecting significant fibrosis (>9.0 kPa) and cirrhosis (>12.0 kPa) was 0.911 and 0.880, respectively. STC1 demonstrated a superior specificity and positive predictive value when compared to APRI and FIB-4. Consistent with this, STC1 was elevated in the liver tissues and sera of CCl4 -treated mice showing marked liver fibrosis. In vitro, STC1 was secreted by the human hepatic stellate cell line LX2. Human recombinant STC1 (rhSTC1) induced expression of fibrogenic markers in LX2 cells. The pro-fibrogenic phenotype conferred by rhSTC1 or TGF-β1 in LX2 cells could be attenuated using anti-STC1 antibody. Taken together, STC1 is a specific serum biomarker for HBV-associated liver fibrosis. STC1 functionally promotes liver fibrogenesis and is a potential actionable target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Tsz-Chun Hon
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Kwan-Yung Au
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Hiu-Lam Choi
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Danny Ka-Ho Wong
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.,Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ching-Lung Lai
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| |
Collapse
|
14
|
Urtatiz O, Haage A, Tanentzapf G, Van Raamsdonk CD. Crosstalk with keratinocytes causes GNAQ oncogene specificity in melanoma. eLife 2021; 10:71825. [PMID: 34939927 PMCID: PMC8747508 DOI: 10.7554/elife.71825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Different melanoma subtypes exhibit specific and non-overlapping sets of oncogene and tumor suppressor mutations, despite a common cell of origin in melanocytes. For example, activation of the Gαq/11 signaling pathway is a characteristic initiating event in primary melanomas that arise in the dermis, uveal tract, or central nervous system. It is rare in melanomas arising in the epidermis. The mechanism for this specificity is unknown. Here, we present evidence that in the mouse, crosstalk with the epidermal microenvironment actively impairs the survival of melanocytes expressing the GNAQQ209L oncogene. We found that GNAQQ209L, in combination with signaling from the interfollicular epidermis (IFE), stimulates dendrite extension, leads to actin cytoskeleton disorganization, inhibits proliferation, and promotes apoptosis in melanocytes. The effect was reversible and paracrine. In contrast, the epidermal environment increased the survival of wildtype and BrafV600E expressing melanocytes. Hence, our studies reveal the flip side of Gαq/11 signaling, which was hitherto unsuspected. In the future, the identification of the epidermal signals that restrain the GNAQQ209L oncogene could suggest novel therapies for GNAQ and GNA11 mutant melanomas.
Collapse
Affiliation(s)
- Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
15
|
Bishop A, Cartwright JE, Whitley GS. Stanniocalcin-1 in the female reproductive system and pregnancy. Hum Reprod Update 2021; 27:1098-1114. [PMID: 34432025 PMCID: PMC8542996 DOI: 10.1093/humupd/dmab028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 06/15/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Stanniocalcin-1 (STC-1) is a widely expressed glycoprotein hormone involved in a diverse spectrum of physiological and pathophysiological processes including angiogenesis, mineral homeostasis, cell proliferation, inflammation and apoptosis. Over the last 20 years, numerous studies have reported STC-1 expression within female reproductive tissues including the uterus, ovaries and placenta and implicated STC-1 in processes such as ovarian follicular development, blastocyst implantation, vascular remodelling in early pregnancy and placental development. Notably, dysregulation of STC-1 within reproductive tissues has been linked to the onset of severe reproductive disorders including endometriosis, polycystic ovary syndrome, poor trophoblast invasion and placental perfusion in early pregnancy. Furthermore, significant changes in tissue expression and in maternal systemic concentration take place throughout pregnancy and further substantiate the vital role of this protein in reproductive health and disease. OBJECTIVE AND RATIONALE Our aim is to provide a comprehensive overview of the existing literature, to summarise the expression profile and roles of STC-1 within the female reproductive system and its associated pathologies. We highlight the gaps in the current knowledge and suggest potential avenues for future research. SEARCH METHODS Relevant studies were identified through searching the PubMed database using the following search terms: ‘stanniocalcin-1’, ‘placenta’, ‘ovary’, ‘endometrium’, ‘pregnancy’, ‘reproduction’, ‘early gestation’. Only English language papers published between 1995 and 2020 were included. OUTCOMES This review provides compelling evidence of the vital function that STC-1 plays within the female reproductive system. The literature presented summarise the wide expression profile of STC-1 within female reproductive organs, as well as highlighting the putative roles of STC-1 in various functions in the reproductive system. Moreover, the observed link between altered STC-1 expression and the onset of various reproductive pathologies is presented, including those in pregnancy whose aetiology occurs in the first trimester. This summary emphasises the requirement for further studies on the mechanisms underlying the regulation of STC-1 expression and function. WIDER IMPLICATIONS STC-1 is a pleiotropic hormone involved in the regulation of a number of important biological functions needed to maintain female reproductive health. There is also growing evidence that dysregulation of STC-1 is implicated in common reproductive and obstetric disorders. Greater understanding of the physiology and biochemistry of STC-1 within the field may therefore identify possible targets for therapeutic intervention and/or diagnosis.
Collapse
Affiliation(s)
- Alexa Bishop
- Centre for Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Judith E Cartwright
- Centre for Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Guy S Whitley
- Centre for Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| |
Collapse
|
16
|
Sun B, He S, Liu B, Xu G, Guoji E, Feng L, Xu L, Chen D, Zhao W, Chen J, Gao Y, Zhang E. Stanniocalcin-1 Protected Astrocytes from Hypoxic Damage Through the AMPK Pathway. Neurochem Res 2021; 46:2948-2957. [PMID: 34268656 DOI: 10.1007/s11064-021-03393-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
Our previous studies revealed that the expression of stanniocalcin-1 (STC1) in astrocytes increased under hypoxic conditions. However, the role of STC1 in hypoxic astrocytes is not well understood. In this work, we first showed the increased expression of STC1 in astrocyte cell line and astrocytes in the brain tissues of mice after exposure to hypoxia. Then, we found that knockdown of STC1 inhibited cell viability and increased apoptosis. These effects were mediated by decreasing the levels of SIRT3, UCP2, and glycolytic genes and increasing the levels of ROS. Further studies suggested that STC1 silencing promoted oxidative stress and suppressed glycolysis by downregulating AMPKα1. Moreover, HIF-1α knockdown in hypoxic astrocytes led to decreased expression of STC1 and AMPKα1, indicating that the expression of STC1 was regulated by HIF-1α. In conclusion, our study showed that HIF-1α-induced STC1 could protect astrocytes from hypoxic damage by regulating glycolysis and redox homeostasis in an AMPKα1-dependent manner.
Collapse
Affiliation(s)
- Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Guoji E
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Licong Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Dewei Chen
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.,Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wenqi Zhao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China. .,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China. .,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China. .,, Number 30, Gaotanyan Street, District of Shapingba, Chongqing, 400038, China.
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China. .,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China. .,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China. .,, Number 30, Gaotanyan Street, District of Shapingba, Chongqing, 400038, China.
| |
Collapse
|
17
|
Khatun M, Arffman RK, Lavogina D, Kangasniemi M, Laru J, Ahtikoski A, Lehtonen S, Paulson M, Hirschberg AL, Salumets A, Andersson LC, Piltonen TT. Women with polycystic ovary syndrome present with altered endometrial expression of stanniocalcin-1†. Biol Reprod 2021; 102:306-315. [PMID: 31494675 PMCID: PMC7016287 DOI: 10.1093/biolre/ioz180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Stanniocalcin-1 (STC-1) is a pro-survival factor that protects tissues against stressors, such as hypoxia and inflammation. STC-1 is co-expressed with the endometrial receptivity markers, and recently endometrial STC-1 was reported to be dysregulated in endometriosis, a condition linked with endometrial progesterone resistance and inflammation. These features are also common in the endometrium in women with polycystic ovary syndrome (PCOS), the most common endocrine disorder in women. Given that women with PCOS present with subfertility, pregnancy complications, and increased risk for endometrial cancer, we investigated endometrial STC-1 expression in affected women. Endometrial biopsy samples were obtained from women with PCOS and controls, including samples from overweight/obese women with PCOS before and after a 3-month lifestyle intervention. A total of 98 PCOS and 85 control samples were used in immunohistochemistry, reverse-transcription polymerase chain reaction, or in vitro cell culture. STC-1 expression was analyzed at different cycle phases and in endometrial stromal cells (eSCs) after steroid hormone exposure. The eSCs were also challenged with 8-bromo-cAMP and hypoxia for STC-1 expression. The findings indicate that STC-1 expression is not steroid hormone mediated although secretory-phase STC-1 expression was blunted in PCOS. Lower expression seems to be related to attenuated STC-1 response to stressors in PCOS eSCs, shown as downregulation of protein kinase A activity. The 3-month lifestyle intervention did not restore STC-1 expression in PCOS endometrium. More studies are warranted to further elucidate the mechanisms behind the altered endometrial STC-1 expression and rescue mechanism in the PCOS endometrium.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Darja Lavogina
- Department of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia.,Competence Centre on Health Technologies, Tartu, Estonia
| | - Marika Kangasniemi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Johanna Laru
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Anne Ahtikoski
- Department of Pathology, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Siri Lehtonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Mariana Paulson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, Tartu, Estonia.,Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
18
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|
19
|
Leung CCT, Wong CKC. Effects of stanniocalcin-1 overexpressing hepatocellular carcinoma cells on macrophage migration. PLoS One 2020; 15:e0241932. [PMID: 33156861 PMCID: PMC7647456 DOI: 10.1371/journal.pone.0241932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
Human stanniocalcin-1 (STC1) is a glycoprotein known to participate in inflammation and tumor progression. However, its role in cancer-macrophage interaction at the tumor environment is not known. In this study, the co-culture of the human metastatic hepatocellular carcinoma cell line (MHCC97L) stably transfected with a control vector (MHCC97L/P), or STC1-overexpressing vector (MHCC97L/S1) with human leukemia monocytic cell line (THP-1) was conducted. We reported that MHCC97L/S1 suppressed the migratory activity of THP-1. Real-time PCR analysis revealed the downregulation of the pro-migratory factors, monocyte-chemoattractant protein receptors, CCR2 and CCR4, and macrophage-migratory cytokine receptor, CSF-1R. Transcriptomic analysis of the THP-1 cells co-cultured with either MHCC97L/P or MHCC97L/S1, detected 1784 differentially expressed genes. The Ingenuity Canonical Pathway analysis predicted that RhoA signaling was associated with the inhibition of the cell migration. Western blot analysis revealed a significant reduction of Ser19-phosphorylation on MLC2, a Rho-A downstream target, in the THP-1 cells. Xenograft tumors derived from MHCC97/S1 in mice showed a remarkable decrease in infiltrating macrophages. Collectively, this is the first report to demonstrate the inhibitory effect of STC1-overexpressing cancer cells on macrophage migration/infiltration. Our data support further investigations on the relationship between tumor STC1 level and macrophage infiltration.
Collapse
Affiliation(s)
- Cherry C. T. Leung
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chris K. C. Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
20
|
Leung CCT, Wong CKC. Characterization of stanniocalcin-1 expression in macrophage differentiation. Transl Oncol 2020; 14:100881. [PMID: 33074126 PMCID: PMC7568195 DOI: 10.1016/j.tranon.2020.100881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/30/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Human stanniocalcin-1 (STC1) is a paracrine factor associated with inflammation and carcinogenesis. The role of STC1 in the pro- and anti-inflammatory functions of differentiating macrophage, however, is not clear. In this study, our data showed that phorbol 12-myristate 13-acetate (PMA) treatment induced human leukemia monocytic cells (ThP-1) differentiation to M0 macrophages. The differentiation was accompanied by a significant increase in the mRNA expression levels of STC1, the pro-inflammatory cytokine TNFα, and anti-inflammatory markers, CD163 & CD206. An intermitted removal of PMA treatment reduced the mRNA levels of STC1 and TNFα but had no noticeable effects on the anti-inflammatory markers. The correlation in the expression of STC1 and pro-inflammatory markers in differentiating macrophages was investigated, using siRNASTC1-transfected PMA-induced cells. Consistently, the transcripts levels of TNFα and IL-6 were significantly reduced. Moreover, LPS/IFNγ-induced M1-polarization showed remarkably higher expression levels of STC1 than IL-4/IL-13-induced M2-macrophages and PMA-induced M0-macrophages. Transcriptomic analysis of siRNASTC1-transfected M1-polarized cells revealed an upregulation of TBC1 domain family member 3 (TBC1D3G). The gene regulates the payload of macrophage-released extracellular vesicles to mediate inflammation. The conditioned media from siRNASTC1-transfected M1-polarized cells were found to reduce Hep3B cell motility. The data suggest that the expression of STC1 were associated with macrophage differentiation, but preferentially to M1 polarization.
Collapse
Affiliation(s)
- Cherry C T Leung
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
21
|
Luo W, Chen D, Wang H, Hu J. Stanniocalcin 1 is a prognostic biomarker in glioma. Oncol Lett 2020; 20:2248-2256. [PMID: 32782542 PMCID: PMC7400771 DOI: 10.3892/ol.2020.11792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Malignant gliomas are the most common type of primary malignancy of the central nervous system with a poor prognosis. Stanniocalcin 1 (STC1) is closely associated with tumor genesis and development. However, its role in the development and progression of glioma is poorly understood. In silico analysis, The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Rembrandt and GSE16011 datasets were used to assess the expression levels of STC1 in non-tumor brain tissues and gliomas. Moreover, reverse transcription-quantitative PCR and immunohistochemistry were used to detect STC1 expression in tumor tissues collected in the Department of Neurosurgery of Shenzhen People's Hospital (Shenzhen, China). The association between STC1 expression and different molecular pathological features was analyzed in four public datasets, as well as via Kaplan-Meier analysis. Furthermore, normalized mRNA expression in TCGA was used to perform Gene Ontology analysis. It was revealed that STC1 expression was significantly elevated in glioma tissues compared with the non-tumor brain tissues, both in silico analysis and via cohort validation. According to TCGA, CGGA, Rembrandt and GSE16011 datasets, it was identified that STC1 expression was increased in high grade glioma compared with low grade glioma. In addition, the results indicated STC1 expression was enriched in the isocitrate dehydrogenase (IDH) wild-type and mesenchymal subtype in TCGA, GSE16011 and Rembrandt datasets. Moreover, it was demonstrated that patients with higher STC1 expression exhibited shorter overall survival times compared with those with lower STC1 expression using Kaplan-Meier analysis, according to both the public datasets and validation cohort. Furthermore, the results of the Gene Ontology analysis demonstrated that STC1 was primarily involved in the reorganization of extracellular matrix and was significantly correlated with invasive-related proteins. Therefore, the present results indicate that STC1 was upregulated in glioma tissues and may represent a prognostic biomarker in patients with glioma.
Collapse
Affiliation(s)
- Weijian Luo
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Ji'nan University, Shenzhen, Guangdong 518020, P.R. China
| | - Dong Chen
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Ji'nan University, Shenzhen, Guangdong 518020, P.R. China
| | - Hao Wang
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Ji'nan University, Shenzhen, Guangdong 518020, P.R. China
| | - Jiliang Hu
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Ji'nan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
22
|
Zhao F, Yang G, Feng M, Cao Z, Liu Y, Qiu J, You L, Zheng L, Zhang T, Zhao Y. Expression, function and clinical application of stanniocalcin-1 in cancer. J Cell Mol Med 2020; 24:7686-7696. [PMID: 32468698 PMCID: PMC7348177 DOI: 10.1111/jcmm.15348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/10/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein stanniocalcin-1 functions as a regulatory endocrine hormone that maintains the balance of calcium and phosphorus in bony fish and as a paracrine/autocrine factor involved in many physiological/pathological processes in humans, including carcinogenesis. In this review, we provide an overview of (a) the possible mechanisms through which STC1 affects the malignant properties of cancer, (b) transcriptional and post-transcriptional regulation pathways of STC1 and (c) the potential clinical relevance of STC1 as a cancer biomarker and even a therapeutic target in the future. Exploring the role of STC1 in cancer development may provide a better understanding of the tumorigenesis process in humans and may facilitate finding an effective therapeutic method against cancer.
Collapse
Affiliation(s)
- Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Abid N, Embola J, Tryfonos Z, Bercher J, Ashton SV, Khalil A, Thilaganathan B, Cartwright JE, Whitley GS. Regulation of stanniocalcin-1 secretion by BeWo cells and first trimester human placental tissue from normal pregnancies and those at increased risk of developing preeclampsia. FASEB J 2020; 34:6086-6098. [PMID: 32162740 PMCID: PMC7318576 DOI: 10.1096/fj.201902426r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 11/11/2022]
Abstract
Stanniocalcin-1 (STC-1) is a multi-functional glycosylated peptide present in the plasma of healthy women postpartum and increased further in pregnancies complicated by preeclampsia. Although the STC-1 gene is expressed by the placenta what regulates its secretion and from which cells at the feto-maternal interface is unknown. Here, we demonstrate for the first time that the syncytiotrophoblast and cytotrophoblast are a major site of STC-1 protein expression in first trimester placental tissue. Further, in response to low oxygen, first trimester chorionic villous tissue from pregnancies at increased risk of developing preeclampsia secreted significantly more STC-1 than normal tissue under the same conditions. Using the human trophoblast cell line BeWo we have shown that low oxygen increased the secretion of STC-1 but it required co-stimulation with the Adenosine-3', 5'-cyclic monophosphate (cAMP) analogue, 8-Bromo adenosine-3', 5'-cyclic monophosphate cAMP (8 Br-cAMP) to reach significance. Inhibition of Hypoxia inducible factor 2α (HIF-2α) and the Phosphatidylinositol-3 kinase (PI3 -Kinase)/AKT/Serum and glucocorticoid-induced kinase-1(SGK-1) pathway resulted in significant inhibition of STC-1 secretion. As both low oxygen and cAMP are known to play a central role in placental function, their regulation of STC-1 points to a potentially important role in the maintenance of a normal healthy pregnancy and we would hypothesize that it may act to protect against prolonged placental hypoxia seen in preeclampsia.
Collapse
Affiliation(s)
- Naila Abid
- Centre for Vascular Biology, Molecular and Clinical Sciences Research InstituteSt George'sUniversity of LondonLondonUK
| | - Joan Embola
- Centre for Vascular Biology, Molecular and Clinical Sciences Research InstituteSt George'sUniversity of LondonLondonUK
| | - Zoe Tryfonos
- Centre for Vascular Biology, Molecular and Clinical Sciences Research InstituteSt George'sUniversity of LondonLondonUK
| | - Julia Bercher
- Centre for Vascular Biology, Molecular and Clinical Sciences Research InstituteSt George'sUniversity of LondonLondonUK
| | - Sandra V. Ashton
- Centre for Vascular Biology, Molecular and Clinical Sciences Research InstituteSt George'sUniversity of LondonLondonUK
- Fetal Medicine UnitSt George's University Hospital NHS Foundation TrustLondonUK
| | - Asma Khalil
- Centre for Vascular Biology, Molecular and Clinical Sciences Research InstituteSt George'sUniversity of LondonLondonUK
- Fetal Medicine UnitSt George's University Hospital NHS Foundation TrustLondonUK
| | - Baskaran Thilaganathan
- Centre for Vascular Biology, Molecular and Clinical Sciences Research InstituteSt George'sUniversity of LondonLondonUK
- Fetal Medicine UnitSt George's University Hospital NHS Foundation TrustLondonUK
| | - Judith E. Cartwright
- Centre for Vascular Biology, Molecular and Clinical Sciences Research InstituteSt George'sUniversity of LondonLondonUK
| | - Guy S. Whitley
- Centre for Vascular Biology, Molecular and Clinical Sciences Research InstituteSt George'sUniversity of LondonLondonUK
| |
Collapse
|
24
|
Stanniocalcin-1 Alleviates Contrast-Induced Acute Kidney Injury by Regulating Mitochondrial Quality Control via the Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1898213. [PMID: 32318235 PMCID: PMC7153002 DOI: 10.1155/2020/1898213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is the third common cause of acute kidney injury (AKI), which is associated with poor short- and long-term outcomes. Currently, effective therapy strategy for CI-AKI remains lacking. Stanniocalcin-1 (STC1) is a conserved glycoprotein with antiapoptosis and anti-inflammatory functions, but the role of STC1 in controlling CI-AKI is unknown. Here, we demonstrated a protective role of STC1 in contrast-induced injury in cultured renal tubular epithelial cells and CI-AKI rat models. Recombinant human STC1 (rhSTC1) regulated mitochondrial quality control, thus suppressing contrast-induced mitochondrial damage, oxidative stress, inflammatory response, and apoptotic injury. Mechanistically, activation of the Nrf2 signaling pathway contributes critically to the renoprotective effect of STC1. Together, this study demonstrates a novel role of STC1 in preventing CI-AKI and reveals Nrf2 as a molecular target of STC1. Therefore, this study provides a promising preventive target for the treatment of CI-AKI.
Collapse
|
25
|
Xiong Y, Wang Q. STC1 regulates glioblastoma migration and invasion via the TGF‑β/SMAD4 signaling pathway. Mol Med Rep 2019; 20:3055-3064. [PMID: 31432189 PMCID: PMC6755173 DOI: 10.3892/mmr.2019.10579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
Stanniocalcin-1 (STC1) is involved in cancer progression; however, the function of STC1 in glioblastoma remains unknown. In the present study, the expression levels of STC1 protein in glioblastoma were detected using immunohistochemistry. The expression levels of STC1, SMAD2/3 and SMAD4 proteins, following silencing of STC1, were assessed via western blotting. EdU and Transwell assays were performed to determine the proliferation and migration ability of the cells. The mRNA expression levels of STC1, SMAD4 and microRNA (miR)-34a were determined using quantitative PCR. The expression levels of STC1 were increased in glioblastoma tissues. STC1 revealed a significant association with poor outcome in patients with glioblastoma (P<0.05). The proliferation and invasion abilities were repressed in LN229 cells infected with LV3-shSTC1-1 and LV3-shSTC1-2 compared with LV3-NC. By contrast, the proliferation and invasion abilities were increased in T98G cells infected with LV5-STC1 compared with LV5-NC (P<0.05). The expression levels of STC1, SMAD2/3 and SMAD4 were decreased in LN229 cells infected with LV3-shSTC1-1 and LV3-shSTC1-2 compared with LV3-NC. However, the expression levels of STC1, SMAD2/3 and SMAD4 were elevated in T98G cells infected with LV5-STC1 compared with LV5-NC. The expression levels of miR-34a were decreased following silencing of STC1 (P<0.05). The expression levels of SMAD4 were decreased when transfected with miR-34a mimics (P<0.05). The luciferase activity of the wild-type 3′untranslated region of SMAD4 was decreased following transfection with miR-34a mimics (P<0.05). Silencing of STC1 inhibited the growth of LN229 in vivo. In conclusion, STC1 expression levels were increased in the present study, and it was revealed that STC1 regulated glioblastoma malignancy. This phenotype was observed in the SMAD2/3 and SMAD4 pathways.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Neurosurgery, Chongqing Ninth People's Hospital, Chongqing 400715, P.R. China
| | - Qibai Wang
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing 400020, P.R. China
| |
Collapse
|
26
|
Gupta H, Youn GS, Han SH, Shin MJ, Yoon SJ, Han DH, Lee NY, Kim DJ, Baik SK, Suk KT. Response-Related Factors of Bone Marrow-Derived Mesenchymal Stem Cells Transplantation in Patients with Alcoholic Cirrhosis. J Clin Med 2019; 8:862. [PMID: 31212896 PMCID: PMC6616969 DOI: 10.3390/jcm8060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Liver cirrhosis leads to hepatic dysfunction and life-threatening conditions. Although the clinical efficacy of autologous bone marrow-derived mesenchymal stem cells (BM-MSC) transplantation in alcoholic cirrhosis (AC) was demonstrated, the relevant mechanism has not been elucidated. We aimed to identify the predictive factors and gene/pathways for responders after autologous BM-MSC transplantation. Fifty-five patients with biopsy-proven AC underwent autologous BM-MSC transplantation. The characteristics of responders who showed improvement in fibrosis score (≥1) after transplantation were compared with those of non-responders. BM-MSCs were analyzed with cDNA microarrays to identify gene/pathways that were differentially expressed in responders. Thirty-three patients (66%) were responders. A high initial Laennec score (p = 0.007, odds ratio 3.73) and performance of BM-MSC transplantation (p = 0.033, odds ratio 5.75) were predictive factors for responders. Three genes (olfactory receptor2L8, microRNA4520-2, and chloride intracellular channel protein3) were upregulated in responders, and CD36 and retinol-binding protein 4 are associated with the biologic processes that are dominant in non-responders. Eleven pathways (inositol phosphate, ATP-binding cassette transporters, protein-kinase signaling, extracellular matrix receptor interaction, endocytosis, phagosome, hematopoietic cell lineage, adipocytokine, peroxisome proliferator-activated receptor, fat digestion/absorption, and insulin resistance) were upregulated in non-responders (p < 0.05). BM-MSC transplantation may be warranted treatment for AC patients with high Laennec scores. Cell-based therapy utilizing response-related genes or pathways can be a treatment candidate.
Collapse
Affiliation(s)
- Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Gi Soo Youn
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Min Jea Shin
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Dae Hee Han
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Soon Koo Baik
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University, Wonju College of Medicine, Wonju 26426, Korea.
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24253, Korea.
| |
Collapse
|
27
|
Mordhorst BR, Murphy SL, Schauflinger M, Rojas Salazar S, Ji T, Behura SK, Wells KD, Green JA, Prather RS. Porcine Fetal-Derived Fibroblasts Alter Gene Expression and Mitochondria to Compensate for Hypoxic Stress During Culture. Cell Reprogram 2019; 20:225-235. [PMID: 30089028 PMCID: PMC6088251 DOI: 10.1089/cell.2018.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Warburg effect is characterized by decreased mitochondrial oxidative phosphorylation and increased glycolytic flux in adequate oxygen. The preimplantation embryo has been described to have characteristics of the Warburg effect, including similar changes in gene expression and mitochondria, which are more rudimentary in appearance. We hypothesized hypoxia would facilitate anaerobic glycolysis in fibroblasts thereby promoting gene expression and media metabolite production reflecting the Warburg effect hallmarks in early embryos. Additionally, we speculated that hypoxia would induce a rudimentary small mitochondrial phenotype observed in several cell types evidenced to demonstrate the Warburg effect. While many have examined the role hypoxia plays in pathological conditions, few studies have investigated changes in primary cells which could be used in somatic cell nuclear transfer. We found that cells grown in 1.25% O2 had normal cell viability and more, but smaller mitochondria. Several hypoxia-inducible genes were identified, including seven genes for glycolytic enzymes. In conditioned media from hypoxic cells, the quantities of gluconolactone, cytosine, and uric acid were decreased indicating higher consumption than control cells. These results indicate that fibroblasts alter gene expression and mitochondria to compensate for hypoxic stress and maintain viability. Furthermore, the metabolic changes observed, making them more similar to preimplantation embryos, could be facilitating nuclear reprogramming making these cells more amendable to future use in somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Bethany R Mordhorst
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Stephanie L Murphy
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Martin Schauflinger
- 2 Electron Microscopy Core Facility, University of Missouri , Columbia, Missouri
| | | | - Tieming Ji
- 3 Department of Statistics, University of Missouri , Columbia, Missouri
| | - Susanta K Behura
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Kevin D Wells
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Jonathan A Green
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Randall S Prather
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| |
Collapse
|
28
|
Sakata J, Sasayama T, Tanaka K, Nagashima H, Nakada M, Tanaka H, Hashimoto N, Kagawa N, Kinoshita M, Nakamizo S, Maeyama M, Nishihara M, Hosoda K, Kohmura E. MicroRNA regulating stanniocalcin-1 is a metastasis and dissemination promoting factor in glioblastoma. J Neurooncol 2019; 142:241-251. [PMID: 30701354 DOI: 10.1007/s11060-019-03113-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND MicroRNAs (miRs) regulate many biological processes, such as invasion, angiogenesis, and metastasis. Glioblastoma (GBM) patients with metastasis/metastatic dissemination have a very poor prognosis; therefore, inhibiting metastasis/metastatic dissemination has become an important therapeutic strategy for GBM treatment. METHODS Using 76 GBM tissues, we examined the expression levels of 23 GBM-related miRs and compared the miRs' expression levels between GBMs with metastasis/metastatic dissemination and GBMs without metastasis/metastatic dissemination. Using the bioinformatics web site, we searched the target genes of miRs. To analyze the function of target gene, several biological assays and survival analysis by the Kaplan-Meier method were performed. RESULTS We found that eight miRs were significantly decreased in GBM with metastasis/metastatic dissemination. By the bioinformatics analysis, we identified stanniocalcin-1 (STC1) as the most probable target gene against the combination of these miRs. Four miRs (miR-29B, miR-34a, miR-101, and miR-137) have predictive binding sites in STC1 mRNA, and mRNA expression of STC1 was downregulated by mimics of these miRs. Also, mimics of these miRs and knockdown of STC1 by siRNA suppressed invasion in GBM cells. GBM with metastasis/metastatic dissemination had significantly higher levels of STC1 than GBM without metastasis/metastatic dissemination. Finally, Kaplan-Meier analysis demonstrated that GBMs with high STC1 level had significantly shorter survival than GBMs with low STC1 level. CONCLUSIONS STC1 may be a novel metastasis/metastatic dissemination promoting factor regulated by several miRs in GBM. Because STC1 is a secreted glycoprotein and functions via the autocrine/paracrine signals, inhibiting STC1 signal may become a novel therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Junichi Sakata
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiroaki Nagashima
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | - Hirotomo Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science, Kyoto, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Nakamizo
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masahiro Maeyama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | - Kohkichi Hosoda
- Department of Neurosurgery, West Kobe Medical Center, Kobe, Japan
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
29
|
Abstract
The zinc metalloproteinase, PAPP-A, enhances local insulin-like growth factor (IGF) action through cleavage of inhibitory IGF-binding proteins, thereby increasing IGF available for IGF receptor-mediated cell proliferation, migration and survival. In many tumors, enhanced IGF receptor signaling is associated with tumor growth, invasion and metastasis. We will first discuss PAPP-A structure and function, and post-translational inhibitors of PAPP-A expression or proteolytic activity. We will then review the evidence supporting an important role for PAPP-A in many cancers, including breast, ovarian and lung cancer, and Ewing sarcoma.
Collapse
Affiliation(s)
- Cheryl A Conover
- From the Division of Endocrinology Mayo ClinicRochester, Minnesota, USA
| | - Claus Oxvig
- Department of Molecular Biology and GeneticsAarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells. Oncotarget 2018; 8:46249-46261. [PMID: 28545028 PMCID: PMC5542264 DOI: 10.18632/oncotarget.17641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/11/2017] [Indexed: 01/15/2023] Open
Abstract
Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer.
Collapse
|
31
|
Leung CC, Wong CK. Effects of STC1 overexpression on tumorigenicity and metabolism of hepatocellular carcinoma. Oncotarget 2017; 9:6852-6861. [PMID: 29467934 PMCID: PMC5805520 DOI: 10.18632/oncotarget.23566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/28/2017] [Indexed: 12/25/2022] Open
Abstract
Stanniocalcin-1 (STC1) is a paracrine factor associated with inflammation and carcinogenesis. Using clinicopathological data, we previously reported that a greater expression of STC1 in hepatocellular carcinoma (HCC) was significantly correlated with smaller tumor size. The underlying mechanism on the correlation is not known. In this study, using a metastatic HCC cell-line (MHCC-97L, P) and lentiviral vector mediated-STC1 overexpression, the inoculation of STC1-overexpressing MHCC-97L (S1) cells in a nude mice xenograft model demonstrated reductions in tumor mass and volume. As compared with P cells, S1 cells exhibited epithelial phenotype with significantly lower plating efficiency and reduced migratory and proliferative potential. Using coulter counter for cell-sizing, S1 cells (17.6 μm) were significantly smaller than P cells (19.6 μm). Western blot analysis revealed that S1 cells exhibited reduced expression level of phosphorylated ribosomal protein S6 (p-rpS6). Moreover, an inhibition of the upstream kinase p70S6K was evident with the dephosphorylation of Thr389 in the linker domain of the kinase. The inhibition of p70S6K/p-rpS6 pathway was accompanied with reduced cellular ATP level and increase of p-AMPK in S1 cells. Significantly lower rates of glycolysis and extracellular O2 consumption in S1 cells exhibited a lower cellular energy status. Since a faster rate of ATP production is essential to support cancer growth and metastasis, the present study identified the effect of STC1-overexpression on reducing energy metabolism, leading to an activation of AMPK pathway but an inhibition of p70S6K/p-rpS6 signaling to reduce tumor growth.
Collapse
Affiliation(s)
- Cherry Ct Leung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chris Kc Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
32
|
Li Y, He ZC, Zhang XN, Liu Q, Chen C, Zhu Z, Chen Q, Shi Y, Yao XH, Cui YH, Zhang X, Wang Y, Kung HF, Ping YF, Bian XW. Stanniocalcin-1 augments stem-like traits of glioblastoma cells through binding and activating NOTCH1. Cancer Lett 2017; 416:66-74. [PMID: 29196129 DOI: 10.1016/j.canlet.2017.11.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 11/25/2017] [Indexed: 12/29/2022]
Abstract
Glioblastoma (GBM) is a fatal tumor and comprises heterogeneous cells in which a subpopulation with stem cell-like properties is included. Cancer cells with stem cell-like properties account for tumor initiation, drug resistance and recurrence. To identify and characterize specific factors in regulating stem-like traits is critical for GBM therapeutic. Here, we showed that Stanniocalcin-1 (STC1), a secretory glycoprotein, functions as a novel stimulator for stem-like traits of GBM cells. We found STC1 was prominently expressed in glioma spheres which are mainly comprised of glioma stem-like cells. The stem-like traits of GBM cells, as determined by the expression of stem cell markers, tumor-sphere formation efficiency and colony-forming ability, were enhanced by STC1 overexpression and inhibited by STC1 knockdown. Furthermore, introduction of STC1 enhanced tumorigenesis in vivo while knockdown of STC1 showed reverse effect. Finally, we demonstrated that STC1 interacted with the extracellular domain of NOTCH1 to activate NOTCH1-SOX2 signaling pathway, by which STC1 augmented the stem-like traits of GBM cells. Taken together, our data herein indicate that STC1 is a novel non-canonical NOTCH ligand and acts as a crucial regulator of stemness in GBM.
Collapse
Affiliation(s)
- Yong Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xiao-Ning Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zheng Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Hsiang-Fu Kung
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China.
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China.
| |
Collapse
|
33
|
Kwong RWM, Kumai Y, Tzaneva V, Azzi E, Hochhold N, Robertson C, Pelster B, Perry SF. Inhibition of calcium uptake during hypoxia in developing zebrafish is mediated by hypoxia-inducible factor. ACTA ACUST UNITED AC 2016; 219:3988-3995. [PMID: 27802147 DOI: 10.1242/jeb.148700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023]
Abstract
The present study investigated the potential role of hypoxia-inducible factor (HIF) in calcium homeostasis in developing zebrafish (Danio rerio). It was demonstrated that zebrafish raised in hypoxic water (30 mmHg; control, 155 mmHg PO2 ) until 4 days post-fertilization exhibited a substantial reduction in whole-body Ca2+ levels and Ca2+ uptake. Ca2+ uptake in hypoxia-treated fish did not return to pre-hypoxia (control) levels within 2 h of transfer back to normoxic water. Results from real-time PCR showed that hypoxia decreased the whole-body mRNA expression levels of the epithelial Ca2+ channel (ecac), but not plasma membrane Ca2+-ATPase (pmca2) or Na+/Ca2+-exchanger (ncx1b). Whole-mount in situ hybridization revealed that the number of ecac-expressing ionocytes was reduced in fish raised in hypoxic water. These findings suggested that hypoxic treatment suppressed the expression of ecac, thereby reducing Ca2+ influx. To further evaluate the potential mechanisms for the effects of hypoxia on Ca2+ regulation, a functional gene knockdown approach was employed to prevent the expression of HIF-1αb during hypoxic treatment. Consistent with a role for HIF-1αb in regulating Ca2+ balance during hypoxia, the results demonstrated that the reduction of Ca2+ uptake associated with hypoxic exposure was not observed in fish experiencing HIF-1αb knockdown. Additionally, the effects of hypoxia on reducing the number of ecac-expressing ionocytes was less pronounced in HIF-1αb-deficient fish. Overall, the current study revealed that hypoxic exposure inhibited Ca2+ uptake in developing zebrafish, probably owing to HIF-1αb-mediated suppression of ecac expression.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5 .,Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| | - Yusuke Kumai
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Velislava Tzaneva
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Estelle Azzi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Nina Hochhold
- Institute of Zoology, University of Innsbruck, Innsbruck A-6020, Austria
| | - Cayleih Robertson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck A-6020, Austria
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
34
|
Jeon M, Han J, Nam SJ, Lee JE, Kim S. STC-1 expression is upregulated through an Akt/NF-κB-dependent pathway in triple-negative breast cancer cells. Oncol Rep 2016; 36:1717-22. [PMID: 27461417 DOI: 10.3892/or.2016.4972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/18/2016] [Indexed: 11/05/2022] Open
Abstract
Stanniocalcin-1 (STC-1) is a secreted glycoprotein and its expression is strongly correlated with cancer development. However, regulatory mechanism of STC-1 expression in breast cancer cells is not clear. In the present study, we investigated whether STC-1 acts as a prognostic factor in TNBC patients and the regulation of STC-1 expression in breast cancer cells. Basal levels of STC-1 were significantly higher in TNBC cells than in non-TNBC cells. Induction of STC-1 expression was also associated with poor relapse-free survival of TNBC patients. In addition, we verified the correlation between the invasiveness of TNBC cells and the STC-1 expression. We found that recombinant human STC-1 treatment increased the invasiveness of TNBC cells. In contrast, STC-1-induced cell invasiveness was completely inhibited by anti-STC-1 monoclonal antibody treatment. We found that the basal levels of STC-1 expression in TNBC cells were decreased by treatment with LY294002 or Bay11-7085, but not SB203580. In contrast, transcript levels of STC-1 and protein secretion were increased by constitutively active Akt (CA-Akt) or NF-κB overexpression in TNBC cells. Finally, we observed that phosphorylation of NF-κB was significantly increased by CA-Akt overexpression in TNBC cells. Taken together, elevated STC-1 expression is associated with poor clinical outcome in TNBC patients, and STC-1 is directly involved in the invasiveness of TNBC cells. STC-1 expression is upregulated through a PI-3K/Akt/NF-κB‑dependent signaling pathway in TNBC cells.
Collapse
Affiliation(s)
- Myeongjin Jeon
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jeonghun Han
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sangmin Kim
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| |
Collapse
|
35
|
Dai D, Wang Q, Li X, Liu J, Ma X, Xu W. Klotho inhibits human follicular thyroid cancer cell growth and promotes apoptosis through regulation of the expression of stanniocalcin-1. Oncol Rep 2015; 35:552-8. [PMID: 26531219 DOI: 10.3892/or.2015.4358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The new anti-aging gene Klotho has been identified as a multi-functional humoral factor which influences multiple biological processes, including tumor progression. Although ample evidence indicates that Klotho plays important roles in cervical, lung and breast cancer, the role and mechanism of Klotho in thyroid cancer are still unclear. The present study aimed to investigate the effects and mechanisms of Klotho in human thyroid cancer cell lines FTC133 and FTC238. Klotho overexpression markedly reduced thyroid cancer FTC133 and FTC238 cell proliferation and enhanced apoptosis, whereas, Klotho silencing in the FTC133 and FTC238 cells increased cell growth. Moreover, soluble human KL1 (sKL) and Klotho overexpression had a similar effect on FTC133 and FTC238 cell growth. A high level of Klotho was also found to be associated with a low level of stanniocalcin 1 (STC1) in both the FTC133 and FTC238 cell lines. STC1 silencing significantly inhibited thyroid cancer cell proliferation, whereas recombinant human STC1 (hSTC1) markedly enhanced cell proliferation. In addition, our study demonstrated that hSTC1 treatment attenuated Klotho-induced inhibition of cell proliferation and promotion of apoptosis. Our data revealed the existence of a moderating effect between Klotho and STC1, where Klotho may inhibit thyroid tumor progression by inhibiting the tumor marker level of STC1.
Collapse
Affiliation(s)
- Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Qi Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xiaoying Ma
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
36
|
Yeung BHY, Shek FH, Lee NP, Wong CKC. Stanniocalcin-1 Reduces Tumor Size in Human Hepatocellular Carcinoma. PLoS One 2015; 10:e0139977. [PMID: 26469082 PMCID: PMC4607425 DOI: 10.1371/journal.pone.0139977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023] Open
Abstract
Growing evidence has revealed high expression levels of stanniocalcin-1 (STC1) in different types of human cancers. Numerous experimental studies using cancer cell lines demonstrated the involvement of STC1 in inflammatory and apoptotic processes; however the role of STC1 in carcinogenesis remains elusive. Hepatocellular carcinoma (HCC) an exemplified model of inflammation-related cancer, represents a paradigm of studying the association between STC1 and tumor development. Therefore, we conducted a statistical analysis on the expression levels of STC1 using clinicopathological data from 216 HCC patients. We found that STC1 was upregulated in the tumor tissues and its expression levels was positively correlated with the levels of interleukin (IL)-6 and IL-8. Intriguingly tumors with greater expression levels of STC1 (tumor/normal ≥ 2) were significantly smaller than the lower level (tumor/normal<2) samples (p = 0.008). A pharmacological approach was implemented to reveal the functional correlation between STC1 and the ILs in the HCC cell-lines. IL-6 and IL-8 treatment of Hep3B cells induced STC1 expression. Lentiviral-based STC1 overexpression in Hep3B and MHCC-97L cells however showed inhibitory action on the pro-migratory effects of IL-6 and IL-8 and reduced size of tumor spheroids. The inhibitory effect of STC1 on tumor growth was confirmed in vivo using the stable STC1-overexpressing 97L cells on a mouse xenograft model. Genetic analysis of the xenografts derived from the STC1-overexpressing 97L cells, showed upregulation of the pro-apoptotic genes interleukin-12 and NOD-like receptor family, pyrin domain-containing 3. Collectively, the anti-inflammatory and pro-apoptotic functions of STC1 were suggested to relate its inhibitory effect on the growth of HCC cells. This study supports the notion that STC1 may be a potential therapeutic target for inflammatory tumors in HCC patients.
Collapse
Affiliation(s)
- Bonnie H. Y. Yeung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Felix H. Shek
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chris K. C. Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- * E-mail:
| |
Collapse
|
37
|
Hayase S, Sasaki Y, Matsubara T, Seo D, Miyakoshi M, Murata T, Ozaki T, Kakudo K, Kumamoto K, Ylaya K, Cheng SY, Thorgeirsson SS, Hewitt SM, Ward JM, Kimura S. Expression of stanniocalcin 1 in thyroid side population cells and thyroid cancer cells. Thyroid 2015; 25:425-36. [PMID: 25647164 PMCID: PMC4390205 DOI: 10.1089/thy.2014.0464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. METHOD Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. RESULTS Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma-derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. CONCLUSION These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer.
Collapse
Affiliation(s)
- Suguru Hayase
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoshihito Sasaki
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Kuwana East Medical Center, Kuwana, Mie, Japan
| | - Tsutomu Matsubara
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Daekwan Seo
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Bioinformatics Core, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Masaaki Miyakoshi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tsubasa Murata
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Dental and Oral Surgery, Tomakomai City Hospital, Tomakomai, Hokkaido, Japan
| | - Takashi Ozaki
- Department of Pathology, Wakayama Medical University, Wakayama City, Japan
| | - Kennichi Kakudo
- Department of Pathology, Nara Hospital Kinki University Faculty of Medicine, Ikoma, Japan
| | - Kensuke Kumamoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen M. Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Su J, Guo B, Zhang T, Wang K, Li X, Liang G. Stanniocalcin-1, a new biomarker of glioma progression, is associated with prognosis of patients. Tumour Biol 2015; 36:6333-9. [PMID: 25783529 DOI: 10.1007/s13277-015-3319-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022] Open
Abstract
Stanniocalcin-1 (STC1) is a secreted glycoprotein hormone and highly expressed in various types of human malignancies. Although evidence points to the role of STC1 in human cancers, the clinical significance of STC1 expression in glioma has not been established. Here, we investigated the relationship between STC1 expression and clinicopathological significance in glioma. In our study, we selected 60 cases of different grades glioma tissues to detect the expression of STC1. Data showed that the mRNA and protein levels of STC1 in high-grade glioma tissues were significantly higher than that in low-grade tissues. The results of double immunofluorescent staining disclosed STC1 distribution in vascular endothelial cells and the cytoplasm in high-grade glioma, but almost distributed only in vascular endothelial cells in low-grade glioma. By immunohistochemistry, we got the same results and the expression of STC1 has significant difference in high-grade gliomas and low-grade gliomas. Furthermore, the results of Kaplan-Meier analysis indicated that cases with high STC1expression had significantly worse overall survival than those with low level of STC1. These results suggested that STC1 may be a valuable biomarker in diagnosing malignant degree of glioma and evaluating prognostic following surgery. Next, we would study the pathophysiological mechanism of STC1 in glioma.
Collapse
Affiliation(s)
- Jingyuan Su
- Institute of Neurology, General Hospital of Shenyang Military Command, 83#Wenhua Road, ShenHe District, Shenyang, Liaoning, 110016, China
| | | | | | | | | | | |
Collapse
|
39
|
Ma X, Gu L, Li H, Gao Y, Li X, Shen D, Gong H, Li S, Niu S, Zhang Y, Fan Y, Huang Q, Lyu X, Zhang X. Hypoxia-induced overexpression of stanniocalcin-1 is associated with the metastasis of early stage clear cell renal cell carcinoma. J Transl Med 2015; 13:56. [PMID: 25740019 PMCID: PMC4337255 DOI: 10.1186/s12967-015-0421-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Although metastasis of clear cell renal cell carcinoma (ccRCC) is predominantly observed in late stage tumors, early stage metastasis of ccRCC can also be found with indefinite molecular mechanism, leading to inappropriate clinical decisions and poor prognosis. Stanniocalcin-1 (STC1) is a glycoprotein hormone involved in calcium/phosphate homeostasis, which regulates various cellular processes in normal development and tumorigenesis. This study aimed to investigate the role and mechanism of regulation of STC1 in the metastasis of early stage ccRCC. Methods STC1 mRNA and protein expression was determined in ccRCC surgical specimens, RCC cell lines, and human kidney tubule epithelial cell line HKC by real-time polymerase chain reaction (RT-PCR) and western blotting. Immunohistochemistry staining (IHC) and immunofluorescence were also used to examine the expression and localization of STC1 in ccRCC tissues and cancer cells. Knockdown and overexpression studies were conducted in vitro in RCC cell lines using small interfering RNAs (siRNA) and lentiviral-mediated gene delivery to evaluate the role of STC1 in cell proliferation, anchorage-dependent and independent growth, cell cycle control, and migration and invasion. Results STC1 mRNA and protein expression were significantly up-regulated in tumors when compared with non-tumor tissues, with the greatest increase in expression observed in metastatic tissues. Clinicopathological analysis revealed that STC1 mRNA expression was associated with Fuhrman tumor grade (P = 0.008) and overall Tumor Node Metastasis (TNM) staging (P = 0.018). STC1 expression was elevated in T1 stage metastatic tumors when compared with localized tumors, and was positively correlated with average tumor diameter. Silencing of STC1 expression by Caki-1 and A498 resulted in the inhibition of cell proliferation, migration, and invasion, meanwhile down-regulation of STC1 impaired epithelial–mesenchymal transition (EMT) of ccRCC cell lines. Overexpression of STC1 in Caki-2 enhanced cell growth and proliferation but not migration and invasion. Further investigation identified hypoxia and HIF-1α as candidate regulators of STC1 expression. Conclusions Our findings demonstrate a role for STC1 in metastasis of early stage ccRCC and suggest that STC1 may be a biomarker of potential value both for the prognosis of this disease and for guiding clinical decisions regarding surgical strategies and adjuvant treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0421-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Ma
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Liangyou Gu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Hongzhao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Yu Gao
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Xintao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Donglai Shen
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Huijie Gong
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Shichao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Shaoxi Niu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Yu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Yang Fan
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Qingbo Huang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Xiangjun Lyu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Xu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| |
Collapse
|
40
|
Fang Z, Tian Z, Luo K, Song H, Yi J. Clinical significance of stanniocalcin expression in tissue and serum of gastric cancer patients. Chin J Cancer Res 2014; 26:602-10. [PMID: 25400427 DOI: 10.3978/j.issn.1000-9604.2014.10.08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/25/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Stanniocalcin (STC) has been recognized as a potential biomarker in a variety of cancers. The aim of this study was to examine STC1 and STC2 expression in tumor and serum samples from gastric cancer (GC) patients. METHODS A total of 83 GC patients treated with radical resection were enrolled in this study. Immunohistochemistry was used to detect STC protein expression in paired tumor and adjacent normal tissues. Serum STC levels were determined by enzyme-linked immunosorbent assay (ELISA). The receiver operating characteristics (ROC) curve was constructed to describe diagnostic specificity and sensitivity. RESULTS Both of STC1 and STC2 protein expression were upregulated in GC tissues compared with that in normal ones. Moreover, the high/moderate of STC1 protein was significantly associated with lymph metastasis, clinical stage and adverse 3-year progression-free survival (PFS). In addition, serum STC1 and STC2 expression in GC patients were much higher than that in patients with benign gastric disease, which decreased at postoperative 7-10 days. The sensitivity of serum STC protein also showed superiority over CEA and CA19-9. CONCLUSIONS STC upregulation plays an important role in GC development, and serum STC1 and STC2 might function as promising tumor markers for GC diagnosis and prognosis.
Collapse
Affiliation(s)
- Zheng Fang
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhiqiang Tian
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Kunlun Luo
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Haizhu Song
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jun Yi
- 1 Department of General Surgery, 101 Hospital of People's Liberation Army, Wuxi 214044, China ; 2 Department of Medical Oncology, 3 Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
41
|
Chang ACM, Doherty J, Huschtscha LI, Redvers R, Restall C, Reddel RR, Anderson RL. STC1 expression is associated with tumor growth and metastasis in breast cancer. Clin Exp Metastasis 2014; 32:15-27. [PMID: 25391215 DOI: 10.1007/s10585-014-9687-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/23/2014] [Indexed: 12/26/2022]
Abstract
Stanniocalcin-1 (STC1) is a secreted glycoprotein implicated in several pathologies including retinal degeneration, cerebral ischemia, angiogenesis and inflammation. Aberrant STC1 expression has been reported in breast cancer but the significance of this is not clear. High levels of STC1 expression were found in the aggressive 4T1 murine mammary tumor cells and in the MDA-MB-231 human breast cancer line. To investigate its significance, stable clones with STC1 down-regulation using shRNA were generated in both tumor models. The consequences of STC1 down-regulation on cell proliferation, chemotactic invasion, tumor growth and metastasis were assessed. Down-regulation of STC1 in the 4T1 murine mammary tumor cells had a major impact on mammary tumor growth. This observation was replicated in a second tumor model with the MDA-MB-231 human breast cancer line, with a significant reduction in primary tumor formation and a major inhibition of metastasis as well. Interestingly, in both models, proliferation in vitro was not affected. Subsequent microarray gene expression profiling identified 30 genes to be significantly altered by STC1 down-regulation, the majority of which are associated with known hallmarks of carcinogenesis. Furthermore, bioinformatic analysis of breast cancer datasets revealed that high expression of STC1 is associated with poor survival. This is the first study to show definitively that STC1 plays an oncogenic role in breast cancer, and indicates that STC1 could be a potential therapeutic target for treatment of breast cancer patients.
Collapse
Affiliation(s)
- Andy C-M Chang
- Cancer Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Ito Y, Zemans R, Correll K, Yang IV, Ahmad A, Gao B, Mason RJ. Stanniocalcin-1 is induced by hypoxia inducible factor in rat alveolar epithelial cells. Biochem Biophys Res Commun 2014; 452:1091-7. [PMID: 25251473 DOI: 10.1016/j.bbrc.2014.09.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022]
Abstract
Alveolar type II (ATII) cells remain differentiated and express surfactant proteins when cultured at an air-liquid (A/L) interface. When cultured under submerged conditions, ATII cells dedifferentiate and change their gene expression profile. We have previously shown that gene expression under submerged conditions is regulated by hypoxia inducible factor (HIF) signaling due to focal hypoxia resulting from ATII cell metabolism. Herein, we sought to further define gene expression changes in ATII cells cultured under submerged conditions. We performed a genome wide microarray on RNA extracted from rat ATII cells cultured under submerged conditions for 24-48h after switching from an A/L interface. We found significant alterations in gene expression, including upregulation of the HIF target genes stanniocalcin-1 (STC1), tyrosine hydroxylase (Th), enolase (Eno) 2, and matrix metalloproteinase (MMP) 13, and we verified upregulation of these genes by RT-PCR. Because STC1, a highly evolutionarily conserved glycoprotein with anti-inflammatory, anti-apoptotic, anti-oxidant, and wound healing properties, is widely expressed in the lung, we further explored the potential functions of STC1 in the alveolar epithelium. We found that STC1 was induced by hypoxia and HIF in rat ATII cells, and this induction occurred rapidly and reversibly. We also showed that recombinant human STC1 (rhSTC1) enhanced cell motility with extended lamellipodia formation in alveolar epithelial cell (AEC) monolayers but did not inhibit the oxidative damage induced by LPS. We also confirmed that STC1 was upregulated by hypoxia and HIF in human lung epithelial cells. In this study, we have found that several HIF target genes including STC1 are upregulated in AECs by a submerged condition, that STC1 is regulated by hypoxia and HIF, that this regulation is rapidly and reversibly, and that STC1 enhances wound healing moderately in AEC monolayers. However, STC1 did not inhibit oxidative damage in rat AECs stimulated by LPS in vitro. Therefore, alterations in gene expression by ATII cells under submerged conditions including STC1 were largely induced by hypoxia and HIF, which may be relevant to our understanding of the pathogenesis of various lung diseases in which the alveolar epithelium is exposed to relative hypoxia.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| | - Rachel Zemans
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Kelly Correll
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Aftab Ahmad
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Bifeng Gao
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Robert J Mason
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
43
|
Olbryt M, Habryka A, Student S, Jarząb M, Tyszkiewicz T, Lisowska KM. Global gene expression profiling in three tumor cell lines subjected to experimental cycling and chronic hypoxia. PLoS One 2014; 9:e105104. [PMID: 25122487 PMCID: PMC4133353 DOI: 10.1371/journal.pone.0105104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
Hypoxia is one of the most important features of the tumor microenvironment, exerting an adverse effect on tumor aggressiveness and patient prognosis. Two types of hypoxia may occur within the tumor mass, chronic (prolonged) and cycling (transient, intermittent) hypoxia. Cycling hypoxia has been shown to induce aggressive tumor cell phenotype and radioresistance more significantly than chronic hypoxia, though little is known about the molecular mechanisms underlying this phenomenon. The aim of this study was to delineate the molecular response to both types of hypoxia induced experimentally in tumor cells, with a focus on cycling hypoxia. We analyzed in vitro gene expression profile in three human cancer cell lines (melanoma, ovarian cancer, and prostate cancer) exposed to experimental chronic or transient hypoxia conditions. As expected, the cell-type specific variability in response to hypoxia was significant. However, the expression of 240 probe sets was altered in all 3 cell lines. We found that gene expression profiles induced by both types of hypoxia were qualitatively similar and strongly depend on the cell type. Cycling hypoxia altered the expression of fewer genes than chronic hypoxia (6,132 vs. 8,635 probe sets, FDR adjusted p<0.05), and with lower fold changes. However, the expression of some of these genes was significantly more affected by cycling hypoxia than by prolonged hypoxia, such as IL8, PLAU, and epidermal growth factor (EGF) pathway-related genes (AREG, HBEGF, and EPHA2). These transcripts were, in most cases, validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Our results indicate that experimental cycling hypoxia exerts similar, although less intense effects, on the examined cancer cell lines than its chronic counterpart. Nonetheless, we identified genes and molecular pathways that seem to be preferentially regulated by cyclic hypoxia.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
- * E-mail:
| | - Anna Habryka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Michał Jarząb
- III Department of Radiation Therapy and Chemotherapy, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Tomasz Tyszkiewicz
- Nuclear Medicine and Endocrine Oncology Department, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
44
|
Pan JSC, Huang L, Belousova T, Lu L, Yang Y, Reddel R, Chang A, Ju H, DiMattia G, Tong Q, Sheikh-Hamad D. Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an AMP-activated protein kinase-dependent pathway. J Am Soc Nephrol 2014; 26:364-78. [PMID: 25012175 DOI: 10.1681/asn.2013070703] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AKI is associated with increased morbidity, mortality, and cost of care, and therapeutic options remain limited. Reactive oxygen species are critical for the genesis of ischemic AKI. Stanniocalcin-1 (STC1) suppresses superoxide generation through induction of uncoupling proteins (UCPs), and transgenic overexpression of STC1 inhibits reactive oxygen species and protects from ischemia/reperfusion (I/R) kidney injury. Our observations revealed high AMP-activated protein kinase (AMPK) activity in STC1 transgenic kidneys relative to wild-type (WT) kidneys; thus, we hypothesized that STC1 protects from I/R kidney injury through activation of AMPK. Baseline activity of AMPK in the kidney correlated with the expression of STCs, such that the highest activity was observed in STC1 transgenic mice followed (in decreasing order) by WT, STC1 knockout, and STC1/STC2 double-knockout mice. I/R in WT kidneys increased AMPK activity and the expression of STC1, UCP2, and sirtuin 3. Inhibition of AMPK by administration of compound C before I/R abolished the activation of AMPK, diminished the expression of UCP2 and sirtuin 3, and aggravated kidney injury but did not affect STC1 expression. Treatment of cultured HEK cells with recombinant STC1 activated AMPK and increased the expression of UCP2 and sirtuin 3, and concomitant treatment with compound C abolished these responses. STC1 knockout mice displayed high susceptibility to I/R, whereas pretreatment of STC1 transgenic mice with compound C restored the susceptibility to I/R kidney injury. These data suggest that STC1 is important for activation of AMPK in the kidney, which mediates STC1-induced expression of UCP2 and sirtuin 3 and protection from I/R.
Collapse
Affiliation(s)
| | - Luping Huang
- Division of Nephrology, Department of Medicine and
| | | | - Lianghao Lu
- Division of Nephrology, Department of Medicine and
| | - Yongjie Yang
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Roger Reddel
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia; and
| | - Andy Chang
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia; and
| | - Huiming Ju
- Division of Nephrology, Department of Medicine and
| | - Gabriel DiMattia
- University of Western Ontario, Departments of Oncology and Biochemistry, London Regional Cancer Center, London, Ontario, Canada
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
45
|
Wu LM, Guo R, Hui L, Ye YG, Xiang JM, Wan CY, Zou M, Ma R, Sun XZ, Yang SJ, Guo DZ. Stanniocalcin-1 protects bovine intestinal epithelial cells from oxidative stress-induced damage. J Vet Sci 2014; 15:475-83. [PMID: 24962416 PMCID: PMC4269589 DOI: 10.4142/jvs.2014.15.4.475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/29/2014] [Indexed: 11/20/2022] Open
Abstract
Chronic enteritis can produce an excess of reactive oxygen species resulting in cellular damage. Stanniocalcin-1(STC-1) reportedly possesses anti-oxidative activity, the aim of this study was to define more clearly the direct contribution of STC-1 to anti-oxidative stress in cattle. In this study, primary intestinal epithelial cells (IECs) were exposed to hydrogen peroxide (H2O2) for different time intervals to mimic chronic enteritis-induced cellular damage. Prior to treatment with 200 µM H2O2, the cells were transfected with a recombinant plasmid for 48 h to over-express STC-1. Acridine orange/ethidium bromide (AO/EB) double staining and trypan blue exclusion assays were then performed to measure cell viability and apoptosis of the cells, respectively. The expression of STC-1 and apoptosis-related proteins in the cells was monitored by real-time PCR and Western blotting. The results indicated that both STC-1 mRNA and protein expression levels positively correlated with the duration of H2O2 treatment. H2O2 damaged the bovine IECs in a time-dependent manner, and this effect was attenuated by STC-1 over-expression. Furthermore, over-expression of STC-1 up-regulated Bcl-2 protein expression and slightly down-regulated caspase-3 production in the damaged cells. Findings from this study suggested that STC-1 plays a protective role in intestinal cells through an antioxidant mechanism.
Collapse
Affiliation(s)
- Li-ming Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Law AY, Hébert RL, Nasrallah R, Langenbach R, Wong CKC, Wagner GF. Cyclooxygenase-2 mediates induction of the renal stanniocalcin-1 gene by arginine vasopressin. Mol Cell Endocrinol 2013; 381:210-9. [PMID: 23877023 DOI: 10.1016/j.mce.2013.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022]
Abstract
In rats and mice, the renal stanniocalcin-1 (STC-1) gene is expressed in most nephron segments, but is differentially induced in response to dehydration. In cortical segments STC-1 mRNA levels are upregulated by the hypertonicity of dehydration, while hypovolemia causes gene induction in the inner medulla (papilla). In both cases induction is mediated by arginine vasopressin (AVP) acting via the V2 receptor (V2R). The intent of STC-1 gene upregulation during dehydration has yet to be established. Therefore, to narrow down the range of possible actions, we mapped out the pathway by which V2R occupancy upregulates the gene. V2R occupancy activates two different renal pathways in response to dehydration. The first is antidiuretic in nature and is mediated by direct V2R occupancy. The second pathway is indirect and counter-regulates AVP-mediated antidiuresis. It involves COX-2 (cyclooxygenase-2) and the prostanoids, and is activated by the V2R-mediated rise in medullary interstitial osmolality. The resulting prostanoids counter-regulate AVP-mediated antidiuresis. They also upregulate renal cytoprotective mechanisms. The present studies employed models of COX inhibition and COX gene deletion to address the possible involvement of the COX pathway. The results showed that both general and specific inhibitors of COX-2 blocked STC-1 gene induction in response to dehydration. Gene induction in response to dehydration was also abolished in COX-2 null mice (cortex and papilla), but not in COX-1 null mice. STC-1 gene induction in response to V2R occupancy was also uniquely abolished in COX-2 nulls (both regions). These findings therefore collectively suggest that AVP-mediated elevations in STC-1 gene expression are wholly dependent on functional COX-2 activity. As such, a permissive role for STC-1 in AVP-mediated antidiuresis can be ruled out, and its range of possible actions has been narrowed down to AVP counter-regulation and renal cytoprotection.
Collapse
Affiliation(s)
- Alice Y Law
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | |
Collapse
|
47
|
Guan J, Mishra S, Shi J, Plovie E, Qiu Y, Cao X, Gianni D, Jiang B, Del Monte F, Connors LH, Seldin DC, Lavatelli F, Rognoni P, Palladini G, Merlini G, Falk RH, Semigran MJ, Dec GW, Macrae CA, Liao R. Stanniocalcin1 is a key mediator of amyloidogenic light chain induced cardiotoxicity. Basic Res Cardiol 2013; 108:378. [PMID: 23982491 DOI: 10.1007/s00395-013-0378-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 01/17/2023]
Abstract
Immunoglobulin light chain (LC) amyloidosis (AL) results from overproduction of circulating amyloidogenic LC proteins and subsequent amyloid fibril deposition in organs. Mortality in AL amyloidosis patients is highly associated with a rapidly progressive AL cardiomyopathy, marked by profound impairment of diastolic and systolic cardiac function and significant early mortality. While myocardial fibril deposition contributes to the severe diastolic dysfunction seen in AL cardiomyopathy patients, the degree of fibril deposition has not been found to correlate with prognosis. Previously, we and others showed a direct cardiotoxic effect of amyloidogenic LC proteins (AL-LC), which may contribute to the pathophysiology and mortality observed in AL cardiomyopathy patients. However, the mechanisms underlying AL-LC related cardiotoxicity remain unknown. Mammalian stanniocalcin1 (STC1) is associated with a number of cellular processes including oxidative stress and cell death. Herein, we find that STC1 expression is elevated in cardiac tissue from AL cardiomyopathy patients, and is induced in isolated cardiomyocytes in response to AL-LC, but not non-amyloidogenic LC. STC1 overexpression in vitro recapitulates the pathophysiology of AL-LC mediated cardiotoxicity, with increased ROS production, contractile dysfunction and cell death. Overexpression of STC1 in vivo results in significant cardiac dysfunction and cell death. Genetic silencing of STC1 prevents AL-LC induced cardiotoxicity in cardiomyocytes and protects against AL-LC induced cell death and early mortality in zebrafish. The cardiotoxic effects of STC1 appears to be mediated via mitochondrial dysfunction as indicated by loss of mitochondrial membrane potential, ROS production and increased mitochondrial calcium levels. Collectively, this work identifies STC1 as a critical determinant of AL-LC cardiotoxicity.
Collapse
Affiliation(s)
- Jian Guan
- Divisions of Cardiovascular Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB 431, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee CW, Hwang I, Park CS, Lee H, Park DW, Kang SJ, Lee SW, Kim YH, Park SW, Park SJ. Expression of stanniocalcin-1 in culprit coronary plaques of patients with acute myocardial infarction or stable angina. J Clin Pathol 2013; 66:787-91. [DOI: 10.1136/jclinpath-2013-201563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Stanniocalcin 1 is important for poststroke functionality, but dispensable for ischemic tolerance. Neuroscience 2013; 229:49-54. [DOI: 10.1016/j.neuroscience.2012.10.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 10/04/2012] [Accepted: 10/20/2012] [Indexed: 11/24/2022]
|
50
|
Mid-gestational gene expression profile in placenta and link to pregnancy complications. PLoS One 2012; 7:e49248. [PMID: 23145134 PMCID: PMC3492272 DOI: 10.1371/journal.pone.0049248] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/04/2012] [Indexed: 12/25/2022] Open
Abstract
Despite the importance of placenta in mediating rapid physiological changes in pregnancy, data on temporal dynamics of placental gene expression are limited. We completed the first transcriptome profiling of human placental gene expression dynamics (GeneChips, Affymetrix®; ∼47,000 transcripts) from early to mid-gestation (n = 10; gestational weeks 5–18) and report 154 genes with significant transcriptional changes (ANOVA, FDR P<0.1). TaqMan RT-qPCR analysis (n = 43; gestational weeks 5–41) confirmed a significant (ANOVA and t-test, FDR P<0.05) mid-gestational peak of placental gene expression for BMP5, CCNG2, CDH11, FST, GATM, GPR183, ITGBL1, PLAGL1, SLC16A10 and STC1, followed by sharp decrease in mRNA levels at term (t-test, FDR P<0.05). We hypothesized that normal course of late pregnancy may be affected when genes characteristic to mid-gestation placenta remain highly expressed until term, and analyzed their expression in term placentas from normal and complicated pregnancies [preeclampsia (PE), n = 12; gestational diabetes mellitus (GDM), n = 12; small- and large-for-gestational-age newborns (SGA, LGA), n = 12+12]. STC1 (stanniocalcin 1) exhibited increased mRNA levels in all studied complications, with the most significant effect in PE- and SGA-groups (t-test, FDR P<0.05). In post-partum maternal plasma, the highest STC1 hormone levels (ELISA, n = 129) were found in women who had developed PE and delivered a SGA newborn (median 731 vs 418 pg/ml in controls; ANCOVA, P = 0.00048). Significantly higher expression (t-test, FDR P<0.05) of CCNG2 and LYPD6 accompanied with enhanced immunostaining of the protein was detected in placental sections of PE and GDM cases (n = 15). Our study demonstrates the importance of temporal dynamics of placental transcriptional regulation across three trimesters of gestation. Interestingly, many genes with high expression in mid-gestation placenta have also been implicated in adult complex disease, promoting the discussion on the role of placenta in developmental programming. The discovery of elevated maternal plasma STC1 in pregnancy complications warrants further investigations of its potential as a biomarker.
Collapse
|