1
|
Le Tissier PR, Mollard P. Renewing an old interest: Pituitary folliculostellate cells. J Neuroendocrinol 2021; 33:e13053. [PMID: 34734454 PMCID: PMC11475256 DOI: 10.1111/jne.13053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
Anterior pituitary folliculostellate (FS) cells, first described almost 50 years ago, have a wide range of functions with respect to supporting and coordinating endocrine cell function, in particular through paracrine and gap junction-mediated signalling. Our previous studies identified the morphological organisation of FS cells, which mediates coordinated calcium activity throughout the homotypic FS network and allows signalling across the whole pituitary gland. It is also clear that FS cells can modify endocrine output and feedback on pituitary axes over a range of timescales. Recently, several studies have defined FS cells as a source of anterior pituitary endocrine cell renewal, which has resulted in a renaming of FS cells as "Sox2+ve stem cells". Here, we highlight the broader potential of the FS cell population in fine-tuning and coordinating pituitary axes function. In addition, we identify a need for: the definition of the possible subtypes of FS cell and their relationship with the stem cell population; the potential role of FS cells in pulsatile hormone secretion and coordination of heterotypic cell networks; and the roles that FS cells may play in both early-life programming of pituitary axes and in memory, or anticipation, of demand. Further studies of FS cells may demonstrate the fundamental importance of this cell type and its potential as a therapeutic target to correct pituitary gland dysfunction, one of which is stem cell therapy. Clearly, a thorough understanding of all of these interactions and relationships of FS and endocrine cells is required whatever therapeutic use is suggested by their various roles.
Collapse
Affiliation(s)
| | - Patrice Mollard
- Institute of Functional GenomicsCNRS, INSERMUniversity of MontpellierMontpellierFrance
| |
Collapse
|
2
|
Peritore AF, Crupi R, Scuto M, Gugliandolo E, Siracusa R, Impellizzeri D, Cordaro M, D'amico R, Fusco R, Di Paola R, Cuzzocrea S. The Role of Annexin A1 and Formyl Peptide Receptor 2/3 Signaling in Chronic Corticosterone-Induced Depression-Like behaviors and Impairment in Hippocampal-Dependent Memory. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:27-43. [PMID: 31914916 DOI: 10.2174/1871527319666200107094732] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND The activity of the Hypothalamic-Pituitary-Adrenal (HPA) axis is commonly dysregulated in stress-related psychiatric disorders. Annexin A1 (ANXA1), an endogenous ligand of Formyl Peptide Receptor (FPR) 2/3, is a member of the family of phospholipid- and calcium-binding proteins with a well-defined role in the delayed early inhibitory feedback of Glucocorticoids (GC) in the pituitary gland and implicated in the occurrence of behavioural disorders such as anxiety. OBJECTIVE The present study aimed to evaluate the potential role of ANXA1 and its main receptor, as a cellular mediator of behavioural disorders, in a model of Corticosterone (CORT)-induced depression and subsequently, the possible correlation between the depressive state and impairment of hippocampal memory. METHODS To induce the depression model, Wild-Type (WT), ANXA1 Knockout (KO), and FPR2/3 KO mice were exposed to oral administration of CORT for 28 days dissolved in drinking water. Following this, histological, biochemical and behavioural analyses were performed. RESULTS FPR2/3 KO and ANXA1 KO mice showed improvement in anxiety and depression-like behaviour compared with WT mice after CORT administration. In addition, FPR2/3 KO and ANXA1 KO mice showed a reduction in histological alterations and neuronal death in hippocampal sections. Moreover, CORT+ FPR2/3 KO and ANXA1 KO, exhibited a higher expression of Brain-Derived Neurotrophic Factor (BDNF), phospho-ERK, cAMP response element-binding protein (pCREB) and a decrease in Serotonin Transporter Expression (SERT) compared to WT(CORT+) mice. CONCLUSION In conclusion, the absence of the ANXA1 protein, even more than the absence of its main receptor (FPR 2/3), was fundamental to the inhibitory action of GC on the HPA axis; it also maintained the hippocampal homeostasis by preventing neuronal damage associated with depression.
Collapse
Affiliation(s)
- Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Ramona D'amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, United Stated
| |
Collapse
|
3
|
Wiesnagrotzki N, Bernreuther C, Saeger W, Flitsch J, Glatzel M, Hagel C. Co-expression of intermediate filaments glial fibrillary acidic protein and cytokeratin in pituitary adenoma. Pituitary 2021; 24:62-67. [PMID: 33001343 PMCID: PMC7864846 DOI: 10.1007/s11102-020-01087-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/02/2022]
Abstract
PURPOSE To analyze the co-expression of the intermediate filaments GFAP and cytokeratin in 326 pituitary adenomas with regard to the distribution pattern, the subtype of the adenoma and clinical prognostic data. METHODS Tissue from 326 pituitary adenomas and 13 normal anterior pituitaries collected in the Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, between 2006 and 2009 was investigated by immunohistochemistry, immunofluorescence and electron microscopy. RESULTS Co-expression of intermediate filaments GFAP and cytokeratin was associated with hormone expression in 62/278 cases (22%), but only found in 2/48 (4%) of null cell adenomas (p < 0.01). Simultaneous co-expression of GFAP and cytokeratin in the same cells was demonstrated in 26 out of 326 pituitary adenomas and in all 13 pituitaries. In pituitary intermediate filaments were demonstrated in a larger area of the cytoplasm than in adenoma (p < 0.01), however, overlapping expression was seen in 2.6% of the total area in both, pituitary and adenoma. Congenially, cells with overlapping expression were found near vessels and in follicles. Furthermore, adenomas with cellular co-expression of GFAP and cytokeratin were associated with a lower recurrence rate (7.7%) compared to adenomas without co-expression of intermediate filaments (17.8%). CONCLUSIONS Cellular co-expression of the intermediate filaments GFAP and cytokeratin in pituitary adenomas and the pituitary was demonstrated and shown to be associated with hormone expression and low recurrence rate. The results are discussed with regard to the biology of folliculostellate cells, neural transformation and tumor stem cells. This study may complement the understanding of pituitary adenoma biology.
Collapse
Affiliation(s)
- Nina Wiesnagrotzki
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Wolfgang Saeger
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
4
|
Laporte E, Vennekens A, Vankelecom H. Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved? Front Endocrinol (Lausanne) 2021; 11:604519. [PMID: 33584539 PMCID: PMC7879485 DOI: 10.3389/fendo.2020.604519] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The pituitary gland has the primordial ability to dynamically adapt its cell composition to changing hormonal needs of the organism throughout life. During the first weeks after birth, an impressive growth and maturation phase is occurring in the gland during which the distinct hormonal cell populations expand. During pubertal growth and development, growth hormone (GH) levels need to peak which requires an adaptive enterprise in the GH-producing somatotrope population. At aging, pituitary function wanes which is associated with organismal decay including the somatopause in which GH levels drop. In addition to these key time points of life, the pituitary's endocrine cell landscape plastically adapts during specific (patho-)physiological conditions such as lactation (need for PRL) and stress (engagement of ACTH). Particular resilience is witnessed after physical injury in the (murine) gland, culminating in regeneration of destroyed cell populations. In many other tissues, adaptive and regenerative processes involve the local stem cells. Over the last 15 years, evidence has accumulated that the pituitary gland houses a resident stem cell compartment. Recent studies propose their involvement in at least some of the cell remodeling processes that occur in the postnatal pituitary but support is still fragmentary and not unequivocal. Many questions remain unsolved such as whether the stem cells are key players in the vivid neonatal growth phase and whether the decline in pituitary function at old age is associated with decreased stem cell fitness. Furthermore, the underlying molecular mechanisms of pituitary plasticity, in particular the stem cell-linked ones, are still largely unknown. Pituitary research heavily relies on transgenic in vivo mouse models. While having proven their value, answers to pituitary stem cell-focused questions may more diligently come from a novel powerful in vitro research model, termed organoids, which grow from pituitary stem cells and recapitulate stem cell phenotype and activation status. In this review, we describe pituitary plasticity conditions and summarize what is known on the involvement and phenotype of pituitary stem cells during these pituitary remodeling events.
Collapse
Affiliation(s)
| | | | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
5
|
Ho Y, Hu P, Peel MT, Chen S, Camara PG, Epstein DJ, Wu H, Liebhaber SA. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity. Protein Cell 2020; 11:565-583. [PMID: 32193873 PMCID: PMC7381518 DOI: 10.1007/s13238-020-00705-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
The anterior pituitary gland drives highly conserved physiologic processes in mammalian species. These hormonally controlled processes are central to somatic growth, pubertal transformation, fertility, lactation, and metabolism. Current cellular models of mammalian anteiror pituitary, largely built on candidate gene based immuno-histochemical and mRNA analyses, suggest that each of the seven hormones synthesized by the pituitary is produced by a specific and exclusive cell lineage. However, emerging evidence suggests more complex relationship between hormone specificity and cell plasticity. Here we have applied massively parallel single-cell RNA sequencing (scRNA-seq), in conjunction with complementary imaging-based single-cell analyses of mRNAs and proteins, to systematically map both cell-type diversity and functional state heterogeneity in adult male and female mouse pituitaries at single-cell resolution and in the context of major physiologic demands. These quantitative single-cell analyses reveal sex-specific cell-type composition under normal pituitary homeostasis, identify an array of cells associated with complex complements of hormone-enrichment, and undercover non-hormone producing interstitial and supporting cell-types. Interestingly, we also identified a Pou1f1-expressing cell population that is characterized by a unique multi-hormone gene expression profile. In response to two well-defined physiologic stresses, dynamic shifts in cellular diversity and transcriptome profiles were observed for major hormone producing and the putative multi-hormone cells. These studies reveal unanticipated cellular complexity and plasticity in adult pituitary, and provide a rich resource for further validating and expanding our molecular understanding of pituitary gene expression programs and hormone production.
Collapse
Affiliation(s)
- Yugong Ho
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Peng Hu
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael T Peel
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sixing Chen
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas J Epstein
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hao Wu
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Stephen A Liebhaber
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations. Brain Sci 2016; 7:brainsci7010005. [PMID: 28042822 PMCID: PMC5297294 DOI: 10.3390/brainsci7010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid hormones (GCs) released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester), we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways) on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites) that impact on the adult brain. The effects of antenatal GC treatment (AGT) were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked behavioural effects, in utero GC exposure had only a modest or no effect, depending on sex, on a range of conditioned and unconditioned behaviours known to depend on midbrain dopaminergic transmission. Collectively, these findings suggest that apparent behavioural normality in certain tests, but not others, arises from AGT-induced adaptations or compensatory mechanisms within the midbrain dopaminergic systems, which preserve some, but not all functions. Furthermore, the capacities for molecular adaptations to early environmental challenge are different, even opponent, in males and females, which may account for their differential resilience or failure to perform adequately in behavioural tests. Behavioural "normality" is thus achieved by the midbrain dopaminergic network operating outside its normal limits (in a state of allostasis), rendering it at greater risk to malfunction when challenged in later life. Sex-specific neurobiological programming of midbrain dopaminergic systems may, therefore, have psychopathological relevance for the sex bias commonly found in brain disorders associated with these systems, and which have a neurodevelopmental component, including schizophrenia, ADHD (attention/deficit hyperactivity disorders), autism, depression and substance abuse.
Collapse
|
7
|
Virdee K, Kentrop J, Jupp B, Venus B, Hensman D, McArthur S, Wilkinson J, Robbins TW, Gillies G, Dalley JW. Counteractive effects of antenatal glucocorticoid treatment on D1 receptor modulation of spatial working memory. Psychopharmacology (Berl) 2016; 233:3751-3761. [PMID: 27553822 PMCID: PMC5063912 DOI: 10.1007/s00213-016-4405-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
RATIONALE Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3 mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory.
Collapse
Affiliation(s)
- Kanwar Virdee
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Jiska Kentrop
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Bianca Jupp
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Bethany Venus
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Daniel Hensman
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Simon McArthur
- Department of Biomedical Sciences, University of Westminster, New Cavendish Street, London, W1W 6UW UK
| | - James Wilkinson
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
| | - Glenda Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK ,Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ UK
| |
Collapse
|
8
|
Astroglial Plasticity Is Implicated in Hippocampal Remodelling in Adult Rats Exposed to Antenatal Dexamethasone. Neural Plast 2015; 2015:694347. [PMID: 26345609 PMCID: PMC4539493 DOI: 10.1155/2015/694347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/04/2015] [Indexed: 11/24/2022] Open
Abstract
The long-term effects of antenatal dexamethasone treatment on brain remodelling in 3-month-old male Sprague Dawley rats whose mothers had been treated with dexamethasone were investigated in the present study. Dorsal hippocampus, basolateral amygdala and nucleus accumbens volume, cell numbers, and GFAP-immunoreactive astroglial cell morphology were analysed using stereology. Total brain volume as assessed by micro-CT was not affected by the treatment. The relative volume of the dorsal hippocampus (% of total brain volume) showed a moderate, by 8%, but significant reduction in dexamethasone-treated versus control animals. Dexamethasone had no effect on the total and GFAP-positive cell numbers in the hippocampal subregions, basolateral amygdala, and nucleus accumbens. Morphological analysis indicated that numbers of astroglial primary processes were not affected in any of the hippocampal subregions analysed but significant reductions in the total primary process length were observed in CA1 by 32%, CA3 by 50%, and DG by 25%. Mean primary process length values were also significantly decreased in CA1 by 25%, CA3 by 45%, and DG by 25%. No significant astroglial morphological changes were found in basolateral amygdala and nucleus accumbens. We propose that the dexamethasone-dependent impoverishment of hippocampal astroglial morphology is the case of maladaptive glial plasticity induced prenatally.
Collapse
|
9
|
Musumeci G, Castorina S, Castrogiovanni P, Loreto C, Leonardi R, Aiello FC, Magro G, Imbesi R. A journey through the pituitary gland: Development, structure and function, with emphasis on embryo-foetal and later development. Acta Histochem 2015; 117:355-66. [PMID: 25858531 DOI: 10.1016/j.acthis.2015.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/28/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022]
Abstract
The pituitary gland and the hypothalamus are morphologically and functionally associated in the endocrine and neuroendocrine control of other endocrine glands. They therefore play a key role in a number of regulatory feedback processes that co-ordinate the whole endocrine system. Here we review the neuroendocrine system, from the discoveries that led to its identification to some recently clarified embryological, functional, and morphological aspects. In particular we review the pituitary gland and the main notions related to its development, organization, cell differentiation, and vascularization. Given the crucial importance of the factors controlling neuroendocrine system development to understand parvocellular neuron function and the aetiology of the congenital disorders related to hypothalamic-pituitary axis dysfunction, we also provide an overview of the molecular and genetic studies that have advanced our knowledge in the field. Through the action of the hypothalamus, the pituitary gland is involved in the control of a broad range of key aspects of our lives: the review focuses on the hypothalamic-pituitary-gonadal axis, particularly GnRH, whose abnormal secretion is associated with clinical conditions involving delayed or absent puberty and reproductive dysfunction.
Collapse
|
10
|
Machado ID, Santin JR, Drewes CC, Gil CD, Oliani SM, Perretti M, Farsky SHP. Alterations in the profile of blood neutrophil membrane receptors caused by in vivo adrenocorticotrophic hormone actions. Am J Physiol Endocrinol Metab 2014; 307:E754-63. [PMID: 25184992 DOI: 10.1152/ajpendo.00227.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Elevated levels of adrenocorticotrophic hormone (ACTH) mobilize granulocytes from bone marrow into the blood, although these neutrophils are refractory to a full migratory response into inflamed tissues. Here, we investigated the dependence of glucocorticoid receptor activation and glucocorticoid-regulated protein annexin A1 (ANXA1) on ACTH-induced neutrophilia and the phenotype of blood neutrophil after ACTH injection, focusing on adhesion molecule expressions and locomotion properties. ACTH injection (5 μg ip, 4 h) induced neutrophilia in wild-type (WT) mice and did not alter the elevated numbers of neutrophils in RU-38486 (RU)-pretreated or ANXA1(-/-) mice injected with ACTH. Neutrophils from WT ACTH-treated mice presented higher expression of Ly6G⁺ANXA1(high), CD18(high), CD62L(high), CD49(high), CXCR4(high), and formyl-peptide receptor 1 (FPR1(low)) than those observed in RU-pretreated or ANXA1(-/-) mice. The membrane phenotype of neutrophils collected from WT ACTH-treated mice was paralleled by elevated fractions of rolling and adherent leukocytes to the cremaster postcapillary venules together with impaired neutrophil migration into inflamed air pouches in vivo and in vitro reduced formyl-methionyl-leucyl-phenylalanine (fMLP) or stromal-derived factor-1 (SDF-1α)-induced chemotaxis. In an 18-h senescence protocol, neutrophils from WT ACTH-treated mice had a higher proportion of ANXAV(low)/CXCR4(low), and they were less phagocytosed by peritoneal macrophages. We conclude that alterations on HPA axis affect the pattern of membrane receptors in circulating neutrophils, which may lead to different neutrophil phenotypes in the blood. Moreover, ACTH actions render circulating neutrophils to a phenotype with early reactivity, such as in vivo leukocyte-endothelial interactions, but with impaired locomotion and clearance.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/administration & dosage
- Adrenocorticotropic Hormone/antagonists & inhibitors
- Adrenocorticotropic Hormone/blood
- Adrenocorticotropic Hormone/metabolism
- Animals
- Annexin A1/blood
- Annexin A1/genetics
- Annexin A1/metabolism
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Chemotaxis, Leukocyte/drug effects
- Corticosterone/blood
- Corticosterone/metabolism
- Hormone Antagonists/pharmacology
- Leukopoiesis/drug effects
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Inbred BALB C
- Mice, Knockout
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Phagocytosis/drug effects
- Receptors, Corticotropin/agonists
- Receptors, Corticotropin/antagonists & inhibitors
- Receptors, Corticotropin/blood
- Receptors, Corticotropin/metabolism
- Stress, Physiological/drug effects
- Stress, Psychological/blood
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Surface Properties/drug effects
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Isabel Daufenback Machado
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - José Roberto Santin
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carine Cristiane Drewes
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo, Sao Paulo, Brazil
| | - Sonia Maria Oliani
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University, São José do Rio Preto, Brazil; and
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil;
| |
Collapse
|
11
|
Achard V, Boullu-Ciocca S, Desbriére R, Grino M. Perinatal programming of central obesity and the metabolic syndrome: role of glucocorticoids. Metab Syndr Relat Disord 2012; 4:129-37. [PMID: 18370759 DOI: 10.1089/met.2006.4.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth retardation (IUGR) is associated with increased prevalence, at the adult age, of central obesity, the metabolic syndrome, and its complications (type 2 diabetes and coronary heart disease). Programming of the corticotropic function is one of the mechanisms underlying the above-mentioned phenomenon. An increased passage of active glucocorticoids from the mother to the fetus can act, at the central nervous system level, to program an enhanced response to stress and, at the peripheral level, in adipose tissue to induce an increased local glucocorticoid exposure and sensitivity. In addition to an improvement of the health of pregnant women, early diagnosis of metabolic and hormonal disturbances is important in children with IUGR, in order to prevent a compensatory catch-up growth and its subsequent obesity, and to set up a therapeutic intervention against the deleterious consequences of hypercorticism.
Collapse
Affiliation(s)
- Vincent Achard
- Inserm U626, Marseille, France., Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
12
|
Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P. Anterior pituitary cell networks. Front Neuroendocrinol 2012; 33:252-66. [PMID: 22981652 DOI: 10.1016/j.yfrne.2012.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 12/17/2022]
Abstract
Both endocrine and non-endocrine cells of the pituitary gland are organized into structural and functional networks which are formed during embryonic development but which may be modified throughout life. Structural mapping of the various endocrine cell types has highlighted the existence of distinct network motifs and relationships with the vasculature which may relate to temporal differences in their output. Functional characterization of the network activity of growth hormone and prolactin cells has revealed a role for cell organization in gene regulation, the plasticity of pituitary hormone output and remarkably the ability to memorize altered demand. As such, the description of these endocrine cell networks alters the concept of the pituitary from a gland which simply responds to external regulation to that of an oscillator which may memorize information and constantly adapt its coordinated networks' responses to the flow of hypothalamic inputs.
Collapse
Affiliation(s)
- P R Le Tissier
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom;
| | | | | | | | | | | |
Collapse
|
13
|
Slattery DA, Uschold N, Magoni M, Bär J, Popoli M, Neumann ID, Reber SO. Behavioural consequences of two chronic psychosocial stress paradigms: anxiety without depression. Psychoneuroendocrinology 2012; 37:702-14. [PMID: 21962377 DOI: 10.1016/j.psyneuen.2011.09.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 11/26/2022]
Abstract
Chronic stress, in particular chronic psychosocial stress, is a risk factor in the aetiology of various psychopathologies including anxiety- and depression-related disorders. Therefore, recent studies have focussed on the development of social-stress paradigms, which are believed to be more relevant to the human situation than non-social-stress paradigms. The majority of these paradigms have been reported to increase both anxiety- and depression-related behaviour in rats or mice. However, in order to dissect the mechanisms underlying anxiety or depression, animal models are needed, which specifically induce one, or the other, phenotype. Here, we study both short- (1d after stressor termination) and long-term (4d or 7d after stressor termination) behavioural and physiological consequences of two well-validated chronic psychosocial stress models: social-defeat/overcrowding (SD/OC) and chronic subordinate colony housing (CSC). We demonstrate that SD/OC and CSC result in different physiological alterations: SD/OC more strongly affecting body-weight development, whereas CSC more strongly affects adrenal and pituitary morphology. Both stressors were shown to flatten circadian locomotor activity immediately after stress termination, which normalized 7d later in SD/OC group but reversed to hyperactivity during the dark phase in the CSC group. Importantly, neither stress paradigm resulted in an increase in depression-related behaviour as assessed using the forced swim test, tail suspension test and saccharin preference test at any time-point. However, both stress paradigms lead to an anxiogenic phenotype; albeit with different temporal profiles and not towards a novel con-specific (social anxiety). CSC exposure elevates anxiety-related behaviour immediately after stressor termination, which lasts for at least 1 wk. In contrast, the anxiogenic phenotype only develops 1 wk after SD/OC termination. In conclusion, both models are unique for uncovering the molecular underpinnings of anxiety-related behaviour without conflicting depression-based alterations.
Collapse
Affiliation(s)
- David A Slattery
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Schöpper H, Palme R, Ruf T, Huber S. Effects of prenatal stress on hypothalamic-pituitary-adrenal (HPA) axis function over two generations of guinea pigs (Cavia aperea f. porcellus). Gen Comp Endocrinol 2012; 176:18-27. [PMID: 22202601 DOI: 10.1016/j.ygcen.2011.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/11/2011] [Accepted: 12/11/2011] [Indexed: 01/14/2023]
Abstract
Prenatal stress can alter hypothalamic-pituitary-adrenal axis function with potential consequences for later life. The aim of our study was to examine in guinea pigs (Cavia aperea f. porcellus) the effects of stress experienced during F0 pregnancy on glucocorticoid levels in plasma and feces, as well as challenge performance, in F1 offspring (n=44) and fecal glucocorticoid levels in F2 offspring (n=67). F1 animals were either born to F0 dams that had been stressed with strobe light during early to mid pregnancy, resulting in a short term increase but long-term down-regulation of maternal glucocorticoid levels, or to undisturbed F0 dams. The same stressor was used as a challenge for F1 offspring at age 26 days and around 100 days. Basal plasma cortisol concentrations during early F1 development, as well as overall glucocorticoid levels at challenge tests, were lower in F1 animals that were prenatally stressed than in control animals. Fecal cortisol metabolites were initially at lower levels in prenatally stressed F1 animals, relative to control animals, but shifted to higher levels around day 68, with an additional sex difference. Effects were also seen in the F2 generation, as male but not female offspring of prenatally stressed F1 animals had significantly higher levels of cortisol metabolites in feces after weaning. We conclude that stress exposure of F0 dams resulted in lower basal glucocorticoid levels in F1 offspring during the pre-pubertal phase and during stress exposure, but higher glucocorticoid levels in post-adolescent F1 animals. Also in males of F2 generation effects of stress exposure of F0 dams were detected.
Collapse
Affiliation(s)
- Hanna Schöpper
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria.
| | | | | | | |
Collapse
|
15
|
Kalinina TS, Shishkina GT, Dygalo NN. Induction of Tyrosine Hydroxylase Gene Expression by Glucocorticoids in the Perinatal Rat Brain is Age-Dependent. Neurochem Res 2012; 37:811-8. [DOI: 10.1007/s11064-011-0676-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022]
|
16
|
Brummelte S, Lieblich SE, Galea LAM. Gestational and postpartum corticosterone exposure to the dam affects behavioral and endocrine outcome of the offspring in a sexually-dimorphic manner. Neuropharmacology 2011; 62:406-18. [PMID: 21867716 DOI: 10.1016/j.neuropharm.2011.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/12/2011] [Accepted: 08/10/2011] [Indexed: 12/30/2022]
Abstract
Exposure to high levels of glucocorticoids in utero and during the postpartum period has a detrimental effect on brain development. We created an animal model of postpartum stress/depression based on administering high levels of corticosterone (CORT) to the dams during the postpartum period which caused behavioral changes and reduced hippocampal cell proliferation in the offspring. As the consequences of early exposure to glucocorticoids may depend on the dose and the developmental stage of the offspring, the present study was conducted to investigate the effects of low (10 mg/kg) or high levels of CORT (40 mg/kg) given to dams either during gestation, postpartum or across both gestation and postpartum on the outcome of the offspring. Male and female offspring were weighed throughout the experiment, tested in a series of behavioral tests (forced swim test, open field, elevated plus maze) and basal and restraint stress CORT levels were examined in adolescence or young adulthood. Results show that maternal CORT exposure, regardless of when administered, significantly attenuated body weight gain until adulthood in the offspring. Offspring exposed to low maternal CORT, but not high maternal CORT, during the postpartum had higher basal levels of CORT as young adults. Further, male and female offspring of dams exposed to high maternal CORT in utero showed more depressive-like behavior in the forced swim test, while males of dams exposed to high maternal CORT postpartum exhibited more anxiety-like behavior in the elevated plus maze. Taken together, maternal glucocorticoid exposure have long lasting effects on male and female offspring's behavioral and neuroendocrine measures in adolescence and adulthood depending on the time of exposure to glucocorticoids. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Susanne Brummelte
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
17
|
|
18
|
Hu F, Crespi EJ, Denver RJ. Programming neuroendocrine stress axis activity by exposure to glucocorticoids during postembryonic development of the frog, Xenopus laevis. Endocrinology 2008; 149:5470-81. [PMID: 18653715 DOI: 10.1210/en.2008-0767] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exposure to elevated glucocorticoids during early mammalian development can have profound, long-term consequences for health and disease. However, it is not known whether such actions occur in nonmammalian species, and if they do, whether the molecular physiological mechanisms are evolutionarily conserved. We investigated the effects of dietary restriction, which elevates endogenous corticosterone (CORT), or exposure to exogenous CORT added to the aquarium water of Xenopus laevis tadpoles on later-life measures of growth, feeding behavior, and neuroendocrine stress axis activity. Dietary restriction of prometamorphic tadpoles reduced body size at metamorphosis, but juvenile frogs increased food intake, showed catch-up growth through 21 d after metamorphosis, and had elevated whole-body CORT content compared with controls. Dietary restriction causes increased CORT in tadpoles, so to mimic this increase, we treated tadpoles with 100 nm CORT or vehicle for 5 or 10 d and then reared juvenile frogs to 2 months after metamorphosis. Treatment with CORT decreased body weight at metamorphosis, but juvenile frogs showed catch-up growth and had elevated basal plasma (CORT). Immunohistochemical analysis showed that CORT exposure as a tadpole led to decreased glucocorticoid receptor immunoreactivity in brain regions involved with stress axis regulation and in the anterior pituitary gland of juvenile frogs. The elevated CORT in juvenile frogs, which could result from decreased negative feedback owing to down-regulation of glucocorticoid receptor, may drive the hyperphagic response. Taken together, our findings suggest that long-term, stable phenotypic changes in response to elevated glucocorticoids early in life are an ancient and conserved feature of the vertebrate lineage.
Collapse
Affiliation(s)
- Fang Hu
- Department of Molecular, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
19
|
Dietert RR, Dietert JM. Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:660-680. [PMID: 18821424 DOI: 10.1080/10937400802370923] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Early-life immune insults (ELII) including xenobiotic-induced developmental immunotoxicity (DIT) are important factors in childhood and adult chronic diseases. However, prenatal and perinatal environmentally induced immune alterations have yet to be considered in depth in the context of autism and autism spectrum disorders (ASDs). Numerous factors produce early-life-induced immune dysfunction in offspring, including exposure to xenobiotics, maternal infections, and other prenatal-neonatal stressors. Early life sensitivity to ELII, including DIT, results from the heightened vulnerability of the developing immune system to disruption and the serious nature of the adverse outcomes arising after disruption of one-time immune maturational events. The resulting health risks extend beyond infectious diseases, cancer, allergy, and autoimmunity to include pathologies of the neurological, reproductive, and endocrine systems. Because these changes may include misregulation of resident inflammatory myelomonocytic cells in tissues such as the brain, they are a potential concern in cases of prenatal-neonatal brain pathologies and neurobehavioral deficits. Autism and ASDs are chronic developmental neurobehavioral disorders that are on the rise in the United States with prenatal and perinatal environmental factors suspected as contributors to this increase. Evidence for an association between environmentally associated childhood immune dysfunction and ASDs suggests that ELII and DIT may contribute to these conditions. However, it is not known if this linkage is directly associated with the brain pathologies or represents a separate (or secondary) outcome. This review considers the known features of ELII and DIT and how they may provide important clues to prenatal brain inflammation and the risk of autism and ASDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY14852, USA.
| | | |
Collapse
|
20
|
Raff H, Jacobson L, Cullinan WE. Augmented hypothalamic corticotrophin-releasing hormone mRNA and corticosterone responses to stress in adult rats exposed to perinatal hypoxia. J Neuroendocrinol 2007; 19:907-12. [PMID: 17927669 PMCID: PMC2030994 DOI: 10.1111/j.1365-2826.2007.01595.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stressful events before or just after parturition alter the subsequent phenotypical response to stress in a general process termed programming. Hypoxia during the period before and during parturition, and in the postnatal period, is one of the most common causes of perinatal distress, morbidity, and mortality. We have found that perinatal hypoxia (prenatal day 19 to postnatal day 14) augmented the corticosterone response to stress and increased basal corticotrophin-releasing hormone (CRH) mRNA levels in the parvocellular portion of the paraventricular nucleus (PVN) in 6-month-old rats. There was no effect on the levels of hypothalamic parvocellular PVN vasopressin mRNA, anterior pituitary pro-opiomelanocortin or CRH receptor-1 mRNA, or hippocampus glucocorticoid receptor mRNA. We conclude that hypoxia spanning the period just before and for several weeks after parturition programmes the hypothalamic-pituitary-adrenal axis to hyper-respond to acute stress in adulthood, probably as a result of drive from the parvocellular CRH neurones.
Collapse
Affiliation(s)
- H Raff
- Endocrine Research Laboratory, Aurora St Luke's Medical Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | |
Collapse
|
21
|
Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond) 2007; 4:18. [PMID: 17764572 PMCID: PMC2018708 DOI: 10.1186/1743-7075-4-18] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 09/01/2007] [Indexed: 12/15/2022] Open
Abstract
The precursor protein, proopiomelanocortin (POMC), produces many biologically active peptides via a series of enzymatic steps in a tissue-specific manner, yielding the melanocyte-stimulating hormones (MSHs), corticotrophin (ACTH) and β-endorphin. The MSHs and ACTH bind to the extracellular G-protein coupled melanocortin receptors (MCRs) of which there are five subtypes. The MC3R and MC4R show widespread expression in the central nervous system (CNS), whilst there is low level expression of MC1R and MC5R. In the CNS, cell bodies for POMC are mainly located in the arcuate nucleus of the hypothalamus and the nucleus tractus solitarius of the brainstem. Both of these areas have well defined functions relating to appetite and food intake. Mouse knockouts (ko) for pomc, mc4r and mc3r all show an obese phenotype, as do humans expressing mutations of POMC and MC4R. Recently, human subjects with specific mutations in β-MSH have been found to be obese too, as have mice with engineered β-endorphin deficiency. The CNS POMC system has other functions, including regulation of sexual behaviour, lactation, the reproductive cycle and possibly central cardiovascular control. However, this review will focus on feeding behaviour and link it in with the neuroanatomy of the POMC neurones in the hypothalamus and brainstem.
Collapse
Affiliation(s)
- George Wm Millington
- Division of Medicine, Norfolk and Norwich University Hospital, Colney Lane, Norwich, NR4 7UZ, UK.
| |
Collapse
|
22
|
Kapoor A, Petropoulos S, Matthews SG. Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. ACTA ACUST UNITED AC 2007; 57:586-95. [PMID: 17716742 DOI: 10.1016/j.brainresrev.2007.06.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/15/2007] [Accepted: 06/16/2007] [Indexed: 11/23/2022]
Abstract
Reduced fetal growth has been closely associated with an increased risk for the development of chronic disease in later life. Accumulating evidence indicates that fetal exposure to excess glucocorticoids represents a critical mechanism underlying this association. Approximately 7% of pregnant women are at risk of preterm delivery and these women are routinely treated with synthetic glucocorticoids (sGC) between 24 and 34 of weeks gestation to improve neonatal outcome. Animal studies have demonstrated that maternally administered sGC crosses the placenta, affecting fetal hypothalamic-pituitary-adrenal (HPA) development, resulting in changes in HPA axis function that persist throughout life. These changes appear to be modulated at the level of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in the brain and pituitary. As the HPA axis interacts with many other physiological pathways, the changes in endocrine function are also sex-specific and age-dependent. Alterations in behavior, particularly locomotion, in animals exposed to sGC in utero have also been demonstrated. Consistent with the finding in animal models, emerging human data are indicating attention deficit-hyperactivity disorder (ADHD)-like symptoms in children exposed to repeated courses of sGC in utero. This behavioral phenotype is likely linked to alterations in dopamine (DA) signaling, suggesting that sGC are able to permanently modify or 'program' this system. Finally, it is emerging that changes in HPA axis function and behavior following antenatal exposure to sGC are transgenerational and likely involve epigenetic mechanisms. A comprehensive understanding of the acute and long-term impact of sGC exposure in utero is necessary to begin to develop recommendations and treatment options for pregnant women at risk of preterm delivery.
Collapse
Affiliation(s)
- Amita Kapoor
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
23
|
McArthur S, McHale E, Gillies GE. The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sex- region- and time-specific manner. Neuropsychopharmacology 2007; 32:1462-76. [PMID: 17164817 DOI: 10.1038/sj.npp.1301277] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central dopaminergic (DA) systems appear to be particularly vulnerable to disruption by exposure to stressors in early life, but the underlying mechanisms are poorly understood. As endogenous glucocorticoids (GCs) are implicated in other aspects of neurobiological programming, this study aimed to characterize the effects of perinatal GC exposure on the cytoarchitecture of DA populations in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA). Dexamethasone was administered non-invasively to rat pups via the mothers' drinking water during embryonic days 16-19 or postnatal days 1-7, with a total oral intake circa 0.075 or 0.15 mg/kg/day, respectively; controls received normal drinking water. Analysis of tyrosine hydroxylase-immunoreactive cell counts and regional volumes in adult offspring identified notable sex differences in the shape and volume of the SNc and VTA, as well as the topographical organization and size of the DA populations. Perinatal GC treatments increased the DA population size and altered the shape of the SNc and VTA as well as the organization of the DA neurons by expanding and/or shifting them in a caudal direction. This response was sexually dimorphic and included a feminization or demasculinization of the three-dimensional cytoarchitecture in males, and subtle differences that were dependent on the window of exposure. These findings demonstrate that inappropriate perinatal exposure to GCs have enduring effects on the organization of midbrain DA systems that are critically important for normal brain function throughout life.
Collapse
Affiliation(s)
- Simon McArthur
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College, London, UK
| | | | | |
Collapse
|
24
|
Buckingham JC, John CD, Solito E, Tierney T, Flower RJ, Christian H, Morris J. Annexin 1, glucocorticoids, and the neuroendocrine-immune interface. Ann N Y Acad Sci 2007; 1088:396-409. [PMID: 17192583 PMCID: PMC1855441 DOI: 10.1196/annals.1366.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Annexin 1 (ANXA1) was originally identified as a mediator of the anti-inflammatory actions of glucocorticoids (GCs) in the host defense system. Subsequent work confirmed and extended these findings and also showed that the protein fulfills a wider brief and serves as a signaling intermediate in a number of systems. ANXA1 thus contributes to the regulation of processes as diverse as cell migration, cell growth and differentiation, apoptosis, vesicle fusion, lipid metabolism, and cytokine expression. Here we consider the role of ANXA1 in the neuroendocrine system, particularly the hypothalamo-pituitary-adrenocortical (HPA) axis. Evidence is presented that ANXA1 plays a critical role in effecting the negative feedback effects of GCs on the release of corticotrophin (ACTH) and its hypothalamic-releasing hormones and that it is particularly pertinent to the early-onset actions of the steroids that are mediated via a nongenomic mechanism. The paracrine/juxtacrine mode of ANXA1 action is discussed in detail, with particular reference to the significance of the secondary processing of ANXA1, the processes that control the intracellular and transmembrane trafficking of the protein of the molecule and the mechanism of ANXA1 action on its target cells. In addition, the role of ANXA1 in the perinatal programming of the HPA axis is discussed.
Collapse
Affiliation(s)
- Julia C Buckingham
- Division of Neuroscience and Mental Health, Imperial College London, Hammersmith Campus, London W12 0NN, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Owen D, Matthews SG. Prenatal glucocorticoid exposure alters hypothalamic-pituitary-adrenal function in juvenile guinea pigs. J Neuroendocrinol 2007; 19:172-80. [PMID: 17280590 DOI: 10.1111/j.1365-2826.2006.01517.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurodevelopmental consequences of prenatal glucocorticoid exposure are not well-understood, particularly in species that give birth to neuroanatomically mature offspring. In the present study, we hypothesised that repeated prenatal glucocorticoid administration would alter hypothalamo-pituitary-adrenal (HPA) function in juvenile guinea pig offspring. Pregnant guinea pigs were injected with betamethasone (1 mg/kg) or vehicle on gestational days 40, 41, 50, 51, 60 and 61 (six doses). Prenatal glucocorticoid exposure abolished the pituitary-adrenal response to maternal separation in juvenile males, but had no effect in female offspring. Indeed, female offspring (vehicle and betamethasone) did not mount a significant HPA response to separation at 10 days of age. Although there were no effects of prenatal glucocorticoid exposure on hippocampal or hypothalamic corticosteroid receptor expression or corticotrophin-releasing factor (CRF) mRNA, there were significant effects in the pituitary and adrenal; again males were more affected than females. Prenatal glucocorticoid exposure increased pituitary pro-opiomelanocortin and CRF receptor mRNA, and markedly decreased adrenocortical CYP17 mRNA. In conclusion, repeated prenatal glucocorticoid exposure has profound influences on HPA function and regulation in the juvenile guinea pig, and this involves altered regulation at the level of the pituitary and adrenal cortex. Furthermore, juvenile males appear to be more vulnerable to the effects of prenatal glucocorticoid exposure than females.
Collapse
Affiliation(s)
- D Owen
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2007; 14:74-89. [PMID: 17940424 DOI: 10.1097/med.0b013e32802e6d87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Harvey PW, Everett DJ, Springall CJ. Adrenal toxicology: a strategy for assessment of functional toxicity to the adrenal cortex and steroidogenesis. J Appl Toxicol 2007; 27:103-15. [PMID: 17265431 DOI: 10.1002/jat.1221] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The adrenal is the most common toxicological target organ in the endocrine system in vivo and yet it is neglected in regulatory endocrine disruption screening and testing. There has been a recent marked increase in interest in adrenal toxicity, but there are no standardised approaches for assessment. Consequently, a strategy is proposed to evaluate adrenocortical toxicity. Human adrenal conditions are reviewed and adrenocortical suppression, known to have been iatrogenically induced leading to Addisonian crisis and death, is identified as the toxicological hazard of most concern. The consequences of inhibition of key steroidogenic enzymes and the possible toxicological modulation of other adrenal conditions are also highlighted. The proposed strategy involves an in vivo rodent adrenal competency test based on ACTH challenge to specifically examine adrenocortical suppression. The H295R human adrenocortical carcinoma cell line is also proposed to identify molecular targets, and is useful for measuring steroids, enzymes or gene expression. Hypothalamo-pituitary-adrenal endocrinology relevant to rodent and human toxicology is reviewed (with an emphasis on multi-endocrine axis effects on the adrenal and also how the adrenal affects a variety of other hormones) and the endocrinology of the H295R cell line is also described. Chemicals known to induce adrenocortical toxicity are reviewed and over 60 examples of compounds and their confirmed steroidogenic targets are presented, with much of this work published very recently using H295R cell systems. In proposing a strategy for adrenocortical toxicity assessment, the outlined techniques will provide hazard assessment data but it will be regulatory agencies that must consider the significance of such data in risk extrapolation models. The cases of etomindate and aminoglutethimide induced adrenal suppression are clearly documented examples of iatrogenic adrenal toxicity in humans. Environmentally, sentinel species, such as fish, have also shown evidence of adrenal endocrine disruption attributed to exposure to chemicals. The extent of human sub-clinical adrenal effects from environmental chemical exposures is unknown, and the extent to which environmental chemicals may act as a contributory factor to human adrenal conditions following chronic low-level exposures will remain unknown unless purposefully studied.
Collapse
Affiliation(s)
- Philip W Harvey
- Covance Laboratories UK Ltd, Toxicology Department, Otley Road, Harrogate, North Yorkshire, UK HG3 1PY.
| | | | | |
Collapse
|
28
|
John CD, Theogaraj E, Christian HC, Morris JF, Smith SF, Buckingham JC. Time-specific effects of perinatal glucocorticoid treatment on anterior pituitary morphology, annexin 1 expression and adrenocorticotrophic hormone secretion in the adult female rat. J Neuroendocrinol 2006; 18:949-59. [PMID: 17076770 DOI: 10.1111/j.1365-2826.2006.01493.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perinatal glucocorticoid (GC) treatment is increasingly associated with long-term disturbances in hypothalamo-pituitary-adrenocortical function. In the male rat, such treatment induces profound molecular, morphological and functional changes in the anterior pituitary gland at adulthood. To determine whether these effects are sex-specific, we have examined the effects of perinatal dexamethasone treatment on the female pituitary gland, focusing on (i) the integrity of the annexin 1 (ANXA1) dependent regulatory effects of GCs on adrenocorticotrophic hormone (ACTH) release and (ii) corticotroph and folliculo-stellate (FS) cell morphology. Dexamethasone was given to pregnant (gestational days 16-19) or lactating (days 1-7 post partum) rats via the drinking water (1 microg/ml); controls received normal drinking water. Pituitary tissue from the female offspring was examined ex vivo at adulthood (60-90 days). Both treatment regimes reduced the intracellular and cell surface ANXA1 expression, as determined by western blot analysis and quantitative immunogold electron microscopic histochemistry. In addition, they compromised the ability of dexamethasone to suppress the evoked release of ACTH from the excised tissue in vitro, a process which requires the translocation of ANXA1 from the cytoplasm to the cell surface of FS cells. Although neither treatment regime affected the number of FS cells or corticotrophs, both altered the subcellular morphology of these cells. Thus, prenatal dexamethasone treatment increased while neonatal treatment decreased FS cell size and cytoplasmic area. By contrast, corticotroph size was unaffected by either treatment, as also was the size of the secretory granules. Corticotroph granule density and margination were, however, increased markedly by the prenatal treatment, while the neonatal treatment had no effect on granule density but decreased granule margination. Thus, perinatal dexamethasone treatment exerts long-term effects on the female pituitary gland, altering gene expression, cell morphology and the ANXA1-dependent GC regulation of ACTH secretion. The changes are similar but not identical to those reported in the male.
Collapse
Affiliation(s)
- C D John
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | | | |
Collapse
|
29
|
McArthur S, Siddique ZL, Christian HC, Capone G, Theogaraj E, John CD, Smith SF, Morris JF, Buckingham JC, Gillies GE. Perinatal glucocorticoid treatment disrupts the hypothalamo-lactotroph axis in adult female, but not male, rats. Endocrinology 2006; 147:1904-15. [PMID: 16439449 DOI: 10.1210/en.2005-1496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to test the hypothesis that the tuberoinfundibular dopaminergic neurons of the arcuate nucleus and/or the lactotroph cells of the anterior pituitary gland are key targets for the programming effects of perinatal glucocorticoids (GCs). Dexamethasone was administered noninvasively to fetal or neonatal rats via the mothers' drinking water (1 mug/ml) on embryonic d 16-19 or neonatal d 1-7, and control animals received normal drinking water. At 68 d of age, the numbers of tyrosine hydroxylase-positive (TH+) cells in the arcuate nucleus and morphometric parameters of pituitary lactotrophs were analyzed. In control animals, striking sex differences in TH+ cell numbers, lactotroph cell size, and pituitary prolactin content were observed. Both pre- and neonatal GC treatment regimens were without effect in adult male rats, but in females, the overriding effect was to abolish the sex differences by reducing arcuate TH+ cell numbers (pre- and neonatal treatments) and reducing lactotroph cell size and pituitary prolactin content (prenatal treatment only) without changing lactotroph cell numbers. Changes in circulating prolactin levels represented a net effect of hypothalamic and pituitary alterations that exhibited independent critical windows of susceptibility to perinatal GC treatments. The dopaminergic neurons of the hypothalamic periventricular nucleus and the pituitary somatotroph populations were not significantly affected by either treatment regimen in either sex. These data show that the adult female hypothalamo-lactotroph axis is profoundly affected by perinatal exposure to GCs, which disrupts the tonic inhibitory tuberoinfundibular dopaminergic pathway and changes lactotroph morphology and prolactin levels in the pituitary and circulation. These findings provide new evidence for a long-term disruption in prolactin-dependent homeostasis in females, but not males, after inappropriate GC exposure in perinatal life.
Collapse
Affiliation(s)
- S McArthur
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kapoor A, Dunn E, Kostaki A, Andrews MH, Matthews SG. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J Physiol 2006; 572:31-44. [PMID: 16469780 PMCID: PMC1779638 DOI: 10.1113/jphysiol.2006.105254] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prenatal stress (PS) and maternal exposure to exogenous glucocorticoids can lead to permanent modification of hypothalamo-pituitary-adrenal (HPA) function and stress-related behaviour. Both of these manipulations lead to increased fetal exposure to glucocorticoids. Glucocorticoids are essential for many aspects of normal brain development, but exposure of the fetal brain to an excess of glucocorticoids can have life-long effects on neuroendocrine function. Both endogenous glucocorticoid and synthetic glucocorticoid exposure have a number of rapid effects in the fetal brain, including modification of neurotransmitter systems and transcriptional machinery. Such fetal exposure permanently alters HPA function in prepubertal, postpubertal and ageing offspring, in a sex-dependent manner. Prenatal stress and exogenous glucocorticoid manipulation also lead to the modification of behaviour, brain and organ morphology, as well as altered regulation of other endocrine systems. It is also becoming increasingly apparent that the timing of exposure to PS or synthetic glucocorticoids has tremendous effects on the nature of the phenotypic outcome. Permanent changes in endocrine function will ultimately impact on health in both human and animal populations.
Collapse
Affiliation(s)
- Amita Kapoor
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Theogaraj E, John CD, Dewar A, Buckingham JC, Smith SF. The long-term effects of perinatal glucocorticoid exposure on the host defence system of the respiratory tract. J Pathol 2006; 210:85-93. [PMID: 16924656 DOI: 10.1002/path.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glucocorticoids are used to mature the fetal lung at times of threatened premature delivery. These drugs modify leukocyte profiles when administered in adulthood, but their effects on the mature host defence system following administration during the perinatal period are incompletely understood. In this study, the long-term effects of perinatal dexamethasone exposure on rodent host defence cells in the pulmonary airspaces, the perivascular compartment of the lung, and the blood were investigated. Rats were treated prenatally (gestational days 16-19) or neonatally (postnatal days 1-7) by inclusion of dexamethasone in the mothers' drinking water (1 microg/ml). The pups were then allowed to develop to adulthood (P60-80), at which time respiratory tissues were collected for light and electron microscopy and bronchoalveolar lavage (BAL), and blood for cell count and fluorescent activated cell-sorting (FACS) analysis. Prenatal treatment had no effect on any parameter examined. Following neonatal dexamethasone exposure, light microscopy of the lung tissue revealed a significant reduction in the number of cells in the perivascular space in both the central and the peripheral regions of the adult lung, but no differences in the number of cells in the airspaces. Neonatal dexamethasone exposure was also characterized by a significant reduction in the total number of white cells in the peripheral blood in adulthood and in particular, the number of lymphocytes relative to neutrophils was significantly reduced at maturity in these animals. The results show that neonatal, but not prenatal, dexamethasone exposure significantly alters the distribution of host defence cells in the blood and lung at maturity compared with control animals. The early neonatal period is characterized by the stress hyporesponsive period in the rat, when endogenous glucocorticoid levels are very low. Therefore, exogenous glucocorticoids administered during this time are likely to have marked "programming" effects on glucocorticoid-sensitive tissues.
Collapse
Affiliation(s)
- E Theogaraj
- Division of Neuroscience & Mental Health, Imperial College London, UK
| | | | | | | | | |
Collapse
|