1
|
Lai X, Peng S, Liu L, Zou Z, Cao L, Wang Y. Tissue-specific promoters regulate the transcription of cyp19a1 in the brain-pituitary-gonad axis of Japanese eel (Anguilla japonica). J Steroid Biochem Mol Biol 2023; 232:106334. [PMID: 37236374 DOI: 10.1016/j.jsbmb.2023.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Aromatase is a key enzyme that catalyzes the biosynthesis of estrogens. Previous study indicated that putative tissue-specific promoters of the one aromatase gene (cyp19a1) may drive the differential regulatory mechanisms of cyp19a1 expression in Anguilla japonica. In the present study, for elucidating the transcription characteristics and the function of putative tissue-specific promoters of cyp19a1 in the brain-pituitary-gonad (BPG) axis during vitellogenesis, we investigated the transcriptional regulation of cyp19a1 by 17β-estrogen (E2), testosterone (T), or human chorionic gonadotropin (HCG) in A. japonica. The expression of estrogen receptor (esra), androgen receptor (ara), or luteinizing hormone receptor (lhr) was up-regulated as cyp19a1 in response to E2, T, or HCG, respectively in the telencephalon, diencephalon, and pituitary. The expression of cyp19a1 was also upregulated in the ovary by HCG or T in a dose-dependent manner. Unlike in the brain and pituitary, the expression of esra and lhr, rather than ara, was upregulated by T in the ovary. Subsequently, four primary subtypes of 5'-untranslated terminal regions of cyp19a1 transcripts and the corresponding two 5' flanking regions (promoter P.I and P.II) were identified. The P.II existed in all BPG axis tissues, whereas the P.I with strong transcriptional activity was brain- and pituitary-specific. Furthermore, the transcriptional activity of promoters, the core promoter region, and the three putative hormone receptor response elements were validated. The transcriptional activity did not change when the HEK291T cells co-transfected with P.II and ar vector were exposed to T. These results suggested that the expression of cyp19a1 was upregulated indirectly through esra and lhr rather than ara by T in the ovary, whereas the expression of cyp19a1 was upregulated directly through androgen receptor and the downstream androgen response element of tissue-specific P.I in the brain and pituitary. The results of the study reveal the regulatory mechanisms of estrogen biosynthesis and provide a reference for optimizing the technology of artificially induced maturation in eels.
Collapse
Affiliation(s)
- Xiaojian Lai
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education P. R. China, Xiamen 361021, China.
| | - Shuai Peng
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Liping Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihua Zou
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Le Cao
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education P. R. China, Xiamen 361021, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Astuto MC, Benford D, Bodin L, Cattaneo I, Halldorsson T, Schlatter J, Sharpe RM, Tarazona J, Younes M. Applying the adverse outcome pathway concept for assessing non-monotonic dose responses: biphasic effect of bis(2-ethylhexyl) phthalate (DEHP) on testosterone levels. Arch Toxicol 2023; 97:313-327. [PMID: 36336711 DOI: 10.1007/s00204-022-03409-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Male reproduction is one of the primary health endpoints identified in rodent studies for some phthalates, such as DEHP (Bis(2-ethylhexyl) phthalate), DBP (Dibutyl phthalate), and BBP (Benzyl butyl phthalate). The reduction in testosterone level was used as an intermediate key event for grouping some phthalates and to establish a reference point for risk assessment. Phthalates, and specifically DEHP, are one of the chemicals for which the greatest number of non-monotonic dose responses (NMDRs) are observed. These NMDRs cover different endpoints and situations, often including testosterone levels. The presence of NMDR has been the subject of some debate within the area of chemical risk assessment, which is traditionally anchored around driving health-based guidance values for apical endpoints that typically follow a clear monotonic dose-response. The consequence of NMDR for chemical risk assessment has recently received considerable attention amongst regulatory agencies, which confirmed its relevance particularly for receptor-mediated effects. The present review explores the relationship between DEHP exposure and testosterone levels, investigating the biological plausibility of the observed NMDRs. The Adverse Outcome Pathway (AOP) concept is applied to integrate NMDRs into Key Event Relationships (KERs) for exploring a mechanistic understanding of initial key events and possibly associated reproductive and non-reproductive adverse outcomes.
Collapse
Affiliation(s)
- M C Astuto
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy.
| | - D Benford
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - L Bodin
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - I Cattaneo
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - T Halldorsson
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy.,Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - J Schlatter
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - R M Sharpe
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - J Tarazona
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| | - M Younes
- European Food Safety Authority, Methodology and Scientific Support Unit and Working Group on Non-Monotonic Dose Responses, Parma, Italy
| |
Collapse
|
3
|
Hollander-Cohen L, Meir I, Shulman M, Levavi-Sivan B. Identifying the Interaction of the Brain and the Pituitary in Social - and Reproductive - State of Tilapia by Transcriptome Analyses. Neuroendocrinology 2022; 112:1237-1260. [PMID: 35381588 DOI: 10.1159/000524437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
INTRODUCTION As in all vertebrates, reproduction in fish is regulated by gonadotrophin-releasing hormone (GnRH) control on gonadotrophic hormones (GtHs) activity. However, the neuroendocrine factors that promote GnRH and GtH activity are unknown. In Nile tilapia (Oreochromis niloticus), sexual activity and reproduction ability depend on social rank; only dominant males and females reproduce. Here, this characteristic of dominant fish allows us to compare brain and pituitary gene expression in animals that do and do not reproduce, aiming to reveal mechanisms that regulate reproduction. METHODS An extensive transcriptome analysis was performed, combining two sets of transcriptomes: a novel whole-brain and pituitary transcriptome of established dominant and subordinate males, together with a cell-specific transcriptome of luteinizing hormone (LH) and follicle-stimulating hormone cells. Pituitary incubation assay validated the direct effect of steroid application on chosen genes and GtH secretion. RESULTS In most dominant fish, as determined behaviorally, the gonadosomatic index was higher than in subordinate fish, and the leading upregulated pituitary genes were those coding for GtHs. In the brain, various neuropeptide genes, including isotocin, cholecystokinin, and MCH, were upregulated; these may be related to reproductive status through effects on behavior and feeding. In a STRING network analysis combining the two transcriptome sets, brain aromatase, highly expressed in LH cells, is the most central gene with the highest number of connections. In the pituitary incubation assay, testosterone and estradiol increased the secretion of LH and specific gene transcription. CONCLUSIONS The close correlation between behavioral dominance and reproductive capacity in tilapia allows unraveling novel genes that may regulate the hypothalamic-pituitary-gonadal axis, highlighting aromatase as the main factor affecting the brain and pituitary in maintaining a sexually active organism.
Collapse
Affiliation(s)
- Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel,
| | - Inbar Meir
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Miriam Shulman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Duan H, Xiao L, Ge W, Yang S, Jiang Y, Lv J, Hu J, Zhang Y, Zhao X, Hua Y. Follicle-stimulating hormone and luteinizing hormone regulate the synthesis mechanism of dihydrotestosterone in sheep granulosa cells. Reprod Domest Anim 2020; 56:292-300. [PMID: 33001490 DOI: 10.1111/rda.13837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/26/2022]
Abstract
Steroid hormones and receptors play important roles in female reproduction, and their expression patterns affect follicular growth and development. To examine the expression of dihydrotestosterone (DHT) synthases (5α-reductases (5α-red1 and 5α-red2)) and androgen receptor (AR) during follicular development, and the regulation of DHT signalling by follicle-stimulating hormone (FSH) and luteinizing hormone (LH), we have used enzyme-linked immunosorbent assays, quantitative real-time polymerase chain reaction, immunohistochemical staining and Western blotting to examine DHT synthesis in small (≤2 mm), medium (2-5 mm) and large (≥5 mm) sheep follicles. Expression of 5α-red1, 5α-red2 and AR was observed in ovine ovaries, and with the development of follicles, the expressions of 5α-red1 and 5α-red2 mRNA and protein increased, but the levels of AR mRNA, protein and DHT level decreased. In addition, granulosa cells were treated with FSH (0.01, 0.1 and 1 international unit (IU)/ml), LH (0.01, 0.1 and 1 IU/ml) and testosterone (T, 10-7 M) to evaluate the effects of FSH and LH on DHT and oestradiol (E2) synthesis and 5α-red1, 5α-red2 and AR expression. We found that FSH and LH upregulated 5α-red1 and 5α-red2 in sheep granulosa cells, but downregulated the concentration of DHT and expression of AR. Meanwhile, FSH and LH significantly upregulated the expression of aromatase (P450arom) and secretion of E2. This result indicates that although FSH and LH promote the expression of 5α-red1 and 5α-red2, T is not transformed into DHT, but E2. This study reveals the reason why DHT concentration is downregulated in large follicles and lays a foundation for further exploring the synthesis mechanism of DHT during follicular development.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuting Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Zmijewska A, Czelejewska W, Waszkiewicz EM, Gajewska A, Okrasa S, Franczak A. Transcriptomic analysis of the porcine anterior pituitary gland during the peri-implantation period. Reprod Domest Anim 2020; 55:1434-1445. [PMID: 32745313 DOI: 10.1111/rda.13794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
The peri-implantation period is controlled by signals originating from hypothalamic-pituitary-ovarian axis, uterus and developing embryos. The transcriptomic activity of the anterior pituitary gland may be important for the control of the peri-implantation period. The aim of this study was to determine the alternations in the transcriptomic profile of porcine anterior pituitary gland during the peri-implantation period (days 15-16 of pregnancy) in comparison with established for the respective days of the oestrous cycle. Analysis using a microarray approach indicated that the 651 genes (fold-change ˂1.2; p ≤ .05) were differentially expressed (DEGs) in the anterior pituitary of pigs during the peri-implantation period when compared to cyclic females. Of these DEGs, 404 were upregulated and 247 downregulated. Analysis of occurred relationships among DEGs revealed that some of them are involved in steroid-response and oestrogen synthesis, FSH secretion, immune response, PPAR signalling pathway and the potential for DNA methylation. In conclusion, the altered transcriptomic profile of the porcine pituitary gland in pigs during the peri-implantation period indicates the role of embryos presence in the creation of transcriptomic activity of the pituitary gland in pigs.
Collapse
Affiliation(s)
- Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Wioleta Czelejewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa M Waszkiewicz
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Alina Gajewska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Science, Jablonna, Poland
| | - Stanislaw Okrasa
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
6
|
Abstract
Contribution to Special Issue on Fast effects of steroids. The concept that the positive feedback effect of ovarian estradiol (E2) results in GnRH and gonadotropin surges is a well-established principle. However, a series of studies investigating the rapid action of E2 in female rhesus monkeys has led to a new concept that neuroestradiol, synthesized and released in the hypothalamus, also contributes to regulation of the preovulatory GnRH surge. This unexpected finding started from our surprising observation that E2 induces rapid stimulatory action in GnRH neurons in vitro. Subsequently, we confirmed that a similar rapid stimulatory action of E2 occurs in vivo. Unlike subcutaneous injection of E2 benzoate (EB), a brief (10-20 min), direct infusion of EB into the median eminence in ovariectomized (OVX) female monkeys rapidly stimulates release of GnRH and E2 in a pulsatile manner, and the EB-induced GnRH and E2 release is blocked by simultaneous infusion of the aromatase inhibitor, letrozole. This suggests that stimulated release of E2 is of hypothalamic origin. To further determine the role of neuroestradiol we examined the effects of letrozole on EB-induced GnRH and LH surges in OVX females. Results indicate that letrozole treatment greatly attenuated the EB-induced GnRH and LH surges. Collectively, neuroestradiol released from the hypothalamus appears to be necessary for the positive feedback effect of E2 on the GnRH/LH surge.
Collapse
Affiliation(s)
- Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, United States; Department of Pediatrics, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
7
|
Obligatory role of hypothalamic neuroestradiol during the estrogen-induced LH surge in female ovariectomized rhesus monkeys. Proc Natl Acad Sci U S A 2017; 114:13804-13809. [PMID: 29229849 DOI: 10.1073/pnas.1716097115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Negative and positive feedback effects of ovarian 17β-estradiol (E2) regulating release of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) are pivotal events in female reproductive function. While ovarian feedback on hypothalamo-pituitary function is a well-established concept, the present study shows that neuroestradiol, locally synthesized in the hypothalamus, is a part of estrogen's positive feedback loop. In experiment 1, E2 benzoate-induced LH surges in ovariectomized female monkeys were severely attenuated by systemic administration of the aromatase inhibitor, letrozole. Aromatase is the enzyme responsible for synthesis of E2 from androgens. In experiment 2, using microdialysis, GnRH and kisspeptin surges induced by E2 benzoate were similarly attenuated by infusion of letrozole into the median eminence of the hypothalamus. Therefore, neuroestradiol is an integral part of the hypothalamic engagement in response to elevated circulating E2 Collectively, we will need to modify the concept of estrogen's positive feedback mechanism.
Collapse
|
8
|
Charif SE, Inserra PIF, Schmidt AR, Di Giorgio NP, Cortasa SA, Gonzalez CR, Lux-Lantos V, Halperin J, Vitullo AD, Dorfman VB. Local production of neurostradiol affects gonadotropin-releasing hormone (GnRH) secretion at mid-gestation in Lagostomus maximus (Rodentia, Caviomorpha). Physiol Rep 2017; 5:5/19/e13439. [PMID: 29038356 PMCID: PMC5641931 DOI: 10.14814/phy2.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023] Open
Abstract
Females of the South American plains vizcacha, Lagostomus maximus, show peculiar reproductive features such as massive polyovulation up to 800 oocytes per estrous cycle and an ovulatory process around mid‐gestation arising from the reactivation of the hypothalamic–hypophyseal–ovary (H.H.O.) axis. Estradiol (E2) regulates gonadotropin‐releasing hormone (GnRH) expression. Biosynthesis of estrogens results from the aromatization of androgens by aromatase, which mainly occurs in the gonads, but has also been described in the hypothalamus. The recently described correlation between GnRH and ERα expression patterns in the hypothalamus of the vizcacha during pregnancy, with coexpression in the same neurons of the medial preoptic area, suggests that hypothalamic synthesis of E2 may affect GnRH neurons and contribute with systemic E2 to modulate GnRH delivery during the gestation. To elucidate this hypothesis, hypothalamic expression and the action of aromatase on GnRH release were evaluated in female vizcachas throughout pregnancy. Aromatase and GnRH expression was increased significantly in mid‐pregnant and term‐pregnant vizcachas compared to early‐pregnant and nonpregnant females. In addition, aromatase and GnRH were colocalized in neurons of the medial preoptic area of the hypothalamus throughout gestation. The blockage of the negative feedback of E2 induced by the inhibition of aromatase resulted in a significant increment of GnRH‐secreted mass by hypothalamic explants. E2 produced in the same neurons as GnRH may drive intracellular E2 to higher levels than those obtained from systemic circulation alone. This may trigger for a prompt GnRH availability enabling H.H.O. activity at mid‐gestation with ovulation and formation of accessory corpora lutea with steroidogenic activity that produce the necessary progesterone to maintain gestation to term and guarantee the reproductive success.
Collapse
Affiliation(s)
- Santiago E Charif
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo I F Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro R Schmidt
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, IByME-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago A Cortasa
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Candela R Gonzalez
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, IByME-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina .,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
9
|
Lozan E, Shinkaruk S, Al Abed SA, Lamothe V, Potier M, Marighetto A, Schmitter JM, Bennetau-Pelissero C, Buré C. Derivatization-free LC-MS/MS method for estrogen quantification in mouse brain highlights a local metabolic regulation after oral versus subcutaneous administration. Anal Bioanal Chem 2017; 409:5279-5289. [DOI: 10.1007/s00216-017-0473-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/04/2017] [Accepted: 06/16/2017] [Indexed: 11/29/2022]
|
10
|
Role of Estrogens in the Size of Neuronal Somata of Paravaginal Ganglia in Ovariectomized Rabbits. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2089645. [PMID: 28316975 PMCID: PMC5339489 DOI: 10.1155/2017/2089645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/18/2016] [Accepted: 01/15/2017] [Indexed: 01/07/2023]
Abstract
We aimed to determine the role of estrogens in modulating the size of neuronal somata of paravaginal ganglia. Rabbits were allocated into control (C), ovariectomized (OVX), and OVX treated with estradiol benzoate (OVX + EB) groups to evaluate the neuronal soma area; total serum estradiol (E2) and testosterone (T) levels; the percentage of immunoreactive (ir) neurons anti-aromatase, anti-estrogen receptor (ERα, ERβ) and anti-androgen receptor (AR); the intensity of the immunostaining anti-glial cell line-derived neurotrophic factor (GDNF) and the GDNF family receptor alpha type 1 (GFRα1); and the number of satellite glial cells (SGCs) per neuron. There was a decrease in the neuronal soma size for the OVX group, which was associated with low T, high percentages of aromatase-ir and neuritic AR-ir neurons, and a strong immunostaining anti-GDNF and anti-GFRα1. The decrease in the neuronal soma size was prevented by the EB treatment that increased the E2 without affecting the T levels. Moreover, there was a high percentage of neuritic AR-ir neurons, a strong GDNF immunostaining in the SGC, and an increase in the SGCs per neuron. Present findings show that estrogens modulate the soma size of neurons of the paravaginal ganglia, likely involving the participation of the SGC.
Collapse
|
11
|
García-Barrado MJ, Blanco EJ, Catalano-Iniesta L, Sanchez-Robledo V, Iglesias-Osma MC, Carretero-Hernández M, Rodríguez-Cobos J, Burks DJ, Carretero J. Relevance of pituitary aromatase and estradiol on the maintenance of the population of prolactin-positive cells in male mice. Steroids 2016; 111:121-126. [PMID: 27046736 DOI: 10.1016/j.steroids.2016.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/02/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
In previous studies we demonstrated the expression of aromatase in pituitary cells. This expression is gender related, and is also associated with the presence of prolactinomas. To ascertain the relevance of aromatase in modulating the populations of prolactin-positive pituitary cells an immunocytochemical and morphometric study of prolactin-positive pituitary cells was carried out using the pituitary glands of adult male and female aromatase-knockout (ArKO) mice. Additionally has been determined if pituitary aromatase is involved in a gender-linked differentiated regulation of the prolactin-producing pituitary cells. Compared to wild-type mice, the knockout animals of both genders showed a significant decrease (p<0.01) in the cellular and nuclear areas of their prolactin cells, as well as in the percentages of the prolactin-positive cells and the proliferating prolactin cells. Our results suggest that estradiol is responsible for the maintenance of the population of prolactin cell in males and, so as not to disturb the endocrine reproductive environment, estradiol is synthesized inside the pituitary by circulating testosterone via means of aromatase P450, which acts in paracrine way. This new role for pituitary aromatase may well explain the previous findings establishing that the pituitary expression of aromatase is higher in males than in females, and the association between the development of prolactinomas and the increased expression of aromatase in tumours.
Collapse
Affiliation(s)
- María José García-Barrado
- Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | - Enrique J Blanco
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain
| | | | | | - María Carmen Iglesias-Osma
- Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | | | - Javier Rodríguez-Cobos
- Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | - Deborah Jane Burks
- Laboratory of Molecular Neuroendocrinology, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - José Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain.
| |
Collapse
|
12
|
Carretero J, López F, Catalano-Iniesta L, Sanchez-Robledo V, Garcia-Barrado MJ, Iglesias-Osma MC, Carretero-Hernandez M, Blanco EJ, Burks DJ. Pituitary Aromatase P450 May Be Involved in Maintenance of the Population of Luteinizing Hormone-Positive Pituitary Cells in Mice. Cells Tissues Organs 2016; 201:390-8. [DOI: 10.1159/000445478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/19/2022] Open
Abstract
As aromatase P450 is located in several pituitary cells, testosterone can be transformed into 17β-estradiol in the gland by the enzyme. The possible role of this transformation in pituitary function remains to be elucidated, but some evidence suggests a physiological and pathophysiological role for pituitary aromatase. To determine its relevance in the modulation of pituitary function, mainly associated with reproduction, luteinizing hormone (LH)-positive cells in the hypophysis of female and male aromatase knockout (ArKO) mice were studied. In all LH-positive cells, significant increases in the cellular (p < 0.01) and nuclear (p < 0.05) areas were found in the ArKO mice compared to the wild-type mice. In the ArKO mice, LH-positive cells were more abundant (p < 0.01); they were characterized by a stronger cytoplasmic reaction and the cells were more polygonal and exhibited more short, thick cytoplasmic prolongations than those in the wild-type mice. Moreover, LH-positive cells showed a greater proliferation rate in the ArKO mice compared to the wild-type mice (p < 0.01). These findings suggest that the local production of estradiol mediated by pituitary aromatase is necessary for the regulation of LH-positive gonadotropic cells, exerting an autoparacrine inhibitory regulation. These results could underlie the higher pituitary aromatase expression observed in male versus female mice. Similar effects were found in ArKO male and female mice, suggesting that in both sexes the effects of estrogens on maintenance of the LH-positive pituitary cell population could be related to the local aromatization of testosterone to estradiol inside the hypophysis. Therefore, aromatase could modulate pituitary LH-positive cells in males through local estradiol synthesis.
Collapse
|
13
|
Magri ML, Gottardo MF, Zárate S, Eijo G, Ferraris J, Jaita G, Ayala MM, Candolfi M, Pisera D, Seilicovich A. Opposite effects of dihydrotestosterone and estradiol on apoptosis in the anterior pituitary gland from male rats. Endocrine 2016; 51:506-16. [PMID: 26296379 DOI: 10.1007/s12020-015-0719-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/08/2015] [Indexed: 12/22/2022]
Abstract
Hormones locally synthesized in the anterior pituitary gland are involved in regulation of pituitary cell renewal. In the pituitary, testosterone (T) may exert its actions per se or by conversion to dihydrotestosterone (DHT) or 17β-estradiol (E2) by 5α-reductase and aromatase activity, which are expressed in this gland. Previous reports from our laboratory showed that estrogens modulate apoptosis of lactotropes and somatotropes from female rats. Now, we examined the in vitro and in vivo effects of gonadal steroids on apoptosis of anterior pituitary cells from adult male rats. T in vitro did not modify apoptosis in anterior pituitary cells from gonadectomized (GNX) male rats. DHT, a non-aromatizable androgen, exerted direct antiapoptotic action on total anterior pituitary cells and folliculo-stellate cells, but not on lactotropes, somatotropes, or gonadotropes. On the contrary, E2 exerted a rapid apoptotic effect on total cells as well as on lactotropes and somatotropes. Incubation of anterior pituitary cells with T in presence of Finasteride, an inhibitor of 5α-reductase, increased the percentage of TUNEL-positive cells. In vivo administration of DHT to GNX rats reduced apoptosis in the anterior pituitary whereas E2 exerted proapoptotic action and reduced cells in G2/M-phase of the cell cycle. In summary, our results indicate that DHT and E2 have opposite effects on apoptosis in the anterior pituitary gland suggesting that local metabolization of T to these steroids could be involved in pituitary cell turnover in males. Changes in expression and/or activity of 5α-reductase and aromatase may play a role in the development of anterior pituitary tumors.
Collapse
Affiliation(s)
- María Laura Magri
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - María Florencia Gottardo
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Guadalupe Eijo
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Gabriela Jaita
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Mariela Moreno Ayala
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Exercise induces the synthesis of estrogen in ovariectomized Sprague–Dawley rats ventricular myocardium trough increase expression of CYP19aromatase. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0245-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Up-regulation of steroid biosynthesis by retinoid signaling: Implications for aging. Mech Ageing Dev 2015; 150:74-82. [PMID: 26303142 DOI: 10.1016/j.mad.2015.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/14/2015] [Accepted: 08/15/2015] [Indexed: 11/24/2022]
Abstract
Retinoids (vitamin A and its derivatives) are critical for a spectrum of developmental and physiological processes, in which steroid hormones also play indispensable roles. The StAR protein predominantly regulates steroid biosynthesis in steroidogenic tissues. We have reported that regulation of retinoid, especially atRA and 9-cis RA, responsive StAR transcription is largely mediated by an LXR-RXR/RAR heterodimeric motif in the mouse StAR promoter. Herein we demonstrate that retinoids are capable of enhancing StAR protein, P-StAR, and steroid production in granulosa, adrenocortical, glial, and epidermal cells. Whereas transient expression of RARα and RXRα enhanced 9-cis RA induced StAR gene transcription, silencing of RXRα with siRNA, decreased StAR and steroid levels. An oligonucleotide probe encompassing an LXR-RXR/RAR motif bound to adrenocortical and epidermal keratinocyte nuclear proteins in EMSAs. ChIP studies revealed association of RARα and RXRα with the StAR proximal promoter. Further studies demonstrated that StAR mRNA levels decreased in diseased and elderly men and women skin tissues and that atRA could restore steroidogenesis in epidermal keratinocytes of aged individuals. These findings provide novel insights into the relevance of retinoid signaling in the up-regulation of steroid biosynthesis in various target tissues, and indicate that retinoid therapy may have important implications in age-related complications and diseases.
Collapse
|
16
|
de los Ángeles Carrasco-Ruiz M, García-Villamar V, López-García K, Sánchez-García O, Pacheco P, Cuevas E, Martínez-Gómez M, Castelán F. Aromatase expression is linked to estrogenic sensitivity of periurethral muscles in female rabbits. Cell Biochem Funct 2015; 33:188-95. [DOI: 10.1002/cbf.3102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 12/30/2022]
Affiliation(s)
- María de los Ángeles Carrasco-Ruiz
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala Tlaxcala México
- Doctorado en Neuroetología; Universidad Veracruzana; Xalapa Veracruz México
| | - Verónica García-Villamar
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala Tlaxcala México
- Doctorado en Ciencias Biológicas; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - Kenia López-García
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala Tlaxcala México
- Maestría en Ciencias Biológicas; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - Octavio Sánchez-García
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala Tlaxcala México
- Doctorado en Neuroetología; Universidad Veracruzana; Xalapa Veracruz México
| | - Pablo Pacheco
- Depto de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; México DF México
- Instituto de Neuroetología; Universidad Veracruzana; Xalapa Veracruz México
| | - Estela Cuevas
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala Tlaxcala México
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala Tlaxcala México
- Depto de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; México DF México
| | - Francisco Castelán
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala Tlaxcala México
| |
Collapse
|
17
|
Gajewska A, Herman AP, Wolińska-Witort E, Kochman K, Zwierzchowski L. In vivo oestrogenic modulation of Egr1 and Pitx1 gene expression in female rat pituitary gland. J Mol Endocrinol 2014; 53:355-66. [PMID: 25258388 DOI: 10.1530/jme-14-0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EGR1 and PITX1 are transcription factors required for gonadotroph cell Lhb promoter activation. To determine changes in Egr1 and Pitx1 mRNA levels in central and peripheral pituitary stimulations, an in vivo model based on i.c.v. pulsatile (1 pulse/0.5 h over 2 h) GnRH agonist (1.5 nM buserelin) or antagonist (2 nM antide) microinjections was used. The microinjections were given to ovariectomised and 17β-oestradiol (E2) (3×20 μg), ERA (ESR1) agonist propyl pyrazole triol (PPT) (3×0.5 mg), ERB (ESR2) agonist diarylpropionitrile (DPN) (3×0.5 mg) s.c. pre-treated rats 30 min after last pulse anterior pituitaries were excised. Relative mRNA expression was determined by quantitative RT-PCR (qRT-PCR). Results revealed a gene-specific response for GnRH and/or oestrogenic stimulations in vivo. Buserelin pulses enhanced Egr1 expression by 66% in ovariectomised rats, whereas the oestradiol-supplemented+i.c.v. NaCl-microinjected group showed a 50% increase in Egr1 mRNA expression. The oestrogenic signal was transmitted via ERA (ESR1) and ERB (ESR2) activation as administration of PPT and DPN resulted in 97 and 62%, respectively, elevation in Egr1 mRNA expression. A synergistic action of GnRH agonist and 17β-oestradiol (E2) stimulation of the Egr1 gene transcription in vivo were found. GnRHR activity did not affect Pitx1 mRNA expression; regardless of NaCl, buserelin or antide i.c.v. pulses, s.c. oestrogenic supplementation (with E2, PPT or DPN) consistently decreased (by -46, -48 and -41% respectively) the Pitx1 mRNA in the anterior pituitary gland. Orchestrated Egr1 and Pitx1 activities depending on specific central and peripheral regulatory inputs could be responsible for physiologically variable Lhb gene promoter activation in vivo.
Collapse
Affiliation(s)
- Alina Gajewska
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Andrzej P Herman
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Wolińska-Witort
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Kazimierz Kochman
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Lech Zwierzchowski
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| |
Collapse
|
18
|
Gonzales PH, Mezzomo LC, Ferreira NP, Roehe AV, Kohek MBF, Oliveira MDC. Aromatase P450 expression in human pituitary adenomas. Neuropathology 2014; 35:16-23. [DOI: 10.1111/neup.12145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 01/05/2023]
Affiliation(s)
| | - Lisiane Cervieri Mezzomo
- Post-Graduation Program of Pathology; UFCSPA; Porto Alegre RS Brazil
- Laboratory of Molecular Biology; UFCSPA; Porto Alegre RS Brazil
| | - Nelson Pires Ferreira
- Neuroendocrinology Center; Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA); Porto Alegre RS Brazil
| | | | - Maria Beatriz Fonte Kohek
- Post-Graduation Program of Pathology; UFCSPA; Porto Alegre RS Brazil
- Laboratory of Molecular Biology; UFCSPA; Porto Alegre RS Brazil
| | - Miriam da Costa Oliveira
- Post-Graduation Program of Pathology; UFCSPA; Porto Alegre RS Brazil
- Neuroendocrinology Center; Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA); Porto Alegre RS Brazil
| |
Collapse
|
19
|
Zhang S, Zhang Y, Chen W, Wu Y, Ge W, Zhang L, Zhang W. Aromatase (Cyp19a1b) in the pituitary is dynamically involved in the upregulation of lhb but not fshb in the vitellogenic female ricefield eel Monopterus albus. Endocrinology 2014; 155:4531-41. [PMID: 25105781 DOI: 10.1210/en.2014-1069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aromatase, encoded by Cyp19a1, is expressed in the pituitary of vertebrates; however, its physiological relevance remains poorly defined. In teleosts, the duplicated cyp19a1b is preferentially expressed in the pituitary where LH and FSH are synthesized in distinct gonadotropes. Our present study demonstrated that Cyp19a1b is colocalized with Lhb, but not Fshb, during vitellogenesis in female ricefield eels. The immunoreactive levels of Cyp19a1b and Lhb, as well as their colocalization frequency, increased during vitellogenesis toward maturation. The expression of lhb but not fshb in the pituitary fragments of female ricefield eels was induced by both estradiol (E2) and testosterone (T). In agreement, the promoter of lhb but not fshb was activated by both E2 and T. T is more potent than E2 in inducing lhb expression, whereas E2 is much more effective in activating the lhb promoter. T-induced lhb expression in the pituitary fragments was abolished by the estrogen receptor (Esr) antagonist fulvestrant and suppressed by the aromatase inhibitor letrozole, suggesting that the effect of T on lhb expression at the pituitary is largely mediated by E2. Furthermore, Lhb was shown to colocalize with Esr1 but not Esr2a. Taken together, results of the present study suggest that Cyp19a1b in LH cells may greatly upregulate lhb expression during vitellogenesis, possibly via E2 and Esr1 in an intracrine manner. The absence of Cyp19a1b in FSH cells and the insensitivity of fshb to sex steroids may contribute to the differential expression of lhb and fshb in ricefield eels and possibly other vertebrates as well.
Collapse
Affiliation(s)
- Shen Zhang
- School of Life Sciences (S.Z., Y.Z., W.C., Y.W., L.Z., W.Z.), Sun Yat-sen University, Guangzhou 510275, People's Republic of China; and Faculty of Heath Sciences (W.G.), University of Macau, Taipa, Macau Special Administrative Region (SAR), China, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Local transformations of androgens into estradiol by aromatase P450 is involved in the regulation of prolactin and the proliferation of pituitary prolactin-positive cells. PLoS One 2014; 9:e101403. [PMID: 24978194 PMCID: PMC4076335 DOI: 10.1371/journal.pone.0101403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/05/2014] [Indexed: 01/24/2023] Open
Abstract
In previous studies we demonstrated the immunohistochemical expression of aromatase in pituitary cells. In order to determine whether pituitary aromatase is involved in the paracrine regulation of prolactin-producing pituitary cells and the physiological relevance of pituitary aromatase in the control of these cells, an in vivo and in vitro immunocytochemical and morphometric study of prolactin-positive pituitary cells was carried out on the pituitary glands of adult male rats treated with the aromatase antagonist fadrozole. Moreover, we analyzed the expression of mRNA for the enzyme in pituitary cells of male adult rats by in situ hybridization. The aromatase-mRNA was seen to be located in the cytoplasm of 41% of pituitary cells and was well correlated with the immunocytochemical staining. After in vivo treatment with fadrozole, the size (cellular and nuclear areas) of prolactin cells, as well as the percentage of prolactin-positive cells and the percentage of proliferating-prolactin cells, was significantly decreased. Moreover, fadrozole decreased serum prolactin levels. In vitro, treatment with fadrozole plus testosterone induced similar effects on prolactin-positive cells, inhibiting their cellular proliferation. Our results suggest that under physiological conditions aromatase P450 exerts a relevant control over male pituitary prolactin-cells, probably transforming testosterone to estradiol in the pituitary gland.
Collapse
|
21
|
Carretero J, Blanco EJ, Carretero M, Carretero-Hernández M, García-Barrado MJ, Iglesias-Osma MC, Burks DJ, Font de Mora J. The expression of AIB1 correlates with cellular proliferation in human prolactinomas. Ann Anat 2013; 195:253-9. [PMID: 23433587 DOI: 10.1016/j.aanat.2013.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
Abstract
Estrogens as well as certain growth factors strongly influence the development and growth of prolactinomas. However, the molecular mechanisms by which extracellular factors trigger prolactinomas are not well known. Amplified in breast cancer 1 (AIB1), also known as steroid receptor co-activator 3 (SRC-3), belongs to the p160/SRC family of nuclear receptor co-activators and is a major co-activator of the estrogen receptor. Here, we report that the estrogen receptor coactivator AIB1 is overexpressed in human prolactinomas and correlates with the detection of aromatase and estrogen receptor α (ERα). Of the 87 pituitary tumors evaluated in women, 56%, corresponding to hyperoprolactinemic women, contained an enriched population of prolactin-positive cells and hence were further classified as prolactinomas. All prolactinomas stained positive for both ERα and AIB1. Moreover, AIB1 sub-cellular distribution was indicative of the cell-cycle status of tumors; the nuclear expression of AIB1 was correlated with proliferative markers whereas the cytoplasmic localization of AIB1 coincided with active caspase-3. Thus, our results demonstrate for the first time that AIB1 is expressed in prolactinomas and suggest its participation in the regulation of proliferation and apoptosis of tumoral cells. Because aromatase expression is also enhanced in these prolactinomas and it is involved in the local production of estradiol, both mechanisms, ER-AIB1 and aromatase could be related.
Collapse
Affiliation(s)
- José Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nuruddin S, Wojniusz S, Ropstad E, Krogenæs A, Evans NP, Robinson JE, Solbakk AK, Amiry-Moghaddam M, Haraldsen IRH. Peri-pubertal gonadotropin-releasing hormone analog treatment affects hippocampus gene expression without changing spatial orientation in young sheep. Behav Brain Res 2012; 242:9-16. [PMID: 23266521 DOI: 10.1016/j.bbr.2012.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Normal brain maturation is the result of molecular changes that can be modulated by endocrine variables associated with brain plasticity and results in sex- and age specific changes in cognitive performance. Using a sheep model, we have previously shown that peri-pubertal pharmacological blockade of gonadotropin releasing hormone (GnRH) receptors results in increased sex-differences in cognitive executive function and emotional control. In this study we explore effects of this treatment regime on hippocampal gene expression and spatial orientation. METHODS The study was conducted with 30 same-sex twin lambs, half of which were treated with the GnRH analog (GnRHa) goserelin acetate every 4th week, beginning before puberty, until 50 weeks of age. Animals were tested in their spatial orientation ability at 48 weeks of age. Quantitative real time PCR analysis was conducted to examine effects of treatment on the expression of genes associated with synaptic plasticity and endocrine signaling. RESULTS GnRHa treatment was associated with significant sex- and hemisphere specific changes in mRNA expression for some of the genes studied. The treatment had no significant effect on spatial orientation. However, there was a tendency that females performed better than males in spatial orientation. CONCLUSION Our results indicate that GnRH directly and/or indirectly, is involved in the regulation of sex- and side-specific expression patterns of genes. Hence, these results should be considered when long-term peri-pubertal GnRHa treatment is used in children.
Collapse
Affiliation(s)
- Syed Nuruddin
- Norwegian School of Veterinary Science, Pb 8146 Dep, 0033 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang Y, Zhang S, Zhou W, Ye X, Ge W, Cheng CHK, Lin H, Zhang W, Zhang L. Androgen rather than estrogen up-regulates brain-type cytochrome P450 aromatase (cyp19a1b) gene via tissue-specific promoters in the hermaphrodite teleost ricefield eel Monopterus albus. Mol Cell Endocrinol 2012; 350:125-35. [PMID: 22178793 DOI: 10.1016/j.mce.2011.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 11/30/2022]
Abstract
CYP19A1 in the brain and pituitary of vertebrates is important for reproductive and non-reproductive processes. In teleosts, it is broadly accepted that estradiol (E(2)) up-regulates cyp19a1b gene via a positive autoregulatory loop. Our present study, however, showed that E(2) did not up-regulate ricefield eel cyp19a1b in the hypothalamus and pituitary, whereas dihydrotestosterone (DHT) or testosterone (T) stimulated cyp19a1b expression only in the pituitary. Two tissue-specific promoters, namely promoter I and II directing the expression in the brain and pituitary respectively, were identified. Promoter I contained a non-consensus estrogen response element (ERE), and consequently did not respond to E(2). Promoter II contained an androgen response element (ARE) and consequently responded to DHT. Taken together, these results demonstrated a novel steroidal regulation of cyp19a1b gene expression and an alternative usage of tissue-specific cyp19a1b promoters in the brain and pituitary of a teleost species, the ricefield eel.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Synaptic estrogen receptor-alpha levels in prefrontal cortex in female rhesus monkeys and their correlation with cognitive performance. J Neurosci 2010; 30:12770-6. [PMID: 20861381 DOI: 10.1523/jneurosci.3192-10.2010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In rat hippocampus, estrogen receptor-α (ER-α) can initiate nongenomic signaling mechanisms that modulate synaptic plasticity in response to either circulating or locally synthesized estradiol (E). Here we report quantitative electron microscopic data demonstrating that ER-α is present within excitatory synapses in dorsolateral prefrontal cortex (dlPFC) of young and aged ovariectomized female rhesus monkeys with and without E treatment. There were no treatment or age effects on the percentage of excitatory synapses containing ER-α, nor were there any group differences in distribution of ER-α within the synapse. However, the mean size of synapses containing ER-α was larger than that of unlabeled excitatory synapses. All monkeys were tested on delayed response (DR), a cognitive test of working memory that requires dlPFC. In young ovariectomized monkeys without E treatment, presynaptic ER-α correlated with DR accuracy across memory delays. In aged monkeys that received E treatment, ER-α within the postsynaptic density (30-60 nm from the synaptic membrane) positively correlated with DR performance. Thus, although the lack of group effects suggests that ER-α is primarily in synapses that are stable across age and treatment, synaptic abundance of ER-α is correlated with individual performance in two key age/treatment groups. These data have important implications for individual differences in the cognitive outcome among menopausal women and promote a focus on cortical estrogen receptors for therapeutic efficacy with respect to cognition.
Collapse
|
25
|
Bryan KJ, Mudd JC, Richardson SL, Chang J, Lee HG, Zhu X, Smith MA, Casadesus G. Down-regulation of serum gonadotropins is as effective as estrogen replacement at improving menopause-associated cognitive deficits. J Neurochem 2009; 112:870-81. [PMID: 19943850 DOI: 10.1111/j.1471-4159.2009.06502.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Declining levels of estrogen in women result in increases in gonadotropins such as luteinizing hormone (LH) through loss of feedback inhibition. LH, like estrogen, is modulated by hormone replacement therapy. However, the role of post-menopausal gonadotropin increases on cognition has not been evaluated. Here, we demonstrate that the down-regulation of ovariectomy-driven LH elevations using the gonadotropin releasing hormone super-analogue, leuprolide acetate, improves cognitive function in the Morris water maze and Y-maze tests in the absence of E2. Furthermore, our data suggest that these effects are independent of the modulation of estrogen receptors alpha and beta, or activation of CYP19 and StAR, associated with the production of endogenous E2. Importantly, pathways associated with improved cognition such as CaMKII and GluR1-Ser831 are up-regulated by leuprolide treatment but not by chronic long-term E2 replacement suggesting independent cognition-modulating properties. Our findings suggest that down-regulation of gonadotropins is as effective as E2 in modulating cognition but likely acts through different molecular mechanisms. These findings provide a potential novel protective strategy to treat menopause/age-related cognitive decline and/or prevent the development of AD.
Collapse
Affiliation(s)
- Kathryn J Bryan
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Colciago A, Casati L, Mornati O, Vergoni A, Santagostino A, Celotti F, Negri-Cesi P. Chronic treatment with polychlorinated biphenyls (PCB) during pregnancy and lactation in the rat. Toxicol Appl Pharmacol 2009; 239:46-54. [DOI: 10.1016/j.taap.2009.04.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 01/05/2023]
|
27
|
Suneel Kumar O, Sharma D, Singh D, Sharma M. CYP19 (cytochrome P450 aromatase) gene polymorphism in murrah buffalo heifers of different fertility performance. Res Vet Sci 2009; 86:427-37. [DOI: 10.1016/j.rvsc.2008.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 09/11/2008] [Accepted: 09/23/2008] [Indexed: 11/29/2022]
|
28
|
Richard N, Galmiche G, Corvaisier S, Caraty A, Kottler ML. KiSS-1 and GPR54 genes are co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin-releasing hormone. J Neuroendocrinol 2008; 20:381-93. [PMID: 18208554 DOI: 10.1111/j.1365-2826.2008.01653.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kisspeptin, the product derived from KiSS-1, and its cognate receptor, GPR54, both exert a role in the neuroendocrine control of reproduction by regulating gonadotrophin-releasing hormone (GnRH) secretion. In the present study, we demonstrate, using dual immunofluorescence with specific antibodies, that the KiSS-1 and GPR54 genes are both expressed in rat gonadotrophs. All luteinising hormone beta-immunoreactive (LH beta-ir) cells were stained by the KiSS-1 antibody but some kisspeptin-ir cells were not LH beta positive; thus, we cannot exclude the possibility that kisspeptins are expressed in other pituitary cells. All GPR54-ir are co-localised with LH beta cells, but only a subset of LH beta cells are stained with the GPR54 antibody. Using the real-time reverse transcription-polymerase chain reaction (RT-PCR), we found that the expression of KiSS-1 and GPR54 is differentially regulated by steroids. In the female, KiSS-1 mRNA levels dramatically decreased following ovariectomy (OVX), and this decrease was prevented by administration of 17beta-oestradiol (E(2)), but not by administration of GnRH antagonist or agonist. Administration of E(2) in OVX rats receiving either GnRH antagonist or agonist clearly shows that E(2) acts directly on the pituitary to positively control KiSS-1 expression. In OVX rats, administration of the selective oestrogen receptor (ER)alpha ligand propylpyrazoletriol, but not the selective ER beta ligand diarylpropionitrile, mimics this effect. By contrast, our study shows that GPR54 expression is positively regulated by GnRH and negatively controlled by chronic exposure to E(2). In summary, our data document for the first time that, in the female rat pituitary, KiSS-1 expression is up-regulated by oestradiol, similarly to that seen in the anteroventral periventricular nucleus of the hypothalamus. Conversely, GPR54 is up-regulated by GnRH, which exclusively targets gonadotrophs.
Collapse
Affiliation(s)
- N Richard
- Département Génétique et Reproduction, Unité de Formation et de Recherche de médecine, Centre Hospitalier Universitaire, Caen, France
| | | | | | | | | |
Collapse
|
29
|
Cheshenko K, Pakdel F, Segner H, Kah O, Eggen RIL. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. Gen Comp Endocrinol 2008; 155:31-62. [PMID: 17459383 DOI: 10.1016/j.ygcen.2007.03.005] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 11/28/2022]
Abstract
Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.
Collapse
Affiliation(s)
- Ksenia Cheshenko
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Postfach 611, CH 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Arreguin-Arevalo JA, Davis TL, Nett TM. Differential Modulation of Gonadotropin Secretion by Selective Estrogen Receptor 1 and Estrogen Receptor 2 Agonists in Ovariectomized Ewes1. Biol Reprod 2007; 77:320-8. [PMID: 17429013 DOI: 10.1095/biolreprod.107.060046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objectives of this study were to determine whether activation of estrogen receptor 1 (ESR1; also known as ERalpha), or estrogen receptor 2 (ESR2; also known as ERbeta), or both are required to: 1) acutely inhibit secretion of LH, 2) induce the preovulatory-like surge of LH, and 3) inhibit secretion of FSH in ovariectomized (OVX) ewes. OVX ewes (n = 6) were administered intramuscularly 25 micrograms estradiol (E2), 12 mg propylpyrazoletriol (PPT; a subtype-selective ESR1 agonist), 21 mg diaprylpropionitrile (DPN; a subtype-selective ESR2 agonist), or PPT + DPN. Like E2, administration of PPT, DPN, or combination of the two rapidly decreased (P < 0.05) secretion of LH. Each agonist induced a gradual, prolonged rise in secretion of LH after the initial inhibition, but neither agonist alone nor the combined agonists was able to induce a "normal" preovulatory-like surge of LH similar to that induced by E2. Compared with E2-treated ewes, the beginning of the increase in secretion of LH occurred earlier (P < 0.01) in DPN-treated ewes, later (P < 0.05) in PPT-treated ewes, and at a similar interval in ewes receiving the combined agonist treatment. Like E2, PPT decreased (P < 0.05) secretion of FSH, but the duration of suppression was much longer in PPT-treated ewes. DPN did not alter secretion of FSH in this study. Modulation of the number of GnRH receptors by PPT and DPN was examined in primary cultures of ovine pituitary cells. In our hands, both PPT and DPN increased the number of GnRH receptors, but the dose of DPN required to stimulate synthesis of GnRH receptors was 10 times higher than that of PPT. We conclude that in OVX ewes: 1) ESR1 and ESR2 mediate the negative feedback of E2 on secretion of LH at the level of the pituitary gland, 2) ESR1 and ESR2 do not synergize or antagonize the effects of each other; however, they do interact to synchronize the beginning of the stimulatory effect of E2 on secretion of LH, 3) ESR1 and ESR2 may mediate at least partially the positive feedback of E2 on LH secretion by increasing the number of GnRH receptors, and 4) only ESR1 appears to be involved in the negative feedback of E2 on secretion of FSH.
Collapse
|
31
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Eertmans F, De Wever O, Olivier DW, Dhooge W, Willem D, Vanden Berghe W, Wim VB, Bogaert V, Veerle B, Bracke M, Marc B, Haegeman G, Guy H, Comhaire F, Frank C, Kaufman JM, Jean-Marc K. Estrogen receptor signaling is an unstable feature of the gonadotropic LbetaT2 cell line. Mol Cell Endocrinol 2007; 273:16-24. [PMID: 17561339 DOI: 10.1016/j.mce.2007.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 04/11/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
The murine, gonadotropic LbetaT2 cell line was assessed as a potential in vitro model to analyze estrogen receptor (ER)-mediated regulation of luteinizing hormone (LH) synthesis and secretion. In agreement with limited literature data, repeated exposure to (sub) physiological concentrations of gonadotropin-releasing hormone enhanced LHbeta-subunit gene expression, being the rate-limiting step of LH synthesis, and the corresponding LH secretory response. However, in the same subclone of the LbetaT2 cell line, we observed that LH production was not affected following exposure to E(2), which is in contrast to previously reported weak or modest effects. One explanation may be the absence of measurable ERalpha protein expression on the one hand and impaired ER signal transduction on the other. Furthermore, an alternative ERalpha mRNA splicing variant was detected in the LbetaT2 cell line, which (theoretically) encodes for a protein that may alter ERalpha transcriptional activity, depending on the cellular context. The studied LbetaT2 subclone did not show a generalized impairment of nuclear receptor function, as we observed androgen- and glucocorticoid-induced gene transcription, together with enhanced LH secretory response following dexamethasone treatment. Since its development, the gonadotropic LbetaT2 cell line served as a reference model to study gonadotroph-specific effects because of its mature properties. Nevertheless, this cell line does not seem to be a suitable in vitro model for the study of estrogenic regulatory effects at the level of the pituitary gonadotrophs in view of the unstable nature of ER signaling in LbetaT2 cells.
Collapse
Affiliation(s)
- Frank Eertmans
- Department of Endocrinology, 6K12IE, Ghent University Hospital, De Pintelaan, 185, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|