1
|
Reid VJM, McLoughlin WKX, Pandya K, Stott H, Iškauskienė M, Šačkus A, Marti JA, Kurian D, Wishart TM, Lucatelli C, Peters D, Gray GA, Baker AH, Newby DE, Hadoke PWF, Tavares AAS, MacAskill MG. Assessment of the alpha 7 nicotinic acetylcholine receptor as an imaging marker of cardiac repair-associated processes using NS14490. EJNMMI Res 2024; 14:7. [PMID: 38206500 PMCID: PMC10784260 DOI: 10.1186/s13550-023-01058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cardiac repair and remodeling following myocardial infarction (MI) is a multifactorial process involving pro-reparative inflammation, angiogenesis and fibrosis. Noninvasive imaging using a radiotracer targeting these processes could be used to elucidate cardiac wound healing mechanisms. The alpha7 nicotinic acetylcholine receptor (ɑ7nAChR) stimulates pro-reparative macrophage activity and angiogenesis, making it a potential imaging biomarker in this context. We investigated this by assessing in vitro cellular expression of ɑ7nAChR, and by using a tritiated version of the PET radiotracer [18F]NS14490 in tissue autoradiography studies. RESULTS ɑ7nAChR expression in human monocyte-derived macrophages and vascular cells showed the highest relative expression was within macrophages, but only endothelial cells exhibited a proliferation and hypoxia-driven increase in expression. Using a mouse model of inflammatory angiogenesis following sponge implantation, specific binding of [3H]NS14490 increased from 3.6 ± 0.2 µCi/g at day 3 post-implantation to 4.9 ± 0.2 µCi/g at day 7 (n = 4, P < 0.01), followed by a reduction at days 14 and 21. This peak matched the onset of vessel formation, macrophage infiltration and sponge fibrovascular encapsulation. In a rat MI model, specific binding of [3H]NS14490 was low in sham and remote MI myocardium. Specific binding within the infarct increased from day 14 post-MI (33.8 ± 14.1 µCi/g, P ≤ 0.01 versus sham), peaking at day 28 (48.9 ± 5.1 µCi/g, P ≤ 0.0001 versus sham). Histological and proteomic profiling of ɑ7nAChR positive tissue revealed strong associations between ɑ7nAChR and extracellular matrix deposition, and rat cardiac fibroblasts expressed ɑ7nAChR protein under normoxic and hypoxic conditions. CONCLUSION ɑ7nAChR is highly expressed in human macrophages and showed proliferation and hypoxia-driven expression in human endothelial cells. While NS14490 imaging displays a pattern that coincides with vessel formation, macrophage infiltration and fibrovascular encapsulation in the sponge model, this is not the case in the MI model where the ɑ7nAChR imaging signal was strongly associated with extracellular matrix deposition which could be explained by ɑ7nAChR expression in fibroblasts. Overall, these findings support the involvement of ɑ7nAChR across several processes central to cardiac repair, with fibrosis most closely associated with ɑ7nAChR following MI.
Collapse
Affiliation(s)
- Victoria J M Reid
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | | | - Kalyani Pandya
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Holly Stott
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Monika Iškauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Judit A Marti
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Dominic Kurian
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Thomas M Wishart
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Dan Peters
- DanPET AB, Malmo, Sweden
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gillian A Gray
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - David E Newby
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Patrick W F Hadoke
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Mark G MacAskill
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Osipov AV, Averin AS, Shaykhutdinova ER, Dyachenko IA, Tsetlin VI, Utkin YN. Muscarinic and Nicotinic Acetylcholine Receptors in the Regulation of the Cardiovascular System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023; 49:1-18. [DOI: 10.1134/s1068162023010211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 05/14/2025]
|
3
|
Espinoza-Derout J, Shao XM, Lao CJ, Hasan KM, Rivera JC, Jordan MC, Echeverria V, Roos KP, Sinha-Hikim AP, Friedman TC. Electronic Cigarette Use and the Risk of Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:879726. [PMID: 35463745 PMCID: PMC9021536 DOI: 10.3389/fcvm.2022.879726] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Electronic cigarettes or e-cigarettes are the most frequently used tobacco product among adolescents. Despite the widespread use of e-cigarettes and the known detrimental cardiac consequences of nicotine, the effects of e-cigarettes on the cardiovascular system are not well-known. Several in vitro and in vivo studies delineating the mechanisms of the impact of e-cigarettes on the cardiovascular system have been published. These include mechanisms associated with nicotine or other components of the aerosol or thermal degradation products of e-cigarettes. The increased hyperlipidemia, sympathetic dominance, endothelial dysfunction, DNA damage, and macrophage activation are prominent effects of e-cigarettes. Additionally, oxidative stress and inflammation are unifying mechanisms at many levels of the cardiovascular impairment induced by e-cigarette exposure. This review outlines the contribution of e-cigarettes in the development of cardiovascular diseases and their molecular underpinnings.
Collapse
Affiliation(s)
- Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xuesi M. Shao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Candice J. Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Maria C. Jordan
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Valentina Echeverria
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Kenneth P. Roos
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| |
Collapse
|
4
|
Shahlehi S, Petalcorin MIR. Activation of cholinergic pathway induced vasodilation in rat aorta using aqueous and methanolic leaf extracts of Gynura procumbens. Biomed Pharmacother 2021; 143:112066. [PMID: 34560550 DOI: 10.1016/j.biopha.2021.112066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
Gynura procumbens (GP) is a herbal medicinal plant of South-East Asian origin, popularly recognised as 'Sambung nyawa'. The plant has been used traditionally to treat various diseases including hypertension. The anti-hypertensive activity of this plant has also been scientifically proven both in vivo and in vitro yet the investigation on its mechanisms of actions remains limited. Our previous study has demonstrated the vasodilatory action of both aqueous and methanol GP extracts possibly via activation of the cholinergic pathway and that kaempferol 3-O-rutinoside is the active ingredient responsible in mediating this effect. Hence, in this study we further confirm the involvement of the cholinergic pathway by using several pharmacological interventions, focusing on the downstream mechanism of this pathway. Our results showed that in the presence of endothelium, GP extracts induced vasodilation via activation of the muscarinic M3 receptors. However, in the absence of endothelium, GP mediated vasodilation possibly via stimulation of other muscarinic receptors and/or involvement of nicotinic receptors, a speculation that needs further investigations. GP-induced relaxation was markedly inhibited by nitric oxide (NO) blocker, L-NAME, suggesting that GP elicited ACh endothelium-dependent relaxation by producing NO in rat aortic rings. In conclusion, these data demonstrate that the vasodilatory effect of GP extracts appears to be mediated via cholinergic pathway.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Asteraceae/chemistry
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Kaempferols/isolation & purification
- Kaempferols/pharmacology
- Male
- Methanol/chemistry
- Muscarinic Agonists/isolation & purification
- Muscarinic Agonists/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plant Leaves
- Rats, Sprague-Dawley
- Receptor, Muscarinic M3/agonists
- Receptor, Muscarinic M3/metabolism
- Signal Transduction
- Solvents/chemistry
- Vasodilation/drug effects
- Vasodilator Agents/isolation & purification
- Vasodilator Agents/pharmacology
- Water/chemistry
- Rats
Collapse
Affiliation(s)
- Syahirah Shahlehi
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam
| | - Mark I R Petalcorin
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam.
| |
Collapse
|
5
|
Petsophonsakul P, Burgmaier M, Willems B, Heeneman S, Stadler N, Gremse F, Reith S, Burgmaier K, Kahles F, Marx N, Natour E, Bidar E, Jacobs M, Mees B, Reutelingsperger C, Furmanik M, Schurgers L. Nicotine promotes vascular calcification via intracellular Ca2+-mediated, Nox5-induced oxidative stress and extracellular vesicle release in vascular smooth muscle cells. Cardiovasc Res 2021; 118:2196-2210. [PMID: 34273166 PMCID: PMC9302892 DOI: 10.1093/cvr/cvab244] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Aims Smokers are at increased risk of cardiovascular events. However, the exact mechanisms through which smoking influences cardiovascular disease resulting in accelerated atherosclerosis and vascular calcification are unknown. The aim of this study was to investigate effects of nicotine on initiation of vascular smooth muscle cell (VSMC) calcification and to elucidate underlying mechanisms. Methods and results We assessed vascular calcification of 62 carotid lesions of both smoking and non-smoking patients using ex vivo micro-computed tomography (µCT) scanning. Calcification was present more often in carotid plaques of smokers (n = 22 of 30, 73.3%) compared to non-smokers (n = 11 of 32, 34.3%; P < 0.001), confirming higher atherosclerotic burden. The difference was particularly profound for microcalcifications, which was 17-fold higher in smokers compared to non-smokers. In vitro, nicotine-induced human primary VSMC calcification, and increased osteogenic gene expression (Runx2, Osx, BSP, and OPN) and extracellular vesicle (EV) secretion. The pro-calcifying effects of nicotine were mediated by Ca2+-dependent Nox5. SiRNA knock-down of Nox5 inhibited nicotine-induced EV release and calcification. Moreover, pre-treatment of hVSMCs with vitamin K2 ameliorated nicotine-induced intracellular oxidative stress, EV secretion, and calcification. Using nicotinic acetylcholine receptor (nAChR) blockers α-bungarotoxin and hexamethonium bromide, we found that the effects of nicotine on intracellular Ca2+ and oxidative stress were mediated by α7 and α3 nAChR. Finally, we showed that Nox5 expression was higher in carotid arteries of smokers and correlated with calcification levels in these vessels. Conclusion In this study, we provide evidence that nicotine induces Nox5-mediated pro-calcific processes as novel mechanism of increased atherosclerotic calcification. We identified that activation of α7 and α3 nAChR by nicotine increases intracellular Ca2+ and initiates calcification of hVSMCs through increased Nox5 activity, leading to oxidative stress-mediated EV release. Identifying the role of Nox5-induced oxidative stress opens novel avenues for diagnosis and treatment of smoking-induced cardiovascular disease.
Collapse
Affiliation(s)
- Ploingarm Petsophonsakul
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Mathias Burgmaier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.,Department of Cardiology, Medical Clinic I, University Hospital of the RWTH Aachen, Germany
| | - Brecht Willems
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Sylvia Heeneman
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Nadina Stadler
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Felix Gremse
- Experimental Molecular Imaging, University Hospital of the RWTH Aachen, Germany
| | - Sebastian Reith
- Department of Cardiology, St. Franziskus Hospital Münster, Münster, Germany
| | - Kathrin Burgmaier
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Germany
| | - Florian Kahles
- Department of Cardiology, Medical Clinic I, University Hospital of the RWTH Aachen, Germany
| | - Nikolaus Marx
- Department of Cardiology, Medical Clinic I, University Hospital of the RWTH Aachen, Germany
| | - Ehsan Natour
- Department of Cardiovascular Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands
| | - Elham Bidar
- Department of Cardiovascular Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands
| | - Michael Jacobs
- European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands.,Department of Vascular Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Barend Mees
- European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands.,Department of Vascular Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Malgorzata Furmanik
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Duan H, Khan GJ, Shang LJ, Peng H, Hu WC, Zhang JY, Hua J, Cassandra A, Rashed MM, Zhai KF. Computational pharmacology and bioinformatics to explore the potential mechanism of Schisandra against atherosclerosis. Food Chem Toxicol 2021; 150:112058. [DOI: 10.1016/j.fct.2021.112058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
|
7
|
Vieira-Alves I, Coimbra-Campos LMC, Sancho M, da Silva RF, Cortes SF, Lemos VS. Role of the α7 Nicotinic Acetylcholine Receptor in the Pathophysiology of Atherosclerosis. Front Physiol 2020; 11:621769. [PMID: 33424644 PMCID: PMC7785985 DOI: 10.3389/fphys.2020.621769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis constitutes a major risk factor for cardiovascular diseases, the leading cause of morbidity and mortality worldwide. This slowly progressing, chronic inflammatory disorder of large- and medium-sized arteries involves complex recruitment of immune cells, lipid accumulation, and vascular structural remodeling. The α7 nicotinic acetylcholine receptor (α7nAChR) is expressed in several cell types involved in the genesis and progression of atherosclerosis, including macrophages, dendritic cells, T and B cells, vascular endothelial and smooth muscle cells (VSMCs). Recently, the α7nAChR has been described as an essential regulator of inflammation as this receptor mediates the inhibition of cytokine synthesis through the cholinergic anti-inflammatory pathway, a mechanism involved in the attenuation of atherosclerotic disease. Aside from the neuronal cholinergic control of inflammation, the non-neuronal cholinergic system similarly regulates the immune function. Acetylcholine released from T cells acts in an autocrine/paracrine fashion at the α7nAChR of various immune cells to modulate immune function. This mechanism additionally has potential implications in reducing atherosclerotic plaque formation. In contrast, the activation of α7nAChR is linked to the induction of angiogenesis and VSMC proliferation, which may contribute to the progression of atherosclerosis. Therefore, both atheroprotective and pro-atherogenic roles are attributed to the stimulation of α7nAChRs, and their role in the genesis and progression of atheromatous plaque is still under debate. This minireview highlights the current knowledge on the involvement of the α7nAChR in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Ildernandes Vieira-Alves
- Department of Physiology and Biophysics, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leda M C Coimbra-Campos
- Department of Physiology and Biophysics, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Steyner F Cortes
- Department of Pharmacology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Xie H, Yepuri N, Meng Q, Dhawan R, Leech CA, Chepurny OG, Holz GG, Cooney RN. Therapeutic potential of α7 nicotinic acetylcholine receptor agonists to combat obesity, diabetes, and inflammation. Rev Endocr Metab Disord 2020; 21:431-447. [PMID: 32851581 PMCID: PMC7572644 DOI: 10.1007/s11154-020-09584-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory reflex (CAIR) represents an important homeostatic regulatory mechanism for sensing and controlling the body's response to inflammatory stimuli. Vagovagal reflexes are an integral component of CAIR whose anti-inflammatory effects are mediated by acetylcholine (ACh) acting at α7 nicotinic acetylcholine receptors (α7nAChR) located on cells of the immune system. Recently, it is appreciated that CAIR and α7nAChR also participate in the control of metabolic homeostasis. This has led to the understanding that defective vagovagal reflex circuitry underlying CAIR might explain the coexistence of obesity, diabetes, and inflammation in the metabolic syndrome. Thus, there is renewed interest in the α7nAChR that mediates CAIR, particularly from the standpoint of therapeutics. Of special note is the recent finding that α7nAChR agonist GTS-21 acts at L-cells of the distal intestine to stimulate the release of two glucoregulatory and anorexigenic hormones: glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Furthermore, α7nAChR agonist PNU 282987 exerts trophic factor-like actions to support pancreatic β-cell survival under conditions of stress resembling diabetes. This review provides an overview of α7nAChR function as it pertains to CAIR, vagovagal reflexes, and metabolic homeostasis. We also consider the possible usefulness of α7nAChR agonists for treatment of obesity, diabetes, and inflammation.
Collapse
Affiliation(s)
- Han Xie
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Natesh Yepuri
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Qinghe Meng
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Ravi Dhawan
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Colin A Leech
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Oleg G Chepurny
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - George G Holz
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Robert N Cooney
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
9
|
Traunmüller F. Atherosclerosis is a vascular stem cell disease caused by insulin. Med Hypotheses 2018; 116:22-27. [PMID: 29857902 DOI: 10.1016/j.mehy.2018.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
The present article proposes the hypothesis that when multipotent vascular stem cells are exposed to excessive insulin in a rhythmic pattern of sharply rising and falling concentrations, their differentiation is misdirected toward adipogenic and osteogenic cell lineages. This results in plaque-like accumulation of adipocytes with fat and cholesterol deposition from adipocyte debris, and osteogenic (progenitor) cells with a calcified matrix in advanced lesions. The ingrowth of capillaries and infiltration with macrophages, which upon uptake of lipids turn into foam cells, are unspecific pro-resolving reactions. Epidemiological, histopathological, pharmacological, and experimental evidence in favour of this hypothesis is summarised.
Collapse
|
10
|
Chen J, Liu XM, Zhang Y. Venom based neural modulators. Exp Ther Med 2018; 15:615-619. [PMID: 29399064 PMCID: PMC5772594 DOI: 10.3892/etm.2017.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
Different types of neuronal nicotinic acetylcholine receptors (nAChRs) are expected to occur in vivo, most structure-activity relationship studies have been carried out for just a few neuronal subtypes. The present review enlightens current aspects of venom modulators of nAChRs. Important electronic databases such as PubMed or Google scholar were explored for the collection of latest studies in the field. Clinical and basic research has shown that cholinergic receptors play a role in several disorders of the nervous system such as chronic pain, Alzheimers disease and addiction to nicotine, alcohol and drugs. Unfortunately, the lack of selective modulators for each subtype of nAChR makes their pharmacological characterization difficult, which has slowed the development of therapeutic nAChR modulators with high selectivity and absence of off-target side-effects. Animal venoms have proven to be an excellent natural source of bioactive molecules with activity against ion channels. The present review concludes that the presence of small-molecule nAChR modulators in spider venoms support the use of venoms as a potential source of novel modulators.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiao-Ming Liu
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuan Zhang
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
11
|
Potential of α7 nicotinic acetylcholine receptor PET imaging in atherosclerosis. Methods 2017; 130:90-104. [PMID: 28602809 DOI: 10.1016/j.ymeth.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic events are usually acute and often strike otherwise asymptomatic patients. Although multiple clinical risk factors have been associated with atherosclerosis, as of yet no further individual prediction can be made as to who will suffer from its consequences based on biomarker analysis or traditional imaging methods like CT, MRI or angiography. Previously, non-invasive imaging with 18F-fluorodeoxyglucose (18F-FDG) PET was shown to potentially fill this niche as it offers high sensitive detection of metabolic processes associated with inflammatory changes in atherosclerotic plaques. However, 18F-FDG PET imaging of arterial vessels suffers from non-specificity and has still to be proven to reliably identify vulnerable plaques, carrying a high risk of rupture. Therefore, it may be regarded only as a secondary marker for monitoring treatment effects and it does not offer alternative treatment options or direct insight in treatment mechanisms. In this review, an overview is given of the current status and the potential of PET imaging of inflammation and angiogenesis in atherosclerosis in general and special emphasis is given to imaging of α7 nicotinic acetylcholine receptors (α7 nAChRs). Due to the gaps that still exist in our understanding of atherogenesis and the limitations of the available PET tracers, the search continues for a more specific radioligand, able to differentiate between stable atherosclerosis and plaques prone to rupture. The potential role of the α7 nAChR as imaging marker for plaque vulnerability is explored. Today, strong evidence exists that nAChRs are involved in the atherosclerotic disease process. They are suggested to mediate the deleterious effects of the major tobacco component, nicotine, a nAChR agonist. Mainly based on in vitro data, α7 nAChR stimulation might increase plaque burden via increased neovascularization. However, in animal studies, α7 nAChR manipulation appears to reduce plaque size due to its inhibitory effects on inflammatory cells. Thus, reliable identification of α7 nAChRs by in vivo imaging is crucial to investigate the exact role of α7 nAChR in atherosclerosis before any therapeutic approach in the human setting can be justified. In this review, we discuss the first experience with α7 nAChR PET tracers and developmental considerations regarding the "optimal" PET tracer to image vascular nAChRs.
Collapse
|
12
|
Kanaoka Y, Koga M, Sugiyama K, Ohishi K, Kataoka Y, Yamauchi A. Varenicline enhances oxidized LDL uptake by increasing expression of LOX-1 and CD36 scavenger receptors through α 7 nAChR in macrophages. Toxicology 2017; 380:62-71. [DOI: 10.1016/j.tox.2017.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 01/01/2023]
|
13
|
Wang C, Chen H, Zhu W, Xu Y, Liu M, Zhu L, Yang F, Zhang L, Liu X, Zhong Z, Zhao J, Jiang J, Xiang M, Yu H, Hu X, Lu H, Wang J. Nicotine Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice by Activating α7 Nicotinic Acetylcholine Receptor on Mast Cells. Arterioscler Thromb Vasc Biol 2016; 37:53-65. [PMID: 27834689 DOI: 10.1161/atvbaha.116.307264] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/23/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Cigarette smoking is an independent risk factor for atherosclerosis. Nicotine, the addictive component of cigarettes, induces mast cell (MC) release and contributes to atherogenesis. The purpose of this study was to determine whether nicotine accelerates atherosclerosis through MC-mediated mechanisms and whether MC stabilizer prevents this pathological process. APPROACH AND RESULTS Nicotine administration increased the size of atherosclerotic lesions in apolipoprotein E-deficient (Apoe-/-) mice fed a fat-enriched diet. This was accompanied by enhanced intraplaque macrophage content and lipid deposition but reduced collagen and smooth muscle cell contents. MC deficiency in Apoe-/- mice (Apoe-/-KitW-sh/W-sh) diminished nicotine-induced atherosclerosis. Nicotine activated bone marrow-derived MCs in vitro, which was inhibited by a MC stabilizer disodium cromoglycate or a nonselective nicotinic acetylcholine receptor blocker mecamylamine. Further investigation revealed that α7 nicotinic acetylcholine receptor was a target for nicotine activation in MCs. Nicotine did not change atherosclerotic lesion size of Apoe-/-KitW-sh/W-sh mice reconstituted with MCs from Apoe-/-α7nAChR-/- animals. CONCLUSIONS Activation of α7 nicotinic acetylcholine receptor on MCs is a mechanism by which nicotine enhances atherosclerosis.
Collapse
Affiliation(s)
- Chen Wang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Han Chen
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Wei Zhu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Yinchuan Xu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Mingfei Liu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Lianlian Zhu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Fan Yang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Ling Zhang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Xianbao Liu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Zhiwei Zhong
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Jing Zhao
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Jun Jiang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Meixiang Xiang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Hong Yu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Xinyang Hu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Hong Lu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.)
| | - Jian'an Wang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., L. Zhu, L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (C.W., H.C., W.Z., Y.X., M.L., L. Zhu, F.Y., L. Zhang, X.L., Z.Z., J.Z., J.J., M.X., H.Y., X.H., J.W.); and Saha Cardiovascular Research Center, Departments of Physiology, University of Kentucky, Lexington (H.L.).
| |
Collapse
|
14
|
Abstract
During the past years, non-neuronal vascular nicotinic acetylcholine receptors (nAChRs) increasingly have gained interest in cardiovascular research, as they are known to mediate the deleterious effects of nicotine and nitrosamines, components of tobacco smoke, on the vasculature. Because smoking is a major risk factor for the development of atherosclerosis, it is obvious that understanding the pathophysiologic role of nAChRs in the atherosclerotic disease process, as well as in the development of new diagnostic and therapeutic nAChR-related options, has become more important. Accordingly, we briefly summarize the pathophysiologic role of vascular nAChRs in the atherosclerotic disease process. We also provide an overview of currently available nAChR positron emission tomography (PET) tracers and their performance in the noninvasive imaging of vascular nAChRs, as well as potential nAChR PET tracers that might be an option for vascular nAChR PET imaging in the future.
Collapse
Affiliation(s)
- Matthias Bauwens
- Department of Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | | | | |
Collapse
|
15
|
Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C. Mediators Inflamm 2016; 2016:4854378. [PMID: 26884647 PMCID: PMC4738711 DOI: 10.1155/2016/4854378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Background. Reducing β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state) or alternative activated state (M2 state); the former is cytotoxic and the latter is neurotrophic. In this investigation, we hypothesized that nicotine attenuates Aβ-induced microglial activation by shifting microglial M1 to M2 state, and cannabinoid CB2 receptor and protein kinase C mediate the process. Methods. We used Aβ1–42 to activate N9 microglial cells and observed nicotine-induced effects on microglial M1 and M2 biomarkers by using western blot, immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA). Results. We found that nicotine reduced the levels of M1 state markers, including inducible nitric oxide synthase (iNOS) expression and tumor necrosis factor α (TNF-α) and interleukin- (IL-) 6 releases; meanwhile, it increased the levels of M2 state markers, including arginase-1 (Arg-1) expression and brain-derived neurotrophic factor (BDNF) release, in the Aβ-stimulated microglia. Coadministration of cannabinoid CB2 receptor antagonist or protein kinase C (PKC) inhibitor partially abolished the nicotine-induced effects. Conclusion. These findings indicated that cannabinoid CB2 receptor mediates nicotine-induced anti-inflammation in microglia exposed to Aβ via PKC.
Collapse
|
16
|
Kalantari-Dehaghi M, Parnell EA, Armand T, Bernard HU, Grando SA. The nicotinic acetylcholine receptor-mediated reciprocal effects of the tobacco nitrosamine NNK and SLURP-1 on human mammary epithelial cells. Int Immunopharmacol 2015; 29:99-104. [DOI: 10.1016/j.intimp.2015.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/29/2015] [Accepted: 04/17/2015] [Indexed: 12/17/2022]
|
17
|
Chronic nicotine treatment enhances vascular smooth muscle relaxation in rats. Acta Pharmacol Sin 2015; 36:429-39. [PMID: 25832423 DOI: 10.1038/aps.2015.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022]
Abstract
AIM To investigate the effect of chronic nicotine treatment on vascular function and to identify the underlying mechanisms. METHODS Adult rats were treated with nicotine (3 mg·kg(-1)·d(-1), sc) for 6 weeks. After the rats were sacrificed, aortic rings were prepared for detecting vascular reactivity, and thoracic aorta and periaortic fat samples were collected for histological and molecular biology studies. RESULTS Chronic nicotine treatment significantly reduced periaortic fat, and specifically enhanced smooth muscle relaxation without altering the aortic adventitial fat and endothelium function. Pretreatment with the soluble guanylyl cyclase inhibitor ODQ (3 μmol/L) or PKG inhibitor Rp-8-Br-PET-cGMP (30 μmol/L) abolished the nicotine-induced enhancement of smooth muscle relaxation, whereas the cGMP analogue 8-Br-cGMP could mimic the nicotine-induced enhancement of smooth muscle relaxation. However, the chronic nicotine treatment did not alter PKG protein expression and activity in aortic media. CONCLUSION Chronic nicotine treatment enhances vascular smooth muscle relaxation of rats via activation of PKG pathway.
Collapse
|
18
|
Chernyavsky AI, Shchepotin IB, Galitovkiy V, Grando SA. Mechanisms of tumor-promoting activities of nicotine in lung cancer: synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors. BMC Cancer 2015; 15:152. [PMID: 25885699 PMCID: PMC4369089 DOI: 10.1186/s12885-015-1158-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background One of the major controversies of contemporary medicine is created by an increased consumption of nicotine and growing evidence of its connection to cancer, which urges elucidation of the molecular mechanisms of oncogenic effects of inhaled nicotine. Current research indicates that nicotinergic regulation of cell survival and death is more complex than originally thought, because it involves signals emanating from both cell membrane (cm)- and mitochondrial (mt)-nicotinic acetylcholine receptors (nAChRs). In this study, we elaborated on the novel concept linking cm-nAChRs to growth promotion of lung cancer cells through cooperation with the growth factor signaling, and mt-nAChRs — to inhibition of intrinsic apoptosis through prevention of opening of mitochondrial permeability transition pore (mPTP). Methods Experiments were performed with normal human lobar bronchial epithelial cells, the lung squamous cell carcinoma line SW900, and intact and NNK-transformed immortalized human bronchial cell line BEP2D. Results We demonstrated that the growth-promoting effect of nicotine mediated by activation of α7 cm-nAChR synergizes mainly with that of epidermal growth factor (EGF), α3 — vascular endothelial growth factor (VEGF), α4 — insulin-like growth factor I (IGF-I) and VEGF, whereas α9 with EGF, IGF-I and VEGF. We also established the ligand-binding abilities of mt-nAChRs and demonstrated that quantity of the mt-nAChRs coupled to inhibition of mPTP opening increases upon malignant transformation. Conclusions These results indicated that the biological sum of simultaneous activation of cm- and mt-nAChRs produces a combination of growth-promoting and anti-apoptotic signals that implement the tumor-promoting action of nicotine on lung cells. Therefore, nAChRs may be a promising molecular target to arrest lung cancer progression and re-open mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Alex I Chernyavsky
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| | | | - Valentin Galitovkiy
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| | - Sergei A Grando
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA. .,Department of Biological Chemistry, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA. .,Cancer Center and Research Institute, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
19
|
Koga M, Kanaoka Y, Ohkido Y, Kubo N, Ohishi K, Sugiyama K, Yamauchi A, Kataoka Y. Varenicline aggravates plaque formation through α7 nicotinic acetylcholine receptors in ApoE KO mice. Biochem Biophys Res Commun 2014; 455:194-7. [DOI: 10.1016/j.bbrc.2014.10.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
|
20
|
A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages. PLoS One 2014; 9:e108397. [PMID: 25259522 PMCID: PMC4178160 DOI: 10.1371/journal.pone.0108397] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022] Open
Abstract
Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR) powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS)-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs), has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M), a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3) or two convergent cascades (JAK2/STAT3 and PI3K/STAT3), is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the ‘endotoxin tolerant’ phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases.
Collapse
|
21
|
Wada T, Miyashita Y, Sasaki M, Aruga Y, Nakamura Y, Ishii Y, Sasahara M, Kanasaki K, Kitada M, Koya D, Shimano H, Tsuneki H, Sasaoka T. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet. Am J Physiol Endocrinol Metab 2013; 305:E1415-25. [PMID: 24129399 DOI: 10.1152/ajpendo.00419.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.
Collapse
|
22
|
Brown KC, Perry HE, Lau JK, Jones DV, Pulliam JF, Thornhill BA, Crabtree CM, Luo H, Chen YC, Dasgupta P. Nicotine induces the up-regulation of the α7-nicotinic receptor (α7-nAChR) in human squamous cell lung cancer cells via the Sp1/GATA protein pathway. J Biol Chem 2013; 288:33049-59. [PMID: 24089524 PMCID: PMC3829154 DOI: 10.1074/jbc.m113.501601] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nicotine, the addictive component of cigarettes, promotes lung cancer proliferation via the α7-nicotinic acetylcholine receptor (α7-nAChR) subtype. The present manuscript explores the effect of nicotine exposure on α7-nAChR levels in squamous cell carcinoma of the lung (SCC-L) in vitro and in vivo. Nicotine (at concentrations present in the plasma of average smokers) increased α7-nAChR levels in human SCC-L cell lines. Nicotine-induced up-regulation of α7-nAChR was confirmed in vivo by chicken chorioallantoic membrane models. We also observed that the levels of α7-nAChR in human SCC-L tumors (isolated from patients who are active smokers) correlated with their smoking history. Nicotine increased the levels of α7-nAChR mRNA and α7-nAChR transcription in human SCC-L cell lines and SCC-L tumors. Nicotine-induced up-regulation of α7-nAChR required GATA4 and GATA6. ChIP assays showed that nicotine induced the binding of GATA4 or GATA6 to Sp1 on the α7-nAChR promoter, thereby inducing its transcription and increasing its levels in human SCC-L. Our data are clinically relevant because SCC-L patients smoked for decades before being diagnosed with cancer. It may be envisaged that continuous exposure to nicotine (in such SCC-L patients) causes up-regulation of α7-nAChRs, which facilitates tumor growth and progression. Our results will also be relevant to many SCC-L patients exposed to nicotine via second-hand smoke, electronic cigarettes, and patches or gums to quit smoking.
Collapse
Affiliation(s)
- Kathleen C Brown
- From the Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25755
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cilostazol ameliorates systemic insulin resistance in diabetic db/db mice by suppressing chronic inflammation in adipose tissue via modulation of both adipocyte and macrophage functions. Eur J Pharmacol 2013; 707:120-9. [DOI: 10.1016/j.ejphar.2013.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 11/19/2022]
|
24
|
Xu TY, Guo LL, Wang P, Song J, Le YY, Viollet B, Miao CY. Chronic exposure to nicotine enhances insulin sensitivity through α7 nicotinic acetylcholine receptor-STAT3 pathway. PLoS One 2012; 7:e51217. [PMID: 23251458 PMCID: PMC3520975 DOI: 10.1371/journal.pone.0051217] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment of Sprague-Dawley rats with nicotine (3 mg/kg/day) for 6 weeks reduced 43% body weight gain and 65% blood insulin level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day) to antagonize peripheral nicotinic receptors except for α7 nicotinic acetylcholine receptor (α7-nAChR) had no effect on the insulin sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was abrogated in α7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day), a selective α7-nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice but also in AMP-activated kinase-α2 knockout mice, an animal model of insulin resistance with no sign of inflammation. Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating α7-nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance.
Collapse
Affiliation(s)
- Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ling-Ling Guo
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ying-Ying Le
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Benoit Viollet
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- Inserm, U567, Paris, France
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
25
|
Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 2012; 698:6-18. [PMID: 23123057 DOI: 10.1016/j.ejphar.2012.10.032] [Citation(s) in RCA: 476] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/26/2012] [Accepted: 10/06/2012] [Indexed: 12/13/2022]
Abstract
Glutamate is one of the most prominent neurotransmitter in the body, present in over 50% of nervous tissue and plays an important role in neuronal excitation. This neuronal excitation is short-lived and is followed by depression. Multiple abnormal triggers such as energy deficiency, oxidative stress, mitochondrial dysfunction, calcium overload, etc can lead to aberration in neuronal excitation process. Such an aberration, serves as a common pool or bridge between abnormal triggers and deleterious signaling processes with which central neurons cannot cope up, leading to death. Excitotoxicity is the pathological process by which nerve cells are damaged and killed by excessive stimulation by neurotransmitters such as glutamate and similar substances. Such excitotoxic neuronal death has been implicated in spinal cord injury, stroke, traumatic brain injury, hearing loss and in neurodegenerative diseases of the central nervous system such as stroke, epilepsy, multiple sclerosis, Alzheimer disease, Amyltropic lateral sclerosis, Parkinson's disease, Huntington disease and alcohol withdrawal. This review mainly emphasizes the triggering events which sustain neuronal excitation, role of calcium, mitochondrial dysfunction, ROS, NO, chloride homeostasis and eicosanoids pathways. Further, a brief introduction about the recent research occurring in the treatment of various neurodegenerative diseases, including a summary of the presumed physiologic mechanisms behind the pharmacology of these disorders.
Collapse
Affiliation(s)
- Ankita Mehta
- Neuropharmacology Division, ISF College of Pharmacy, Ferozpur Road, Ghal Kalan, Moga 142 001, Punjab, India
| | | | | | | | | |
Collapse
|
26
|
Yonezawa R, Wada T, Matsumoto N, Morita M, Sawakawa K, Ishii Y, Sasahara M, Tsuneki H, Saito S, Sasaoka T. Central versus peripheral impact of estradiol on the impaired glucose metabolism in ovariectomized mice on a high-fat diet. Am J Physiol Endocrinol Metab 2012; 303:E445-56. [PMID: 22550066 DOI: 10.1152/ajpendo.00638.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Age-related loss of ovarian function promotes adiposity and insulin resistance in women. Estrogen (E(2)) directly enhances insulin sensitivity and suppresses lipogenesis in peripheral tissues. Recently, the central actions of E(2) in the regulation of energy homeostasis are becoming clearer; however, the functional relevance and degree of contribution of the central vs. peripheral actions of E(2) are currently unknown. Therefore, we prepared and analyzed four groups of mice. 1) CONTROL: sham-operated mice fed a regular diet, 2) OVX-HF: ovariectomized (OVX) mice fed a 60% high-fat diet (HF), 3) E2-SC: OVX-HF mice subcutaneously treated with E(2), and 4) E2-ICV: OVX-HF mice treated with E(2) intracerebroventricularly. OVX-HF mice showed increased body weight with both visceral and subcutaneous fat volume enlargement, glucose intolerance, and insulin resistance. Both E2-SC and E2-ICV equally ameliorated these abnormalities. Although the size of adipocytes and number of CD11c-positive macrophages in perigonadal fat in OVX-HF were reduced by both E(2) treatments, peripherally administered E(2) decreased the expression of TNFα, lipoprotein lipase, and fatty acid synthase in the white adipose tissue (WAT) of OVX-HF. In contrast, centrally administered E(2) increased hormone-sensitive lipase in WAT, decreased the hepatic expression of gluconeogenic enzymes, and elevated core body temperature and energy expenditure with marked upregulation of uncoupling proteins in the brown adipose tissue. These results suggest that central and peripheral actions of E(2) regulate insulin sensitivity and glucose metabolism via different mechanisms, and their coordinated effects may be important to prevent the development of obesity and insulin resistance in postmenopausal women.
Collapse
Affiliation(s)
- Rika Yonezawa
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Santanam N, Thornhill BA, Lau JK, Crabtree CM, Cook CR, Brown KC, Dasgupta P. Nicotinic acetylcholine receptor signaling in atherogenesis. Atherosclerosis 2012; 225:264-73. [PMID: 22929083 DOI: 10.1016/j.atherosclerosis.2012.07.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/18/2012] [Accepted: 07/28/2012] [Indexed: 12/17/2022]
Abstract
Smoking is a major risk factor for the development of atherosclerosis, stroke and myocardial infarction. Cigarette smoke consists of a complex mixture of about 4000 compounds. Out of these, polycyclic hydrocarbons, tobacco-specific nitrosamines, oxidizing agents and carbon monoxide have been implicated in the development of atherosclerosis. Recent studies have shown that nicotine (the addictive component of cigarettes) binds to high affinity cell-surface receptors and accelerates the atherogenic process. These receptors are called nicotinic acetylcholine receptors (nAChRs) and are expressed ubiquitously in almost all cells existing in the blood vessels. The present review summarizes the pro-atherogenic effects of nAChR ligands such as nicotine and tobacco nitrosamines. The contribution of different nAChR subunits in plaque growth, progression and neovascularization are discussed in detail. The signaling pathways underlying the actions of the nAChRs ligands in blood vessels are also described. Finally, the feasibility of nAChR ligands as therapeutic targets for atherosclerosis is summarized. We believe that the information presented in this review is relevant for atherosclerosis patients who are active smokers, exposed to environmental tobacco smoke or use nicotine patches or gums for smoking cessation.
Collapse
Affiliation(s)
- Nalini Santanam
- Department of Pharmacology, Physiology & Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
The nicotinic acetylcholine receptor α7 in subcutaneous mature adipocytes: downregulation in human obesity and modulation by diet-induced weight loss. Int J Obes (Lond) 2012; 36:1552-7. [PMID: 22270376 DOI: 10.1038/ijo.2011.275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND It is known that cholinergic anti-inflammatory reflex regulates inflammation in peripheral tissues. Nicotinic acetylcholine receptors (nAChRs) are mediators of this anti-inflammatory pathway and also non-neuronal cells express functional nAChrs. A role for α7-subtype acetylcholine cholinergic receptor (α7nAChR) in insulin sensitivity improvement has already been shown in rodents both in vivo and in vitro. However, no data are available on α7nAChR expression in human adipocytes. OBJECTIVE To investigate the expression and protein content of α7nAChR in human subcutaneous adipose tissue (SAT) and in isolated mature adipocytes. DESIGN A total of 39 SAT biopsy specimens obtained from obese and normal-weight subjects were used to assess α7nAChR messenger RNA levels and to stimulate α7nAChR with a specific agonist and antagonist in vitro. Additional SATs from eight non-diabetic obese subjects were also studied, before and after a 3-month lifestyle intervention. RESULTS α7nAChR expression was significantly lower in the SAT of obese subjects compared with that of normal-weight subjects. In mature adipocytes isolated from morbidly obese subjects (body mass index > 40 kg m(-2)), α7nAChR expression was 75% lower compared with adipocytes from normal-weight subjects. In adipocytes of obese subjects, α7nAChR was downregulated also at protein level. In eight non-diabetic obese subjects, a lifestyle intervention (3 months of diet and physical activity) induced a significant weight loss and an increase in α7nAChR SAT expression. In vitro stimulation of adipocytes with the specific α7nAChR agonist PNU282987 induced a significant anti-inflammatory effect. Furthermore, a similar downregulation of the inflammatory profile, associated with a significant increase in α7nAChR protein level, was observed after genistein stimulation. CONCLUSIONS These results provide evidence that α7nAChR expression levels are significantly decreased in obese subjects, and that this receptor modulates inflammatory gene expression in human adipocytes. The upregulation of α7nAChR by genistein stimulation opens new insights for the management of low-grade inflammation linked to human obesity.
Collapse
|
29
|
Chen RJ, Ho YS, Wu CH, Wang YJ. Molecular Mechanisms of Nicotine-induced Bladder Cancer. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jecm.2011.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Lee W, Bergen AW, Swan GE, Li D, Liu J, Thomas P, Tyndale RF, Benowitz NL, Lerman C, Conti DV. Gender-stratified gene and gene-treatment interactions in smoking cessation. THE PHARMACOGENOMICS JOURNAL 2011; 12:521-32. [PMID: 21808284 PMCID: PMC3208134 DOI: 10.1038/tpj.2011.30] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We conducted gender-stratified analyses on a systems-based candidate gene study of 53 regions involved in nicotinic response and the brain-reward pathway in two randomized clinical trials of smoking cessation treatments (placebo, bupropion, transdermal and nasal spray nicotine replacement therapy). We adjusted P-values for multiple correlated tests, and used a Bonferroni-corrected α-level of 5 × 10(-4) to determine system-wide significance. Four single-nucleotide polymorphisms (rs12021667, rs12027267, rs6702335, rs12039988; r2 > 0.98) in erythrocyte membrane protein band 4.1 (EPB41) had a significant male-specific marginal association with smoking abstinence (odds ratio (OR) = 0.5; 95% confidence interval (CI): 0.3-0.6) at end of treatment (adjusted P < 6 × 10(-5)). rs806365 in cannabinoid receptor 1 (CNR1) had a significant male-specific gene-treatment interaction at 6-month follow-up (adjusted P = 3.9 × 10(-5)); within males using nasal spray, rs806365 was associated with a decrease in odds of abstinence (OR = 0.04; 95% CI: 0.01-0.2). While the role of CNR1 in substance abuse has been well studied, we report EPB41 for the first time in the nicotine literature.
Collapse
Affiliation(s)
- W Lee
- Department of Preventive Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wada T, Hoshino M, Kimura Y, Ojima M, Nakano T, Koya D, Tsuneki H, Sasaoka T. Both type I and II IFN induce insulin resistance by inducing different isoforms of SOCS expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2011; 300:E1112-23. [PMID: 21386060 DOI: 10.1152/ajpendo.00370.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although elevation of the blood glucose level is a causal adverse effect of treatment with interferon (IFN), the precise underlying molecular mechanism is largely unknown. We examined the effects of type I and type II IFN (IFN-β and IFN-γ) on insulin-induced metabolic signaling leading to glucose uptake in 3T3-L1 adipocytes. IFN-β suppressed insulin-induced tyrosine phosphorylation of IRS-1 without affecting its expression, whereas IFN-γ reduced both the protein level and tyrosine phosphorylation. Although both IFNs stimulated phosphorylation of STAT1 (at Tyr(701)) and STAT3 (at Tyr(705)) after treatment for 30 min, subsequent properties of induction of the SOCS isoform were different. IFN-β preferentially induced SOCS1 rather than SOCS3, whereas IFN-γ strongly induced SOCS3 expression alone. In addition, adenovirus-mediated overexpression of either SOCS1 or SOCS3 inhibited insulin-induced tyrosine phosphorylation of IRS-1, whereas the reduction of IRS-1 protein was observed only in SOCS3-expressed cells. Notably, IFN-β-induced SOCS1 expression and suppression of insulin-induced tyrosine phosphorylation of IRS-1 were attenuated by siRNA-mediated knockdown of STAT1. In contrast, adenovirus-mediated expression of a dominant-negative STAT3 (F-STAT3) attenuated IFN-γ-induced SOCS3 expression, reduction of IRS-1 protein, and suppression of insulin-induced glucose uptake but did not have any effect on the IFN-β-mediated SOCS1 expression and inhibition of insulin-induced glucose uptake. Interestingly, pretreatment of IFN-γ with IL-6 synergistically suppressed insulin signaling, even when IL-6 alone had no significant effect. These results indicate that type I and type II IFN induce insulin resistance by inducing distinct SOCS isoforms, and IL-6 synergistically augments IFN-γ-induced insulin resistance by potentiating STAT3-mediated SOCS3 induction in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. JOURNAL OF ONCOLOGY 2011; 2011:654931. [PMID: 21559255 PMCID: PMC3087891 DOI: 10.1155/2011/654931] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/24/2011] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is one of the major causes of carcinogenesis. Direct genotoxicity induced by cigarette smoke leads to initiation of carcinogenesis. Nongenotoxic (epigenetic) effects of cigarette smoke also act as modulators altering cellular functions. These two effects underlie the mechanisms of tumor promotion and progression. While there is no lack of general reviews on the genotoxic and carcinogenic potentials of cigarette smoke in lung carcinogenesis, updated review on the epigenetic effects and molecular mechanisms of cigarette smoke and carcinogenesis, not limited to lung, is lacking. We are presenting a comprehensive review of recent investigations on cigarette smoke, with special attentions to nicotine, NNK, and PAHs. The current understanding on their molecular mechanisms include (1) receptors, (2) cell cycle regulators, (3) signaling pathways, (4) apoptosis mediators, (5) angiogenic factors, and (6) invasive and metastasis mediators. This review highlighted the complexity biological responses to cigarette smoke components and their involvements in tumorigenesis.
Collapse
|
33
|
Park HS, Cho K, Park YJ, Lee T. Chronic nicotine exposure attenuates proangiogenic activity on human umbilical vein endothelial cells. J Cardiovasc Pharmacol 2011; 57:287-93. [PMID: 21383590 DOI: 10.1097/fjc.0b013e318206b5d9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pathogenic mechanism of nicotine, a major product of smoking, on vascular endothelial cells is not well defined yet. The purpose of this study was to determine whether chronic exposure to nicotine alters angiogenic activity in human umbilical vein endothelial cells and to identify a potential role for endothelial nitric oxide synthase (eNOS) expression. Our study demonstrated that acute nicotine treatment enhanced nitric oxide release, eNOS activation, and proangiogenic activity. However, chronic nicotine exposure impaired proangiogenic function (decreased cell migration and tubular structure formation) in human umbilical vein endothelial cells compared with acute exposure, but sustained the antiapoptotic effect. These findings seem to be related to eNOS gene expression and nitric oxide production, which may be involved in the pathophysiology of chronic nicotine addicts.
Collapse
Affiliation(s)
- Hyung Sub Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
34
|
Shen H, Kihara T, Hongo H, Wu X, Kem WR, Shimohama S, Akaike A, Niidome T, Sugimoto H. Neuroprotection by donepezil against glutamate excitotoxicity involves stimulation of alpha7 nicotinic receptors and internalization of NMDA receptors. Br J Pharmacol 2010; 161:127-39. [PMID: 20718745 DOI: 10.1111/j.1476-5381.2010.00894.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Glutamate excitotoxicity may be involved in ischaemic injury to the CNS and some neurodegenerative diseases, such as Alzheimer's disease. Donepezil, an acetylcholinesterase (AChE) inhibitor, exerts neuroprotective effects. Here we demonstrated a novel mechanism underlying the neuroprotection induced by donepezil. EXPERIMENTAL APPROACH Cell damage in primary rat neuron cultures was quantified by lactate dehydrogenase release. Morphological changes associated with neuroprotective effects of nicotine and AChE inhibitors were assessed by immunostaining. Cell surface levels of the glutamate receptor sub-units, NR1 and NR2A, were analyzed using biotinylation. Immunoblot was used to measure protein levels of cleaved caspase-3, total NR1, total NR2A and phosphorylated NR1. Immunoprecipitation was used to measure association of NR1 with the post-synaptic protein, PSD-95. Intracellular Ca(2+) concentrations were measured with fura 2-acetoxymethylester. Caspase 3-like activity was measured using enzyme substrate, 7-amino-4-methylcoumarin (AMC)-DEVD. KEY RESULTS Levels of NR1, a core subunit of the NMDA receptor, on the cell surface were significantly reduced by donepezil. In addition, glutamate-mediated Ca(2+) entry was significantly attenuated by donepezil. Methyllycaconitine, an inhibitor of alpha7 nicotinic acetylcholine receptors (nAChR), inhibited the donepezil-induced attenuation of glutamate-mediated Ca(2+) entry. LY294002, a phosphatidyl inositol 3-kinase (PI3K) inhibitor, had no effect on attenuation of glutamate-mediated Ca(2+) entry induced by donepezil. CONCLUSIONS AND IMPLICATIONS Decreased glutamate toxicity through down-regulation of NMDA receptors, following stimulation of alpha7 nAChRs, could be another mechanism underlying neuroprotection by donepezil, in addition to up-regulating the PI3K-Akt cascade or defensive system.
Collapse
Affiliation(s)
- H Shen
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vazquez-Padron RI, Mateu D, Rodriguez-Menocal L, Wei Y, Webster KA, Pham SM. Novel role of Egr-1 in nicotine-related neointimal formation. Cardiovasc Res 2010; 88:296-303. [PMID: 20615913 DOI: 10.1093/cvr/cvq213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS The aim of this study was to investigate the mechanisms by which nicotine increases vascular smooth muscle cell (VSMC) proliferation and post-injury neointimal formation. METHODS AND RESULTS Vascular injury was inflicted in the right iliac artery of nicotine-treated and control rats. Nicotine increased post-injury VSMC proliferation (Ki67(+) cells) and neointimal formation (neointima/media ratio, 0.42 ± 0.23 vs. 0.14 ± 0.07, P= 0.02). To determine the mechanisms by which nicotine exacerbates VSMC proliferation, cultured cells were exposed to nicotine, and signalling pathways leading to cell proliferation were studied. Nicotine activated extracellular signal-regulated kinase (ERK) 1/2 in a dose- and time-dependent manner. The blockade of this signalling axis abolished nicotine-mediated proliferation. Functional nicotinic acetylcholine receptors and Ca(2+) influx were necessary for ERK1/2 activation and nicotine-induced mitogenesis in VSMCs. Downstream to ERK1/2, nicotine induced the phosphorylation of Ets-like gene 1 in a timely co-ordinated manner with the up-regulation of the atherogenic transcription factor, early growth response 1 (Egr-1). The treatment of balloon-injured arteries with a lentivirus vector carrying a short hairpin RNA against Egr-1 abolished the deleterious effect of nicotine on vascular remodelling. CONCLUSION Nicotine acts through its receptors in VSMC to activate the ERK-Egr-1 signaling cascade that induces cell proliferation and exacerbates post-injury neointimal development.
Collapse
Affiliation(s)
- Roberto I Vazquez-Padron
- Department of Surgery and Vascular Biology Institute, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 7147A, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
36
|
Wada T, Kenmochi H, Miyashita Y, Sasaki M, Ojima M, Sasahara M, Koya D, Tsuneki H, Sasaoka T. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology 2010; 151:2040-9. [PMID: 20211973 DOI: 10.1210/en.2009-0869] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent evidence suggests that treatment with mineralocorticoid receptor antagonist suppressed local inflammation in vascular tissues or cardiomyocytes; therefore, we examined the effect of spironolactone on glucose and lipid metabolism in a mouse model with diet-induced diabetes and nonalcoholic fatty liver disease. C57BL/6 mice were fed either the control diet, 60% fat diet with 30% fructose water (HFFD), or HFFD with spironolactone for 8 wk. HFFD mice demonstrated apparent phenotypes of metabolic syndrome, including insulin resistance, hypertension, dyslipidemia, and fatty liver. Although treatment with spironolactone did not affect the increased calorie intake and body weight by HFFD, the increments of epididymal fat weight, blood pressure, serum triglyceride, free fatty acids, leptin, and total cholesterol levels were significantly suppressed. Elevation of blood glucose during glucose and insulin tolerance tests in HFFD mice was significantly lowered by spironolactone. Notably, increased glucose levels during pyruvate tolerance test in HFFD mice were almost completely ameliorated to control levels by the treatment. Staining with hematoxylin-eosin (HE) and Oil-red-O demonstrated marked accumulation of triglycerides in the centrilobular part of the hepatic lobule in HFFD mice, and these accumulations were effectively improved by spironolactone. Concomitantly HFFD feeding markedly up-regulated hepatic mRNA expression of proinflammatory cytokines (TNFalpha, IL-6, and monocyte chemoattractant protein-1), gluconeogenic gene phosphoenolpyruvate carboxykinase, transcription factor carbohydrate response element binding protein, and its downstream lipogenic enzymes, all of which were significantly suppressed by spironolactone. These results indicate that inhibition of mineralocorticoid receptor might be a beneficial therapeutic approach for diet-induced phenotypes of metabolic syndrome and fatty liver.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wada T, Hori S, Sugiyama M, Fujisawa E, Nakano T, Tsuneki H, Nagira K, Saito S, Sasaoka T. Progesterone inhibits glucose uptake by affecting diverse steps of insulin signaling in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2010; 298:E881-8. [PMID: 20071559 DOI: 10.1152/ajpendo.00649.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maternal insulin resistance is essential for efficient provision of glucose to the fetus. Although elevation of placental hormones is known to relate to the development of insulin resistance, the precise underlying mechanism of maternal insulin resistance is unknown. Therefore, we examined the molecular mechanisms of progesterone causing insulin resistance in 3T3-L1 adipocytes. Progesterone at 10(-4) M, but not 10(-5) M, reduced the amount of IRS-1. As a result, insulin-induced phosphorylation of IRS-1, the association of IRS-1 with p85alpha, and subsequent phosphorylation of Akt1 and -2 was decreased moderately by 10(-4) M progesterone. Subsequently, insulin-induced translocation of GLUT4 to the plasma membrane evaluated by immunostaining on the plasma membrane sheet by confocal laser microscope was also decreased by 10(-4) M progesterone. In contrast, 2-[(3)H]deoxyglucose (2DG) uptake was markedly inhibited by both 10(-5) and 10(-4) M progesterone in a dose-dependent manner. Surprisingly, 2DG uptake elicited by adenovirus-mediated expression of constitutive-active mutant of PI 3-kinase (myr-p110) and Akt (myr-Akt) was suppressed by progesterone. Interestingly, insulin-induced tyrosine phosphorylation of Cbl and activation of TC10 were inhibited by progesterone at 10(-5) M. These results indicate that progesterone is implicated in insulin resistance during pregnancy by inhibiting the PI 3-kinase pathway at the step of 1) IRS-1 expression and 2) distal to Akt and 3) by suppressing the PI 3-kinase-independent pathway of TC10 activation by affecting Cbl phosphorylation.
Collapse
Affiliation(s)
- Tsutomu Wada
- Dept. of Clinical Pharmacology, Univ. of Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Paulo JA, Brucker WJ, Hawrot E. Proteomic analysis of an alpha7 nicotinic acetylcholine receptor interactome. J Proteome Res 2009; 8:1849-58. [PMID: 19714875 DOI: 10.1021/pr800731z] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity alpha-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive alpha-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from alpha7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the alpha7 nAChR, and many are associated with multiple signaling pathways that may be implicated in alpha7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for alpha-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal alpha7 nAChRs.
Collapse
Affiliation(s)
- Joao A Paulo
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry and Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
39
|
Bergman BC, Perreault L, Hunerdosse DM, Koehler MC, Samek AM, Eckel RH. Intramuscular lipid metabolism in the insulin resistance of smoking. Diabetes 2009; 58:2220-7. [PMID: 19581421 PMCID: PMC2750212 DOI: 10.2337/db09-0481] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Smoking decreases insulin action and increases the risk of type 2 diabetes in humans. Mechanisms responsible for smoking-induced insulin resistance are unclear. We hypothesized smokers would have increased intramuscular triglyceride (IMTG) and diacylglycerol (DAG) concentration and decreased fractional synthesis rate (FSR) compared with nonsmokers. RESEARCH DESIGN AND METHODS Nonsmokers (n = 18, aged 20 +/- 0.5 years, BMI 22 +/- 0.4 kg/m(2), body fat 20 +/- 2%, 0 cigarettes per day) and smokers (n = 14, aged 21 +/- 0.7 years, BMI 23 +/- 0.4 kg/m(2), body fat 20 +/- 3%, 18 +/- 0.7 cigarettes per day) were studied in a fasted condition after a standardized diet. [U-(13)C]palmitate was infused during 4 h of rest followed by a skeletal muscle biopsy and intravenous glucose tolerance test. RESULTS Smokers were less insulin sensitive (S(i)) compared with nonsmokers (S(i) 5.28 +/- 0.5 nonsmokers vs. 3.74 +/- 0.3 smokers 10(-4) x microU(-1) x ml(-1), P = 0.03). There were no differences in IMTG or DAG concentration (IMTG 24.2 +/- 3.4 nonsmokers vs. 27.2 +/- 5.9 smokers microg/mg dry wt, DAG 0.34 +/- 0.02 nonsmokers vs. 0.35 +/- 0.02 smokers microg/mg dry wt) or IMTG FSR between groups (0.66 +/- 0.1 nonsmokers vs. 0.55 +/- 0.09 smokers %/hr). Intramuscular lipid composition was different, with increased percent saturation of IMTG (32.1 +/- 1.2 nonsmokers vs. 35.2 +/- 1.0 smokers %, P = 0.05) and DAG (52.8 +/- 1.7 nonsmokers vs. 58.8 +/- 2.2 smokers %, P = 0.04) in smokers. Smokers had significantly decreased peroxisome proliferator-activated receptor-gamma (1.76 +/- 0.1 nonsmokers vs. 1.42 +/- 0.11 smokers arbitrary units [AU], P = 0.03) and increased monocyte chemotactic protein-1 (3.11 +/- 0.41 nonsmokers vs. 4.83 +/- 0.54 smokers AU, P = 0.02) mRNA expression compared with nonsmokers. We also found increased insulin receptor substrate-1 Ser(636) phosphorylation in smokers compared with nonsmokers (0.73 +/- 0.08 nonsmokers vs. 1.14 +/- 0.09 smokers AU, P = 0.002). CONCLUSIONS These data suggest: 1) IMTG concentration and turnover are not related to alterations in insulin action in smokers compared to nonsmokers, 2) increased saturation of IMTG and DAG in skeletal muscle may be related to insulin action, and 3) basal inhibition of insulin receptor substrate-1 may decrease insulin action in smokers.
Collapse
Affiliation(s)
- Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Denver School of Medicine, Aurora, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cholinergic angiogenesis is mediated by an endothelial nicotinic acetylcholine receptor (EC nAChR). Short-term administration of nicotine stimulates angiogenesis via EC nAChRs.The long-term effects of nicotine upon cholinergic angiogenesis are unknown. The objective of this study was to determine whether chronic nicotine exposure blunts angiogenesis. We exposed C57/Bl6 male mice (n = 42) to nicotine (200 microg/ml drinking water) or vehicle for 8 or 16 weeks. Subsequently, hindlimb ischemia was induced by ligation of the left femoral artery. After surgery, animals in the vehicle-treated group were re-randomized to vehicle (vehicle group) or nicotine (acute exposure group) for 2 weeks; whereas animals that had been previously treated (for 8 or 16 weeks with nicotine) continued to receive nicotine (8 WK or 16 WK groups). After 2 weeks, animals were sacrificed for immunohistochemical, gene expression, and angiogenesis studies. Capillary density of the ischemic hindlimb was increased by nicotine in naïve animals (vehicle vs acute exposure: 2.40 +/- 0.09 vs 2.82 +/- 0.10 capillaries/myocyte, p < 0.05). However, prior exposure to nicotine for 16 weeks (16 WK) abolished the effects of nicotine to increase capillary density in the ischemic hindlimb (acute vs 16 WK: 2.82 +/- 0.10 vs 2.47 +/- 0.03 capillaries/ myocyte; p < 0.05). The impairment of cholinergic angiogenesis was associated with a reduction in nAChR expression and plasma VEGF levels. Chronic exposure to nicotine impaired capillary sprouting of aortic segments ex vivo (vehicle vs 16 WK: 0.303 +/- 0.029 vs 0.204 +/- 0.017 mm(2), p < 0.05, n = 3 in each group). In conclusion, the current study shows for the first time that chronic exposure to nicotine impairs cholinergic angiogenesis, an effect mediated by downregulation of the vascular nAChR, and attenuation of nicotine-induced VEGF release. These studies may explain the impairment in angiogenic processes observed in long-term smokers.
Collapse
Affiliation(s)
- Hakuoh Konishi
- Division of Cardiovascular Medicine, Stanford University School of Medicine, CA 94305, USA
| | | | | |
Collapse
|
41
|
Chipitsyna G, Gong Q, Anandanadesan R, Alnajar A, Batra SK, Wittel UA, Cullen DM, Akhter MP, Denhardt DT, Yeo CJ, Arafat HA. Induction of osteopontin expression by nicotine and cigarette smoke in the pancreas and pancreatic ductal adenocarcinoma cells. Int J Cancer 2009; 125:276-85. [PMID: 19358273 PMCID: PMC4465299 DOI: 10.1002/ijc.24388] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with etiological association with cigarette smoking. Nicotine, an important component of cigarettes, exists at high concentrations in the bloodstream of smokers. Osteopontin (OPN) is a secreted phosphoprotein that confers on cancer cells a migratory phenotype and activates signaling pathways that induce cell survival, proliferation, invasion, and metastasis. Here, we investigated the potential molecular basis of nicotine's role in PDA through studying its effect on OPN. Nicotine significantly (p < 0.02) increased OPN mRNA and protein secretion in PDA cells through activation of the OPN gene promoter. The OPN mRNA induction was inhibited by the nicotinic acetylcholine receptor antagonist, mechamylamine. Further, the tyrosine kinase inhibitor genistein inhibited the nicotine-mediated induction of OPN, suggesting that mitogen activated protein kinase signaling mechanism is involved. Nicotine activated the phosphorylation of ERK1/2, but not p38 or c-Jun NH2-terminal MAP kinases. Inhibition of ERK1/2 activation reduced the nicotine-induced OPN synthesis. Rats exposed to cigarette smoke showed a dose-dependent increase in pancreatic OPN that paralleled the rise of pancreatic and plasma nicotine levels. Analysis of cancer tissue from invasive PDA patients, the majority of whom were smokers, showed the presence of significant amounts of OPN in the malignant ducts and the surrounding pancreatic acini. Our data suggest that nicotine may contribute to PDA pathogenesis through upregulation of OPN. They provide the first insight into a nicotine-initiated signal transduction pathway that regulates OPN as a possible tumorigenic mechanism in PDA.
Collapse
Affiliation(s)
- Galina Chipitsyna
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Qiaoke Gong
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Rathai Anandanadesan
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Amer Alnajar
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, Nebraska Medical Center, Omaha, NE
| | - Uwe A. Wittel
- Department of Biochemistry and Molecular Biology, Nebraska Medical Center, Omaha, NE
| | | | | | - David T. Denhardt
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ
| | - Charles J. Yeo
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Hwyda A. Arafat
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
42
|
Kimura J, Ono T, Sakamoto K, Ito E, Watanabe S, Maeda S, Shikama Y, Yatabe MS, Matsuoka I. Na+ -Ca2+ exchanger expression and its modulation. Biol Pharm Bull 2009; 32:325-31. [PMID: 19252272 DOI: 10.1248/bpb.32.325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we reviewed our recent work on the chronic effects of nicotine on the Na+ -Ca2+ exchanger (NCX) gene and protein expressions in various organs of rats treated with nicotine in the drinking water for 4-12 weeks. Microarray analysis and reverse transcriptase-polymerase chain reaction (RT-PCR) did not detect significant changes in NCX mRNA expression in cerebral cortex, hippocampus, heart and skeletal muscle. However, NCX1 protein was up-regulated by nicotine in cerebral cortex and hippocampus, but was down-regulated in the heart. NCX2 protein was up-regulated by nicotine in hippocampus. We suggest that although mRNA change was insignificant, NCX protein expression was altered by chronic nicotine administration in brain and heart in rats. We also reviewed our work on modulators of NCX gene expression and function in cardiac myocytes.
Collapse
Affiliation(s)
- Junko Kimura
- Department of Pharmacology, Fukushima Medical University, School of Medicine, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes. Endocrinology 2009; 150:1662-9. [PMID: 19095745 DOI: 10.1210/en.2008-1018] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Serum aldosterone level is clinically known to correlate with body weight and insulin resistance. Because the underlying molecular mechanism is largely unknown, we examined the effect of aldosterone on insulin-induced metabolic signaling leading to glucose uptake in 3T3-L1 adipocytes. Aldosterone reduced the amounts of insulin receptor substrate (IRS) 1 and IRS2 in a time- and dose-dependent manner. As a result, insulin-induced phosphorylation of Akt-1 and -2, and subsequent uptake of 2-deoxyglucose were decreased. Degradation of IRSs was effectively prevented by a glucocorticoid receptor antagonist and antioxidant N-acetylcysteine, but not by a mineralocorticoid receptor antagonist. Because aldosterone induced phosphorylation of IRS1 at Ser(307), responsible kinases were investigated, and we revealed that rapamycin and BMS345541, but neither SP600125 nor calphostin C, conferred for degradation of IRSs. Although lactacystin prevented the degradation of IRSs, glucose uptake was not preserved. Importantly, sucrose-gradient-sediment intracellular fraction analysis revealed that lactacystin did not effectively restore the reduction of IRS1 in the low-density microsome fraction, important for the transduction of insulin's metabolic signaling. These results indicate that aldosterone deteriorates metabolic action of insulin by facilitating the degradation of IRS1 and IRS2 via glucocorticoid receptor-mediated production of reactive oxygen species, and activation of IkappaB Kinase beta and target of rapamycin complex 1. Thus, aldosterone appears to be a novel key factor in the development of insulin resistance in visceral obesity.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Buckingham SD, Jones AK, Brown LA, Sattelle DB. Nicotinic acetylcholine receptor signalling: roles in Alzheimer's disease and amyloid neuroprotection. Pharmacol Rev 2009; 61:39-61. [PMID: 19293145 PMCID: PMC2830120 DOI: 10.1124/pr.108.000562] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD), the major contributor to dementia in the elderly, involves accumulation in the brain of extracellular plaques containing the beta-amyloid protein (Abeta) and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. AD is also characterized by a loss of neurons, particularly those expressing nicotinic acetylcholine receptors (nAChRs), thereby leading to a reduction in nAChR numbers. The Abeta(1-42) protein, which is toxic to neurons, is critical to the onset and progression of AD. The discovery of new drug therapies for AD is likely to be accelerated by an improved understanding of the mechanisms whereby Abeta causes neuronal death. We examine the evidence for a role in Abeta(1-42) toxicity of nAChRs; paradoxically, nAChRs can also protect neurons when activated by nicotinic ligands. Abeta peptides and nicotine differentially activate several intracellular signaling pathways, including the phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog pathway, the extracellular signal-regulated kinase/mitogen-activated protein kinase, and JAK-2/STAT-3 pathways. These pathways control cell death or survival and the secretion of Abeta peptides. We propose that understanding the differential activation of these pathways by nicotine and/or Abeta(1-42) may offer the prospect of new routes to therapy for AD.
Collapse
Affiliation(s)
- Steven D Buckingham
- Medical Research Council Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK, OX1 3QX
| | | | | | | |
Collapse
|
45
|
Welsby PJ, Rowan MJ, Anwyl R. Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus. Eur J Neurosci 2008; 29:65-75. [PMID: 19077124 DOI: 10.1111/j.1460-9568.2008.06562.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that activation of nicotinic acetylcholine receptors (nAChRs) enhanced long-term potentiation (LTP) in the rat dentate gyrus in vitro via activation of alpha7 nAChR. In the present studies, mechanisms underlying the acute and chronic nicotinic enhancement of LTP were examined. In particular, the involvement of activation of intracellular kinases was examined using selective kinase antagonists, and the effects of enhancing cholinergic function with positive allosteric modulators of the alpha7 nAChR and with acetylcholinesterase (AChE) inhibitors were also investigated. Activation of extracellular signal-regulated kinase (ERK) and cAMP-dependent protein kinase (PKA) was found to be involved in the induction of the acute nicotinic enhancement of LTP, although not control LTP. In contrast, activation of the tyrosine kinase Src, Ca(2+)-calmodulin-dependent protein kinase II, Janus kinase 2 and p38 mitogen-activated protein kinase was not involved in the acute nicotinic enhancement of LTP, although Src activation was necessary for control LTP. Moreover, activation of phosphoinositide 3-kinase was involved in the acute nicotinic enhancement of LTP to a much lesser extent than in control LTP. Chronic nicotine enhancement of LTP was found to be dependent on PKA, ERK and Src kinases. Acute nicotinic enhancement of LTP was occluded by chronic nicotine treatment. The positive allosteric modulator PNU-120596 was found to strongly reduce the threshold for nicotinic enhancement of LTP, an affect mediated via the alpha7 nAChR as it was blocked by the selective antagonist methyllycaconitine. The AChE inhibitors tacrine and physostigmine enhanced control LTP.
Collapse
Affiliation(s)
- Philip J Welsby
- Department of Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|
46
|
Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and beta-adrenergic receptor signaling pathways. Toxicol Appl Pharmacol 2008; 233:254-61. [PMID: 18805435 DOI: 10.1016/j.taap.2008.08.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/06/2008] [Accepted: 08/13/2008] [Indexed: 12/16/2022]
Abstract
Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) and beta-adrenergic receptors. Treatment of cells with alpha-bungarotoxin (alpha-BTX, alpha7nAChR antagonist) or propranolol (beta-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE(2) and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE(2) induction can only be suppressed by propranolol, but not alpha-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.
Collapse
|
47
|
Wada T, Azegami M, Sugiyama M, Tsuneki H, Sasaoka T. Characteristics of signalling properties mediated by long-acting insulin analogue glargine and detemir in target cells of insulin. Diabetes Res Clin Pract 2008; 81:269-77. [PMID: 18585815 DOI: 10.1016/j.diabres.2008.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 05/01/2008] [Accepted: 05/01/2008] [Indexed: 01/21/2023]
Abstract
Glargine and detemir are long-acting human insulin analogues with a smooth peakless profile of action. Although their binding affinities to the insulin receptor have been studied, little is known about the subsequent signalling properties activated after the binding. We directly compared intracellular signalling properties of them in various cultured cells. Regarding the metabolic signalling, glargine and insulin-induced comparable dose-dependent phosphorylation of insulin receptor, IRS-1, Akt, and GSK3, whereas detemir-induced kinetics were markedly lower in 3T3-L1 adipocytes and L6 myocytes. A similar pattern of phosphorylation induction was observed in primary hepatocytes and vascular smooth muscle cells (VSMCs). Because of the binding of detemir to albumin with high affinity, the phosphorylation kinetics and glucose uptake of detemir, but not glargine, decreased with increasing concentrations of BSA. Concerning the mitogenic properties, glargine and insulin-induced comparable dose-dependent phosphorylation of MAP kinase (MAPK) and 5-bromo-2'-deoxyuridine (BrdU) incorporation. Detemir-induced phosphorylation of MAPK was apparently reduced, whereas it stimulated BrdU incorporation with relatively similar dose-dependent manner in VSMCs. These results indicate that glargine has comparable properties to human insulin in metabolic and mitogenic signalling and action. In contrast, detemir-induced metabolic signaling is less potent in all cell types studied, and is reduced further by increasing concentrations of albumin.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
48
|
Chen RJ, Ho YS, Guo HR, Wang YJ. Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci 2008; 104:283-293. [PMID: 18448488 DOI: 10.1093/toxsci/kfn086] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Cigarette smoke is a major risk factor for bladder cancer. The main component in cigarette smoke, nicotine, can be detected in the urine of smokers. Nicotine has been implicated as a cocarcinogen that promotes lung cancer development through prosurvival pathways. Although the mechanisms of nicotine-induced cell proliferation have been well studied in lung epithelial cells, the molecular mechanism of its action in bladder epithelial cells is still unclear. The aims of this study were to investigate whether there is nicotine-induced bladder epithelial cell proliferation and to identify the signaling transduction pathway regulated by nicotine. We found that nicotine simultaneously activates Stat3 and extracellular signal regulated kinase 1/2 (ERK1/2) in T24 cells. Stat3 activation via nicotinic acetylcholine receptor (nAChR)/protein kinase C signaling pathway was closely linked to Stat3 induction and nuclear factor-kappaB DNA binding activity, which is associated with Cyclin D1 expression and cell proliferation. ERK1/2 activation through nAChR and beta-adrenoceptors plays a dual role in cell proliferation; it phosphorylates Stat3 at Ser727 and regulates cell proliferation. We conclude that through nAChR and beta-adrenoceptors, nicotine activates ERK1/2 and Stat3 signaling pathways, leading to Cyclin D1 expression and cell proliferation. This is the first study to investigate signaling effects of nicotine in bladder cells. The current findings suggest that people exposed to nicotine could be at risk for potential deleterious effects, including bladder cancer development.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
49
|
Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: acceleration of sequential expression of alpha5 and alpha7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 2008; 22:1356-68. [PMID: 18450646 DOI: 10.1096/fj.07-9965.com] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tobacco products and nicotine alter the cell cycle and lead to squamatization of oral keratinocytes (KCs) and squamous cell carcinoma. Activation of nicotinic acetylcholine receptors (nAChRs) elicits Ca(2+) influx that varies in magnitude between different nAChR subtypes. Normal differentiation of KCs is associated with sequential expression of the nAChR subtypes with increasing Ca(2+) permeability, such as alpha5-containing alpha3 nAChR and alpha7 nAChR. Exposure to environmental tobacco smoke (ETS) or an equivalent concentration of nicotine accelerated by severalfold the alpha5 and alpha7 expression in KCs, which could be abolished by mecamylamine and alpha-bungarotoxin with different efficacies, suggesting the following sequence of autoregulation of the expression of nAChR subtypes: alpha3(beta2/beta4) > alpha3(beta2/beta4)alpha5 > alpha7 > alpha7. This conjecture was corroborated by results of quantitative assays of subunit mRNA and protein levels, using nAChR-specific pharmacologic antagonists and small interfering RNAs. The genomic effects of ETS and nicotine involved the transcription factor GATA-2 that showed a multifold increase in quantity and activity in exposed KCs. Using protein kinase inhibitors and dominant negative and constitutively active constructs, we characterized the principal signaling cascades mediating a switch in the nAChR subtype. Cumulative results indicated that the alpha3(beta2/beta4) to alpha3(beta2/beta4)alpha5 nAChR transition predominantly involved protein kinase C, alpha3(beta2/beta4)alpha5 to alpha7 nAChR transition-Ca(2+)/calmodulin-dependent protein kinase II and p38 MAPK, and alpha7 self-up-regulation-the p38 MAPK/Akt pathway, and JAK-2. These results provide a mechanistic insight into the genomic effects of ETS and nicotine on KCs and characterize signaling pathways mediating autoregulation of stepwise overexpression of nAChR subtypes with increasing Ca(2+) permeability in exposed cells. These observations have salient clinical implications, because a switch in the nAChR subunit composition can bring about a corresponding switch in receptor function, leading to profound pathobiologic effects observed in KCs exposed to tobacco products.
Collapse
Affiliation(s)
- Juan Arredondo
- Department of Dermatology, University of California, Irvine, C340 Medical Sciences I, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
50
|
Lv J, Mao C, Zhu L, Zhang H, Pengpeng H, Xu F, Liu Y, Zhang L, Xu Z. The effect of prenatal nicotine on expression of nicotine receptor subunits in the fetal brain. Neurotoxicology 2008; 29:722-6. [PMID: 18541304 DOI: 10.1016/j.neuro.2008.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/19/2008] [Accepted: 04/19/2008] [Indexed: 11/25/2022]
Abstract
Previous studies have suggested that prenatal exposure to nicotine is associated with abnormal development in fetuses, including fetal brain damage. The present study determined the effect of maternal administration of nicotine during different gestational periods on brain nicotine receptor subunits in fetal rats. Subcutaneous injections of nicotine in maternal rats from the early and middle gestation decreased fetal blood PO2, increased fetal blood PCO2 and hemoglobin, and decreased fetal brain weight. The nicotinic acetylcholine receptor (nAChRs) mRNA abundance in the fetal brain was significantly changed by prenatal treatment with nicotine during pregnancy. Fetal alpha2, alpha4, alpha7, and beta2 units were significantly increased in the brain by prenatal exposure to nicotine in rat fetuses. However, the expression of mRNA of fetal brain alpha3, alpha5, beta3, and beta4 units were not changed. The results showed that prenatal nicotine can change the development of both alpha and beta subunits of nAChRs in the fetal brain at gene level in association with restriction of fetal brain growth and in utero hypoxia.
Collapse
Affiliation(s)
- Juanxiu Lv
- Perinatal Research Laboratory, Soochow University School of Medicine, Suzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|