1
|
Payano VJH, Lopes LVDA, Peixoto LR, Silva KAD, Ortiga-Carvalho TM, Tafuri A, Vago AR, Bloise E. Immunostaining of βA-Activin and Follistatin Is Decreased in HPV(+) Cervical Pre-Neoplastic and Neoplastic Lesions. Viruses 2023; 15:v15051031. [PMID: 37243119 DOI: 10.3390/v15051031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The activin-follistatin system regulates several cellular processes, including differentiation and tumorigenesis. We hypothesized that the immunostaining of βA-activin and follistatin varies in neoplastic cervical lesions. Cervical paraffin-embedded tissues from 162 patients sorted in control (n = 15), cervical intraepithelial neoplasia (CIN) grade 1 (n = 38), CIN2 (n = 37), CIN3 (n = 39), and squamous cell carcinoma (SCC; n = 33) groups were examined for βA-activin and follistatin immunostaining. Human papillomavirus (HPV) detection and genotyping were performed by PCR and immunohistochemistry. Sixteen samples were inconclusive for HPV detection. In total, 93% of the specimens exhibited HPV positivity, which increased with patient age. The most detected high-risk (HR)-HPV type was HPV16 (41.2%) followed by HPV18 (16%). The immunostaining of cytoplasmatic βA-activin and follistatin was higher than nuclear immunostaining in all cervical epithelium layers of the CIN1, CIN2, CIN3, and SCC groups. A significant decrease (p < 0.05) in the cytoplasmic and nuclear immunostaining of βA-activin was detected in all cervical epithelial layers from the control to the CIN1, CIN2, CIN3, and SCC groups. Only nuclear follistatin immunostaining exhibited a significant reduction (p < 0.05) in specific epithelial layers of cervical tissues from CIN1, CIN2, CIN3, and SCC compared to the control. Decreased immunostaining of cervical βA-activin and follistatin at specific stages of CIN progression suggests that the activin-follistatin system participates in the loss of the differentiation control of pre-neoplastic and neoplastic cervical specimens predominantly positive for HPV.
Collapse
Affiliation(s)
- Victor Jesus Huaringa Payano
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Lara Verônica de Araújo Lopes
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Larissa Rodrigues Peixoto
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Keila Alves da Silva
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Tania Maria Ortiga-Carvalho
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Alexandre Tafuri
- Laboratório de Anatomia Patológica Tafuri, Belo Horizonte 30170-133, MG, Brazil
| | - Annamaria Ravara Vago
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Enrrico Bloise
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| |
Collapse
|
2
|
Winter A, Salamonsen LA, Evans J. Modelling fibroid pathology: development and manipulation of a myometrial smooth muscle cell macromolecular crowding model to alter extracellular matrix deposition. Mol Hum Reprod 2021; 26:498-509. [PMID: 32449756 DOI: 10.1093/molehr/gaaa036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
Current treatment options for uterine fibroids are limited to hormonal manipulation or surgical intervention. We aimed to develop an in vitro model to mirror collagen deposition and extracellular matrix (ECM) formation, the principal features of uterine fibroids, to enable testing of novel therapeutics. Macromolecular crowding with Ficoll 400 and Ficoll 70 in cultures of human uterine myometrial smooth muscle cells containing ascorbic acid, provided the basis for this model. These culture conditions mimic the 'crowded' nature of the in vivo extracellular environment by incorporating neutral, space-filling macromolecules into conventional cell cultures. This method of culture facilitates appropriate ECM deposition, thus closely representing the in vivo fibrotic phenotype of uterine fibroids. Macromolecular crowding in Ficoll cultures containing ascorbic acid reduced myometrial smooth muscle cell proliferation and promoted collagen production. Under these conditions, collagen was processed for extracellular deposition as demonstrated by C-propeptide cleavage from secreted procollagen. The fibrosis marker activin was increased relative to its natural inhibitor, follistatin, in crowded culture conditions while addition of exogenous follistatin reduced collagen (Col1A1) gene expression. This in vitro model represents a promising development for the testing of therapeutic interventions for uterine fibroids. However, it does not recapitulate the full in vivo pathology which can include specific genetic and epigenetic alterations that have not been identified in the myometrial smooth muscle (hTERT-HM) cell line. Following screening of potential therapeutics using the model, the most promising compounds will require further assessment in the context of individual subjects including those with genetic changes implicated in fibroid pathogenesis.
Collapse
Affiliation(s)
- Ann Winter
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Obstetrics & Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Jemma Evans
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Zannotti A, Greco S, Pellegrino P, Giantomassi F, Delli Carpini G, Goteri G, Ciavattini A, Ciarmela P. Macrophages and Immune Responses in Uterine Fibroids. Cells 2021; 10:cells10050982. [PMID: 33922329 PMCID: PMC8146588 DOI: 10.3390/cells10050982] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Uterine fibroids represent the most common benign tumors of the uterus. They are considered a typical fibrotic disorder. In fact, the extracellular matrix (ECM) proteins—above all, collagen 1A1, fibronectin and versican—are upregulated in this pathology. The uterine fibroids etiology has not yet been clarified, and this represents an important matter about their resolution. A model has been proposed according to which the formation of an altered ECM could be the result of an excessive wound healing, in turn driven by a dysregulated inflammation process. A lot of molecules act in the complex inflammatory response. Macrophages have a great flexibility since they can assume different phenotypes leading to the tissue repair process. The dysregulation of macrophage proliferation, accumulation and infiltration could lead to an uncontrolled tissue repair and to the consequent pathological fibrosis. In addition, molecules such as monocyte chemoattractant protein-1 (MCP-1), granulocyte macrophage-colony-stimulating factor (GM-CSF), transforming growth factor-beta (TGF-β), activin A and tumor necrosis factor-alfa (TNF-α) were demonstrated to play an important role in the macrophage action within the uncontrolled tissue repair that contributes to the pathological fibrosis that represents a typical feature of the uterine fibroids.
Collapse
Affiliation(s)
- Alessandro Zannotti
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.Z.); (G.D.C.); (A.C.)
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.G.); (P.P.)
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.G.); (P.P.)
| | - Pamela Pellegrino
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.G.); (P.P.)
| | - Federica Giantomassi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy; (F.G.); (G.G.)
| | - Giovanni Delli Carpini
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.Z.); (G.D.C.); (A.C.)
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy; (F.G.); (G.G.)
| | - Andrea Ciavattini
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.Z.); (G.D.C.); (A.C.)
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.G.); (P.P.)
- Correspondence: ; Tel.:+39-071-220-6270
| |
Collapse
|
4
|
Appiah Adu-Gyamfi E, Tanam Djankpa F, Nelson W, Czika A, Kumar Sah S, Lamptey J, Ding YB, Wang YX. Activin and inhibin signaling: From regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine 2020; 133:155105. [PMID: 32438278 DOI: 10.1016/j.cyto.2020.155105] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Activins and inhibins - comprising activin A, B, AB, C and E, and inhibin A and B isoforms - belong to the transforming growth factor beta (TGFβ) superfamily. They regulate several biological processes, including cellular proliferation, differentiation and invasiveness, to enhance the formation and functioning of many human tissues and organs. In this review, we have discussed the role of activin and inhibin signaling in the physiological and female-specific pathological events that occur in the female reproductive system. The up-to-date evidence indicates that these cytokines regulate germ cell development, follicular development, ovulation, uterine receptivity, decidualization and placentation through the activation of several signaling pathways; and that their dysregulated expression is involved in the pathogenesis and pathophysiology of the numerous diseases, including pregnancy complications, that disturb reproduction. Hence, some of the isoforms have been suggested as potential biomarkers and therapeutic targets for the management of some of these diseases. Tackling the research directions highlighted in this review will enhance a detailed comprehension and the clinical utility of these cytokines.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - William Nelson
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania.
| | - Armin Czika
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Sanjay Kumar Sah
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Kumasi Centre for Collaborative Research in Tropical Medicine, KCCR, Ghana.
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
5
|
Greco S, Islam MS, Zannotti A, Delli Carpini G, Giannubilo SR, Ciavattini A, Petraglia F, Ciarmela P. Quercetin and indole-3-carbinol inhibit extracellular matrix expression in human primary uterine leiomyoma cells. Reprod Biomed Online 2020; 40:593-602. [PMID: 32276890 DOI: 10.1016/j.rbmo.2020.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 01/03/2023]
Abstract
RESEARCH QUESTION What is the effect of quercetin and indole-3-carbinol (I3C) on extracellular matrix expression, cell migration and proliferation in human myometrial and uterine leiomyoma cells. DESIGN Myometrial and leiomyoma cells were treated with quercetin or I3C at different concentrations (10 µg/ml; 50 µg/ml; 100 µg/ml; and 250 µg/ml) for 48 h to measure mRNA and protein expressions of extracellular matrix (collagen 1A1, fibronectin and versican), as well as cell migration and the proliferation rate. RESULTS Quercetin decreased mRNA levels of collagen 1A1 in myometrial (P < 0.0001) and leiomyoma cells (P < 0.0001). Quercetin reduced mRNA and protein levels of fibronectin in myometrial cells (P < 0.05) and fibronectin protein in leiomyoma cells (P < 0.05). I3C reduced collagen 1A1 mRNA levels in myometrial (P < 0.05) and leiomyoma cells at higher dose (P < 0.05). The protein levels of fibronectin were also reduced in both myometrial and leiomyoma cells with highest dose of I3C (P < 0.05), although mRNA levels were not affected in leiomyoma cells. Neither quercetin nor I3C treatment altered versican mRNA levels in both cell types. A significant reduction of the migration of both myometrial and leiomyoma cells in response to quercetin was observed (P < 0.05) and I3C (P < 0.05 for myometrial and P < 0.01 for leiomyoma cells) treatment. Both quercetin and I3C significantly reduced myometrial cell proliferation (P < 0.05). CONCLUSIONS The in-vitro anti-fibrotic, anti-migratory and anti-proliferative effects of quercetin and I3C form the scientific basis for developing new therapeutic, preventive agents, or both, for uterine leiomyomas.
Collapse
Affiliation(s)
- Stefania Greco
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, 60020 via Tronto 10/a Ancona, Italy
| | - Md Soriful Islam
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, 60020 via Tronto 10/a Ancona, Italy
| | - Alessandro Zannotti
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, 60020 via Tronto 10/a Ancona, Italy; Department of Medical Biotechnology and Department of Molecular and Developmental, Medicine, Obstetrics, and Gynaecology, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Giovanni Delli Carpini
- Department of Medical Biotechnology and Department of Molecular and Developmental, Medicine, Obstetrics, and Gynaecology, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Stefano Raffaele Giannubilo
- Department of Medical Biotechnology and Department of Molecular and Developmental, Medicine, Obstetrics, and Gynaecology, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Andrea Ciavattini
- Department of Medical Biotechnology and Department of Molecular and Developmental, Medicine, Obstetrics, and Gynaecology, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Obstetrics and Gynaecology, University of Florence, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, 60020 via Tronto 10/a Ancona, Italy.
| |
Collapse
|
6
|
Braný D, Dvorská D, Grendár M, Ňachajová M, Szépe P, Lasabová Z, Žúbor P, Višňovský J, Halášová E. Different methylation levels in the KLF4, ATF3 and DLEC1 genes in the myometrium and in corpus uteri mesenchymal tumours as assessed by MS-HRM. Pathol Res Pract 2019; 215:152465. [PMID: 31176573 DOI: 10.1016/j.prp.2019.152465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal tumours of the corpus uteri comprise common benign lesions - leiomyomas and very rare malignant variants - sarcomas. It can be difficult to distinguish between the particular types of mesenchymal tumours pre-surgically. Primarily, leiomyomas and the very aggressive leiomyosarcomas can be easily misdiagnosed when using only imaging devices. Therefore, a reliable non-invasive marker for these tumour types would provide greater certitude for patients that the lesion remains benign. Our collection comprises 76 native leiomyomas, an equal number of healthy myometrium samples and 49 FFPE samples of various types of sarcomas. The methylation level was assessed by MS-HRM method and we observed differences in the methylation level between healthy, benign and (semi)malignant tissues in the KLF4 and DLEC1 genes. The mean methylation levels of leiomyomas compared to myometrium and leiomyosarcomas were 70.7% vs. 6.5% vs. 39.6 % (KLF4) and 66.1% vs. 14.08% vs. 37.5% (DLEC1). The ATF3 gene was differentially methylated in leiomyomatous and myometrial tissues with 98.1% compared to 76.6%. The AUC values of the predictive logistic regression model for discrimination between leiomyomas and leiomyosarcomas based on methylation levels were 0.7829 (KLF4) and 0.7719 (DLEC1). Finally, our results suggest that there should be distinct models for the methylation events in benign leiomyomas and sarcomas, and that the KLF4 and DLEC1 genes can be considered potential methylation biomarkers for uterine leiomyomas.
Collapse
Affiliation(s)
- Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Marcela Ňachajová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Peter Szépe
- Department of Pathological Anatomy, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Zora Lasabová
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Pavol Žúbor
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Jozef Višňovský
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Erika Halášová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
7
|
Siricilla S, Knapp KM, Rogers JH, Berger C, Shelton EL, Mi D, Vinson P, Condon J, Paria BC, Reese J, Sheng Q, Herington JL. Comparative analysis of myometrial and vascular smooth muscle cells to determine optimal cells for use in drug discovery. Pharmacol Res 2019; 146:104268. [PMID: 31078743 DOI: 10.1016/j.phrs.2019.104268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
Abstract
Novel therapeutic regulators of uterine contractility are needed to manage preterm labor, induce labor and control postpartum hemorrhage. Therefore, we previously developed a high-throughput assay for large-scale screening of small molecular compounds to regulate calcium-mobilization in primary mouse uterine myometrial cells. The goal of this study was to select the optimal myometrial cells for our high-throughput drug discovery assay, as well as determine the similarity or differences of myometrial cells to vascular smooth muscle cells (VSMCs)-the most common off-target of current myometrial therapeutics. Molecular and pharmacological assays were used to compare myometrial cells from four sources: primary cells isolated from term pregnant human and murine myometrium, immortalized pregnant human myometrial (PHM-1) cells and immortalized non-pregnant human myometrial (hTERT-HM) cells. In addition, myometrial cells were compared to vascular SMCs. We found that the transcriptome profiles of hTERT-HM and PHM1 cells were most similar (r = 0.93 and 0.90, respectively) to human primary myometrial cells. Comparative transcriptome profiling of primary human myometrial transcriptome and VSMCs revealed 498 upregulated (p ≤ 0.01, log2FC≥1) genes, of which 142 can serve as uterine-selective druggable targets. In the high-throughput Ca2+-assay, PHM1 cells had the most similar response to primary human myometrial cells in OT-induced Ca2+-release (Emax = 195% and 143%, EC50 = 30 nM and 120 nM, respectively), while all sources of myometrial cells showed excellent and similar robustness and reproducibility (Z' = 0.52 to 0.77). After testing a panel of 61 compounds, we found that the stimulatory and inhibitory responses of hTERT-HM cells were highly-correlated (r = 0.94 and 0.95, respectively) to human primary cells. Moreover, ten compounds were identified that displayed uterine-selectivity (≥5-fold Emax or EC50 compared to VSMCs). Collectively, this study found that hTERT-HM cells exhibited the most similarity to primary human myometrial cells and, therefore, is an optimal substitute for large-scale screening to identify novel therapeutic regulators of myometrial contractility. Moreover, VSMCs can serve as an important counter-screening tool to assess uterine-selectivity of targets and drugs given the similarity observed in the transcriptome and response to compounds.
Collapse
Affiliation(s)
- Shajila Siricilla
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsi M Knapp
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jackson H Rogers
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Courtney Berger
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elaine L Shelton
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Dehui Mi
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Paige Vinson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer Condon
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Bibhash C Paria
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeff Reese
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer L Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
9
|
Kimura Y, Sasaki M, Watanabe K, Dhakal P, Sato F, Taya K, Nambo Y. Expression of activin receptors in the equine uteroplacental tissue: an immunohistochemical analysis. J Equine Sci 2018; 29:33-37. [PMID: 29991920 PMCID: PMC6033615 DOI: 10.1294/jes.29.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 11/01/2022] Open
Abstract
Activin is secreted from equine uterine glands and plays important roles in establishment and maintenance of pregnancy in mares. This study aimed to localize activin receptors (ActRs) IA/B and IIA/B using immunohistochemistry in the uteroplacental tissues of seven pregnant Thoroughbred mares. At the time of tissue collection, the mares were at the following days of pregnancy: 88, 120, 161, 269, 290, 313, and 335 days. We fixed the uteroplacental tissues in 4% paraformaldehyde and obtained serial sections that were subsequently stained for analysis. All four isoforms of ActR were expressed in the uteroplacental tissues, including the endometrial epithelium, uterine glands, trophoblasts, and myometrium, throughout pregnancy. Our results suggested the potential role of activin in the uteroplacental tissues.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Motoki Sasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kenichi Watanabe
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.,Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary, Hokkaido 080-8555, Japan
| | - Pramod Dhakal
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.,Present address: Animal Science Research Center, Division of Animal Science, University of Missouri, Columbia, MO 65211, U.S.A
| | - Fumio Sato
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Kazuyoshi Taya
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yasuo Nambo
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary, Hokkaido 080-8555, Japan
| |
Collapse
|
10
|
Wijayarathna R, de Kretser DM, Sreenivasan R, Ludlow H, Middendorff R, Meinhardt A, Loveland KL, Hedger MP. Comparative analysis of activins A and B in the adult mouse epididymis and vas deferens. Reproduction 2018; 155:15-23. [DOI: 10.1530/rep-17-0485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/21/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022]
Abstract
Activin A regulates testicular and epididymal development, but the role of activin B in the epididymis and vas deferens is unknown. Mouse models with reduced activin A (Inhba+/− and InhbaBK/+), or its complete absence (InhbaBK/BK), were investigated to identify specific roles of activins in the male reproductive tract. In 8-week-old Inhba+/− mice, serum activin A decreased by 70%, with a 50% reduction of gene expression and protein in the testis, epididymis and vas deferens. Activin B and the activin-binding protein, follistatin, were similar to wild-type. Testis weights were slightly reduced in Inhba+/− mice, but the epididymis and vas deferens were normal, while the mice were fertile. Activin A was decreased by 70% in the serum, testis, epididymis and vas deferens of InhbaBK/+ mice and was undetectable in InhbaBK/BK mice, but activin B and follistatin levels were similar to wild-type. In 6-week-old InhbaBK/BK mice, testis weights were 60% lower and epididymal weights were 50% lower than in either InhbaBK/+ or wild-type mice. The cauda epididymal epithelium showed infoldings and less intra-luminal sperm, similar to 3.5-week-old wild-type mice, but at 8 weeks, no structural differences in the testis or epididymis were noted between InhbaBK/BK and wild-type mice. Thus, Inhbb can compensate for Inhba in regulating epididymal morphology, although testis and epididymal maturation is delayed in mice lacking Inhba. Crucially, reduction or absence of activin A, at least in the presence of normal activin B levels, does not lead to major defects in the adult epididymis or vas deferens.
Collapse
|
11
|
Carrarelli P, Funghi L, Ciarmela P, Centini G, Reis FM, Dela Cruz C, Mattei A, Vannuccini S, Petraglia F. Deep Infiltrating Endometriosis and Endometrial Adenocarcinoma Express High Levels of Myostatin and Its Receptors Messenger RNAs. Reprod Sci 2017; 24:1577-1582. [DOI: 10.1177/1933719117698579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Patrizia Carrarelli
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Lucia Funghi
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Gabriele Centini
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Fernando M. Reis
- Division of Human Reproduction, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cynthia Dela Cruz
- Division of Human Reproduction, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alberto Mattei
- Division of Obstetrics and Gynecology, Careggi University Hospital, Florence, Italy
| | - Silvia Vannuccini
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| |
Collapse
|
12
|
Janjusevic M, Greco S, Islam MS, Castellucci C, Ciavattini A, Toti P, Petraglia F, Ciarmela P. Locostatin, a disrupter of Raf kinase inhibitor protein, inhibits extracellular matrix production, proliferation, and migration in human uterine leiomyoma and myometrial cells. Fertil Steril 2016; 106:1530-1538.e1. [PMID: 27565262 DOI: 10.1016/j.fertnstert.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the presence of Raf kinase inhibitor protein (RKIP) in human myometrium and leiomyoma as well as to determine the effect of locostatin (RKIP inhibitor) on extracellular matrix (ECM) production, proliferation, and migration in human myometrial and leiomyoma cells. DESIGN Laboratory study. SETTING Human myometrium and leiomyoma. PATIENT(S) Thirty premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. INTERVENTION(S) Myometrial and leiomyoma tissues were used to investigate the localization and the expression level of RKIP through immunohistochemistry and Western blotting. Myometrial and leiomyoma cells were treated with locostatin (10 μM) to measure ECM expression by real-time polymerase chain reaction, GSK3β expression by Western blotting, cell migration by wound-healing assay, and cell proliferation by MTT assay and immunocytochemistry. MAIN OUTCOME MEASURE(S) The expression of RKIP in human myometrial and leiomyoma tissue; ECM components and GSK3β expression, migration, and proliferation in myometrial and leiomyoma cells. RESULT(S) RKIP is expressed in human myometrial and leiomyoma tissue. Locostatin treatment resulted in the activation of the mitogen-activated protein kinase (MAPK) signal pathway (ERK phosphorylation), providing a powerful validation of our targeting protocol. Further, RKIP inhibition by locostatin reduces ECM components. Moreover, the inhibition of RKIP by locostatin impaired cell proliferation and migration in both leiomyoma and myometrial cells. Finally, locostatin treatment reduced GSK3β expression. Therefore, even if the activation of MAPK pathway should increase proliferation and migration, the destabilization of GSK3β leads to the reduction of proliferation and migration of myometrial and leiomyoma cells. CONCLUSION(S) Our results indicate that RKIP may be involved in leiomyoma pathophysiology.
Collapse
Affiliation(s)
- Milijana Janjusevic
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Md Soriful Islam
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy; Biotechnology and Microbiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Clara Castellucci
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Ciavattini
- Department of Clinical Science, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Toti
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics, and Gynecology, University of Siena, Siena, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
13
|
Protic O, Toti P, Islam MS, Occhini R, Giannubilo SR, Catherino WH, Cinti S, Petraglia F, Ciavattini A, Castellucci M, Hinz B, Ciarmela P. Possible involvement of inflammatory/reparative processes in the development of uterine fibroids. Cell Tissue Res 2016; 364:415-427. [PMID: 26613601 DOI: 10.1007/s00441-015-2324-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
Abstract
Uterine leiomyomas are benign tumors in the smooth muscle layer of the uterus. The most common histological type is the "usual leiomyoma", characterized by overexpression of ECM proteins, whereas the "cellular type" has higher cellular content. Our objective is to investigate the involvement of inflammatory and reparative processes in leiomyoma pathobiology. Using a morphological approach, we investigate the presence of inflammatory cells. Next, we determine the localization of the ECM, the presence/absence of fibrotic cells via α-sma and desmin and the immunohistochemical profile of the mesenchymal cells with respect to CD34. Finally, we explore the effect of inflammatory mediators (TNF-α, IL-1β, IL-6, IL-15, GM-CSF and IFN-γ) on pro-fibrotic factor activin A mRNA expression in vitro. Higher numbers of macrophages were found inside and close to leiomyomas as compared to the more distant myometrium. Cellular leiomyomas showed more macrophages and mast cells than the "usual type". Inside the fibroid tissue, we found cells positive for α-sma, but negative for desmin and a large amount of collagen surrounding the nodule, suggestive of myofibroblasts producing ECM. In the myometrium and leiomyomas of the "usual type", we identified numerous CD34+ fibroblasts, which are known to give rise to myofibroblasts upon loss of CD34 expression. In leiomyomas of the "cellular type", stromal fibroblasts were CD34-negative. Finally, we found that TNF-α increased activin A mRNA in myometrial and leiomyoma cells. In conclusion, this study demonstrates the presence of inflammatory cells in uterine leiomyomas, which may contribute to excessive ECM production, tissue remodeling and leiomyoma growth.
Collapse
Affiliation(s)
- Olga Protic
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020, Ancona, Italy
| | - Paolo Toti
- Department of Medical Biotechnology, University of Siena, 53100, Siena, Italy
| | - Md Soriful Islam
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020, Ancona, Italy
- Biotechnology and Microbiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Rossella Occhini
- Department of Medical Biotechnology, University of Siena, 53100, Siena, Italy
| | | | - William H Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20814, USA
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020, Ancona, Italy
- Center of Obesity, Polytechnic University of Marche - United Hospitals, Ancona, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics, and Gynecology, University of Siena, 53100, Siena, Italy
| | - Andrea Ciavattini
- Department of Clinical Science, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Mario Castellucci
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020, Ancona, Italy.
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5S 3E2, Canada
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020, Ancona, Italy.
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
14
|
Growth factors and pathogenesis. Best Pract Res Clin Obstet Gynaecol 2015; 34:25-36. [PMID: 26527305 DOI: 10.1016/j.bpobgyn.2015.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022]
Abstract
Growth factors are relatively small and stable, secreted or membrane-bound polypeptide ligands, which play an important role in proliferation, differentiation, angiogenesis, survival, inflammation, and tissue repair, or fibrosis. They exert multiple effects through the activation of signal transduction pathways by binding to their receptors on the surface of target cells. A number of studies have demonstrated the central role of growth factors and their signaling pathways in the pathogenesis of uterine leiomyomas. Numerous differentially expressed growth factors have been identified in leiomyoma and myometrial cells. These growth factors can activate multiple signaling pathways (Smad 2/3, ERK 1/2, PI3K, and β-catenin) and regulate major cellular processes, including inflammation, proliferation, angiogenesis, and fibrosis which are linked to uterine leiomyoma development and growth. In this chapter, we discuss the role of growth factors and their signaling pathways in the pathogenesis of uterine leiomyomas.
Collapse
|
15
|
Carrarelli P, Yen CF, Arcuri F, Funghi L, Tosti C, Wang TH, Huang JS, Petraglia F. Myostatin, follistatin and activin type II receptors are highly expressed in adenomyosis. Fertil Steril 2015; 104:744-52.e1. [DOI: 10.1016/j.fertnstert.2015.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
|
16
|
Tsigkou A, Reis FM, Ciarmela P, Lee MH, Jiang B, Tosti C, Shen FR, Shi Z, Chen YG, Petraglia F. Expression Levels of Myostatin and Matrix Metalloproteinase 14 mRNAs in Uterine Leiomyoma are Correlated With Dysmenorrhea. Reprod Sci 2015; 22:1597-602. [DOI: 10.1177/1933719115592710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Anastasia Tsigkou
- Department of Biological Sciences, Xi’an Jiaotong Liverpool University, Suzhou, China
| | - Fernando M. Reis
- Division of Human Reproduction, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Meng H. Lee
- Department of Biological Sciences, Xi’an Jiaotong Liverpool University, Suzhou, China
| | | | - Claudia Tosti
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| | - Fang-Rong Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhendan Shi
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - You-Guo Chen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, Siena, Italy
| |
Collapse
|
17
|
Rajagopal SP, Hutchinson JL, Dorward DA, Rossi AG, Norman JE. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone. Mol Hum Reprod 2015; 21:672-86. [PMID: 26002969 PMCID: PMC4518137 DOI: 10.1093/molehr/gav027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/19/2015] [Indexed: 11/14/2022] Open
Abstract
Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell–cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone.
Collapse
Affiliation(s)
- S P Rajagopal
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J L Hutchinson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - D A Dorward
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J E Norman
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
18
|
Borges LE, Bloise E, Dela Cruz C, Massai L, Ciarmela P, Apa R, Luisi S, Severi FM, Petraglia F, Reis FM. Expression, localization and control of activin A release from human umbilical vein endothelial cells. Growth Factors 2015; 33:243-9. [PMID: 26340032 DOI: 10.3109/08977194.2015.1071809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activin-A is a member of the TGFβ superfamily found in maternal and umbilical cord blood throughout gestation. We investigated whether human umbilical vein endothelial cells (HUVEC) express activin-A in vivo and tested the effects of vasoactive (endothelin-1), pro-inflammatory (interferon-γ, interleukin-8) and anti-inflammatory (dexamethasone, urocortin) factors on activin-A release by isolated HUVEC in vitro. Activin βA subunit protein and mRNA were strongly localized in the endothelial cells of umbilical veins and were also detectable in scattered cells of the cord connective tissue. Dimeric activin-A was detected in the HUVEC culture medium at picomolar concentrations. Activin-A release by HUVEC decreased after cell incubation with urocortin (p < 0.01), whereas no effect was observed with interleukin-8, interferon-γ, endothelin-1 or dexamethasone. In summary, activin-A is present in the human umbilical vein endothelium in vivo and is produced and released by isolated HUVEC. Activin-A secretion is inhibited in vitro by urocortin, a neuropeptide with predominantly anti-inflammatory action.
Collapse
Affiliation(s)
- Lavinia E Borges
- a Department of Obstetrics and Gynecology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Enrrico Bloise
- b Laboratory of Translational Endocrinology , Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Cynthia Dela Cruz
- a Department of Obstetrics and Gynecology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Lauretta Massai
- c Department of Medical, Surgical and Neurological Sciences , University of Siena , Italy
| | - Pasquapina Ciarmela
- d Department of Experimental and Clinical Medicine , Polytechnic University of Marche , Ancona , Italy
| | - Rosanna Apa
- e Institute of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore , Rome , Italy , and
| | - Stefano Luisi
- f Department of Molecular and Developmental Medicine , Obstetrics and Gynecology, University of Siena , Siena , Italy
| | - Filiberto M Severi
- f Department of Molecular and Developmental Medicine , Obstetrics and Gynecology, University of Siena , Siena , Italy
| | - Felice Petraglia
- f Department of Molecular and Developmental Medicine , Obstetrics and Gynecology, University of Siena , Siena , Italy
| | - Fernando M Reis
- a Department of Obstetrics and Gynecology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
19
|
Refaat B. Role of activins in embryo implantation and diagnosis of ectopic pregnancy: a review. Reprod Biol Endocrinol 2014; 12:116. [PMID: 25421645 PMCID: PMC4254208 DOI: 10.1186/1477-7827-12-116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022] Open
Abstract
Embryo implantation is a major prerequisite for the successful establishment of pregnancy. Ectopic implantation outside the intrauterine cavity and the development of ectopic pregnancy (EP) is a major cause of maternal morbidity and occasionally mortality during the first trimester. EP may be induced by failure of tubal transport and/or increased tubal receptivity. Activins, their type II receptors and follistatin have been localised in the human endometrial and tubal epithelium and they are major regulators of endometrial and tubal physiology during the menstrual cycle. Pathological expression of activins and their binding protein, follistatin, was observed in tissue and serum samples collected from EP. Several studies with different designs investigated the diagnostic value of a single measurement of serum activin-A in the differentiation between normal intrauterine and failing early pregnancy and the results are controversial. Nevertheless, the diagnostic value of activins in EP, including the other activin isoforms (activin-B and -AB) and follistatin, merits further research. This review appraises the data to date researching the role of activins in the establishment of normal pregnancy and, pathogenesis and diagnosis of tubal EP.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah, PO Box 7607, Saudi Arabia.
| |
Collapse
|
20
|
Ciarmela P, Carrarelli P, Islam MS, Janjusevic M, Zupi E, Tosti C, Castellucci M, Petraglia F. Ulipristal acetate modulates the expression and functions of activin a in leiomyoma cells. Reprod Sci 2014; 21:1120-5. [PMID: 25001022 DOI: 10.1177/1933719114542019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Uterine leiomyoma is the most common benign gynecological tumor in women of reproductive age and represents the single most common indication for hysterectomy. A development of new treatments is necessary for a medical management, and in this direction, several hormonal drugs are under investigation. Ulipristal acetate (UPA; a selective progesterone receptor modulator) is considered as one of the most promising because progesterone has a critical role in development and growth of uterine leiomyoma. The effect of steroids is partly mediated by growth factors like activin A which increases extracellular matrix expression contributing to the growth of leiomyoma. The present study aimed to test whether UPA acts on leiomyoma cells affecting expression and functions of activin A system. Cultured myometrial and leiomyoma cells were treated with UPA, and messenger RNA (mRNA) expression levels of activin A (inhibin βA [INHBA] subunits), its binding proteins (follistatin [FST] and FST-related gene), and its receptors (activin receptor-like kinase 4 [ALK4], activin receptor type [ActR] II, and ActRIIB) were evaluated. The effect of UPA on activin A modulation of fibronectin and vascular endothelial growth factor A (VEGF-A) mRNA expression in cultured myometrial and leiomyoma cells was also studied. Ulipristal acetate decreased INHBA, FST, ActRIIB, and Alk4 mRNA expressions in leiomyoma cultured cells. In addition, UPA was able to block the activin A-induced increase in fibronectin or VEGF-A mRNA expression in myometrial and in leiomyoma cultured cells. The present data show that UPA inhibits activin A expression and functions in leiomyoma cells, and this may represent a possible mechanism of action of the drug on uterine leiomyoma.
Collapse
Affiliation(s)
- Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Patrizia Carrarelli
- Division of Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, 'S. Maria alle Scotte', Siena, Italy
| | - Md Soriful Islam
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy Department of Botany, Biotechnology and Microbiology Laboratory, University of Rajshahi, Rajshahi, Bangladesh
| | - Milijana Janjusevic
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Errico Zupi
- Division of Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, 'S. Maria alle Scotte', Siena, Italy
| | - Claudia Tosti
- Division of Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, 'S. Maria alle Scotte', Siena, Italy
| | - Mario Castellucci
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Felice Petraglia
- Division of Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, 'S. Maria alle Scotte', Siena, Italy
| |
Collapse
|
21
|
Islam MS, Catherino WH, Protic O, Janjusevic M, Gray PC, Giannubilo SR, Ciavattini A, Lamanna P, Tranquilli AL, Petraglia F, Castellucci M, Ciarmela P. Role of activin-A and myostatin and their signaling pathway in human myometrial and leiomyoma cell function. J Clin Endocrinol Metab 2014; 99:E775-85. [PMID: 24606069 PMCID: PMC4010707 DOI: 10.1210/jc.2013-2623] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Uterine leiomyomas are highly prevalent benign tumors of premenopausal women and the most common indication for hysterectomy. However, the exact etiology of this tumor is not fully understood. OBJECTIVE The objective of the study was to evaluate the role of activin-A and myostatin and their signaling pathways in human myometrial and leiomyoma cells. DESIGN This was a laboratory study. SETTING Myometrial and leiomyoma cells (primary and cell lines) were cultured in vitro. PATIENTS The study included premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. INTERVENTIONS Primary myometrial and leiomyoma cells and/or cell lines were treated with activin-A (4 nM) and myostatin (4 nM) for different days of interval (to measure proliferation rate) or 30 minutes (to measure signaling molecules) or 48 hours to measure proliferating markers, extracellular matrix mRNA, and/or protein expression by real-time PCR, Western blot, and/or immunocytochemistry. RESULTS We found that activin-A and myostatin significantly reduce cell proliferation in primary myometrial cells but not in leiomyoma cells as measured by a CyQUANT cell proliferation assay kit. Reduced expression of proliferating cell nuclear antigen and Ki-67 were also observed in myometrial cells in response to activin-A and myostatin treatment. Activin-A also significantly increased mRNA expression of fibronectin, collagen1A1, and versican in primary leiomyoma cells. Finally, we found that activin-A and myostatin activate Smad-2/3 signaling but do not affect ERK or p38 signaling in both myometrial and leiomyoma cells. CONCLUSIONS This study results suggest that activin-A and myostatin can exert antiproliferative and/or fibrotic effects on these cell types via Smad-2/3 signaling.
Collapse
|
22
|
Gao Y, Bayless KJ, Li Q. TGFBR1 is required for mouse myometrial development. Mol Endocrinol 2014; 28:380-94. [PMID: 24506537 PMCID: PMC3938542 DOI: 10.1210/me.2013-1284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/27/2014] [Indexed: 12/22/2022] Open
Abstract
The smooth muscle layer of the uterus (ie, myometrium) is critical for a successful pregnancy and labor. We have shown that the conditional deletion of TGFβ type 1 receptor (TGFBR1) in the female reproductive tract leads to remarkable smooth muscle defects. This study was aimed at defining the cellular and molecular basis of the myometrial defects. We found that TGFBR1 is required for myometrial configuration and formation during early postnatal uterine development. Despite the well-established role of TGFβ signaling in vascular smooth muscle cell differentiation, the majority of smooth muscle genes were expressed in Tgfbr1 conditional knockout (cKO) uteri at similar levels as controls during postnatal uterine development, coinciding with the presence but abnormal distribution of proteins for select smooth muscle markers. Importantly, the uteri of these mice had impaired synthesis of key extracellular matrix proteins and dysregulated expression of platelet-derived growth factors. Furthermore, platelet-derived growth factors induced the migration of uterine stromal cells from both control and Tgfbr1 cKO mice in vitro. Our results suggest that the myometrial defects in Tgfbr1 cKO mice may not directly arise from an intrinsic deficiency in uterine smooth muscle cell differentiation but are linked to the impaired production of key extracellular matrix components and abnormal uterine cell migration during a critical time window of postnatal uterine development. These findings will potentially aid in the design of novel therapies for reproductive disorders associated with myometrial defects.
Collapse
Affiliation(s)
- Yang Gao
- Department of Veterinary Integrative Biosciences (Y.G., Q.L.), College of Veterinary Medicine and Biomedical Sciences, and Department of Molecular and Cellular Medicine (K.J.B.), Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | | | | |
Collapse
|
23
|
Uterine fibroids: pathogenesis and interactions with endometrium and endomyometrial junction. Obstet Gynecol Int 2013; 2013:173184. [PMID: 24163697 PMCID: PMC3791844 DOI: 10.1155/2013/173184] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/10/2013] [Accepted: 08/13/2013] [Indexed: 01/30/2023] Open
Abstract
Uterine leiomyomas (fibroids or myomas) are benign tumors of uterus and clinically apparent in a large part of reproductive aged women. Clinically, they present with a variety of symptoms: excessive menstrual bleeding, dysmenorrhoea and intermenstrual bleeding, chronic pelvic pain, and pressure symptoms such as a sensation of bloatedness, increased urinary frequency, and bowel disturbance. In addition, they may compromise reproductive functions, possibly contributing to subfertility, early pregnancy loss, and later pregnancy complications. Despite the prevalence of this condition, myoma research is underfunded compared to other nonmalignant diseases. To date, several pathogenetic factors such as genetics, microRNA, steroids, growth factors, cytokines, chemokines, and extracellular matrix components have been implicated in the development and growth of leiomyoma. This paper summarizes the available literature regarding the ultimate relative knowledge on pathogenesis of uterine fibroids and their interactions with endometrium and subendometrial myometrium.
Collapse
|
24
|
Islam MS, Protic O, Stortoni P, Grechi G, Lamanna P, Petraglia F, Castellucci M, Ciarmela P. Complex networks of multiple factors in the pathogenesis of uterine leiomyoma. Fertil Steril 2013; 100:178-93. [DOI: 10.1016/j.fertnstert.2013.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 01/07/2023]
|
25
|
Islam MS, Protic O, Giannubilo SR, Toti P, Tranquilli AL, Petraglia F, Castellucci M, Ciarmela P. Uterine leiomyoma: available medical treatments and new possible therapeutic options. J Clin Endocrinol Metab 2013; 98:921-34. [PMID: 23393173 DOI: 10.1210/jc.2012-3237] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Uterine leiomyomas (fibroids or myomas) are benign tumors of the uterus and are clinically apparent in up to 25% of reproductive-age women. Heavy or abnormal uterine bleeding, pelvic pain or pressure, infertility, and recurrent pregnancy loss are generally associated with leiomyoma. Although surgical and radiological therapies are frequently used for the management of this tumor, medical therapies are considered the first-line treatment of leiomyoma. EVIDENCE ACQUISITION AND SYNTHESIS A review was conducted of electronic and print data comprising both original and review articles on pathophysiology and medical treatments of uterine leiomyoma retrieved from the PubMed or Google Scholar database up to June 2012. These resources were integrated with the authors' knowledge of the field. CONCLUSION To date, several pathogenetic factors such as genetic factors, epigenetic factors, estrogens, progesterone, growth factors, cytokines, chemokines, and extracellular matrix components have been implicated in leiomyoma development and growth. On the basis of current hypotheses, several medical therapies have been investigated. GnRH agonist has been approved by US Food and Drug Administration for reducing fibroid volume and related symptoms. In addition, the FDA also approved an intrauterine device, levonorgestrel-releasing intrauterine system (Mirena), for additional use to treat heavy menstrual bleeding in intrauterine device users only. Currently, mifepristone, asoprisnil, ulipristal acetate, and epigallocatechin gallate have been shown to be effective for fibroid regression and symptomatic improvement which are all in clinical trial. In addition, some synthetic and natural compounds as well as growth factor inhibitors are now under laboratory investigation, and they could serve as future therapeutic options.
Collapse
Affiliation(s)
- Md Soriful Islam
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020 Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim PY, Zhong M, Kim YS, Sanborn BM, Allen KGD. Long chain polyunsaturated fatty acids alter oxytocin signaling and receptor density in cultured pregnant human myometrial smooth muscle cells. PLoS One 2012; 7:e41708. [PMID: 22848573 PMCID: PMC3406084 DOI: 10.1371/journal.pone.0041708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/25/2012] [Indexed: 11/30/2022] Open
Abstract
Epidemiological studies and interventional clinical trials indicate that consumption of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) such as docosahexaenoic acid (DHA) lengthen gestational duration. Although the mechanisms are not well understood, prostaglandins (PG) of the 2-series are known to play a role in the initiation and progress of labor. In animal studies, modest DHA provision has been shown to reduce placental and uterine PGE(2) and PGF(2α), matrix metalloproteinase (MMP)-2 and MMP-9 expression, and placental collagenase activity. However, modulation of PG biosynthesis may not account for all the effects of LC n-3 PUFAs in labor. We investigated one potential PG-independent mechanism of LC PUFA action using cultured pregnant human myometrial smooth muscle cells. Our goal was to characterize the effect of LC PUFA treatment on oxytocin signaling, a potent uterotonic hormone involved in labor. The addition of 10 µM-100 µM DHA or arachidonic acid (AA) to the culture media for 48 h resulted in dose dependent enrichment of these fatty acids in membrane lipid. DHA and AA significantly inhibited phosphatidylinositol turnover and [Ca(2+)](i) mobilization with oxytocin stimulation compared to bovine serum albumin control and equimolar oleic acid. DHA and AA significantly reduced oxytocin receptor membrane concentration without altering binding affinity or rate of receptor internalization. These findings demonstrate a role for LC n-3 PUFAs in regulation of oxytocin signaling and provide new insight into additional mechanisms pertaining to reports of dietary fish and fish oil consumption prolonging gestation.
Collapse
Affiliation(s)
- Paul Y. Kim
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States of America
| | - Miao Zhong
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Yoon-Sun Kim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara M. Sanborn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kenneth G. D. Allen
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
27
|
Craythorn RG, Winnall WR, Lederman F, Gold EJ, O'Connor AE, de Kretser DM, Hedger MP, Rogers PAW, Girling JE. Progesterone stimulates expression of follistatin splice variants Fst288 and Fst315 in the mouse uterus. Reprod Biomed Online 2011; 24:364-74. [PMID: 22285243 DOI: 10.1016/j.rbmo.2011.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022]
Abstract
Follistatin, an inhibitor of activin A, has key regulatory roles in the female reproductive tract. Follistatin has two splice variants: FST288, largely associated with cell surfaces, and FST315, the predominant circulating form. The mechanism regulating uterine expression of these variants is unknown. Quantitative RT-PCR was used to measure expression of follistatin splice variants (Fst288, Fst315), the activin bA subunit (Inhba) and the inhibin a subunit (Inha) in uterine tissues during early pregnancy (days 1–4, preimplantation) and in response to exogenous 17b-oestradiol (single s.c. injection) and progesterone (three daily s.c. injections) in ovariectomized mice. Uterine Fst288, Fst315 and Inhba expression increased during early pregnancy, with greater increases in Fst315 relative to Fst288 suggesting differential regulation of these variants. Fst288, Fst315, Inhba and Inha all increased in response to progesterone treatment. Fst288, but not Fst315, mRNA decreased in response to 17b-oestradiol treatment, whereas Inhba increased. A comparison of the absolute concentrations of uterine follistatin mRNA using crossing thresholds indicated that both variants were more highly expressed in early pregnancy in contrast to the hormone treatment models. It is concluded that progesterone regulates uterine expression of both follistatin variants, as well as activin A, during early pregnancy in the mouse uterus
Collapse
Affiliation(s)
- R G Craythorn
- Centre for Women's Health Research, Monash University Department of Obstetrics and Gynaecology, Monash Institute of Medical Research, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ciarmela P, Islam MS, Reis FM, Gray PC, Bloise E, Petraglia F, Vale W, Castellucci M. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications. Hum Reprod Update 2011; 17:772-90. [PMID: 21788281 DOI: 10.1093/humupd/dmr031] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology.
Collapse
Affiliation(s)
- Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020 Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ciarmela P, Bloise E, Gray PC, Carrarelli P, Islam MS, De Pascalis F, Severi FM, Vale W, Castellucci M, Petraglia F. Activin-A and myostatin response and steroid regulation in human myometrium: disruption of their signalling in uterine fibroid. J Clin Endocrinol Metab 2011; 96:755-65. [PMID: 21177794 PMCID: PMC3047220 DOI: 10.1210/jc.2010-0501] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Investigation of activin-A (A) and myostatin (M) in human myometrium (HM) and leiomyoma (HL) will explain their involvement in human myometrial pathophysiology. OBJECTIVE We aimed to investigate A and M response and steroid regulation in HM. We also evaluated A and M expression and response in HL. DESIGN Tissues were analyzed and cultured. PATIENTS Patients included fertile (in proliferative phase) and menopausal women undergoing hysterectomy. INTERVENTIONS HM explant cultures were treated with A and M (for Smad-7 mRNA quantification) or estrogen and progesterone (for A and M mRNA quantification). A and M expression levels were also evaluated in menopausal (physiological absence of steroids) HM specimens. A and M and their receptors were evaluated in HL (n = 8, diameter 5-8 cm) compared with their matched HM. HL explants cultures were treated with A and M (for Smad7 mRNA quantification), and, to explain the absence of response, the levels of follistatin, follistatin-related gene (FLRG), and Cripto were evaluated. RESULTS A and M increased Smad7 expression in HM explants. A and M mRNAs were both reduced after estradiol treatment, unchanged after progesterone treatment, but were higher in menopausal than fertile (in proliferative phase) specimens. A, M, and FLRG were expressed at higher levels in HL compared with adjacent HM, whereas the receptors, follistatin, and Smad7 mRNAs resulted unchanged. Cripto mRNA was expressed only in HL. CONCLUSIONS A and M act on human HM and are regulated by steroids. In HL there is an increase of A, M, FLRG, and Cripto expression.
Collapse
Affiliation(s)
- Pasquapina Ciarmela
- Department of Molecular Pathology and Innovative Therapies, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chung D, Kim YS, Phillips JN, Ulloa A, Ku CY, Galan HL, Sanborn BM. Attenuation of canonical transient receptor potential-like channel 6 expression specifically reduces the diacylglycerol-mediated increase in intracellular calcium in human myometrial cells. Endocrinology 2010; 151:406-16. [PMID: 19940041 PMCID: PMC2803151 DOI: 10.1210/en.2009-0085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An increase in intracellular Ca(2+) ([Ca(2+)](i)) as a result of release of Ca(2+) from intracellular stores or influx of extracellular Ca(2+) contributes to the regulation of smooth muscle contractile activity. Human uterine smooth muscle cells exhibit receptor-, store-, and diacylglycerol (OAG)-mediated extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and express canonical transient receptor potential-like channels (TRPC) mRNAs (predominantly TRPC1, -4, and -6) that have been implicated in SRCE. To determine the role of TRPC6 in human myometrial SRCE, short hairpin RNA constructs were designed that effectively targeted a TRPC6 mRNA reporter for degradation. One sequence was used to produce an adenovirus construct (TC6sh1). TC6sh1 reduced TRPC6 mRNA but not TRPC1, -3, -4, -5, or -7 mRNAs in PHM1-41 myometrial cells. Compared with uninfected cells or cells infected with empty vector, the increase in [Ca(2+)](i) in response to OAG was specifically inhibited by TC6sh1, whereas SRCE responses elicited by either oxytocin or thapsigargin were not changed. Similar findings were observed in primary pregnant human myometrial cells. When PHM1-41 cells were activated by OAG in the absence of extracellular Na(+), the increase in [Ca(2+)](i) was partially reduced. Furthermore, pretreatment with nifedipine, an L-type calcium channel blocker, also partially reduced the OAG-induced [Ca(2+)](i) increase. Similar effects were observed in primary human myometrial cells. These findings suggest that OAG activates channels containing TRPC6 in myometrial cells and that these channels act via both enhanced Na(+) entry coupled to activation of voltage-dependent Ca(2+) entry channels and a nifedipine-independent Ca(2+) entry mechanism to promote elevation of intracellular Ca(2+).
Collapse
Affiliation(s)
- Daesuk Chung
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ulloa A, Gonzales AL, Zhong M, Kim YS, Cantlon J, Clay C, Ku CY, Earley S, Sanborn BM. Reduction in TRPC4 expression specifically attenuates G-protein coupled receptor-stimulated increases in intracellular calcium in human myometrial cells. Cell Calcium 2009; 46:73-84. [PMID: 19523685 PMCID: PMC2866636 DOI: 10.1016/j.ceca.2009.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 11/29/2022]
Abstract
Canonical transient receptor potential (TRPC) proteins may play a role in regulating changes in intracellular calcium ([Ca(2+)](i)). Human myometrium expresses TRPC4, TRPC1 and TRPC6 mRNAs in greatest relative abundance. Contributions of TRPC4 to increases in [Ca(2+)](i) were assessed in PHM1-41 and primary human uterine smooth muscle (UtSMC) cells using short hairpin RNAs (shRNAs). Based on a reporter assay screen, one shRNA was selected to construct an adenoviral expression vector (TC4sh1). TC4sh1 induced both mRNA and protein TRPC4 knockdown in PHM1-41 cells without affecting expression of other TRPCs. Signal-regulated Ca(2+) entry (SRCE), defined as a stimulus- and extracellular Ca(2+)-dependent increase in [Ca(2+)](i), was measured in PHM1-41 cells treated with oxytocin (G-protein coupled receptor (GPCR)-stimulated), thapsigargin (store depletion-stimulated), and OAG (diacylglycerol-stimulated), using Fura-2. Cells infected with TC4sh1 exhibited attenuated oxytocin-, ATP- and PGF2alpha-mediated SRCE, but no change in thapsigargin- or OAG-stimulated SRCE. Similar results were obtained in primary uterine smooth muscle cells. Additionally, cells expressing TC4sh1 exhibited a significantly smaller increase in channel activity in response to oxytocin administration than did cells infected with empty virus. These data show that, in human myometrial cells, knockdown of endogenous TRPC4 specifically attenuates GPCR-stimulated, but not thapsigargin- or OAG-stimulated extracellular calcium-dependent increases in [Ca(2+)](i). These data imply that, in this cellular context, the mechanisms regulating extracellular Ca(2+)-dependent increases in [Ca(2+)](i) are differentially affected by different signaling pathways.
Collapse
Affiliation(s)
- Aida Ulloa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO
| | - Albert L. Gonzales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
- Molecular and Cellular Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| | - Miao Zhong
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Yoon-Sun Kim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jeremy Cantlon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Colin Clay
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO
| | - Chun-Ying Ku
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Scott Earley
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO
- Molecular and Cellular Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| | - Barbara M. Sanborn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
32
|
Ciarmela P, Wiater E, Smith SM, Vale W. Presence, actions, and regulation of myostatin in rat uterus and myometrial cells. Endocrinology 2009; 150:906-14. [PMID: 18845635 PMCID: PMC2732292 DOI: 10.1210/en.2008-0880] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myostatin, a member of the TGF-beta superfamily of proteins, is known to suppress skeletal muscle mass and myocyte proliferation. The muscular component of the uterus is the myometrium, a tissue that regulates its mass in response to different physiological conditions under the influence of sex steroids. Recently, our laboratory reported effects of activin-A, another TGF-beta family member, on signalling and proliferation of rat uterine explants and human myometrial cell lines in culture. Here, we explore the expression, actions, and regulation of myostatin in uterine smooth muscle. Myostatin mRNA was demonstrated to be expressed in a myometrial cell line, pregnant human myometrial 1 cell line (PHM1). Functional assays showed that myostatin induced phosphorylation of Smad-2 and reduced proliferation of PHM1 number in a time and dose-dependent manner. Furthermore, myostatin activated smad-2 specific signalling pathways in rat uterine explants. To expand on our in vitro findings, we found that myostatin is expressed in rat uterus and determined that myostatin mRNA expression varies as a function of the phase of the estrous cycle. Uterine levels of myostatin peaked during late estrus and were the lowest at proestrus. Ovariectomy increased myostatin expression; estrogen treatment strongly decreased myostatin levels, whereas progesterone weakly decreased myostatin expression. In conclusion, myometrial cells are myostatin sensitive, myostatin mRNA levels are modulated in vivo in rats during the estrous cycle, and in response to steroid deprivation and replacement.
Collapse
Affiliation(s)
- Pasquapina Ciarmela
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|