1
|
Tucker JAL, Bornath DPD, McCarthy SF, Hazell TJ. Leptin and energy balance: exploring Leptin's role in the regulation of energy intake and energy expenditure. Nutr Neurosci 2024; 27:87-95. [PMID: 36583502 DOI: 10.1080/1028415x.2022.2161135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leptin is a tonic appetite-regulating hormone, which is integral for the long-term regulation of energy balance. The current evidence suggests that the typical orexigenic or anorexigenic response of many of these appetite-regulating hormones, most notably ghrelin and cholecystokinin (CCK), require leptin to function whereas glucagon-like peptide-1 (GLP-1) is required for leptin to function, and these responses are altered when leptin injection or gene therapy is administered in combination with these same hormones or respective agonists. The appetite-regulatory pathway is complex, thus peptide tyrosine tyrosine (PYY), brain-derived neurotrophic factor (BDNF), orexin-A (OXA), and amylin also maintain ties to leptin, however these are less well understood. While reviews to date have focused on the existing relationships between leptin and the various neuropeptide modulators of appetite within the central nervous system (CNS) or it's role in thermogenesis, no review paper has synthesised the information regarding the interactions between appetite-regulating hormones and how leptin as a chronic regulator of energy balance can influence the acute appetite-regulatory response. Current evidence suggests that potential relationships exist between leptin and the circulating peripheral appetite hormones ghrelin, GLP-1, CCK, OXA and amylin to exhibit either synergistic or opposing effects on appetite inhibition. Though more research is warranted, leptin appears to be integral in both energy intake and energy expenditure. More specifically, functional leptin receptors appear to play an essential role in these processes.
Collapse
Affiliation(s)
- Jessica A L Tucker
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Derek P D Bornath
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
2
|
Guerra-Cantera S, Frago LM, Jiménez-Hernaiz M, Collado-Pérez R, Canelles S, Ros P, García-Piqueras J, Pérez-Nadador I, Barrios V, Argente J, Chowen JA. The metabolic effects of resumption of a high fat diet after weight loss are sex dependent in mice. Sci Rep 2023; 13:13227. [PMID: 37580448 PMCID: PMC10425431 DOI: 10.1038/s41598-023-40514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Dietary restriction is a frequent strategy for weight loss, but adherence is difficult and returning to poor dietary habits can result in more weight gain than that previously lost. How weight loss due to unrestricted intake of a healthy diet affects the response to resumption of poor dietary habits is less studied. Moreover, whether this response differs between the sexes and if the insulin-like growth factor (IGF) system, sex dependent and involved in metabolic control, participates is unknown. Mice received rodent chow (6% Kcal from fat) or a high-fat diet (HFD, 62% Kcal from fat) for 4 months, chow for 3 months plus 1 month of HFD, or HFD for 2 months, chow for 1 month then HFD for 1 month. Males and females gained weight on HFD and lost weight when returned to chow at different rates (p < 0.001), but weight gain after resumption of HFD intake was not affected by previous weight loss in either sex. Glucose metabolism was more affected by HFD, as well as the re-exposure to HFD after weight loss, in males. This was associated with increases in hypothalamic mRNA levels of IGF2 (p < 0.01) and IGF binding protein (IGFBP) 2 (p < 0.05), factors involved in glucose metabolism, again only in males. Likewise, IGF2 increased IGFBP2 mRNA levels only in hypothalamic astrocytes from males (p < 0.05). In conclusion, the metabolic responses to dietary changes were less severe and more delayed in females and the IGF system might be involved in some of the sex specific observations.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Endocrinology, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Jorge García-Piqueras
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Iris Pérez-Nadador
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain.
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain.
| |
Collapse
|
3
|
Xu Y, Gu C, Wu L, Ye F, Li W, Li H, Liu Q, Wang Y, Zhang J. Intrauterine exposure of mice to arsenite induces abnormal and transgenerational glycometabolism. CHEMOSPHERE 2022; 294:133757. [PMID: 35090851 DOI: 10.1016/j.chemosphere.2022.133757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The adverse, transgenerational effects on health caused by environmental pollutants are receiving increasing attention. For humans and mice, inorganic arsenic (iAs), a widespread environmental contaminant, is associated with diabetic phenotypes. However, the transgenerational effects of arsenite-induced changes in glucose metabolism in mice have not been fully investigated. In the present study, F0 pregnant mice were exposed to arsenite via drinking water (0, 0.5, 5, or 50 ppm NaAsO2) from gestational day 0 (GD0) until parturition. We examined the effects of arsenite exposure on the metabolic phenotypes and the levels of proteins and genes related to glucose metabolism of dams and their offspring (F1∼F4). Arsenite exposure altered the glucose tolerance of offspring. Notably, glucose transporter-2 (GLUT2) and insulin receptor substrate-1 (IRS1), which are related to the maintenance of glucose homeostasis, were also changed. The homeostasis assessment-insulin resistance (HOMA-IR), an indicator of insulin resistance, was higher in the offspring from the F0 female mice exposed to arsenite. Furthermore, imprinted genes, insulin-like growth factor 2 (IGF2) and potassium voltage-gated channel subfamily Q member 1 (KCNQ1), related to glycometabolism across multiple generations, were lower in the offspring. In sum, arsenite exposure during pregnancy transgenerationally affects glucose metabolism, which is related to altered levels of IGF2 and KCNQ1.
Collapse
Affiliation(s)
- Yuan Xu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Chenxi Gu
- Wuxi Binhu Center for Disease Control and Prevention, Wuxi, 214026, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wenqi Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yubang Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Jingshu Zhang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Koerber-Rosso I, Brandt S, von Schnurbein J, Fischer-Posovszky P, Hoegel J, Rabenstein H, Siebert R, Wabitsch M. A fresh look to the phenotype in mono-allelic likely pathogenic variants of the leptin and the leptin receptor gene. Mol Cell Pediatr 2021; 8:10. [PMID: 34448070 PMCID: PMC8390564 DOI: 10.1186/s40348-021-00119-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Leptin (LEP) and leptin receptor (LEPR) play a major role in energy homeostasis, metabolism, and reproductive function. While effects of biallelic likely pathogenic variants (-/-) on the phenotype are well characterized, effects of mono-allelic likely pathogenic variants (wt/-) in the LEP and LEPR gene on the phenotype compared to wild-type homozygosity (wt/wt) have not been systematically investigated. We identified in our systematic review 44 animal studies (15 on Lep, 29 on Lepr) and 39 studies in humans reporting on 130 mono-allelic likely pathogenic variant carriers with 20 distinct LEP variants and 108 heterozygous mono-allelic likely pathogenic variant carriers with 35 distinct LEPR variants. We found indications for a higher weight status in carriers of mono-allelic likely pathogenic variant in the leptin and in the leptin receptor gene compared to wt/wt, in both animal and human studies. In addition, animal studies showed higher body fat percentage in Lep and Lepr wt/- vs wt/wt. Animal studies provided indications for lower leptin levels in Lep wt/- vs. wt/wt and indications for higher leptin levels in Lepr wt/- vs wt/wt. Data on leptin levels in human studies was limited. Evidence for an impaired metabolism in mono-allelic likely pathogenic variants of the leptin and in leptin receptor gene was not conclusive (animal and human studies). Mono-allelic likely pathogenic variants in the leptin and in leptin receptor gene have phenotypic effects disposing to increased body weight and fat accumulation.
Collapse
Affiliation(s)
- Ingrid Koerber-Rosso
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stephanie Brandt
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Julia von Schnurbein
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Josef Hoegel
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Hannah Rabenstein
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
5
|
The transcriptional co-regulator LDB1 is required for brown adipose function. Mol Metab 2021; 53:101284. [PMID: 34198011 PMCID: PMC8340307 DOI: 10.1016/j.molmet.2021.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Brown adipose tissue (BAT) is critical for thermogenesis and glucose/lipid homeostasis. Exploiting the energy uncoupling capacity of BAT may reveal targets for obesity therapies. This exploitation requires a greater understanding of the transcriptional mechanisms underlying BAT function. One potential regulator of BAT is the transcriptional co-regulator LIM domain-binding protein 1 (LDB1), which acts as a dimerized scaffold, allowing for the assembly of transcriptional complexes. Utilizing a global LDB1 heterozygous mouse model, we recently reported that LDB1 might have novel roles in regulating BAT function. However, direct evidence for the LDB1 regulation of BAT thermogenesis and substrate utilization has not been elucidated. We hypothesize that brown adipocyte-expressed LDB1 is required for BAT function. Methods LDB1-deficient primary cells and brown adipocyte cell lines were assessed via qRT-PCR and western blotting for altered mRNA and protein levels to define the brown adipose-specific roles. We conducted chromatin immunoprecipitation with primary BAT tissue and immortalized cell lines. Potential transcriptional partners of LDB1 were revealed by conducting LIM factor surveys via qRT-PCR in mouse and human brown adipocytes. We developed a Ucp1-Cre-driven LDB1-deficiency mouse model, termed Ldb1ΔBAT, to test LDB1 function in vivo. Glucose tolerance and uptake were assessed at thermoneutrality via intraperitoneal glucose challenge and glucose tracer studies. Insulin tolerance was measured at thermoneutrality and after stimulation with cold or the administration of the β3-adrenergic receptor (β3-AR) agonist CL316,243. Additionally, we analyzed plasma insulin via ELISA and insulin signaling via western blotting. Lipid metabolism was evaluated via BAT weight, histology, lipid droplet morphometry, and the examination of lipid-associated mRNA. Finally, energy expenditure and cold tolerance were evaluated via indirect calorimetry and cold challenges. Results Reducing Ldb1 in vitro and in vivo resulted in altered BAT-selective mRNA, including Ucp1, Elovl3, and Dio2. In addition, there was reduced Ucp1 induction in vitro. Impacts on gene expression may be due, in part, to LDB1 occupying Ucp1 upstream regulatory domains. We also identified BAT-expressed LIM-domain factors Lmo2, Lmo4, and Lhx8, which may partner with LDB1 to mediate activity in brown adipocytes. Additionally, we observed LDB1 enrichment in human brown adipose. In vivo analysis revealed LDB1 is required for whole-body glucose and insulin tolerance, in part through reduced glucose uptake into BAT. In Ldb1ΔBAT tissue, we found significant alterations in insulin-signaling effectors. An assessment of brown adipocyte morphology and lipid droplet size revealed larger and more unilocular brown adipocytes in Ldb1ΔBAT mice, particularly after a cold challenge. Alterations in lipid handling were further supported by reductions in mRNA associated with fatty acid oxidation and mitochondrial respiration. Finally, LDB1 is required for energy expenditure and cold tolerance in both male and female mice. Conclusions Our findings support LDB1 as a regulator of BAT function. Furthermore, given LDB1 enrichment in human brown adipose, this co-regulator may have conserved roles in human BAT. The transcriptional co-regulator LDB1 is required for brown adipocyte gene expression, including Ucp1. Several LIM-domain factors, including Lmo2, Lmo4, and Lhx8, are expressed in BAT and may be potential LDB1 partners. Male Ldb1 BAT knockouts are glucose and insulin intolerant, have lower glucose uptake and altered insulin signaling. LDB1 impacts brown adipocyte morphology, lipid droplet size, and mRNA associated with lipid utilization. BAT-expressed LDB1 is required for energy expenditure and cold tolerance.
Collapse
|
6
|
Differential body weight, blood pressure and placental inflammatory responses to normal versus high-fat diet in melanocortin-4 receptor-deficient pregnant rats. J Hypertens 2017; 34:1998-2007. [PMID: 27467764 DOI: 10.1097/hjh.0000000000001059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Although obesity increases the risk for hypertensive disorders of pregnancy, the mechanisms remain unclear. Neural melanocortin-4 receptor (MC4R) deficiency causes hyperphagia and obesity. Effects of MC4R deficiency on body weight, blood pressure (BP) and placental inflammatory responses to high-fat diet (HFD) are unknown. We tested two hypotheses: MC4R deficiency results in higher body weight, BP and placental inflammation under normal-fat diet (NFD) conditions and HFD exaggerates these responses in MC4R-deficient pregnant rats. METHODS MC4R and MC4R rats were maintained on NFD (13% kcal fat) or HFD (40% kcal fat) for ∼15 weeks, then measurements made on gestational day 19. RESULTS MC4R pregnant rats had greater body mass and total body fat and visceral adipose tissue weights along with greater circulating total cholesterol (TC) and leptin levels than MC4R rats regardless of diet. On NFD, circulating adiponectin levels were lower and placental TNFα levels and BP (conscious with carotid catheter) were higher in these heavier rats. Circulating adiponectin levels were lower and placental TNFα levels and BP were higher in MC4R rats compared with NFD controls. These parameters were not affected by HFD in the already heavier and hypertensive MC4R pregnant rats. CONCLUSION Obesity in MC4R deficiency and HFD in MC4R rats result in higher BP and placental inflammation during pregnancy. However, HFD did not exaggerate these responses in already obese MC4R pregnant rats. These data suggest that obesity and HFD are independently related to hypertension and placental inflammation in pregnancy.
Collapse
|
7
|
Transgenerational pancreatic impairment with Igf2/H19 epigenetic alteration induced by p,p'-DDE exposure in early life. Toxicol Lett 2017; 280:222-231. [PMID: 28867213 DOI: 10.1016/j.toxlet.2017.08.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
Abstract
The hypothesis of fetal origins indicates that exposures in early development could induce epigenetic modifications in the male germ-line, affecting the susceptibility of adult-onset disease for generations. p,p'-DDE, the primary metabolite of persistent organochlorine pesticide DDT, is highly correlated with impaired glucose tolerance (IGT) and a strong contributing factor to type 2 diabetes. In our previous study, ancestral p,p'-DDE exposure could induce transgenerational impaired male fertility with sperm Igf2 hypomethylation. It is still unknown whether this germline epigenetic defect would affect the somatic tissue endocrine pancreas. Gestating F0 generation females were exposed to p,p'-DDE from gestation day 8 to 15. The F1 male offspring were mated with female to produce F2 progeny. F3 generation was obtained by intercrossing the control and treated male and female of F2 generation and divided as C♂-C♀, DDE♂-DDE♀, DDE♂-C♀ and C♂-DDE♀. Results indicated that F1 offspring in p,p'-DDE group exhibited impaired glucose tolerance (IGT), abnormal insulin secretion, β-cell dysfunction and altered Igf2 and H19 expression induced by Igf2/H19 hypomethylation, which could be transferred to the F3 offspring through the male germ line. IGT and abnormal insulin secretion were more obvious in males than those in females. Ancestral p,p'-DDE exposure could induce transgenerational pancreatic impairment with Igf2/H19 epigenetic defect.
Collapse
|
8
|
Girardet C, Mavrikaki M, Southern MR, Smith RG, Butler AA. Assessing interactions between Ghsr and Mc3r reveals a role for AgRP in the expression of food anticipatory activity in male mice. Endocrinology 2014; 155:4843-55. [PMID: 25211592 PMCID: PMC4239417 DOI: 10.1210/en.2014-1497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The stomach hormone ghrelin and hypothalamic melanocortin neurons belong to a gut-brain circuit controlling appetite and metabolic homeostasis. Mice lacking melanocortin-3 receptor (Mc3rKO) or growth hormone secretagogue receptor (GhsrKO) genes exhibit attenuated food anticipatory activity (FAA), a rise in locomotor activity anticipating mealtime, suggesting common circuitry regulating anticipatory responses to nutrient loading. To investigate the interaction between Ghsrs and Mc3rs, we compared food anticipatory responses in GhsrKO, Mc3rKO, and double Ghsr;Mc3r knockout (DKO) mice subjected to a hypocaloric restricted feeding (RF) protocol in constant dark or 12-hour light, 12-hour dark settings. DKO are viable, exhibiting no overt behavioral or metabolic phenotypes in ad libitum or fasting conditions. FAA was initially attenuated in all mutant strains in constant darkness. However, GhsrKO eventually exhibited a robust food anticipatory response, suggesting compensation. Mc3rKO and DKO did not compensate, indicating a continued requirement for Mc3rs in maintaining the expression of FAA in situations of RF. Abnormal regulation of hypothalamic agouti-related peptide/neuropeptide Y (AgRP/Npy) neurons previously observed during fasting may contribute to attenuated FAA in Mc3rKO. AgRP and Npy expression measured 1 hour before food presentation correlated positively with FAA. Absence of Mc3rs (but not Ghsrs) was associated with lower AgRP/Npy expression, suggesting attenuated responses to signals of negative energy balance. These observations support the importance of Mc3rs as modulators of anticipatory responses to feeding, with mice able to compensate for loss of Ghsrs. The behavioral deficits of Mc3rKO displayed during RF may be partially explained by reduced hunger sensations owing to abnormal regulation of orexigenic AgRP/Npy neurons.
Collapse
Affiliation(s)
- Clemence Girardet
- Departments of Metabolism and Aging (C.G., M.M., R.G.S., A.A.B.) and Molecular Therapeutics (M.R.S.), The Scripps Research Institute, Jupiter, Florida 33458; and Department of Pharmacological and Physiological Science (C.G., M.M., A.A.B.), Saint Louis University, Saint Louis, Missouri 63104
| | | | | | | | | |
Collapse
|
9
|
Hughey CC, Wasserman DH, Lee-Young RS, Lantier L. Approach to assessing determinants of glucose homeostasis in the conscious mouse. Mamm Genome 2014; 25:522-38. [PMID: 25074441 DOI: 10.1007/s00335-014-9533-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/04/2014] [Indexed: 01/11/2023]
Abstract
Obesity and type 2 diabetes lessen the quality of life of those afflicted and place considerable burden on the healthcare system. Furthermore, the detrimental impact of these pathologies is expected to persist or even worsen. Diabetes is characterized by impaired insulin action and glucose homeostasis. This has led to a rapid increase in the number of mouse models of metabolic disease being used in the basic sciences to assist in facilitating a greater understanding of the metabolic dysregulation associated with obesity and diabetes, the identification of therapeutic targets, and the discovery of effective treatments. This review briefly describes the most frequently utilized models of metabolic disease. A presentation of standard methods and technologies on the horizon for assessing metabolic phenotypes in mice, with particular emphasis on glucose handling and energy balance, is provided. The article also addresses issues related to study design, selection and execution of metabolic tests of glucose metabolism, the presentation of data, and interpretation of results.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, 823 Light Hall, 2215 Garland Ave, Nashville, TN, 37232, USA,
| | | | | | | |
Collapse
|
10
|
Qu H, Li J, Chen W, Li Y, Jiang Q, Jiang H, Huo J, Zhao Z, Liu B, Zhang Q. Differential expression of the melanocortin-4 receptor in male and female C57BL/6J mice. Mol Biol Rep 2014; 41:3245-56. [DOI: 10.1007/s11033-014-3187-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023]
|
11
|
Varlamov O, Bethea CL, Roberts CT. Sex-specific differences in lipid and glucose metabolism. Front Endocrinol (Lausanne) 2014; 5:241. [PMID: 25646091 PMCID: PMC4298229 DOI: 10.3389/fendo.2014.00241] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022] Open
Abstract
Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e., females store more lipids and have higher whole-body insulin sensitivity than males, while males tend to oxidize more lipids than females. These patterns are influenced by the menstrual phase in females, and by nutritional status and exercise intensity in both sexes. This minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their regulation by sex hormones, with a primary emphasis on studies in humans and the most relevant pre-clinical model of human physiology, non-human primates.
Collapse
Affiliation(s)
- Oleg Varlamov
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR, USA
- Division of Developmental and Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- *Correspondence: Oleg Varlamov, Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA e-mail:
| | - Cynthia L. Bethea
- Division of Developmental and Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Charles T. Roberts
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR, USA
- Division of Developmental and Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
12
|
Begriche K, Girardet C, McDonald P, Butler AA. Melanocortin-3 receptors and metabolic homeostasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:109-46. [PMID: 23317784 DOI: 10.1016/b978-0-12-386933-3.00004-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Attenuated activity of the central nervous melanocortin system causes obesity and insulin resistance. Obese rodents treated with melanocortins exhibit improvements in obesity and metabolic homeostasis that are not mutually dependent, suggesting metabolic actions that are independent of weight changes. These responses are generally thought to involve G-protein-coupled receptors expressed in the brain. Melanocortin-4 receptors (MC4Rs) regulate satiety and autonomic nervous system and thyroid function. MC3Rs are expressed in hypothalamic and limbic regions involved in controlling ingestive behaviors and autonomic function. Mc3r-/- mice exhibit increased adiposity and an accelerated diet-induced obesity. While this phenotype is not dependent on hyperphagia, data on the regulation of food intake by MC3Rs are inconsistent. Recent investigations by our laboratory suggest a unique combination of behavioral and metabolic disorders in Mc3r-/- mice. MC3Rs are critical for the expression of the anticipatory response and metabolic homeostasis when food intake occurs outside the normal voluntary rhythms driven by photoperiod. Using a Cre-Lox strategy, we can now investigate MC3Rs expressed in different brain regions and organ systems in the periphery. While focusing on the functions of neural MC3Rs, early results suggest an additional layer of complexity with central and peripheral MC3Rs involved in the defense of body weight.
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | | | | | | |
Collapse
|
13
|
Ding GL, Wang FF, Shu J, Tian S, Jiang Y, Zhang D, Wang N, Luo Q, Zhang Y, Jin F, Leung PC, Sheng JZ, Huang HF. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 2012; 61:1133-42. [PMID: 22447856 PMCID: PMC3331740 DOI: 10.2337/db11-1314] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) has been shown to be associated with high risk of diabetes in offspring. However, the mechanisms involved and the possibilities of transgenerational transmission are still unclear. We intercrossed male and female adult control and first-generation offspring of GDM (F1-GDM) mice to obtain the second-generation (F2) offspring in four groups: C♂-C♀, C♂-GDM♀, GDM♂-C♀, and GDM♂-GDM♀. We found that birth weight significantly increased in F2 offspring through the paternal line with impaired glucose tolerance (IGT). Regardless of birth from F1-GDM with or without IGT, high risk of IGT appeared as early as 3 weeks in F2 offspring and progressed through both parental lineages, especial the paternal line. IGT in male offspring was more obvious than that in females, with parental characteristics and sex-specific transmission. In both F1 and F2 offspring of GDM, the expression of imprinted genes Igf2 and H19 was downregulated in pancreatic islets, caused by abnormal methylation status of the differentially methylated region, which may be one of the mechanisms for impaired islet ultrastructure and function. Furthermore, altered Igf2 and H19 gene expression was found in sperm of adult F1-GDM, regardless of the presence of IGT, indicating that changes of epigenetics in germ cells contributed to transgenerational transmission.
Collapse
Affiliation(s)
- Guo-Lian Ding
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Fang Wang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Shu
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shen Tian
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Jiang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Luo
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peter C.K. Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jian-Zhong Sheng
- Department of Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - He-Feng Huang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
- Corresponding author: He-Feng Huang, , or Jian-Zhong Sheng,
| |
Collapse
|
14
|
Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int J Obes (Lond) 2011; 36:262-72. [PMID: 21540832 DOI: 10.1038/ijo.2011.87] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Adverse effects of obesity on glucose homeostasis are linked to low-grade adipose tissue inflammation and accumulation of lipids in non-adipose tissues. The goal of this study was to evaluate the role of adipose tissue plasticity in a less severe deterioration of glucose homeostasis in females compared with males during the course of high-fat (HF) feeding in mice. DESIGN Mice of the C57BL/6N strain were fed either a chow or obesogenic HF diet for up to 35 weeks after weaning. Metabolic markers and hormones in plasma, glucose homeostasis, adipocyte size and inflammatory status of gonadal (gWAT) and subcutaneous (scWAT) adipose depots and liver steatosis were evaluated at 15 and 35 weeks of HF feeding. RESULTS HF-fed males were heavier than females until week ∼20, after which the body weights stabilized at a similar level (55-58 g) in both sexes. Greater weight gain and fat accumulation in females were associated with larger adipocytes in gWAT and scWAT at week 35. Although adipose tissue macrophage infiltration was in general less frequent in scWAT, it was reduced in both fat depots of female as compared with male mice; however, the expression of inflammatory markers in gWAT was similar in both sexes at week 35. In females, later onset of the impairment of glucose homeostasis and better insulin sensitivity were associated with higher plasma levels of adiponectin (weeks 0, 15 and 35) and reduced hepatosteatosis (weeks 15 and 35). CONCLUSIONS Compared with males, female mice demonstrate increased capacity for adipocyte enlargement in response to a long-term HF feeding, which is associated with reduced adipose tissue macrophage infiltration and lower fat deposition in the liver, and with better insulin sensitivity. Our data suggest that adipose tissue expandability linked to adiponectin secretion might have a role in the sex differences observed in obesity-associated metabolic disorders.
Collapse
|
15
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|
16
|
Abstract
Melanocortin peptides, derived from POMC (pro-opiomelanocortin) are produced in the ARH (arcuate nucleus of the hypothalamus) neurons and the neurons in the commissural NTS (nucleus of the solitary tract) of the brainstem, in anterior and intermediate lobes of the pituitary, skin and a wide range of peripheral tissues, including reproductive organs. A hypothetical model for functional roles of melanocortin receptors in maintaining energy balance was proposed in 1997. Since this time, there has been an extraordinary amount of knowledge gained about POMC-derived peptides in relation to energy homoeostasis. Development of a Pomc-null mouse provided definitive proof that POMC-derived peptides are critical for the regulation of energy homoeostasis. The melanocortin system consists of endogenous agonists and antagonists, five melanocortin receptor subtypes and receptor accessory proteins. The melanocortin system, as is now known, is far more complex than most of us could have imagined in 1997, and, similarly, the importance of this system for regulating energy homoeostasis in the general human population is much greater than we would have predicted. Of the known factors that can cause human obesity, or protect against it, the melanocortin system is by far the most significant. The present review is a discussion of the current understanding of the roles and mechanism of action of POMC, melanocortin receptors and AgRP (agouti-related peptide) in obesity and Type 2 diabetes and how the central and/or peripheral melanocortin systems mediate nutrient, leptin, insulin, gut hormone and cytokine regulation of energy homoeostasis.
Collapse
|
17
|
Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ. A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. Int J Obes (Lond) 2010; 34:989-1000. [PMID: 20157318 DOI: 10.1038/ijo.2010.12] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE A sexual dimorphism exists in body fat distribution; females deposit relatively more fat in subcutaneous/inguinal depots whereas males deposit more fat in the intra-abdominal/gonadal depot. Our objective was to systematically document depot- and sex-related differences in the accumulation of adipose tissue and gene expression, comparing differentially expressed genes in diet-induced obese mice with mice maintained on a chow diet. RESEARCH DESIGN AND METHODS We used a microarray approach to determine whether there are sexual dimorphisms in gene expression in age-matched male, female or ovariectomized female (OVX) C57/BL6 mice maintained on a high-fat (HF) diet. We then compared expression of validated genes between the sexes on a chow diet. RESULTS After exposure to a high fat diet for 12 weeks, females gained less weight than males. The microarray analyses indicate in intra-abdominal/gonadal adipose tissue in females 1642 genes differ by at least twofold between the depots, whereas 706 genes differ in subcutaneous/inguinal adipose tissue when compared with males. Only 138 genes are commonly regulated in both sexes and adipose tissue depots. Inflammatory genes (cytokine-cytokine receptor interactions and acute-phase protein synthesis) are upregulated in males when compared with females, and there is a partial reversal after OVX, where OVX adipose tissue gene expression is more 'male-like'. This pattern is not observed in mice maintained on chow. Histology of male gonadal white adipose tissue (GWAT) shows more crown-like structures than females, indicative of inflammation and adipose tissue remodeling. In addition, genes related to insulin signaling and lipid synthesis are higher in females than males, regardless of dietary exposure. CONCLUSIONS These data suggest that male and female adipose tissue differ between the sexes regardless of diet. Moreover, HF diet exposure elicits a much greater inflammatory response in males when compared with females. This data set underscores the importance of analyzing depot-, sex- and steroid-dependent regulation of adipose tissue distribution and function.
Collapse
Affiliation(s)
- K L Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | | | | | | | | |
Collapse
|
18
|
Cole SA, Butte NF, Voruganti VS, Cai G, Haack K, Kent JW, Blangero J, Comuzzie AG, McPherson JD, Gibbs RA. Evidence that multiple genetic variants of MC4R play a functional role in the regulation of energy expenditure and appetite in Hispanic children. Am J Clin Nutr 2010; 91:191-9. [PMID: 19889825 PMCID: PMC2793108 DOI: 10.3945/ajcn.2009.28514] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/12/2009] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Melanocortin-4-receptor (MC4R) haploinsufficiency is the most common form of monogenic obesity; however, the frequency of MC4R variants and their functional effects in general populations remain uncertain. OBJECTIVE The aim was to identify and characterize the effects of MC4R variants in Hispanic children. DESIGN MC4R was resequenced in 376 parents, and the identified single nucleotide polymorphisms (SNPs) were genotyped in 613 parents and 1016 children from the Viva la Familia cohort. Measured genotype analysis (MGA) tested associations between SNPs and phenotypes. Bayesian quantitative trait nucleotide (BQTN) analysis was used to infer the most likely functional polymorphisms influencing obesity-related traits. RESULTS Seven rare SNPs in coding and 18 SNPs in flanking regions of MC4R were identified. MGA showed suggestive associations between MC4R variants and body size, adiposity, glucose, insulin, leptin, ghrelin, energy expenditure, physical activity, and food intake. BQTN analysis identified SNP 1704 in a predicted micro-RNA target sequence in the downstream flanking region of MC4R as a strong, probable functional variant influencing total, sedentary, and moderate activities with posterior probabilities of 1.0. SNP 2132 was identified as a variant with a high probability (1.0) of exerting a functional effect on total energy expenditure and sleeping metabolic rate. SNP rs34114122 was selected as having likely functional effects on the appetite hormone ghrelin, with a posterior probability of 0.81. CONCLUSION This comprehensive investigation provides strong evidence that MC4R genetic variants are likely to play a functional role in the regulation of weight, not only through energy intake but through energy expenditure.
Collapse
Affiliation(s)
- Shelley A Cole
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kumar KG, Sutton GM, Dong JZ, Roubert P, Plas P, Halem HA, Culler MD, Yang H, Dixit VD, Butler AA. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides 2009; 30:1892-900. [PMID: 19646498 PMCID: PMC2755620 DOI: 10.1016/j.peptides.2009.07.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 12/20/2022]
Abstract
Melanocortin receptor agonists act in the brain to regulate food intake and body weight and, independently of these actions, affect insulin sensitivity. These experiments investigated the function of novel non-selective melanocortin receptor agonists (BIM-22493, BIM-22511) that cross the blood-brain barrier when administered peripherally. Treatment of diet induced obese C57BL/6J (B6) mice with melanocortin agonists administered peripherally improved obesity, hyperinsulinemia (approximately 50%) and fatty liver disease. Specificity of function was determined using B6 melanocortin-3 and melanocortin-4 receptor knockout mice (MC3RKO, MC4RKO). Chow fed MC4RKO but not MC3RKO used for these tests exhibited obesity, hyperinsulinemia and severe hepatosteatosis associated with increased expression of insulin-stimulated genes involved in lipogenesis. Reduced food intake associated with acute BIM-22493 treatment, and weight loss associated with 14 days of treatment with BIM-22511, required functional MC4R but not MC3R. However, while 14 days of treatment with BIM-22511 did not affect body weight and even increased cumulative food intake in MC4RKO, a significant reduction (approximately 50%) in fasting insulin was still observed. Despite lowering insulin, chronic treatment with BIM-22511 did not improve hepatosteatosis in MC4RKO, and did not affect hepatic lipogenic gene expression. Together, these results demonstrate that peripherally administered melanocortin receptor agonists regulate body weight, liver metabolism and glucose homeostasis through independent pathways. MC4R are necessary for melanocortin agonist-induced weight loss and improvements in liver metabolism, but are not required for improvements in hyperinsulinemia. Agonists with activity at MC4R improve glucose homeostasis at least partially by causing weight loss, however other melanocortin receptors may have potential for treating aberrations in glucose homeostasis associated with obesity.
Collapse
MESH Headings
- Animals
- Diet
- Eating
- Energy Metabolism
- Female
- Glucose/metabolism
- Humans
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/metabolism
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Weight Loss
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- K. Ganesh Kumar
- Neuropeptides Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Gregory M. Sutton
- Neuropeptides Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Jesse Z. Dong
- Biomeasure Incorporated, IPSEN, Milford, MA 01757, USA
| | | | | | | | | | - Hyunwon Yang
- Laboratory of Neuroendocrine Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Vishwa D. Dixit
- Laboratory of Neuroendocrine Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Andrew A. Butler
- Neuropeptides Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
- Present address for correspondence and reprint requests: Andrew A. Butler, The Scripps Research Institute – Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, Ph: 001 561 228 2957, Fax: 001 561 228 3059,
| |
Collapse
|
20
|
Slavin BG, Zarow C, Warden CH, Fisler JS. Histological, Immunocytochemical, and Morphometrical Analyses of Pancreatic Islets in the BSB Mouse Model of Obesity. Anat Rec (Hoboken) 2009; 293:108-16. [DOI: 10.1002/ar.21019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Abstract
OBJECTIVE To investigate how insulin sensitivity and glucose metabolism differ in adipocytes between different fat depots of male and female mice and how sex steroids contribute to these differences. RESEARCH DESIGN AND METHODS Adipocytes from intra-abdominal/perigonadal (PG) and subcutaneous (SC) adipose tissue from normal, castrated, or steroid-implanted animals were isolated and analyzed for differences in insulin sensitivity and glucose metabolism. RESULTS Adipocytes from both PG and SC depots of females have increased lipogenic rates compared with those from males. In females, intra-abdominal PG adipocytes are more insulin-sensitive than SC adipocytes and more insulin-sensitive than male adipocytes from either depot. When stimulated by low physiological concentrations of insulin, female PG adipocytes show a robust increase in Akt and extracellular signal-related kinase (ERK) phosphorylation and lipogenesis, whereas male adipocytes show activation only at higher insulin concentrations. Adipocytes from females have higher mRNA/protein levels of several genes involved in glucose and lipid metabolism. After castration, adipocytes of male mice showed increased insulin sensitivity and increased lipogenic rates, whereas adipocytes of females demonstrate decreased lipid production. Increasing estrogen above physiological levels, however, also reduced lipid synthesis in females, whereas increasing dihydrotestosterone in males had no effect. CONCLUSIONS There are major sex differences in insulin sensitivity in adipose tissue, particularly in the intra-abdominal depot, that are regulated by physiological levels of sex steroids. The increased sensitivity to insulin and lipogenesis observed in adipocytes from females may account for their lower level of insulin resistance and diabetes risk despite similar or higher fat content than in males.
Collapse
Affiliation(s)
- Yazmin Macotela
- From Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Jeremie Boucher
- From Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - Thien T. Tran
- From Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
| | - C. Ronald Kahn
- From Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts
- Corresponding author: C. Ronald Kahn,
| |
Collapse
|
22
|
Affiliation(s)
- Tara S Perrot-Sinal
- Department of Psychology and Neuroscience Institute, Dalhousie University, Halifax, Canada.
| |
Collapse
|