1
|
Tripathy S, Nallasamy S, Mahendroo M. Progesterone and its receptor signaling in cervical remodeling: Mechanisms of physiological actions and therapeutic implications. J Steroid Biochem Mol Biol 2022; 223:106137. [PMID: 35690241 PMCID: PMC9509468 DOI: 10.1016/j.jsbmb.2022.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The remodeling of the cervix from a closed rigid structure to one that can open sufficiently for passage of a term infant is achieved by a complex series of molecular events that in large part are regulated by the steroid hormones progesterone and estrogen. Among hormonal influences, progesterone exerts a dominant role for most of pregnancy to initiate a loss of tissue strength yet maintain competence in a phase termed softening. Equally important are the molecular events that abrogate progesterone function in late pregnancy to allow a loss of tissue competence and strength during cervical ripening and dilation. In this review, we focus on current understanding by which progesterone receptor signaling for the majority of pregnancy followed by a loss/shift in progesterone receptor action at the end of pregnancy, collectively ensure cervical remodeling as necessary for successful parturition.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanmugasundaram Nallasamy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mala Mahendroo
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Castelucci BG, Consonni SR, Rosa VS, Sensiate LA, Delatti PCR, Alvares LE, Joazeiro PP. Time-dependent regulation of morphological changes and cartilage differentiation markers in the mouse pubic symphysis during pregnancy and postpartum recovery. PLoS One 2018; 13:e0195304. [PMID: 29621303 PMCID: PMC5886480 DOI: 10.1371/journal.pone.0195304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/20/2018] [Indexed: 02/02/2023] Open
Abstract
Animal models commonly serve as a bridge between in vitro experiments and clinical applications; however, few physiological processes in adult animals are sufficient to serve as proof-of-concept models for cartilage regeneration. Intriguingly, some rodents, such as young adult mice, undergo physiological connective tissue modifications to birth canal elements such as the pubic symphysis during pregnancy; therefore, we investigated whether the differential expression of cartilage differentiation markers is associated with cartilaginous tissue morphological modifications during these changes. Our results showed that osteochondral progenitor cells expressing Runx2, Sox9, Col2a1 and Dcx at the non-pregnant pubic symphysis proliferated and differentiated throughout pregnancy, giving rise to a complex osteoligamentous junction that attached the interpubic ligament to the pubic bones until labour occurred. After delivery, the recovery of pubic symphysis cartilaginous tissues was improved by the time-dependent expression of these chondrocytic lineage markers at the osteoligamentous junction. This process potentially recapitulates embryologic chondrocytic differentiation to successfully recover hyaline cartilaginous pads at 10 days postpartum. Therefore, we propose that this physiological phenomenon represents a proof-of-concept model for investigating the mechanisms involved in cartilage restoration in adult animals.
Collapse
Affiliation(s)
- Bianca Gazieri Castelucci
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- * E-mail: (BGC); (SRC); (PPJ)
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- * E-mail: (BGC); (SRC); (PPJ)
| | - Viviane Souza Rosa
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucimara Aparecida Sensiate
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Paula Cristina Rugno Delatti
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo Pinto Joazeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- * E-mail: (BGC); (SRC); (PPJ)
| |
Collapse
|
4
|
Marshall SA, McGuane JT, Soh YM, Gehring HM, Simpson E, Parry LJ. Abnormal extracellular matrix remodelling in the cervix of pregnant relaxin-deficient mice is not associated with reduced matrix metalloproteinase expression or activity. Reprod Fertil Dev 2018. [DOI: 10.1071/rd17544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Relaxin regulates cervical extracellular matrix (ECM) remodelling during pregnancy by modifying collagen and other ECM molecules by unknown mechanisms. We hypothesised that abnormal collagen remodelling in the cervix of pregnant relaxin-deficient (Rln1−/−) mice is due to excessive collagen (Col1a1 and Col3a1) and decreased matrix metalloproteinases (Mmp2, Mmp9, Mmp13 and Mmp7) and oestrogen receptors (Esr1 and Esr2). Quantitative polymerase chain reaction, gelatinase zymography, MMP activity assays and histological staining evaluated changes in ECM in pregnant wildtype (Rln1+/+) and Rln1−/− mice. Cervical Col1a1, Col3a1 and total collagen increased in Rln1−/− mice and were higher at term compared with Rln1+/+ mice. This was not correlated with a decrease in gelatinase (Mmp2, Mmp9) expression or activity, Mmp7 or Mmp13 expression, which were all significantly higher in Rln1−/− mice. In late pregnancy, circulating MMP2 and MMP9 were unchanged. Esr1 expression was highest in Rln1+/+ and Rln1−/− mice in late pregnancy, coinciding with a decrease in Esr2 in Rln1+/+ but not Rln1−/− mice. The relaxin receptor (Rxfp1) decreased slightly in late-pregnant Rln1+/+ mice, but was significantly higher in Rln1−/− mice. In summary, relaxin deficiency results in increased cervical collagen in late pregnancy, which is not explained by a reduction in Mmp expression or activity or decreased Rxfp1. However, an imbalance between Esr1 and Esr2 may be involved.
Collapse
|
5
|
Ogunleye O, Campo B, Herrera D, Post Uiterweer ED, Conrad KP. Relaxin confers cytotrophoblast protection from hypoxia-reoxygenation injury through the phosphatidylinositol 3-kinase-Akt/protein kinase B cell survival pathway. Am J Physiol Regul Integr Comp Physiol 2017; 312:R559-R568. [PMID: 28122716 PMCID: PMC5407077 DOI: 10.1152/ajpregu.00306.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
Abstract
Preeclampsia is a hypertensive syndrome that manifests after 20 wk of gestation. Contemporary understanding of the maternal-fetal interface in preeclampsia suggests a major role for placental oxidative stress resulting from ischemia-reperfusion injury. We hypothesized that the pregnancy hormone relaxin would reduce cytotrophoblast apoptosis and necrosis (aponecrosis) and, hence, the export of placental debris into the maternal circulation. If so, then relaxin might be employed as a therapeutic intervention to diminish the activation of the maternal systemic inflammatory response central to the development of clinical disease. HTR-8/SVneo cells, a model for first trimester extravillous trophoblast, were subjected to serum deprivation and hypoxia or hypoxia-reoxygenation. The cells were treated with recombinant human relaxin or vehicle and apoptosis and/or necrosis evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), CellEvent Caspase-3/7 and SYTOX AADvanced kit, and propidium iodide staining as determined by fluorescence microscopy or flow cytometry. To interrogate mechanisms of relaxin cytoprotection, HTR-8/SVneo cells were pretreated with pharmacological inhibitors of PI3-kinase LY294004, Akt/PKB MK-2206, or DMSO vehicle. HTR-8/SVneo cell identity was first confirmed by RT-PCR. The cells expressed placental alkaline phosphatase, aromatase, and human leukocyte antigen G. In addition, the cells expressed the relaxin receptor RXFP1 as well as H1 and H2 relaxins. Serum deprivation and hypoxia increased apoptotic cell death in HTR-8/SVneo cells, which was significantly ameliorated by concurrent treatment with relaxin. Serum deprivation and hypoxia-reoxygenation increased necrotic cell death in HTR-8/SVneo cells, which was also significantly rescued by concurrent treatment with relaxin. Pretreatment with LY294002 or MK-2206, to inhibit the phosphatidylinositol 3-kinase-Akt/protein kinase B cell survival pathway, significantly blunted the cytoprotective effect of relaxin. We demonstrated trophoblast cytoprotection by intervention with supraphysiological concentrations of relaxin, a process in part mediated through the PI3-kinase-Akt/PKB cell survival pathway. These results provide further rationale for clinical investigation of relaxin as a potential therapeutic in preeclampsia.
Collapse
Affiliation(s)
- Oluseyi Ogunleye
- Department of Obstetrics and Gynecology, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida; and
| | - Bertha Campo
- Department of Physiology and Functional Genomics, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida
| | - Diana Herrera
- Department of Physiology and Functional Genomics, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida
| | - Emiel D Post Uiterweer
- Department of Physiology and Functional Genomics, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida
| | - Kirk P Conrad
- Department of Obstetrics and Gynecology, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida; and
- Department of Physiology and Functional Genomics, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
6
|
Conrad KP. G-Protein-coupled receptors as potential drug candidates in preeclampsia: targeting the relaxin/insulin-like family peptide receptor 1 for treatment and prevention. Hum Reprod Update 2016; 22:647-64. [PMID: 27385360 DOI: 10.1093/humupd/dmw021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Important roles for G-protein-coupled receptors (GPCRs) have been identified in the maternal physiological adaptations to pregnancy and in the pathogenesis of preeclampsia. On this basis, GPCRs are potential therapeutic targets for preeclampsia. OBJECTIVES AND RATIONALE In this review, vasopressin and apelin are initially considered in this context before the focus on the hormone relaxin and its cognate receptor, the relaxin/insulin-like family peptide receptor 1 (RXFP1). Based on both compelling scientific rationale and a promising safety profile, the relaxin ligand-receptor system is comprehensively evaluated as a potential therapeutic endpoint in preeclampsia. SEARCH METHODS The published literature relating to the topic was searched through January 2016 using PubMed. OUTCOMES Relaxin is a peptide hormone secreted by the corpus luteum; it circulates in the luteal phase and during pregnancy. Activation of RXFP1 is vasodilatory; thus, relaxin supplementation is expected to at least partly restore the fundamental vasodilatory changes of normal pregnancy, thereby alleviating maternal organ hypoperfusion, which is a major pathogenic manifestation of severe preeclampsia. Specifically, by exploiting its pleiotropic hemodynamic attributes in preeclampsia, relaxin administration is predicted to (i) reverse robust arterial myogenic constriction; (ii) blunt systemic and renal vasoconstriction in response to activation of the angiotensin II receptor, type 1; (iii) mollify the action of endogenous vasoconstrictors on uterine spiral arteries with failed remodeling and retained smooth muscle; (iv) increase arterial compliance; (v) enhance insulin-mediated glucose disposal by promoting skeletal muscle vasodilation and (vi) mobilize and activate bone marrow-derived angiogenic progenitor cells, thereby repairing injured endothelium and improving maternal vascularity in organs such as breast, uterus, pancreas, skin and fat. By exploiting its pleiotropic molecular attributes in preeclampsia, relaxin supplementation is expected to (i) enhance endothelial nitric oxide synthesis and bioactivity, as well as directly reduce vascular smooth muscle cytosolic calcium, thus promoting vasodilation; (ii) improve the local angiogenic balance by augmenting arterial vascular endothelial and placental growth factor (VEGF and PLGF) activities; (iii) ameliorate vascular inflammation; (iv) enhance placental peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PCG1α) expression, and hence, peroxisome proliferator-activated receptor gamma (PPAR-γ) activity and (v) confer cytotrophoblast and endothelial cytoprotection. Insofar as impaired endometrial maturation (decidualization) predisposes to the development of preeclampsia, relaxin administration in the late secretory phase and during early pregnancy would be anticipated to improve decidualization, and hence trophoblast invasion and spiral artery remodeling, thereby reducing the risk of preeclampsia. Relaxin has a favorable safety profile both in the non-pregnant condition and during pregnancy. WIDER IMPLICATIONS There is a strong scientific rationale for RXFP1 activation in severe preeclampsia by administration of relaxin, relaxin analogs or small molecule mimetics, in order to mollify the disease pathogenesis for safe prolongation of pregnancy, thus allowing time for more complete fetal maturation, which is a primary therapeutic endpoint in treating the disease. In light of recent data implicating deficient or defective decidualization as a potential etiological factor in preeclampsia and the capacity of relaxin to promote endometrial maturation, the prophylactic application of relaxin to reduce the risk of preeclampsia is a plausible therapeutic approach to consider. Finally, given its pleiotropic and beneficial attributes particularly in the cardiovascular system, relaxin, although traditionally considered as a 'pregnancy' hormone, is likely to prove salutary for several disease indications in the non-pregnant population.
Collapse
Affiliation(s)
- Kirk P Conrad
- Department of Physiology and Functional Genomics and Department of Obstetrics and Gynecology, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, 1600 SW Archer Road, PO Box 100274 M522, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Antifibrotic Actions of Serelaxin – New Roles for an Old Player. Trends Pharmacol Sci 2016; 37:485-497. [DOI: 10.1016/j.tips.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
|
8
|
Kaftanovskaya EM, Huang Z, Lopez C, Conrad K, Agoulnik AI. Conditional deletion of the relaxin receptor gene in cells of smooth muscle lineage affects lower reproductive tract in pregnant mice. Biol Reprod 2015; 92:91. [PMID: 25715795 DOI: 10.1095/biolreprod.114.127209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Relaxin hormone secreted into the circulation during pregnancy was discovered through its effects on pubic symphysis relaxation and parturition. Genetic inactivation of the relaxin gene or its cognate relaxin family peptide receptor 1 (RXFP1) in mice caused failure of parturition and mammary nipple enlargement, as well as increased collagen fiber density in the cervix and vagina. However, the relaxin effect on discrete cells and tissues has yet to be determined. Using transgenic mice with a knockin LacZ reporter in the Rxfp1 allele, we showed strong expression of this gene in vaginal and cervical stromal cells, as well as pubic ligament cells. We produced a floxed Rxfp1 allele that was used in combination with the Tagln-cre transgene to generate mice with a smooth muscle-specific gene knockout. In pregnant females, the ROSA26 reporter activated by Tagln-cre was detected in smooth muscle cells of the cervix, vagina, uterine artery, and in cells of the pubic symphysis. In late pregnant females with conditional gene ablation, the length of pubic symphysis was significantly reduced compared with wild-type or heterozygous Rxfp1(+/-) females. Denser collagen content was revealed by Masson trichrome staining in reproductive tract organs, uterine artery, and pubic symphysis. The cervical and vaginal epithelium was less developed than in heterozygous or wild-type females, although nipple size was normal and the dams were able to nurse their pups. In summary, our data indicate that relaxin/RXFP1 signaling in smooth muscle cells is important for normal collagen turnover and relaxation of the pubic symphysis during pregnancy.
Collapse
Affiliation(s)
- Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Zaohua Huang
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Carolina Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Kirk Conrad
- Departments of Physiology and Functional Genomics, and of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Zhang X, Ma X, Zhao M, Zhang B, Chi J, Liu W, Chen W, Fu Y, Liu Y, Yin X. H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes. Biochimie 2014; 108:59-67. [PMID: 25446652 DOI: 10.1016/j.biochi.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
Abstract
High concentrations of glucose induce cardiomyocyte apoptosis, and contribute to diabetic cardiomyopathy. Relaxin-2 and relaxin-3 are two members of the relaxin peptide family that are cardioprotective. However, it remains unknown whether relaxin-2 or relaxin-3 can regulate apoptosis in high glucose treated-neonatal rat ventricular myocytes (NRVMs). In cultured NRVMs, 33 mmol/l high glucose (HG) increased apoptosis in a time-dependent manner. HG-increased the protein expression of cleaved caspase-8 and -9, two initiators of the extrinsic and intrinsic pathways of apoptosis, Caspase-3 was attenuated by human recombinant relaxin-2 (H2 relaxin) or relaxin-3 (H3 relaxin), indicating that H2 and H3 relaxin inhibited HG-induced apoptosis. Furthermore, endoplasmic reticulum stress (ERS) markers CHOP and caspase-12 were markedly increased in HG-treated NRVMs, leading to apoptosis; this effect was also effectively attenuated by H2 relaxin or H3 relaxin. Treatment of NRVMs with HG reduced autophagy which cannot be adjusted by H2 relaxin or H3 relaxin. In conclusion, HG-induced apoptosis in NRVMs was mediated, in part, by the activation of the extrinsic and intrinsic pathways of apoptosis and ERS, all inhibited by H2 relaxin or H3 relaxin.
Collapse
Affiliation(s)
- Xiaohui Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Xiao Ma
- The Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Zhao
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Bo Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Jinyu Chi
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Wenxiu Liu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Wenjia Chen
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Yu Fu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Yue Liu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China
| | - Xinhua Yin
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No.23, YouZheng Road, NanGang District, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
10
|
Ma X, Han S, Zhang W, Fan YJ, Liu MN, Liu AY, Liu BR. Protection of cultured human hepatocytes from hydrogen peroxide‑induced apoptosis by relaxin‑3. Mol Med Rep 2014; 11:1228-34. [PMID: 25370004 DOI: 10.3892/mmr.2014.2842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 10/01/2014] [Indexed: 11/06/2022] Open
Abstract
Previous studies have suggested that hepatocyte apoptosis may be a fundamental underlying mechanism of liver injury and diseases, such as liver fibrosis. Relaxin‑3 has been reported to have anti‑fibrotic actions in the heart and to attenuate isoproterenol‑induced myocardial injury; however, the beneficial role of relaxin‑3 on hepatocyte apoptosis remains to be elucidated. The aim of the present study was to explore the role and possible mechanisms of relaxin‑3 through hydrogen peroxide (H2O2)‑induced apoptosis in primary human hepatocytes. Cells were treated with relaxin‑3 and then cell viability, morphological features, the presence of cleaved caspases as well as the levels of endoplasmic reticulum stress (ERS) protein markers and autophagy markers were evaluated. The H2O2 group showed significantly decreased cell viability, increased apoptosis as well as upregulation of caspases (cleaved caspase‑3, ‑8 and ‑9) and ERS protein markers compared with those of the control group. However, cells treated with relaxin‑3 (10 ng/ml) demonstrated improved cell viability, reduced apoptosis and decreased expression of cleaved caspases and ERS markers. However, the expression of autophagy markers remained unchanged following H2O2‑induced apoptosis and relaxin‑3 treatment. In conclusion, relaxin‑3 was shown to protect hepatocytes from H2O2‑induced apoptosis via downregulation of cleaved caspase‑8 and ‑9, as well as inhibition of the ERS pathway.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Su Han
- Department of Microbiology and Parasitology, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yu-Jing Fan
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ming-Na Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ai-Yun Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bing-Rong Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
11
|
Lodhi RSZ, Nakabayashi K, Suzuki K, Yamada AY, Hazama R, Ebina Y, Yamada H. Relaxin has anti-apoptotic effects on human trophoblast-derived HTR-8/SV neo cells. Gynecol Endocrinol 2013; 29:1051-4. [PMID: 24070111 DOI: 10.3109/09513590.2013.829444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The study was conducted to evaluate the effects of human relaxin on apoptosis in the human trophoblast derived HTR-8/SV neo cell line, which is a possible model of human extravillous trophoblasts (EVTs). HTR-8/SV neo cells, cultured in phenol red free RPMI1640 medium, were treated with different doses of human recombinant (rH2) relaxin in serum-deprived conditions. RT-PCR was used for evaluating relaxin receptor: RXFP1 and RXFP2 expression in HTR-8/SV neo cells. The cell death was examined by TUNEL assay. Furthermore, we investigated caspase-3, cleaved PARP and Bcl-2 expressions by Western blot analysis to recognize the translational effects of anti-apoptotic and pro-apoptotic proteins. RXFP1 and RXFP2 mRNA expression was observed in HTR-8/SV neo cells. Compared with untreated control cultures, treatment with rH2 relaxin, decreased TUNEL-positive rate in HTR-8/SV neo cells was observed. Western blot analysis revealed that treatment with rH2 relaxin decreased the expression of caspase-3 and cleaved PARP, but in contrast increased Bcl-2 expression in those cells. These results suggest that rH2 relaxin has anti-apoptotic effects on HTR8/SV neo cells by decreasing pro-apoptotic caspase-3 and cleaved PARP expression and up-regulating anti-apoptotic Bcl-2 expression.
Collapse
Affiliation(s)
- Romana S Z Lodhi
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine , Kobe , Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Soh YM, Tiwari A, Mahendroo M, Conrad KP, Parry LJ. Relaxin regulates hyaluronan synthesis and aquaporins in the cervix of late pregnant mice. Endocrinology 2012; 153:6054-64. [PMID: 23087172 PMCID: PMC3512066 DOI: 10.1210/en.2012-1577] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cervical ripening is associated with loss of structural integrity and tensile strength, thus enabling the cervix to dilate at term. It is characterized by changes in glycosaminoglycan composition, increased water content, and a progressive reorganization of the collagen network. The peptide hormone relaxin via interaction with its receptor, relaxin family peptide receptor 1 (RXFP1), promotes tissue hydration and increases cervical hyaluronan (HA) concentrations, but the mechanisms that regulate these effects are not known. This study in relaxin mutant (Rln(-/-)) mice tested the hypothesis that relaxin regulates HA synthase and aquaporin (AQP) expression in the cervix. We also assessed expression of the RXFP1 protein by immunohistochemistry. Pregnant Rln(-/-) mice had lower Has2 and Aqp3 expression on d 18.5 of pregnancy and decreased cervical HA compared with wild-type Rln(+/+) mice. Chronic infusion of relaxin for 4 or 6 d in pregnant Rln(-/-) mice reversed these phenotypes and increased Has2 and Aqp3 compared with placebo controls. Relaxin-treated mice also had lower Has1 and Aqp5. Changes in gene expression were paralleled by increases in cervical HA and variations in AQP3 and AQP5 protein localization in epithelial cells of Rln(-/-) cervices. Our findings demonstrate that relaxin alters AQP expression in the cervix and initiates changes in glycosaminoglycan composition through increased HA synthesis. These effects are likely mediated through RXFP1 localized to subepithelial stromal cells and epithelial cells. We suggest these actions of relaxin collectively promote water recruitment into the extracellular matrix to loosen the dense collagen fiber network.
Collapse
Affiliation(s)
- Yu May Soh
- Department of Zoology, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
13
|
Frankshun AL, Chen J, Barron LA, Ho TY, Miller DJ, Rahman KM, Bartol FF, Bagnell CA. Nursing during the first two days of life is essential for the expression of proteins important for growth and remodeling of the neonatal porcine cervix. Endocrinology 2012; 153:4511-21. [PMID: 22778228 DOI: 10.1210/en.2012-1329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neonatal porcine cervix is sensitive to hormones, including relaxin (RLX), from birth. Whether nursing is required to establish the cervical developmental program or to determine cervical developmental trajectory is unknown. The objective of study 1 was to determine effects of age and nursing on expression of molecular markers and mediators of porcine cervical growth and remodeling from birth to postnatal day (PND) 2 and to document effects of RLX treatment during this period on expression of targeted gene products in nursed vs. replacer-fed gilts. Study 2 was conducted to determine effects of age at first nursing and duration of nursing from birth on expression of targeted transcripts or proteins at PND 14. Nursing supported cervical estrogen receptor-α, vascular endothelial growth factor, matrix metalloproteinase (MMP)9, and antiapoptotic B-cell lymphoma-2 protein expression on PND 2. These proteins were undetectable in replacer-fed gilts. Returning replacer-fed gilts to nursing after PND 2 did not restore cervical expression of these proteins by PND 14. RLX increased (P < 0.05) cervical estrogen receptor-α, vascular endothelial growth factor, and B-cell lymphoma-2 protein in nursed gilts, MMP2 protein in nursed and replacer-fed gilts, and decreased (P < 0.05) pro-MMP9 protein in nursed gilts, and RXFP1 mRNA levels in nursed and replacer-fed gilts at PND 2. Replacer feeding for 2 wk from birth increased (P < 0.05) RXFP1 mRNA levels on PND 14. Results support the lactocrine hypothesis for maternal programming of neonatal tissues. Nursing from birth is required to establish the neonatal cervical developmental program and to maintain cervical developmental trajectory to PND 14.
Collapse
Affiliation(s)
- Amy-Lynn Frankshun
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Recombinant H2 relaxin inhibits apoptosis and induces cell proliferation in cultured leiomyoma cells without affecting those in cultured normal myometrial cells. Fertil Steril 2012; 97:734-41. [DOI: 10.1016/j.fertnstert.2011.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/23/2011] [Accepted: 12/09/2011] [Indexed: 11/17/2022]
|
15
|
Rosa RG, Akgul Y, Joazeiro PP, Mahendroo M. Changes of large molecular weight hyaluronan and versican in the mouse pubic symphysis through pregnancy. Biol Reprod 2012; 86:44. [PMID: 22011392 PMCID: PMC3290668 DOI: 10.1095/biolreprod.111.093229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/12/2011] [Accepted: 10/14/2011] [Indexed: 01/07/2023] Open
Abstract
During pregnancy, the mouse pubic symphysis undergoes expansion and remodeling resulting in formation of a flexible and elastic interpubic ligament allowing passage of a term fetus. In the current study, we sought to identify and characterize components of the extracellular matrix that likely play an important role in elongation and flexibility of the interpubic ligament during parturition. Mouse pubic symphyses and interpubic ligaments collected at time points during pregnancy and postpartum were utilized to evaluate collagen type, collagen content, processing and solubility, matricellular protein, and proteoglycan expression and quantitative assessment of all glycosaminoglycans. These studies revealed increased gene expression for hyaluronan synthase 1, hyaluronan synthase 2, and versican on Gestation Day 18 as well as a decline in protein expression for the versican-degrading protease a disintegrin-like and metalloprotease with thrombospondin type 1 (ADAMTS1) motif. These findings suggest that the primary mediators of increased elongation and flexibility of the interpubic ligament at term result from increased synthesis and reduced metabolism of viscoelasticity-promoting molecules such as high molecular weight hyaluronan and versican.
Collapse
Affiliation(s)
- Renata Giardini Rosa
- Department of Obstetrics and Gynecology and The Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Yucel Akgul
- Department of Obstetrics and Gynecology and The Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Paulo Pinto Joazeiro
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology and The Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Li Z, Feng S, Lopez V, Elhammady G, Anderson ML, Kaftanovskaya EM, Agoulnik AI. Uterine cysts in female mice deficient for caveolin-1 and insulin-like 3 receptor RXFP2. Endocrinology 2011; 152:2474-82. [PMID: 21467199 PMCID: PMC3100621 DOI: 10.1210/en.2010-1015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene mutations of insulin-like 3 (INSL3) peptide or its G protein-coupled receptor RXFP2 (relaxin family peptide receptor 2) lead to cryptorchidism. The role of INSL3 in adult females is less known, although INSL3 expression has been described in female reproductive organs. Caveolin-1 (CAV1), the main component of caveoli cell membrane invaginations, has been shown to play an important role in epithelial organization and stromal-epithelial interactions. We created a null allele of Cav1 mice by deleting its second exon through embryonic stem cell targeting. Immunohistochemical analysis demonstrated that CAV1 expression was primarily localized to endothelial blood vessel cells and the myometrium uterus, whereas the strongest expression of Rxfp2 was detected in the endometrial epithelium. By 12 months of age approximately 18% of Cav1-/- females developed single or multiple dilated endometrial cysts lined by a flattened, simple low epithelium. A deficiency for Rxfp2 on Cav1-deficient background led to more than a 2-fold increase in the incidence of uterine cysts (54-58%). Appearance of cysts led to a severe disorganization of uterine morphology. We have found that the cysts had an increased expression of β-catenin and estrogen receptor β in endometrial stromal and epithelial cells and increased epithelial proliferation. An analysis of simple dilated cysts in human patients for CAV1 expression did not show appreciable differences with control regardless of menstrual phase, suggesting an involvement of additional factors in human disease. The results of this study suggest a novel synergistic role of INSL3/RXFP2 and CAV1 in structural maintenance of the uterus.
Collapse
Affiliation(s)
- Zhen Li
- Department of Human Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Relaxin is an approximately 6-kilodalton peptide hormone secreted by the corpus luteum, and circulates in the maternal blood during pregnancy. Relaxin administration to awake, chronically instrumented, nonpregnant rats mimics the vasodilatory phenomena of pregnancy. Furthermore, immunoneutralization of relaxin or its elimination from the circulation during midterm pregnancy in awake rats prevents maternal systemic and renal vasodilation, and the increase in global arterial compliance. Human investigation, albeit limited through 2010, also reveals vasodilatory effects of relaxin in the nonpregnant condition and observations consistent with a role for relaxin in gestational renal hyperfiltration. Evidence suggests that the vasodilatory responses of relaxin are mediated by its major receptor, the relaxin/insulin-like family peptide 1 receptor, RFXP1. The molecular mechanisms of relaxin vasodilation depend on the duration of hormone exposure (ie, there are rapid and sustained vasodilatory responses). Newly emerging data support the role of Gα(i/o) protein coupling to phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent phosphorylation and activation of endothelial nitric oxide synthase in the rapid vasodilatory responses of relaxin. Sustained vasodilatory responses critically depend on vascular endothelial and placental growth factors, and increases in arterial gelatinase(s) activity. Gelatinases hydrolyze big endothelin (ET) at a gly-leu bond to form ET(1-32), which activates the endothelial ET(B)/nitric oxide vasodilatory pathway. Although the relevance of relaxin biology to preeclampsia is largely speculative at this time, there are potential tantalizing links that are discussed in the context of our current understanding of the etiology and pathophysiology of the disease.
Collapse
Affiliation(s)
- Kirk P Conrad
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Yao L, Cooke PS, Meling DD, Shanks RD, Jameson JL, Sherwood OD. The effect of relaxin on cell proliferation in mouse cervix requires estrogen receptor {alpha} binding to estrogen response elements in stromal cells. Endocrinology 2010; 151:2811-8. [PMID: 20308531 PMCID: PMC2875817 DOI: 10.1210/en.2009-1327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study objective was to determine whether stromal and/or epithelial estrogen receptor-alpha (ERalpha) is required for relaxin to promote proliferation of stromal and epithelial cells in the mouse cervix. Four types of tissue recombinants were prepared with cervical stroma (St) and epithelium (Ep) from wild-type (wt) and ERalpha knockout (ko) mice: wt-St+wt-Ep, wt-St+ko-Ep, ko-St+wt-Ep and ko-St+ko-Ep. Tissue recombinants were grafted under the renal capsule of syngeneic female mice. After 3 wk of transplant growth, hosts were ovariectomized and fitted with silicon implants containing 17beta-estradiol (treatment d 1). Animals were injected sc with relaxin or vehicle PBS at 6-h intervals from 0600 h on d 8 through 0600 h on d 10. To evaluate cell proliferation, 5-bromo-2'-deoxyuridine was injected sc 10 h before tissue recombinants were collected at 1000 h on d 10. Relaxin promoted marked proliferation of both epithelial and stromal cells in tissue recombinants containing wt St (P < 0.001) but far lower proliferation in recombinants prepared with ko St, regardless of whether Ep was derived from wt or ko mice. An additional experiment using mice expressing wt ERalpha, a mutant of ERalpha that selectively lacks classical signaling through estrogen response element binding, or no ERalpha demonstrated that ERalpha must bind to an estrogen response element to enable relaxin's proliferative effects. In conclusion, this study shows that ERalpha-expressing cells in St, using a classical signaling pathway, are necessary for relaxin to promote marked proliferation in both stromal and epithelial cells of the mouse cervix.
Collapse
Affiliation(s)
- Lijuan Yao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kong RCK, Shilling PJ, Lobb DK, Gooley PR, Bathgate RAD. Membrane receptors: structure and function of the relaxin family peptide receptors. Mol Cell Endocrinol 2010; 320:1-15. [PMID: 20138959 DOI: 10.1016/j.mce.2010.02.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/14/2009] [Accepted: 02/02/2010] [Indexed: 01/17/2023]
Abstract
The receptors for members of the relaxin peptide family have only recently been discovered and are G-protein-coupled receptors (GPCRs). Relaxin and insulin-like peptide 3 (INSL3) interact with the leucine-rich-repeat-containing GPCRs (LGRs) LGR7 and LGR8, respectively. These receptors show closest similarity to the glycoprotein hormone receptors and contain large ectodomains with 10 leucine-rich repeats (LRRs) but are unique members of the LGR family (class C) as they have an LDL class A (LDLa) module at their N-terminus. In contrast, relaxin-3 and INSL5 interact with another class of type I GPCRs which lack a large ectodomain, the peptide receptors GPCR135 and GPCR142, respectively. These receptors are now classified as relaxin family peptide (RXFP) receptors, RXFP1 (LGR7), RXFP2 (LGR8), RXFP3 (GPCR135) and RXFP4 (GPCR142). This review outlines the identification of the peptides and receptors, their expression profiles and physiological roles and the functional interactions of the peptides with their unique receptors.
Collapse
Affiliation(s)
- Roy C K Kong
- Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
20
|
Yoshida M, Hossain MS, Tareq KMA, Obata R, Tsujii H. Effect of relaxin on the decidual cell reaction in the Mongolian gerbil ( Meriones unguiculatus). Reprod Med Biol 2009; 8:163-167. [PMID: 29699322 DOI: 10.1007/s12522-009-0025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022] Open
Abstract
Purpose Differentiation of endometrial stromal cells into decidual cells occurs during embryo implantation and pregnancy. Recently, it has been reported that relaxin affects the decidualization of cultured human endometrial cells in vitro; however, there has been no study on the decidualization of the Mongolian gerbil (Meriones unguiculatus). The authors demonstrated artificially induced decidualization, and the effect of relaxin on decidualization in gerbils. Methods Ten-to-twelve-week-old female Mongolian gerbils were ovariectomized, treated with estradiol, progesterone, and relaxin, and the uterine horn was stimulated. On day 10, uterine horns were measured for weight, protein concentration, and the incorporation of 14C-methionine; tissue sections were examined. Interleukin-11 (IL-11) primers were used for RT-PCR to confirm decidualization. Results Decidualization can be induced artificially in gerbils. In general, the histological observations of gerbil decidual cells were very similar to those of rats. The uterine horn weight, protein content, and protein synthesis from 14C-methionine significantly increased in the relaxin-treated gerbils (P< 0.05). Mast cells in the relaxin-treated uterus had proliferated more than those of the non-relaxin-treated group, which was confirmed by IL-11 expression. Conclusions We conclude that decidualization can be induced artificially, and relaxin increased weight of uterine horn, protein concentration, protein synthesis and IL-11 expression in gerbils.
Collapse
Affiliation(s)
- Mayumi Yoshida
- Laboratory of Animal Biotechnology, Interdisciplinary Graduate School of Science and Technology Shinshu University 8304 Minamiminowa-mura 399-4598 Nagano Japan
| | - M S Hossain
- Laboratory of Animal Biotechnology, Interdisciplinary Graduate School of Science and Technology Shinshu University 8304 Minamiminowa-mura 399-4598 Nagano Japan
| | - K M A Tareq
- Laboratory of Animal Biotechnology, Interdisciplinary Graduate School of Science and Technology Shinshu University 8304 Minamiminowa-mura 399-4598 Nagano Japan
| | - Ryuichiro Obata
- Laboratory of Animal Biotechnology, Interdisciplinary Graduate School of Science and Technology Shinshu University 8304 Minamiminowa-mura 399-4598 Nagano Japan
| | - Hirotada Tsujii
- Laboratory of Animal Biotechnology, Interdisciplinary Graduate School of Science and Technology Shinshu University 8304 Minamiminowa-mura 399-4598 Nagano Japan
| |
Collapse
|
21
|
Simon L, Spiewak KA, Ekman GC, Kim J, Lydon JP, Bagchi MK, Bagchi IC, DeMayo FJ, Cooke PS. Stromal progesterone receptors mediate induction of Indian Hedgehog (IHH) in uterine epithelium and its downstream targets in uterine stroma. Endocrinology 2009; 150:3871-6. [PMID: 19372202 PMCID: PMC2717869 DOI: 10.1210/en.2008-1691] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uterine receptivity to embryo implantation depends on appropriate progesterone (P4) and estrogen stimulation. P4 rapidly stimulates production of the morphogen Indian hedgehog (IHH) in murine uterine epithelium as well as downstream molecules in the hedgehog pathway such as Patched homolog 1 (PTCH1) and nuclear receptor subfamily 2, group F, member 2 (NR2F2) in uterine stroma. Studies using IHH-null mice indicate that IHH is obligatory for the normal P4 response in the uterus. To determine whether IHH induction in uterine epithelium is mediated through P4 receptor (PR) in epithelium (E) and/or stroma (S), we produced tissue recombinants using uteri from neonatal PR knockout (ko) mice and wild-type (wt) mice containing PR in S and/or E or lacking PR altogether using a tissue recombinant methodology and assessed their response to P4. In tissue recombinants containing wt-S (wt-S + wt-E and wt-S + ko-E), P4 induced Ihh mRNA expression at 6 h that was 6-fold greater than in oil-treated controls (P < 0.05; n = 6) in both types of tissue recombinants despite the absence of epithelial PR in wt-S + ko-E grafts. Conversely, Ihh mRNA expression was unaffected by P4 in ko-S + ko-E and ko-S + wt-E grafts despite epithelial PR expression in the latter. Nr2f2 and Ptch1 mRNA expression was similar in that it was stimulated by P4 only in recombinants containing stromal PR. These results indicate that stromal PR is both necessary and sufficient for P4 stimulation of epithelial IHH as well as downstream events such as PTCH1 and NR2F2 increases in stroma.
Collapse
Affiliation(s)
- Liz Simon
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bartol FF, Wiley AA, Bagnell CA. Relaxin and Maternal Lactocrine Programming of Neonatal Uterine Development. Ann N Y Acad Sci 2009; 1160:158-63. [DOI: 10.1111/j.1749-6632.2008.03820.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Yao L, Agoulnik AI, Cooke PS, Meling DD, Sherwood OD. Relative roles of the epithelial and stromal tissue compartment(s) in mediating the actions of relaxin and estrogen on cell proliferation and apoptosis in the mouse lower reproductive tract. Ann N Y Acad Sci 2009; 1160:121-9. [PMID: 19416172 PMCID: PMC2743517 DOI: 10.1111/j.1749-6632.2008.03799.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relaxin and estrogen are secreted by the ovary during the second half of pregnancy in rats and mice. Relaxin promotes marked growth of the lower reproductive tract in both species. Relaxin promotes accumulation of epithelial and stromal cells in the cervix and vagina by both stimulating cell proliferation and inhibiting apoptosis. Estrogen acting through estrogen receptor alpha (ERalpha) plays an essential permissive role in relaxin's actions. A fundamental step toward understanding the actions of relaxin and estrogen is to identify the tissue compartments that initiate their effects. Limited studies using either antibodies to human relaxin receptor (LGR7, RXFP1) or an IRES-LacZ reporter cassette in the LGR7 gene revealed relaxin receptors in subepithelial stroma cells and smooth muscle cells but not in epithelial cells in rodent vaginal and/or cervical tissues. ERalpha has been reported in both stromal and epithelial compartments in the rodent reproductive tract. This chapter describes ongoing studies that use relaxin bioactivity as a means of identifying the tissue compartment(s) that initiates the actions of relaxin and estrogen on the lower reproductive tract. Specifically, a tissue separation-recombination methodology in combination with LGR7 knockout mice was initially used to obtain functional evidence that stromal LGR7 is both necessary and sufficient to promote proliferation and inhibit apoptosis in both stromal and epithelial cells in mouse cervix and vagina. The tissue separation-recombination method is currently being used in conjunction with ERalpha knockout mice to determine if the obligatory permissive effect of estrogen on relaxin-induced cell proliferation occurs through stromal and/or epithelial ERalpha.
Collapse
Affiliation(s)
- Lijuan Yao
- Department of Molecular and Integrative Physiology
| | | | | | | | | |
Collapse
|
24
|
Effect of relaxin and IGF-I on the pre-implantation development of Mongolian gerbil ( Meriones unguiculatus) embryos in vitro. Reprod Med Biol 2009; 8:39-43. [PMID: 29699306 DOI: 10.1007/s12522-008-0007-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022] Open
Abstract
Purpose Both relaxin and insulin-like growth factor (IGF) are members of the insulin super family. This study aimed to investigate the effect of relaxin and IGF-I on the pre-implantation of Mongolian gerbil of blastocyst development in vitro. Methods Blastocysts and eight-cell stage embryos were collected from female gerbils. Eight-cell embryos and blastocysts were cultured in mM16 medium supplemented with or without relaxin or IGF-I for 24 h. Blastocysts were counted for total, inner cell mass (ICM) and trophectoderm (TE) cell numbers, and assessed apoptosis incidence. In addition, to measure incorporation of 3H-methionine, blastocysts were cultured for 3 h with relaxin or IGF-I, washed with trichloroacetic acid and measured by liquid scintiration counter. Results Relaxin (200 ng/ml) increased total, TE and ICM cell numbers of blastocyst (P < 0.05) when it was compared with the control. IGF-I (150 ng/ml) also has influence on total and ICM cell numbers of blastocyst when compared with control. Apoptosis incidence was relatively low, and a significant difference was not observed between each group. The effect of relaxin on incorporation of 3H-methionine was higher than the control group (P < 0.05). Relaxin increased the developmental rate from the eight-cell stage to blastocyst (P < 0.05). Conclusions In conclusion, relaxin and IGF-I stimulated protein synthesis and increased cell numbers of blastocysts, promoting development of the gerbil embryo in vitro culture.
Collapse
|