1
|
Wang H, Wang Y, Zhong Y, Yu B, Liu D, Jia C, Wu J, Zeng G, Wang Q, Liu F, Sheng C, Huang L. Pasteurized Akkermansia muciniphila ameliorates preeclampsia via inhibiting mitochondrial dysfunction-mediated placental apoptosis in vivo and in vitro. Free Radic Biol Med 2025; 234:233-247. [PMID: 40294855 DOI: 10.1016/j.freeradbiomed.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Preeclampsia (PE) is a severe metabolic disorder that occurs during pregnancy and is linked to dysbiosis of the gut microbiota, characterised by a decrease in Akkermansia muciniphila (AKK). Emerging evidence suggests that pasteurized Akkermansia muciniphila (pAKK) is a promising candidate for preventing or treating obesity-related metabolic disorders. However, the modulatory function and the underlying mechanisms of pAKK supplementation in PE remain to be fully elucidated. In this study, we examined the impact of pAKK oral administration on PE and its underlying mechanisms. Our findings demonstrate that pAKK significantly improved PE-like symptoms in mice induced by nitro-L-arginine methylester (L-NAME) in a dose-dependent manner. Of note, pAKK inhibited L-NAME-induced placental apoptosis, countered apoptosis-related biochemical alterations like the increase in the Bax/Bcl-2 ratio, and the activation of cleaved-Caspase-3, alongside mitigating L-NAME-induced placental mitochondrial dysfunction. Hypoxia-reoxygenation (H/R)-induced HTR8/SVneo cells have been established as an in vitro model to mimic the condition of PE. Interestingly, similar results were also obtained in vitro; mitochondrial dysfunction-mediated apoptosis induced by H/R in HTR-8/SVneo cells was prevented by pAKK. Importantly, the PI3K inhibitor (LY-294002) significantly negated the protective effects of pAKK on mitochondrial dysfunction and apoptosis. Furthermore, we observed that pAKK treatment improved the composition of gut microbiota communities in PE mice. Our findings indicate that pAKK improved PE-like symptoms both in vivo and in vitro by activating the PI3K/Akt signalling pathway, highlighting the potential for developing a probiotic therapeutic agent based on AKK for PE.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Obstetrics and Gynecology, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, Guangdong, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yawen Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bo Yu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Di Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Chunhong Jia
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Jiaying Wu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guanfeng Zeng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiqiong Wang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fang Liu
- Department of Obstetrics and Gynecology, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, Guangdong, China.
| | - Chao Sheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Shinde U, Khambata K, Raut S, Rao A, Bansal V, Mayadeo N, Das DK, Madan T, Gunasekaran VP, Balasinor NH. "Whole genome bisulfite sequencing of serum extracellular vesicle DNA identifies alterations in mitochondrial DNA methylation in early onset preeclampsia". Clin Chim Acta 2025; 569:120168. [PMID: 39889919 DOI: 10.1016/j.cca.2025.120168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Early-onset preeclampsia (EOPE) is a serious pregnancy complication. Understanding its underlying mechanisms could lead to improved diagnosis and management. Genome-wide DNA methylation changes in circulating Extracellular Vesicle DNA (EV-DNA) from women with EOPE could serve as a non-invasive approach to identify key regions and genes that could serve as biomarkers to understand placental pathophysiology. In this case-control study, serum extracellular vesicles were isolated from 3rd trimester pregnant women and characterized using Nanoparticle Tracking Analysis and Transmission Electron Microscopy. The circulating EV-DNA samples were subjected to Whole Genome Bisulfite Sequencing analysis (WGBS) to identify differentially methylated CpGs (DMCs) sites in EOPE cases compared to control. A total of 154 DMCs were identified in EV-DNA, of which 131 were hypomethylated and 23 were hypermethylated. Majority of DMCs were of mitochondrial origin. Previously, it has been reported that oxidative stress, decreased trophoblast differentiation, and invasion are linked to preeclampsia pathogenesis and are related to mitochondrial dysfunction. Therefore, DMCs of the mitochondrial genes like MT-ND1, MT-ND4, MT-CO2, MT-CO3, and MT-RNR1 were selected for validation and showed a similar trend by pyrosequencing. The expression of these genes were also altered in circulating extracellular vesicles. Our study shows changes in the DNA methylation patterns of circulating EV-DNA in women with EOPE. These changes, especially in mitochondrial genes, could lead to mitochondrial dysfunction and contribute EOPE pathogenesis. These findings suggest that these alterations could be explored as non-invasive approach to better understand placental health and improve disease management.
Collapse
Affiliation(s)
- Uma Shinde
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India
| | - Kushaan Khambata
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India
| | - Sanketa Raut
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India
| | - Aishwarya Rao
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India
| | - Vandana Bansal
- Department of Obstetrics and Gynaecology, Nowrosjee Wadia Maternity Hospital, Parel, Mumbai, India
| | - Niranjan Mayadeo
- Department of Obstetrics and Gynaecology, Seth G.S. Medical College and K.E.M. Hospital, Parel, Mumbai, India
| | - Dhanjit Kumar Das
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India
| | - Taruna Madan
- Development Research, Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi, India
| | - Vinoth Prasanna Gunasekaran
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India.
| | - Nafisa Huseni Balasinor
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India.
| |
Collapse
|
3
|
Zhang Y, Liu Y, Shi Y, Bai C, Wang T, Ruan F, Hu C. Upregulation of MMPs in placentas of patients with gestational diabetes mellitus: Involvement of the PI3K/Akt pathway. Heliyon 2024; 10:e32518. [PMID: 39021921 PMCID: PMC11252657 DOI: 10.1016/j.heliyon.2024.e32518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
In recent years, there has been a notable rise in the incidence of pregnancies complicated by gestational diabetes mellitus (GDM), characterized by glucose intolerance first identified during pregnancy. Analysis of placental tissue has revealed that placentas from women with GDM tend to be larger and heavier compared to control placentas, indicating potential changes in trophoblast proliferation, differentiation, and apoptosis. In this study, transcriptome sequencing was conducted on placentas obtained from both normal pregnancies and pregnancies with GDM to investigate the molecular mechanisms underlying this condition. The original sequencing data were subjected to sequencing analysis, resulting in the identification of 935 upregulated genes and 256 downregulated genes. The KEGG and GO analysis techniques on differential genes uncovered evidence suggesting that the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway may contribute to the pathogenesis of GDM. Subsequent analysis indicated that the expression levels of matrix metalloproteinases (MMP) 11, MMP12, MMP14, and MMP15, which are regulated by the PI3K/Akt pathway, were upregulated in the placentas of patients with GDM when compared to those of individuals with normal placental function. Additionally, our investigation into alternative splicing patterns revealed an increase in exon skipping alternative splicing of CSF3R in the placenta of patients with GDM compared to that in the control group. The CSF3R-PI3K-MMP pathway is speculated to regulate the pathogenesis of GDM.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, PR China
| | - Yufen Liu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, PR China
| | - Yanyan Shi
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, PR China
| | - Chunyu Bai
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Ting Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, PR China
| | - Fang Ruan
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, PR China
| | - Chuanbing Hu
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, PR China
| |
Collapse
|
4
|
Chen H, Li R, Bian J, Li X, Su C, Wang Y, Zhang H, Zheng J, Wang Y, Zhang H. OLFML3 suppresses trophoblast apoptosis via the PI3K/AKT pathway: A possible therapeutic target in preeclampsia. Placenta 2024; 147:1-11. [PMID: 38277999 DOI: 10.1016/j.placenta.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a pregnancy complication that encompasses various pathogenic mechanisms. Shallow implantation of the placenta due to abnormal trophoblast behavior is considered an important mechanism underlying PE; however, its exact etiology remains unclear. METHODS The expression of OLFML3 in the placenta and important clinical indicators were performed, followed by a correlation analysis. The effect of OLFML3 on the behavior of HTR-8/SVneo cells was examined, and the downstream molecular mechanisms of OLFML3 were investigated in HTR-8/SVneo cells. Additionally, a rat model of PE was generated by adenovirus injection via the tail vein to verify the role of OLFML3. RESULTS OLFML3 is highly expressed in both syncytiotrophoblasts and cytotrophoblasts and deregulated in preeclamptic placentas. OLFML3 overexpression in HTR-8/SVneo cells promoted cell proliferation, migration, invasion, and impeded apoptosis, and triggered phosphorylation on ser473 of AKT. Conversely, OLFML3 knockdown exerted opposite effects. Furthermore, OLFML3 overexpression ameliorates CoCl2-induced apoptosis of HTR-8/SVneo cells. In a rat model, OLFML3 overexpression alleviates PE-associated maternal symptoms, leading to lower blood pressure, less severe proteinuria, improved fetal growth restriction, as well as upregulation of P-AKT and downregulation of Cleaved caspase3 and Bax. DISCUSSION OLFML3 may alleviate PE development by inhibiting extravillous trophoblast cell apoptosis through the PI3K/AKT pathway. Our findings indicated that OLFML3 may provide a possible therapeutic target for PE.
Collapse
Affiliation(s)
- Haiying Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruiping Li
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiangyujing Bian
- Pharmaceutical Research Lab, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqing Li
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, China
| | - Cunjing Su
- Pharmaceutical Research Lab, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Wang
- Pharmaceutical Research Lab, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongping Zhang
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, China
| | - Jianqiong Zheng
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, China
| | - Yeping Wang
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Institute of Clinical Immunology, China.
| |
Collapse
|
5
|
Li H, Yu L, Ding Y, Nie Y, Yang M. Yin Yang 1 impacts upon preeclampsia by regulating T reg/T H17 cells and PI3K/AKT pathway. J Immunotoxicol 2023; 20:2228420. [PMID: 37466371 DOI: 10.1080/1547691x.2023.2228420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Preeclampsia (PE) is a common obstetric syndrome with an unclear etiology and pathogenesis. The study here aimed to investigate the role of Yin Yang 1 (YY1) in PE, and to reveal any YY1-regulated mechanisms in PE. Peripheral blood, placenta, and endometrial tissues of PE patients, healthy volunteers, and patients who had undergone an elective Cesarean section and had a scarred uterus (control group) were collected for analyses. Rat PE models were established by lipopolysaccharide induction. Subsets of these rats were then made to over-express YY1. At 18 d after the PE was established, urine, blood, and placental tissues from all rats were collected. Levels of regulatory-T (Treg) and helper T-type 17 (TH17) cells in both human and rat blood were measured by flow cytometry. ELISA kits were used to evaluate blood levels of inflammatory factors (i.e. IL-6, IL-10, and IL-17) as well. RT-qPCR and Western blot assays were performed to quantify levels of forkhead box P3 (Foxp3), retinoic acid-related orphan receptor C (RORc), and YY1 in the human and rat placenta and endometrial tissues. Expressions of PI3K/AKT pathway-related proteins were also evaluated by Western blots. The results indicated that the PE patients, relative to levels in control group and the healthy control subjects, had decreased circulating levels of Treg cells/increased TH17 cells; tissues from these patients also had relatively-decreased FoxP3 mRNA and protein expressions and elevated RORc mRNA and protein expressions. YY1 was expressed only at low levels in the PE patient placenta and endometrial tissues. In rats, PE rats treated with over-expressed YY1 had (relative to in PE rats without over-induced YY1) increased circulating levels of Treg cells/decreased TH17 cells; tissues from these rats had elevated FoxP3 mRNA and protein expressions and reduced mRNA and protein RORc expressions, as well as indications of alleviated inflammation. In the rat placenta samples, YY1 was also determined to activate the PI3K/AKT pathway. In summary, YY1 regulates the balance among Treg/TH17 cells and so affect the PE process in part through activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Haowen Li
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanting Nie
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Zhuang BM, Cao DD, Li TX, Liu XF, Lyu MM, Wang SD, Cui XY, Wang L, Chen XL, Lin XL, Lee CL, Chiu PCN, Yeung WSB, Yao YQ. Single-cell characterization of self-renewing primary trophoblast organoids as modeling of EVT differentiation and interactions with decidual natural killer cells. BMC Genomics 2023; 24:618. [PMID: 37853336 PMCID: PMC10583354 DOI: 10.1186/s12864-023-09690-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.
Collapse
Affiliation(s)
- Bai-Mei Zhuang
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Dan-Dan Cao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China.
| | - Tian-Xi Li
- Geneplus-Shenzhen Institute, Shenzhen, China
| | - Xiao-Feng Liu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
| | - Min-Min Lyu
- Department of Clinical-Translational and Basic Research Laboratory, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Shenzhen, Futian District, Guangdong, P.R. China
| | - Si-Dong Wang
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin-Yuan Cui
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
| | - Li Wang
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiao-Lin Chen
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiao-Li Lin
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Cheuk-Lun Lee
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - Philip C N Chiu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - Yuan-Qing Yao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China.
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.
- Department of Obstetrics and Gynecology, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
7
|
Elzinga FA, Khalili B, Touw DJ, Prins JR, Olinga P, Leuvenink HGD, van Goor H, Gordijn SJ, Nagelkerke A, Mian P. Placenta-on-a-Chip as an In Vitro Approach to Evaluate the Physiological and Structural Characteristics of the Human Placental Barrier upon Drug Exposure: A Systematic Review. J Clin Med 2023; 12:4315. [PMID: 37445348 DOI: 10.3390/jcm12134315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Quantification of fetal drug exposure remains challenging since sampling from the placenta or fetus during pregnancy is too invasive. Currently existing in vivo (e.g., cord blood sampling) and ex vivo (e.g., placenta perfusion) models have inherent limitations. A placenta-on-a-chip model is a promising alternative. A systematic search was performed in PubMed on 2 February 2023, and Embase on 14 March 2023. Studies were included where placenta-on-a-chip was used to investigate placental physiology, placenta in different obstetric conditions, and/or fetal exposure to maternally administered drugs. Seventeen articles were included that used comparable approaches but different microfluidic devices and/or different cultured maternal and fetal cell lines. Of these studies, four quantified glucose transfer, four studies evaluated drug transport, three studies investigated nanoparticles, one study analyzed bacterial infection and five studies investigated preeclampsia. It was demonstrated that placenta-on-a-chip has the capacity to recapitulate the key characteristics of the human placental barrier. We aimed to identify knowledge gaps and provide the first steps towards an overview of current protocols for developing a placenta-on-a-chip, that facilitates comparison of results from different studies. Although models differ, they offer a promising approach for in vitro human placental and fetal drug studies under healthy and pathological conditions.
Collapse
Affiliation(s)
- Femke A Elzinga
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Behrad Khalili
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deunsinglaan 1, 9713 AV Groningen, The Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deunsinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Pathology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Sanne J Gordijn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Anika Nagelkerke
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deunsinglaan 1, 9713 AV Groningen, The Netherlands
| | - Paola Mian
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
8
|
Roles of N-linked glycosylation and glycan-binding proteins in placentation: trophoblast infiltration, immunomodulation, angiogenesis, and pathophysiology. Biochem Soc Trans 2023; 51:639-653. [PMID: 36929183 DOI: 10.1042/bst20221406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Protein N-linked glycosylation is a structurally diverse post-translational modification that stores biological information in a larger order of magnitude than other post-translational modifications such as phosphorylation, ubiquitination and acetylation. This gives N-glycosylated proteins a diverse range of properties and allows glyco-codes (glycan-related information) to be deciphered by glycan-binding proteins (GBPs). The intervillous space of the placenta is richly populated with membrane-bound and secreted glycoproteins. Evidence exists to suggest that altering the structural nature of their N-glycans can impact several trophoblast functions, which include those related to interactions with decidual cells. This review summarizes trophoblast-related activities influenced by N-glycan-GBP recognition, exploring how different subtypes of trophoblasts actively adapt to characteristics of the decidualized endometrium through cell-specific expression of N-glycosylated proteins, and how these cells receive decidua-derived signals via N-glycan-GBP interactions. We highlight work on how changes in N-glycosylation relates to the success of trophoblast infiltration, interactions of immunomodulators, and uterine angiogenesis. We also discuss studies that suggest aberrant N-glycosylation of trophoblasts may contribute to the pathogenesis of pregnancy complications (e.g. pre-eclampsia, early spontaneous miscarriages and hydatidiform mole). We propose that a more in-depth understanding of how N-glycosylation shapes trophoblast phenotype during early pregnancy has the potential to improve our approach to predicting, diagnosing and alleviating poor maternal/fetal outcomes associated with placental dysfunction.
Collapse
|
9
|
Liu H, Yu L, Ding Y, Peng M, Deng Y. Progesterone Enhances the Invasion of Trophoblast Cells by Activating PI3K/AKT Signaling Pathway to Prevent Preeclampsia. Cell Transplant 2023; 32:9636897221145682. [PMID: 36593749 PMCID: PMC9830574 DOI: 10.1177/09636897221145682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We aimed to explore whether the effect of progesterone on preeclampsia via the PI3K/AKT signaling pathway. First, we studied the role of progesterone in preeclampsia patients and HTR-8/Svneo cells by adding progesterone. Then PI3K inhibitor LY294002 was added. The effects of progesterone on preeclampsia were also studied in animals by constructing a preeclampsia rat model. CCK-8 and Transwell assay were applied to measure cell viability and invasion ability. ELISA was performed to measure progesterone, MMP-2, MMP-9, pro-inflammatory factors TNF-α, IL-1β, and anti-inflammatory factors IL-4, IL-10, and IL-13 levels. HE staining was used to detect the pathological changes in uterine spiral artery. Western blot was performed to detect Cyclin D1, PCNA, MMP-2, MMP-9, inflammatory factors TNF-α, IL-1β, IL-4, IL-10, IL-13, and PI3K/AKT signaling pathway related proteins AKT, p-AKT, PI3K, and p-PI3K expressions. Progesterone could reduce blood pressure and urine protein in pregnant women with preeclampsia. TNF-α and IL-1β levels were decreased, but IL-4, IL-10, IL-13, cyclin D1, and PCNA levels were increased in pregnant women with preeclampsia after using progesterone. After the use of progesterone, the symptoms of the PE model group were improved. Among them, the lumen of the placental uterine spiral artery was enlarged, and the fibrinoid necrosis of the uterine wall and acute atherosclerotic lesions were relieved. In addition, progesterone promoted HTR-8/Svneo cells proliferation and invasion. However, high expression of MMP-2, MMP-9, p-AKT, and p-PI3K in Normal and preeclampsia groups caused by progesterone was weakened after adding LY294002, indicating that progesterone could activate PI3K/AKT signaling pathway to regulate HTR-8/Svneo cells. Progesterone decreased urine protein and blood pressure of preeclampsia rats in a concentration-dependent manner. Moreover, progesterone activated the PI3K/AKT signaling pathway and inhibited the inflammatory response in preeclampsia rats.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ling Yu
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yiling Ding
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China,Yiling Ding, Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Renmin Middle Road 139, Changsha 410005, Hunan, China.
| | - Mei Peng
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yali Deng
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Exposure to higher concentrations of exogenous ELABELA causes HTR-8/SVneo trophoblast cell dysfunction: A possible pathogenesis of pre-eclampsia. Pregnancy Hypertens 2022; 30:181-188. [DOI: 10.1016/j.preghy.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/17/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
|
11
|
Deng Q, Wan Q, Liao J, Fang D, Wang L, Xiong S, Xu P, Shen X, Li Q, Zhou Y. Nickel nanoparticles affect the migration and invasion of HTR-8/SVneo cells by downregulating MMP2 through the PI3K/AKT pathway. Toxicol In Vitro 2022; 80:105328. [PMID: 35150872 DOI: 10.1016/j.tiv.2022.105328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 02/05/2022] [Indexed: 12/24/2022]
Abstract
Proper migration and invasion of extravillous trophoblast cells into the endometrium in early gestation is essential for successful embryo implantation. The development of nanotechnology has led to the emergence of nickel nanoparticles (Ni NPs), for which attendant health concerns are widespread. Ni NPs are known to affect reproduction and be embryotoxic, but whether they affect the migration and invasion functions of trophoblast cells is unclear. We investigated the effects of Ni NPs on the migration and invasion of HTR-8/SVneo in extravillous trophoblast cells and explored the possible role of the PI3K/AKT/MMP2 signaling pathway in this regard. Results showed that the migration and invasion of cells was significantly inhibited by the exposure of Ni NPs. The protein and mRNA levels of PI3K/AKT/MMP2 signaling pathway were significantly reduced with the increase in Ni NPs concentration. The presence of the PI3K activator 740Y-P partially attenuated the inhibition of cell migration and invasion by Ni NPs, confirming the involvement of this pathway. Thus, Ni NPs inhibit migration and invasion of human trophoblast HTR-8/SVneo cells by downregulating the PI3K/AKT/MMP2 signaling pathway. This study is important for the development of safety evaluation criteria for Ni NPs.
Collapse
Affiliation(s)
- Qingfang Deng
- Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiyou Wan
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Juan Liao
- Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Derong Fang
- Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Linglu Wang
- The second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Quan Li
- Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
12
|
Human Chorionic Gonadotropin and Early Embryogenesis: Review. Int J Mol Sci 2022; 23:ijms23031380. [PMID: 35163303 PMCID: PMC8835849 DOI: 10.3390/ijms23031380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022] Open
Abstract
Human chorionic gonadotropin (hCG) has four major isoforms: classical hCG, hyperglycosylated hCG, free β subunit, and sulphated hCG. Classical hCG is the first molecule synthesized by the embryo. Its RNA is transcribed as early as the eight-cell stage and the blastocyst produces the protein before its implantation. This review synthetizes everything currently known on this multi-effect hormone: hCG levels, angiogenetic activity, immunological actions, and effects on miscarriages and thyroid function.
Collapse
|
13
|
Ju Y, Feng Y, Hou X, Wu L, Yang H, Zhang H, Ma Y. Combined apocyanin and aspirin treatment activates the PI3K/Nrf2/HO-1 signaling pathway and ameliorates preeclampsia symptoms in rats. Hypertens Pregnancy 2021; 41:39-50. [PMID: 34875953 DOI: 10.1080/10641955.2021.2014518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Pre-eclampsia (PE) is a pregnancy-associated disease characterized by placental dysfunction and increased oxidative stress. Apocyanin is a potent antioxidant and anti-inflammatory which has shown beneficial effects on PE pathogenesis. Aspirin is recognized as the recommendable drug in PE prevention and therapy. Therefore, we aimed to investigate the effects of combining apocyanin and aspirin to treat PE on rat models induced by N-nitro-L-arginine methyl ester (L-NAME) from gestational day (GD) 6 to 16 and elucidate the potential mechanisms. METHODS First, female pregnant rats were divided into five different groups: pregnant control, PE, PE + apocyanin, PE + aspirin, and PE + apocyanin + aspirin. Animals received apocyanin (16 mg/kg/day) orally or aspirin by gavage (1.5 mg/kg BM/day) from GD 4 to 16. Blood pressure and urine protein content were monitored every 4 days. RESULTS In the PE rat model, elevated systolic blood pressure and proteinuria were ameliorated by the combination of apocyanin and aspirin. Meanwhile, compared with single-dose apocyanin or aspirin, the combined treatment significantly corrected abnormal pregnancy outcomes, decreased sFlt-1 and PlGF, and alleviated oxidative stress both in blood and placental tissues. Moreover, the combined treatment upregulated PI3K, Akt, Nrf2, and HO-1 protein levels in the placental tissues from PE rats.Conclusion: Overall, our results suggested that combined treatment of apocyanin and aspirin ameliorates the PE symptoms compared with single-dose apocyanin or aspirin in a PE rat model. Also, we demonstrated that activating the PI3K/Nrf2/HO-1 pathway can be a valuable therapeutic target to improve the pregnancy outcomes of PE.
Collapse
Affiliation(s)
- Yaru Ju
- Perinatal Center, the Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Xiaolin Hou
- Prenatal Diagnostic, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Lixia Wu
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang; Hebei, China
| | - Huixia Yang
- Department of Obstetrics, Gaoyi County People's Hospital, Shijiazhuang, Hebei, China
| | - Hongjuan Zhang
- Department of Obstetrics, Xiongxian Maternal and Child Health Care Hospital, Baoding, Hebei China
| | - Yan'Na Ma
- Department of Obstetrics, Xiongxian Maternal and Child Health Care Hospital, Baoding, Hebei China
| |
Collapse
|
14
|
Verma S, Kang AK, Pal R, Gupta SK. BST2 regulates interferon gamma-dependent decrease in invasion of HTR-8/SVneo cells via STAT1 and AKT signaling pathways and expression of E-cadherin. Cell Adh Migr 2021; 14:24-41. [PMID: 31957537 PMCID: PMC6973314 DOI: 10.1080/19336918.2019.1710024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mechanism by which interferon-gamma (IFN-γ) downregulates trophoblast invasion needs further investigation. Treatment of HTR-8/SVneo cells with IFN-γ led to a decrease in their invasion concomitant with an increased expression of BST2. Silencing of BST2 by siRNA showed a significant increase in their invasion and spreading after treatment with IFN-γ as well as downregulated expression of E-cadherin. Further, STAT1 silencing inhibited the IFN-γ-dependent increase in the expression of BST2 and E-cadherin. Treatment of HTR-8/SVneo cells with IFN-γ led to the activation of AKT, and its inhibition with PI3K inhibitor abrogated IFN-γ-mediated decrease in invasion/spreading and downregulated BST2 and E-cadherin expression. Collectively, IFN-γ decreases the invasion of HTR-8/SVneo cells by STAT1 and AKT activation via increased expression of BST2 and E-cadherin.
Collapse
Affiliation(s)
- Sonam Verma
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amandeep Kaur Kang
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Rahul Pal
- Immunoendocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
15
|
Massimiani M, Tiralongo GM, Salvi S, Fruci S, Lacconi V, La Civita F, Mancini M, Stuhlmann H, Valensise H, Campagnolo L. Treatment of pregnancies complicated by intrauterine growth restriction with nitric oxide donors increases placental expression of Epidermal Growth Factor-Like Domain 7 and improves fetal growth: A pilot study. Transl Res 2021; 228:28-41. [PMID: 32784003 DOI: 10.1016/j.trsl.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/25/2022]
Abstract
Intrauterine growth restriction (IUGR) is a pathological condition of pregnancy with high perinatal mortality and morbidity, characterized by inadequate fetal growth associated to altered maternal hemodynamics with impaired uteroplacental blood flow and placental insufficiency. To date, iatrogenic premature delivery remains the elective therapeutic strategy. However, in recent years the possibility of a therapeutic approach with vasodilators and myorelaxants, such as nitric oxide (NO) donors, has gained interest. NO controls many endothelial cell functions, including angiogenesis and vascular permeability, by regulating the expression of angiogenic factors, such as Vascular Endothelial Growth Factor. In the present study, we investigated if treatment of pregnancies complicated by IUGR with NO donors affects the expression of Epidermal Growth Factor-Like Domain 7 (EGFL7), a secreted endothelial factor, previously demonstrated to be expressed by both endothelial and trophoblast cells and involved in proper placental development. NO donor treatment induced placental levels of EGFL7 and, in association with oral fluids, significantly improved fetal growth. Ex vivo experiments confirmed that NO donors increased expression and secretion of EGFL7 by villous explants. To specifically investigate the potential response of trophoblast cells to NO, we treated HTR8-sVneo cells with NO donors and observed induction of EGFL7 expression. Altogether, our findings indicate that NO induces endothelial and trophoblast expression of EGFL7 in the placenta and improves fetal growth, suggesting a correlation between placental levels of EGFL7 and pregnancy outcome.
Collapse
Affiliation(s)
- Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Saint Camillus International University of Health Sciences, Rome, Italy
| | - Grazia M Tiralongo
- Department of Obstetrics and Gynecology, Casilino General Hospital, Rome, Italy
| | - Silvia Salvi
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, UOC di Patologia Ostetrica, Fondazione Policlinico Universitario "A Gemelli" IRCCS, Rome, Italy
| | | | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Fabio La Civita
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marta Mancini
- Department of Obstetrics and Gynecology, Casilino General Hospital, Rome, Italy
| | - Heidi Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| | - Herbert Valensise
- Department of Obstetrics and Gynecology, Casilino General Hospital, Rome, Italy; Obstetrics and Gynecology Unit, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
16
|
Drwal E, Rak A, Tworzydło W, Gregoraszczuk EŁ. “Real life” polycyclic aromatic hydrocarbon (PAH) mixtures modulate hCG, hPL and hPLGF levels and disrupt the physiological ratio of MMP-2 to MMP-9 and VEGF expression in human placenta cell lines. Reprod Toxicol 2020; 95:1-10. [DOI: 10.1016/j.reprotox.2020.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
|
17
|
Gridelet V, Perrier d'Hauterive S, Polese B, Foidart JM, Nisolle M, Geenen V. Human Chorionic Gonadotrophin: New Pleiotropic Functions for an "Old" Hormone During Pregnancy. Front Immunol 2020; 11:343. [PMID: 32231662 PMCID: PMC7083149 DOI: 10.3389/fimmu.2020.00343] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human chorionic gonadotrophin (hCG) is the first specific molecule synthesized by the embryo. hCG RNA is transcribed as early as the eight-cell stage, and the blastocyst produces the protein before its implantation. hCG in the uterine microenvironment binds with its cognate receptor, luteinizing hormone/choriogonadotropin receptor (LHCGR), on the endometrial surface. This binding stimulates leukemia inhibitory factor (LIF) production and inhibits interleukin-6 (IL-6) production by epithelial cells of the endometrium. These effects ensure essential help in the preparation of the endometrium for initial embryo implantation. hCG also effects angiogenic and immunomodulatory actions as reported in many articles by our laboratories and other ones. By stimulating angiogenesis and vasculogenesis, hCG provides the placenta with an adequate maternal blood supply and optimal embryo nutrition during the invasion of the uterine endometrium. The immunomodulatory properties of hCG are numerous and important for programming maternal immune tolerance toward the embryo. The reported effects of hCG on uterine NK, Treg, and B cells, three major cell populations for the maintenance of pregnancy, demonstrate the role of this embryonic signal as a crucial immune regulator in the course of pregnancy. Human embryo rejection for hCG-related immunological reasons has been studied in different ways, and a sufficient dose of hCG seems to be necessary to maintain maternal tolerance. Different teams have studied the addition of hCG in patients suffering from recurrent miscarriages or implantation failures. hCG could also have a beneficial or a negative impact on autoimmune diseases during pregnancy. In this review, we will discuss the immunological impacts of hCG during pregnancy and if this hormone might be used therapeutically.
Collapse
Affiliation(s)
- Virginie Gridelet
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
| | - Sophie Perrier d'Hauterive
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
| | - Barbara Polese
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Michelle Nisolle
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
- Department of Obstetrics and Gynecology, CHR Citadelle, University of Liège, Liège, Belgium
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
| |
Collapse
|
18
|
Zirnask H, Pöllanen P, Suutre S, Kuuslahti M, Kotsar A, Pakarainen T, Kokk K. Expression of LHCG receptors in the human penis. Aging Male 2020; 23:8-13. [PMID: 30322327 DOI: 10.1080/13685538.2018.1514001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The aim of this study is to investigate the expression of the luteinizing hormone/choriogonadotropin (LHCG) receptor in the human penis to see, if the luteinizing hormone (LH) effects are possible in the spongious and cavernous tissue of the penis. The number of men with erection disturbances increases significantly simultaneously with the elevated LH concentrations between 40 and 70 years. It is possible that the elevated LH concentrations may influence locally the erectile mechanisms. The precondition for this is the expression of LHCG receptors in the penis. Penile tissue was obtained from three patients undergoing total or partial penectomy due to a rectal cancer with secondary penile metastasis or squamous cell carcinoma of the penis. Immunohistochemistry was used for the detection of the LHCG receptor. Positive immunoreaction for LHCG receptors was discovered in the endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis, also in the endothelial cells of the capillary walls in all patients. Our results show that LHCG receptor is expressed in the spongious and cavernous tissue of the human penis. This finding suggests that LH can affect the spongious and cavernous tissue in human and play a significant role in the development of erectile dysfunction among the aging men.
Collapse
Affiliation(s)
- Helen Zirnask
- Department of Anatomy, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Anatomy, Institute of Medicine, University of Tampere, Tampere, Finland
| | - Pasi Pöllanen
- Department of Anatomy, Institute of Medicine, University of Tampere, Tampere, Finland
- Department of Administration, CAREA, Kotka, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
| | - Siim Suutre
- Department of Anatomy, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Marianne Kuuslahti
- Department of Anatomy, Institute of Medicine, University of Tampere, Tampere, Finland
| | - Andres Kotsar
- Department of Urology, Tampere University Hospital, Tampere, Finland
- Department of Urology, Tartu University Hospital, Tartu, Estonia
| | - Tomi Pakarainen
- Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Kersti Kokk
- Department of Anatomy, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Anatomy, Institute of Medicine, University of Tampere, Tampere, Finland
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Szilagyi A, Gelencser Z, Romero R, Xu Y, Kiraly P, Demeter A, Palhalmi J, Gyorffy BA, Juhasz K, Hupuczi P, Kekesi KA, Meinhardt G, Papp Z, Draghici S, Erez O, Tarca AL, Knöfler M, Than NG. Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int J Mol Sci 2020; 21:ijms21020628. [PMID: 31963593 PMCID: PMC7013556 DOI: 10.3390/ijms21020628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
The human placenta maintains pregnancy and supports the developing fetus by providing nutrition, gas-waste exchange, hormonal regulation, and an immunological barrier from the maternal immune system. The villous syncytiotrophoblast carries most of these functions and provides the interface between the maternal and fetal circulatory systems. The syncytiotrophoblast is generated by the biochemical and morphological differentiation of underlying cytotrophoblast progenitor cells. The dysfunction of the villous trophoblast development is implicated in placenta-mediated pregnancy complications. Herein, we describe gene modules and clusters involved in the dynamic differentiation of villous cytotrophoblasts into the syncytiotrophoblast. During this process, the immune defense functions are first established, followed by structural and metabolic changes, and then by peptide hormone synthesis. We describe key transcription regulatory molecules that regulate gene modules involved in placental functions. Based on transcriptomic evidence, we infer how villous trophoblast differentiation and functions are dysregulated in preterm preeclampsia, a life-threatening placenta-mediated obstetrical syndrome for the mother and fetus. In the conclusion, we uncover the blueprint for villous trophoblast development and its impairment in preterm preeclampsia, which may aid in the future development of non-invasive biomarkers for placental functions and early identification of women at risk for preterm preeclampsia as well as other placenta-mediated pregnancy complications.
Collapse
Affiliation(s)
- Andras Szilagyi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Balazs A. Gyorffy
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
- Department of Physiology and Neurobiology, Eotvos Lorand University, H-1117 Budapest, Hungary
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary
| | - Sorin Draghici
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA;
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-382-6788
| |
Collapse
|
20
|
Xu Y, Sui L, Qiu B, Yin X, Liu J, Zhang X. ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia. Am J Physiol Cell Physiol 2019; 316:C481-C491. [PMID: 30673304 DOI: 10.1152/ajpcell.00404.2018] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inadequate trophoblast invasion is associated with the development of preeclampsia (PE). Considering that annexin A4 (ANXA4) enhances tumor invasion, we aimed to explore the functional role of ANXA4 in trophoblast cells and to examine the underlying mechanism. ANXA4 expression in PE placentas was analyzed using immunohistochemistry and Western blotting. Cell proliferation, invasion, and apoptosis were determined using a MTT assay, Transwell assay, and flow cytometry, respectively. The expression levels of matrix metalloproteinase (MMP)-2, MMP-9, phosphoinositide 3-kinase (PI3K), Akt, phosphorylated (p)-Akt, and phosphorylated endothelial nitric oxide synthase (p-eNOS) were detected by Western blotting. Placentas were prepared for pathological examination using hematoxylin and eosin staining and apoptosis determination using the TUNEL method. Expression of ANXA4, PI3K, p-Akt and p-eNOS was downregulated in human PE placentas and PE placenta-derived extravillous cytotrophoblasts (EVCTs). Furthermore, ANXA4 overexpression promoted cell proliferation and invasion, inhibited cell apoptosis, and upregulated protein expression of PI3K, p-Akt, and p-eNOS in human trophoblast cells HTR-8/SVneo and JEG-3. By contrast, ANXA4 knockdown exerted the opposite effects. Furthermore, inhibition of the PI3K/Akt pathway by LY294002 abrogated the ANXA4 overexpression-mediated effects on trophoblast behavior. Furthermore, eNOS knockdown abrogated the ANXA4 overexpression-induced promotion of cell invasion and MMP2/9 expression. Additionally, in N-nitro-l-arginine methyl ester (l-NAME)-induced PE rats, ANXA4 overexpression alleviated PE progression, accompanied by an increase in expression of PI3K, p-Akt, and p-eNOS in rat placentas. Our findings demonstrate that ANXA4 expression is downregulated in PE. ANXA4 may promote trophoblast invasion via the PI3K/Akt/eNOS pathway.
Collapse
Affiliation(s)
- Yalan Xu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Lili Sui
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Bintao Qiu
- Central Laboratory, Peking Union Medical College Hospital, Beijing, China
| | - Xiuju Yin
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Juntao Liu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
21
|
Karaszi K, Szabo S, Juhasz K, Kiraly P, Kocsis-Deak B, Hargitai B, Krenacs T, Hupuczi P, Erez O, Papp Z, Kovalszky I, Than NG. Increased placental expression of Placental Protein 5 (PP5) / Tissue Factor Pathway Inhibitor-2 (TFPI-2) in women with preeclampsia and HELLP syndrome: Relevance to impaired trophoblast invasion? Placenta 2019; 76:30-39. [PMID: 30803712 DOI: 10.1016/j.placenta.2019.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Placental Protein 5 (PP5)/Tissue Factor Pathway Inhibitor-2 (TFPI-2) is an extracellular matrix-associated protein mainly expressed by the syncytiotrophoblast that may regulate trophoblast invasion. Our aim was to study placental PP5/TFPI-2 expression and its relation to placental pathology in various forms of preeclampsia and HELLP syndrome. METHODS Placental and maternal blood specimens were collected at the time of delivery from the same women in the following groups: 1) early controls; 2) early preeclampsia; 3) early preeclampsia with HELLP syndrome; 4) late controls; and 5) late preeclampsia. After histopathological examination, placental specimens were immunostained with polyclonal anti-PP5/TFPI-2 antibody on Western blot and tissue microarray immunohistochemistry. Placental PP5/TFPI-2 immunoscores were assessed manually and with a semi-automated method. Maternal sera were immunoassayed for PP5/TFPI-2. RESULTS PP5/TFPI-2 was localized to the cytoplasm of syncytiotrophoblast. Manual and semi-automated PP5/TFPI-2 immunoscores were higher in early preeclampsia with or without HELLP syndrome but not in late preeclampsia than in respective controls. In patients with preeclampsia, the correlation of placental PP5/TFPI-2 expression with maternal vascular malperfusion score of the placenta was positive while it was negative with birthweight and placental weight. Maternal serum PP5/TFPI-2 concentration was higher in early preeclampsia and it tended to be higher in early preeclampsia with HELLP syndrome than in early controls. DISCUSSION Our findings suggest that an increased placental PP5/TFPI-2 expression may be associated with abnormal placentation in early preeclampsia, with or without HELLP syndrome.
Collapse
Affiliation(s)
- Katalin Karaszi
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barbara Kocsis-Deak
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Hargitai
- West Midlands Perinatal Pathology Centre, Cellular Pathology Department, Birmingham Women's and Children's NHS FT, Birmingham, United Kingdom
| | - Tibor Krenacs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Offer Erez
- Maternity Department "D" Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
22
|
Wu W, Gao H, Li X, Peng S, Yu J, Liu N, Zhan G, Zhu Y, Wang K, Guo X. β-hCG promotes epithelial ovarian cancer metastasis through ERK/MMP2 signaling pathway. Cell Cycle 2018; 18:46-59. [PMID: 30582718 PMCID: PMC6343691 DOI: 10.1080/15384101.2018.1558869] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, with typically extensive intraperitoneal implantation leading to poor prognosis. Our previous study preliminarily demonstrated β-hCG can promote tumorigenesis in immortalized nontumorigenic ovarian epithelial cells. In this study, the roles and mechanisms of β-hCG in regulating EOC proliferation and metastasis were thoroughly explored. First, histologically, β-hCG was aberrantly overexpressed in human EOC metastatic tissues, and significantly correlated with FIGO stage, tumor size, differentiation, histologic grade and high grade serous ovarian carcinoma (HGSOC) (P < 0.05). However, serologically, β-hCG expression showed no significant difference between EOC and nonmalignant ovarian patients. Second, β-hCG was confirmed to have no significant effects on EOC proliferation in vitro and in vivo, while β-hCG upregulation was proven to promote migration and invasion ability in ES-2 and OVCAR-3 cells in vitro (P < 0.05), and β-hCG downregulation in SKOV3 cells had the opposite effect. Moreover, more invadopodia protrusions, mitochondria accumulations and cytoskeletal rearrangements were observed in β-hCG-overexpressing ES-2 cells, while β-hCG-depleted SKOV3 cells produced the opposite effect. Furthermore, β-hCG was confirmed to clearly facilitate intraperitoneal metastasis in nude mouse orthotopic ovarian xenograft models. Importantly, these effects of β-hCG were mediated by activation of the ERK/MMP2 signaling pathway, independently of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) presence, and inhibition the pathway with the p-ERK1/2 inhibitor SCH772984 significantly impaired the tumor-promoting effects induced by β-hCG. Collectively, these data provide new insight into the roles and mechanisms of β-hCG in regulating EOC metastasis through ERK/MMP2 signaling pathway and may become a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Weimin Wu
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Hao Gao
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaofeng Li
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Shumin Peng
- b Department of Obstetrics and Gynecology , Chongqing Health Center for Women and Children , Chongqing , China
| | - Jing Yu
- c Department of Pathology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Na Liu
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Guangxi Zhan
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yong Zhu
- d Department of Obstetrics and Gynecology , The First Affiliated Hospital, Shihezi University School of Medicine , Xinjiang , China
| | - Kai Wang
- e Clinical and Translational Research Center , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaoqing Guo
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
23
|
Yang C, Lim W, Bazer FW, Song G. Homosalate aggravates the invasion of human trophoblast cells as well as regulates intracellular signaling pathways including PI3K/AKT and MAPK pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1263-1273. [PMID: 30267922 DOI: 10.1016/j.envpol.2018.09.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Homosalate is an organic ultraviolet filter used in most sunscreens but has been reported to be toxic to marine organisms. The estrogenic activity of homosalate has also been reported, but its endocrine-disrupting effect remains unclear. Although homosalate has been detected in human placental tissues, its effect on the survival of human trophoblast cells needs to be investigated. Therefore, in this study, we evaluated if HTR8/SVneo, a human trophoblast cell line, treated with homosalate showed decreasing proliferative activity in a dose-dependent manner. Homosalate promoted the death of HTR8/SVneo cells with elevated lipid peroxidation and intracellular Ca2+ concentration. It also induced endoplasmic reticulum stress and mitochondrial morphological disturbances associated with the differentiation of human trophoblast cells. However, when the intracellular Ca2+ or reactive oxygen species were removed using BAPTA-AM or N-acetyl-L-cysteine (NAC), the cell proliferation suppressed by homosalate was restored. Homosalate also significantly inhibited the invasion of HTR8/SVneo cells. Furthermore, it modulated phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signaling pathways, which were involved in the cross-talk between both signaling pathways in HTR8/SVneo cells. Thus, homosalate adversely affects the survival, proliferation, and invasiveness of human trophoblast cells and therefore pregnant women should practice caution while using personal care products containing homosalate.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
West RC, Bouma GJ, Winger QA. Shifting perspectives from "oncogenic" to oncofetal proteins; how these factors drive placental development. Reprod Biol Endocrinol 2018; 16:101. [PMID: 30340501 PMCID: PMC6195737 DOI: 10.1186/s12958-018-0421-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022] Open
Abstract
Early human placental development strongly resembles carcinogenesis in otherwise healthy tissues. The progenitor cells of the placenta, the cytotrophoblast, rapidly proliferate to produce a sufficient number of cells to form an organ that will contribute to fetal development as early as the first trimester. The cytotrophoblast cells begin to differentiate, some towards the fused cells of the syncytiotrophoblast and some towards the highly invasive and migratory extravillous trophoblast. Invasion and migration of extravillous trophoblast cells mimics tumor metastasis. One key difference between cancer progression and placental development is the tight regulation of these oncogenes and oncogenic processes. Often, tumor suppressors and oncogenes work synergistically to regulate cell proliferation, differentiation, and invasion in a restrained manner compared to the uncontrollable growth in cancer. This review will compare and contrast the mechanisms that drive both cancer progression and placental development. Specifically, this review will focus on the molecular mechanisms that promote cell proliferation, evasion of apoptosis, cell invasion, and angiogenesis.
Collapse
Affiliation(s)
- Rachel C. West
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 10290 Ridgegate Circle, Lone Tree, Fort Collins, CO 80124 USA
| | - Gerrit J. Bouma
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 10290 Ridgegate Circle, Lone Tree, Fort Collins, CO 80124 USA
| | - Quinton A. Winger
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 10290 Ridgegate Circle, Lone Tree, Fort Collins, CO 80124 USA
| |
Collapse
|
25
|
Casarini L, Santi D, Brigante G, Simoni M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG. Endocr Rev 2018; 39:549-592. [PMID: 29905829 DOI: 10.1210/er.2018-00065] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
LH and chorionic gonadotropin (CG) are glycoproteins fundamental to sexual development and reproduction. Because they act on the same receptor (LHCGR), the general consensus has been that LH and human CG (hCG) are equivalent. However, separate evolution of LHβ and hCGβ subunits occurred in primates, resulting in two molecules sharing ~85% identity and regulating different physiological events. Pituitary, pulsatile LH production results in an ~90-minute half-life molecule targeting the gonads to regulate gametogenesis and androgen synthesis. Trophoblast hCG, the "pregnancy hormone," exists in several isoforms and glycosylation variants with long half-lives (hours) and angiogenic potential and acts on luteinized ovarian cells as progestational. The different molecular features of LH and hCG lead to hormone-specific LHCGR binding and intracellular signaling cascades. In ovarian cells, LH action is preferentially exerted through kinases, phosphorylated extracellular-regulated kinase 1/2 (pERK1/2) and phosphorylated AKT (also known as protein kinase B), resulting in irreplaceable proliferative/antiapoptotic signals and partial agonism on progesterone production in vitro. In contrast, hCG displays notable cAMP/protein kinase A (PKA)-mediated steroidogenic and proapoptotic potential, which is masked by estrogen action in vivo. In vitro data have been confirmed by a large data set from assisted reproduction, because the steroidogenic potential of hCG positively affects the number of retrieved oocytes, and LH affects the pregnancy rate (per oocyte number). Leydig cell in vitro exposure to hCG results in qualitatively similar cAMP/PKA and pERK1/2 activation compared with LH and testosterone. The supposed equivalence of LH and hCG has been disproved by such data, highlighting their sex-specific functions and thus deeming it an oversight caused by incomplete understanding of clinical data.
Collapse
Affiliation(s)
- Livio Casarini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giulia Brigante
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
26
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Zhang SM, Tian FJ, Zeng WH, Ma XL, Ren JB, Lin Y. XCL1-XCR1 pathway promotes trophoblast invasion at maternal-fetal interface by inducing MMP-2/MMP-9 activity. Am J Reprod Immunol 2018; 80:e12990. [PMID: 29856101 DOI: 10.1111/aji.12990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
PROBLEM Certain chemokines with their receptors can promote or inhibit trophoblast cell migration and invasion in human first-trimester placenta. Whether the lymphotactin (Lptn; XCL1)-XC chemokine receptor 1 (XCR1) chemokine pathway affects trophoblast cell migration and invasion in human first-trimester placenta remains unclear. METHOD OF STUDY The expression pattern of chemokine XCL1 and its receptor XCR1 was detected in human first-trimester by qRT-PCR, and the effect of recombinant human XCL1 (rhXCL1) on trophoblast cell function was tested by wound healing and Transwell assays. Matrix metalloproteinase (MMP) activity in trophoblast cells treated with rhXCL1 was assessed via qRT-PCR and gelatin zymography. RESULTS Abundant XCR1 mRNA was expressed in the first-trimester decidua and villi. XCL1 and XCR1 mRNA were expressed at a higher level in the first-trimester than in the term placenta. RhXCL1 promoted trophoblast cell migration and invasion by increasing MMP-9 and MMP-2 activity and that of the MMP-2/tissue inhibitor of metalloproteinases 2 (TIMP-2) complex via the phosphatidylinositol 3-kinase (PI3K)/AKT kinase (AKT), mitogen-activated protein kinase (MEK), and JUN N-terminal kinase (JNK) signaling pathways. CONCLUSION XCL1-XCR1 chemokine pathway promotes trophoblast invasion by increasing matrix metalloproteinase activity in human first-trimester placenta.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Department of Gynecology and Obstetrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fu-Ju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Hong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ling Ma
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Bin Ren
- Department of Gynecology and Obstetrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
De A, Sachdeva R, Bose A, Malik M, Jayachandran N, Pal R. Human Chorionic Gonadotropin Influences Systemic Autoimmune Responses. Front Endocrinol (Lausanne) 2018; 9:742. [PMID: 30574119 PMCID: PMC6291461 DOI: 10.3389/fendo.2018.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Immunopathological outcomes in Systemic Lupus Erythematosus (SLE; or lupus) are believed to be autoantibody-mediated. Conditions which promote a Th2 skew (such as pregnancy) should encourage antibody production, worsening antibody-mediated diseases while ameliorating Th1/Th17-mediated diseases. Although an increased propensity toward autoreactivity can be observed in pregnant lupus patients and in pregnant lupus-prone mice, whether a unique human pregnancy-specific factor can contribute to such effects is unknown. This study assessed whether human chorionic gonadotropin (hCG, a pregnancy-specific hormone of diverse function) at physiological concentrations could mediate stimulatory influences on immune parameters in non-pregnant, lupus-prone mice, in light of the hormone's ameliorating effects on Th1-mediated autoimmunity in murine models. Results demonstrate that administration of hCG heightened global autoreactivity in such mice; antibodies to dsDNA, RNP68, Protein S, Protein C, β2-glycoprotein 1, and several phospholipids were enhanced, and hormone administration had adverse effects on animal survival. Specifically in splenic cell cultures containing cells derived from lupus-prone mice, hCG demonstrated synergistic effects with TLR ligands (up-modulation of costimulatory markers on B cells) as well as with TCR stimuli (enhanced proliferative responses, enhanced levels of cytokines, and the phosphorylation of p38). In both instances, enhanced synthesis of lupus-associated cytokines was observed, in addition to the heightened generation of autoantibodies reactive toward apoptotic blebs. These results suggest that selective transducive, proliferative, and differentiative effects of hCG on adaptive immune cells may drive autoreactive responses in a lupus environment, and may also potentially provide insights into the association between the presence of higher hCG levels (or the administration of hCG) with the presence (or appearance) of humoral autoimmunity.
Collapse
|
29
|
Li M, Cheng W, Luo J, Hu X, Nie T, Lai H, Zheng X, Li F, Li H. Loss of selenocysteine insertion sequence binding protein 2 suppresses the proliferation, migration/invasion and hormone secretion of human trophoblast cells via the PI3K/Akt and ERK signaling pathway. Placenta 2017. [DOI: 10.1016/j.placenta.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Benzo[a]pyrene-7,8-diol-9,10-epoxide suppresses the migration and invasion of human extravillous trophoblast HTR-8/SVneo cells by down-regulating MMP2 through inhibition of FAK/SRC/PI3K/AKT pathway. Toxicology 2017; 386:72-83. [DOI: 10.1016/j.tox.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
|
31
|
Steinmetz C, Kashyap A, Zhivkova N, Alizor H, Ernst I, Gottfried-Brand D, Janssen H, Teufel A, Schulze-Bergkamen H, Lotz J, Kuball J, Theobald M, Heise M, Lang H, Galle PR, Strand D, Strand S. Activation of silent mating type information regulation 2 homolog 1 by human chorionic gonadotropin exerts a therapeutic effect on hepatic injury and inflammation. Hepatology 2017; 65:2074-2089. [PMID: 28108987 DOI: 10.1002/hep.29072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/30/2022]
Abstract
UNLABELLED Incidence and prevalence of inflammatory liver diseases has increased over the last years, but therapeutic options are limited. Pregnancy induces a state of immune tolerance, which can result in spontaneous improvement of clinical symptoms of certain autoimmune diseases including autoimmune hepatitis (AIH). We investigated the immune-suppressive mechanisms of the human pregnancy hormone, chorionic gonadotropin (hCG), in the liver. hCG signaling activates silent mating type information regulation 2 homolog 1 (SIRT1), which deacetylates forkhead box o3 (FOXO3a), leading to repression of proapoptotic gene expression, because the immunosuppressive consequence attributed to the absence of caspase-3 activity of hepatocellular interleukin 16 (IL-16) is no longer processed and released. Thus, serum levels of IL-16, a key chemotactic factor for CD4+ lymphocytes, were reduced and migration to injured hepatocytes prevented. Furthermore, elevated IL-16 levels are found in the sera from patients with AIH, hepatitis B virus, hepatitis C virus, and nonalcoholic steatohepatitis. CONCLUSION Here, we report that hCG regulates the SIRT1/FOXO3a axis in hepatocytes, resulting in immune suppression by attenuating caspase-3-dependent IL-16 processing and release, which concomitantly prevents autoaggressive T-cell infiltration of the liver. Considering the low toxicity profile of hCG in humans, interrupting the inflammatory cycle by hCG opens new perspectives for therapeutic intervention of inflammatory liver diseases. (Hepatology 2017;65:2074-2089).
Collapse
Affiliation(s)
- Caroline Steinmetz
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Anubha Kashyap
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Nataliya Zhivkova
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Henry Alizor
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Isabell Ernst
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Henning Janssen
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Andreas Teufel
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Johannes Lotz
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Jürgen Kuball
- Department of Immunology, Department of Hematology and Van Creveld Clinic University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias Theobald
- Department of Hematology and Oncology, Johannes Gutenberg University, Mainz, Germany
| | - Michael Heise
- General, Visceral and Transplant Surgery, Johannes Gutenberg-University, Mainz, Germany
| | - Hauke Lang
- General, Visceral and Transplant Surgery, Johannes Gutenberg-University, Mainz, Germany
| | - Peter R Galle
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Dennis Strand
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Strand
- I. Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
32
|
Sekiya Y, Yamamoto E, Niimi K, Nishino K, Nakamura K, Kotani T, Kajiyama H, Shibata K, Kikkawa F. c-Rel Promotes Invasion of Choriocarcinoma Cells via PI3K/AKT Signaling. Oncology 2017; 92:299-310. [DOI: 10.1159/000458529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023]
|
33
|
Ismail AM, Abbas AM, Bakry AK, Abu-Elhassan AM, Mohamed AO, Badr G, Youssef MA. Expression of ERK and Akt proteins in women with unexplained first-trimester recurrent miscarriage. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
34
|
Zhu X, Cao Q, Li X, Wang Z. Knockdown of TACC3 inhibits trophoblast cell migration and invasion through the PI3K/Akt signaling pathway. Mol Med Rep 2016; 14:3437-42. [PMID: 27572091 DOI: 10.3892/mmr.2016.5659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/01/2016] [Indexed: 11/06/2022] Open
Abstract
The insufficient invasion of trophoblasts is known to be correlated with the development of preeclampsia. Transforming acidic coiled‑coil protein 3 (TACC3), a member of the TACC domain family, is important in the regulation of cell differentiation, migration and invasion. However, the role of TACC3 in trophoblast function during placental development remains to be fully elucidated. The present study aimed to determine the expression and function of TACC3 in human placenta and to examine the underlying mechanisms. TACC3 expression was analyzed in preeclamptic placentas using reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell proliferation was determined by the MTT assay, and cell migration and invasion were measured using Transwell assays. The expression levels of TACC3, matrix metalloproteinase (MMP)‑2, MMP‑9, tissue inhibitor of metalloproteinase (TIMP)‑1, TIMP‑2, phosphoinositide 3‑kinase (PI3K), phosphorylated (p)‑PI3K, AKT and p‑AKT were detected by western blotting. The results showed that the expression of TACC3 was downregulated in preeclamptic placentas. The knockdown of TACC3 significantly inhibited HTR8/SVneo cell proliferation, migration and invasion, and inhibited the expression of matrix metalloproteinases. In addition, the knockdown of TACC3 significantly reduced the levels of p‑PI3K and Akt in the HTR8/SVneo cells. Taken together, the results of the present study demonstrated that the knockdown of TACC3 inhibited the migration and invasion of HTR8/SVneo cells through suppression of the PI3K/Akt signaling pathway. Therefore, TACC3 may serve as a novel potential target for treating preeclampsia.
Collapse
Affiliation(s)
- Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qianqian Cao
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xia Li
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhengping Wang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
35
|
Fournier T. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production. ANNALES D'ENDOCRINOLOGIE 2016; 77:75-81. [PMID: 27177499 DOI: 10.1016/j.ando.2016.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 01/05/2023]
Abstract
Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like a super LH agonist stimulating progesterone secretion by the corpus luteum. In addition to maintaining the production of progesterone until the placenta itself produces it, hCG also has a role in myometrial quiescence and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two highly glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast, the β-subunits are distinct for each hormones and confer both receptor and biological specificity, although LH and hCG bind to the same receptor (LH/CG-R). The hCG ß-subunit is encoded by a cluster of genes (CGB) and contains two sites of N-glycosylation and four sites of O-glycosylation. The hCG glycosylation state varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted into maternal blood, where it peaks at 8-10weeks of gestation (WG), by the syncytiotrophoblast (ST), which represents the endocrine tissue of the human placenta. The invasive extravillous trophoblast (iEVT) also secretes hCG, and in particular hyperglycosylated forms of hCG (hCG-H) also produced by choriocarcinoma cells. In maternal blood, hCG-H is elevated during early first trimester corresponding to the trophoblastic cell invasion process and then decreases. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the ST and angiogenesis through LH/CG-R but has no effect on trophoblast invasion in vitro. By contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFß receptor in a LH/CG-R independent signalling pathway. hCG is largely used in antenatal screening and hCG-H might represent a serum marker of implantation and early trophoblast invasion. In conclusion, hCG is the major pregnancy glycoprotein hormone, whose maternal concentration and glycan structure change all along pregnancy. Depending on its source of production, glycoforms of hCG display different biological activities and functions that are essential for pregnancy outcome.
Collapse
Affiliation(s)
- Thierry Fournier
- Inserm, U1139, PremUp Foundation, université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, DHU "Risk & pregnancy", 75006 Paris, France.
| |
Collapse
|
36
|
Granulocyte colony-stimulating factor (G-CSF) upregulates β1 integrin and increases migration of human trophoblast Swan 71 cells via PI3K and MAPK activation. Exp Cell Res 2016; 342:125-34. [PMID: 26992288 DOI: 10.1016/j.yexcr.2016.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 11/22/2022]
Abstract
Multiple cytokines and growth factors expressed at the fetal-maternal interface are involved in the regulation of trophoblast functions and placental growth, but the role of G-CSF has not been completely established. Based on our previous study showing that G-CSF increases the activity of matrix metalloproteinase-2 and the release of vascular endothelial growth factor in Swan 71 human trophoblast cells, in this work we explore the possible contribution of G-CSF to cell migration and the G-CSF-triggered signaling pathway. We found that G-CSF induced morphological changes on actin cytoskeleton consistent with a migratory cell phenotype. G-CSF also up-regulated the expression levels of β1 integrin and promoted Swan 71 cell migration. By using selective pharmacological inhibitors and dominant negative mutants we showed that PI3K, Erk 1/2 and p38 pathways are required for promoting Swan 71 cell motility. It was also demonstrated that PI3K behaved as an upstream regulator of Erk 1/2 and p38 MAPK. In addition, the increase of β1 integrin expression was dependent on PI3K activation. In conclusion, our results indicate that G-CSF stimulates β1 integrin expression and Swan 71 cell migration by activating PI3K and MAPK signaling pathways, suggesting that G-CSF should be considered as an additional regulatory factor that contributes to a successful embryo implantation and to the placenta development.
Collapse
|
37
|
Szczerba A, Śliwa A, Kubiczak M, Nowak-Markwitz E, Jankowska A. Human chorionic gonadotropin β subunit affects the expression of apoptosis-regulating factors in ovarian cancer. Oncol Rep 2015; 35:538-45. [PMID: 26530886 DOI: 10.3892/or.2015.4386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/22/2015] [Indexed: 11/06/2022] Open
Abstract
Expression of human chorionic gonadotropin, especially its free β subunit (hCGβ) were shown to play an important role in cancer growth, invasion and metastasis. It is postulated that hCGβ is one of the factors determining cancer cell survival. To test this hypothesis, we applied two models: an in vitro model of ovarian cancer using OVCAR-3 and SKOV-3 cell lines transfected with the CGB5 gene and an in vivo model of ovarian cancer tissues. The material was tested against changes in expression level of genes encoding factors involved in apoptosis: BCL2, BAX and BIRC5. Overexpression of hCGβ was found to cause a decrease in expression of the analyzed genes in the transfected cells compared with the control cells. In ovarian cancer tissues, high expression of CGB was related to significantly lower BCL2 but higher BAX and BIRC5 transcript levels. Moreover, a low BCL2/BAX ratio, characteristic of advanced stages of ovarian cancer, was revealed. Since tumors were discriminated by a significantly lower LHCGR level than the level noted in healthy fallopian tubes and ovaries, it may be stated that the effect of hCGβ on changes in the expression of apoptosis-regulating agents observed in ovarian cancer is LHCGR-independent. The results of the study suggest that the biological effects evoked by hCGβ are related to apoptosis suppression.
Collapse
Affiliation(s)
- Anna Szczerba
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Aleksandra Śliwa
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Marta Kubiczak
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Department of Gynecologic Oncology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Anna Jankowska
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
38
|
Costa MA. The endocrine function of human placenta: an overview. Reprod Biomed Online 2015; 32:14-43. [PMID: 26615903 DOI: 10.1016/j.rbmo.2015.10.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/13/2015] [Accepted: 10/14/2015] [Indexed: 12/25/2022]
Abstract
During pregnancy, several tightly coordinated and regulated processes take place to enable proper fetal development and gestational success. The formation and development of the placenta is one of these critical pregnancy events. This organ plays essential roles during gestation, including fetal nourishment, support and protection, gas exchange and production of several hormones and other mediators. Placental hormones are mainly secreted by the syncytiotrophoblast, in a highly and tightly regulated way. These hormones are important for pregnancy establishment and maintenance, exerting autocrine and paracrine effects that regulate decidualization, placental development, angiogenesis, endometrial receptivity, embryo implantation, immunotolerance and fetal development. In addition, because they are released into maternal circulation, the profile of their blood levels throughout pregnancy has been the target of intense research towards finding potential robust and reliable biomarkers to predict and diagnose pregnancy-associated complications. In fact, altered levels of these hormones have been associated with some pathologies, such as chromosomal anomalies or pre-eclampsia. This review proposes to revise and update the main pregnancy-related hormones, addressing their major characteristics, molecular targets, function throughout pregnancy, regulators of their expression and their potential clinical interest.
Collapse
Affiliation(s)
- Mariana A Costa
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
39
|
Koistinen H, Hautala L, Koli K, Stenman UH. Absence of TGF-β Receptor Activation by Highly Purified hCG Preparations. Mol Endocrinol 2015; 29:1787-91. [PMID: 26495869 DOI: 10.1210/me.2015-1187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recently, several LH/human chorionic gonadotropin (hCG) receptor-independent activities for hCG have been described, including activation of the TGF-β receptor (TGFβR) by hyperglycosylated hCG and stimulation of trophoblast invasion. Because the hCG concentrations used in these studies have been rather high, reflecting physiological hCG levels in pregnancy, even a minor contamination with growth factors, which act at very low concentrations, may be significant. Several commercial hCG preparations have been found to contain significant amounts of epidermal growth factor (EGF), which we also confirmed here. Furthermore, we found that some hCG preparations also contain significant amounts of TGF-β1. These hCG preparations were able to activate ERK1/2 in JEG-3 choriocarcinoma cells or TGFβR in mink lung epithelial cells transfected with a reporter gene for TGFβR activation. No such activation was found with highly purified hCG or its free β-subunit (hCGβ), irrespective of whether they were hyperglycosylated or not. Taken together, our results suggest that the growth factor contaminations in the hCG preparations can cause activation of TGFβR and, at least in JEG-3 cells, MAPK signaling. This highlights the importance to carefully control for potential contaminations and that highly purified hCG preparations have to be used for biological studies.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry (H.K., L.H., U.-H.S.), University of Helsinki and Helsinki University Central Hospital, 00290 Helsinki, Finland; and Research Programs Unit (K.K.), Translational Cancer Biology and Transplantation Laboratory, Haartman Institute, University of Helsinki, 00290 Helsinki, Finland
| | - Laura Hautala
- Department of Clinical Chemistry (H.K., L.H., U.-H.S.), University of Helsinki and Helsinki University Central Hospital, 00290 Helsinki, Finland; and Research Programs Unit (K.K.), Translational Cancer Biology and Transplantation Laboratory, Haartman Institute, University of Helsinki, 00290 Helsinki, Finland
| | - Katri Koli
- Department of Clinical Chemistry (H.K., L.H., U.-H.S.), University of Helsinki and Helsinki University Central Hospital, 00290 Helsinki, Finland; and Research Programs Unit (K.K.), Translational Cancer Biology and Transplantation Laboratory, Haartman Institute, University of Helsinki, 00290 Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry (H.K., L.H., U.-H.S.), University of Helsinki and Helsinki University Central Hospital, 00290 Helsinki, Finland; and Research Programs Unit (K.K.), Translational Cancer Biology and Transplantation Laboratory, Haartman Institute, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
40
|
Gupta SK, Malhotra SS, Malik A, Verma S, Chaudhary P. Cell Signaling Pathways Involved During Invasion and Syncytialization of Trophoblast Cells. Am J Reprod Immunol 2015; 75:361-71. [PMID: 26490782 DOI: 10.1111/aji.12436] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022] Open
Abstract
Implantation involves an extensive cross talk between the trophoblast cells and the receptive endometrium through embryonic as well as endometrial-derived factors that regulate the invasion and migration of trophoblast cells and also syncytia formation. Any aberration in this highly regulated process may lead to pregnancy complications such as preeclampsia, intrauterine growth restriction, or even pregnancy failure. How various cytokines and growth factors act by activating various cell signaling pathways leading to the expression of the effector molecules have been reviewed, which control invasion and migration of trophoblast cells and syncytialization. The gaps in our current understanding of the various signaling pathways, activated by different cytokines/growth factors, their possible cross talk for optimized effector function(s), and future prospects in this field have been discussed.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sudha Saryu Malhotra
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ankita Malik
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sonam Verma
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Piyush Chaudhary
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
41
|
Lash GE. Molecular Cross-Talk at the Feto-Maternal Interface. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a023010. [PMID: 26385089 DOI: 10.1101/cshperspect.a023010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular cross-talk at the feto-maternal interface occurs between many different cell types, including uterine leukocytes, extravillous trophoblast cells, and uterine spiral arteries, is essential for the establishment and maintenance of pregnancy. This review concentrates on human pregnancy and examines three main areas in which cross-talk occurs; immune tolerance, regulation of extravillous trophoblast invasion, and remodeling of the uterine spiral arteries.
Collapse
Affiliation(s)
- Gendie E Lash
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
42
|
Spagnoletti A, Paulesu L, Mannelli C, Ermini L, Romagnoli R, Cintorino M, Ietta F. Low concentrations of Bisphenol A and para-Nonylphenol affect extravillous pathway of human trophoblast cells. Mol Cell Endocrinol 2015; 412:56-64. [PMID: 26027920 DOI: 10.1016/j.mce.2015.05.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/27/2023]
Abstract
Bisphenol A (BPA) and para-Nonylphenol (p-NP) are chemicals of industrial origin which may influence human reproductive health. The effects of these substances in the prenatal life is an important topic that is receiving greater attention in the developed countries. In this study, human trophoblast cells HTR-8/SVneo were exposed to BPA and p-NP (1 × 10(-15), 1 × 10(-13), 1 × 10(-11), 1 × 10(-9) and 1 × 10(-7) M) and incubated for 24, 48 and/or 72 h then, examined for the main physiological processes which characterize the extravillous trophoblast. Cell proliferation showed no changes while the processes of cell migration and invasion were both reduced by BPA and p-NP. For each chemical, the activity was higher at lower concentrations with a maximum activity between 1 × 10(-13) and 1 × 10(-11) M (p < 0.05 for 1 × 10(-9) and p < 0.001 for 1 × 10(-11) M). Co-culture studies with human umbilical cord endothelial cells (HUVEC) revealed that trophoblast/endothelial interaction was significantly reduced by p-NP at 1 × 10(-11) M. Moreover, both chemicals were inducing differentiation of HTR-8/SVneo toward polyploidy by the process of endoreduplication. The estrogen-receptor antagonist ICI significantly reduced p-NP action, while it had no effect on BPA treated cells. In conclusion, p-NP and BPA act on trophoblast cells altering key physiological processes in placenta development. The exact mechanism of action of the chemicals in human trophoblast still needs to be clarified.
Collapse
Affiliation(s)
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Chiara Mannelli
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Roberta Romagnoli
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - Marcella Cintorino
- Department of Medicine, Surgery and Neuroscience, Policlinico Santa Maria alle Scotte, Viale Mario Bracci, 53100 Siena, Italy
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy.
| |
Collapse
|
43
|
Soares MJ, Chakraborty D, Kubota K, Renaud SJ, Rumi MAK. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:247-59. [PMID: 25023691 DOI: 10.1387/ijdb.140083ms] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Implantation of the embryo into the uterus triggers the initiation of hemochorial placentation. The hemochorial placenta facilitates the acquisition of maternal resources required for embryo/fetal growth. Uterine spiral arteries form the nutrient supply line for the placenta and fetus. This vascular conduit undergoes gestation stage-specific remodeling directed by maternal natural killer cells and embryo-derived invasive trophoblast lineages. The placentation site, including remodeling of the uterine spiral arteries, is shaped by environmental challenges. In this review, we discuss the cellular participants controlling pregnancy-dependent uterine spiral artery remodeling and mechanisms responsible for their development and function.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | | | |
Collapse
|
44
|
Fournier T, Guibourdenche J, Evain-Brion D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta 2015; 36 Suppl 1:S60-5. [PMID: 25707740 DOI: 10.1016/j.placenta.2015.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 01/26/2023]
Abstract
Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like an agonist of LH stimulating progesterone secretion by the corpus luteum. hCG has also a role in quiescence of the myometrium and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast the β-subunits are distinct in each of the hormones and confer receptor and biological specificity. The hCG β-subunit contains two sites of N-glycosylation and four sites of O-glycosylation and is encoded by a cluster of genes (CGB). In this review, we will stress the importance of hCG glycosylation state, which varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted by the syncytiotrophoblast into maternal blood where it peaks around 8-10 weeks of gestation (WG). The invasive extravillous trophoblast also secretes hCG, and in particular like choriocarcinoma cells, hyperglycosylated forms of hCG (hCG-H). In maternal blood hCG-H is high during early first trimester. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the syncytiotrophoblast and angiogenesis through LHCG receptor. In contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFβ receptor 2. hCG is largely used in antenatal screening and hCG-H represents a serum marker of early trophoblast invasion. Other abnormally glycosylated hCG are described in aneuploidies. In conclusion, hCG is the major pregnancy glycoprotein hormone, whose maternal concentration and glycan structure change all along pregnancy. Depending on its source of production, glycoforms of hCG display different biological activities and functions that are essential for pregnancy outcome.
Collapse
Affiliation(s)
- T Fournier
- INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, Paris, F-75006, France; PremUP Foundation, Paris, F-75006, France.
| | - J Guibourdenche
- INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, Paris, F-75006, France; PremUP Foundation, Paris, F-75006, France; Biologie Hormonale, Cochin, Paris, F-75006, France
| | - D Evain-Brion
- INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, Paris, F-75006, France; PremUP Foundation, Paris, F-75006, France
| |
Collapse
|
45
|
Massimiani M, Vecchione L, Piccirilli D, Spitalieri P, Amati F, Salvi S, Ferrazzani S, Stuhlmann H, Campagnolo L. Epidermal growth factor-like domain 7 promotes migration and invasion of human trophoblast cells through activation of MAPK, PI3K and NOTCH signaling pathways. Mol Hum Reprod 2015; 21:435-51. [PMID: 25667199 DOI: 10.1093/molehr/gav006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/05/2015] [Indexed: 12/25/2022] Open
Abstract
Epidermal growth factor-like domain 7 (Egfl7) is a gene that encodes a partially secreted protein and whose expression is largely restricted to the endothelia. We recently reported that EGFL7 is also expressed by trophoblast cells in mouse and human placentas. Here, we investigated the molecular pathways that are regulated by EGFL7 in trophoblast cells. Stable EGFL7 overexpression in a Jeg3 human choriocarcinoma cell line resulted in significantly increased cell migration and invasiveness, while cell proliferation was unaffected. Analysis of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways showed that EGFL7 promotes Jeg3 cell motility by activating both pathways. We show that EGFL7 activates the epidermal growth factor receptor (EGFR) in Jeg3 cells, resulting in downstream activation of extracellular regulated kinases (ERKs). In addition, we provide evidence that EGFL7-triggered migration of Jeg3 cells involves activation of NOTCH signaling. EGFL7 and NOTCH1 are co-expressed in Jeg3 cells, and blocking of NOTCH activation abrogates enhanced migration of Jeg3 cells overexpressing EGFL7. We also demonstrate that signaling through EGFR and NOTCH converged to mediate EGFL7 effects. Reduction of endogenous EGFL7 expression in Jeg3 cells significantly decreased cell migration. We further confirmed that EGFL7 stimulates cell migration by using primary human first trimester trophoblast (PTB) cells overexpressing EGFL7. In conclusion, our data suggest that in trophoblast cells, EGFL7 regulates cell migration and invasion by activating multiple signaling pathways. Our results provide a possible explanation for the correlation between reduced expression of EGFL7 and inadequate trophoblast invasion observed in placentopathies.
Collapse
Affiliation(s)
- M Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - L Vecchione
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - D Piccirilli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - P Spitalieri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - F Amati
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - S Salvi
- Department of Gynecology and Obstetrics, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - S Ferrazzani
- Department of Gynecology and Obstetrics, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - H Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - L Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
46
|
Wang Y, Liao H, Zheng HC, Li L, Jia L, Zhang Z, Zheng W. Effect of luteinizing hormone-induced prohibitin and matrix metalloproteinases on ovarian epithelial tumor cell proliferation. Am J Cancer Res 2014; 5:114-124. [PMID: 25628924 PMCID: PMC4300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023] Open
Abstract
Recent studies have suggested that elevated gonadotropins contribute to ovarian epithelial tumor (OET) cell proliferation. However, the cellular effects of luteinizing hormone, a member of gonadotropins, on OET proliferation are controversial. Our previous work showed that luteinizing hormone has no effect on cell proliferation, but the molecular mechanism of such finding remains to be clarified. Considering that the cell growth in various types of tumors has been associated with regulations of prohibitin and matrix metalloproteinases, we aim to investigate a possible regulatory role of luteinizing hormone on prohibitin and matrix metalloproteinases to determine the roles of these molecules in OET proliferation. We found that LH stimulation resulted in a dose-dependent expression of prohibitin and MMPs and time-dependent phosphorylations of ERK and AKT. Blocking MAPK or PI3K/AKT signaling could attenuate LH-induced prohibitin and MMPs expression. Additionally, the depletion of prohibitin reduced the level of MMPs expression, and increased prohibitin expression abolished the positive effect of LH-induced MMP-9 on cellular growth. Therefore, we conclude that LH is able to up-regulate both prohibitin and MMP-9 in OET cells without the cellular growth effect due to opposing biologic functions for cell proliferation between these two molecules. The opposing cellular growth function between prohibitin and MMP-9 is a novel finding. Regulation of either molecule may be useful for future targeted therapy for ovarian epithelial cancers.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynecology, Henan Province People’s HospitalZhengzhou, China
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
- Department of Obstetrics and Gynecology, University of ArizonaTucson, AZ, USA
| | - Hong Liao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai, China
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
- Department of Obstetrics and Gynecology, University of ArizonaTucson, AZ, USA
| | - Holly C Zheng
- Basis Tucson North High School and University of ArizonaTucson, AZ, USA
| | - Linmin Li
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
- Department of Pathology, Shanxi Medical UniversityTaiyuan, China
| | - Lin Jia
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong UniversityShandong, China
| | - Zhengbo Zhang
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
- Department of Obstetrics and Gynecology, Shanghai First People’s Hospital, Shanghai Jiaotong UniversityShanghai, China
| | - Wenxin Zheng
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
- Department of Obstetrics and Gynecology, University of ArizonaTucson, AZ, USA
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong UniversityShandong, China
- Arizona Cancer Center, University of ArizonaTucson, AZ, USA
| |
Collapse
|
47
|
Moindjie H, Santos ED, Loeuillet L, Gronier H, de Mazancourt P, Barnea ER, Vialard F, Dieudonne MN. Preimplantation Factor (PIF) Promotes Human Trophoblast Invasion1. Biol Reprod 2014; 91:118. [DOI: 10.1095/biolreprod.114.119156] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
48
|
Furmento V, Marino J, Blank V, Roguin L. The granulocyte colony-stimulating factor (G-CSF) upregulates metalloproteinase-2 and VEGF through PI3K/Akt and Erk1/2 activation in human trophoblast Swan 71 cells. Placenta 2014; 35:937-46. [DOI: 10.1016/j.placenta.2014.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|
49
|
Fabi F, Asselin E. Expression, activation, and role of AKT isoforms in the uterus. Reproduction 2014; 148:R85-95. [DOI: 10.1530/rep-14-0270] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The three isoforms of AKT: AKT1, AKT2, and AKT3, are crucial regulators of both normal and pathological cellular processes. Each of these isoforms exhibits a high level of homology and functional redundancy with each other. However, while being highly similar and structurally homologous, a rising amount of evidence is showing that each isoform possesses specific targets as well as preferential subcellular localization. The role of AKT has been studied extensively in reproductive processes, but isoform-specific roles are yet to be fully understood. This review will focus on the role of AKT in the uterus and its function in processes related to cell death and proliferation such as embryo implantation, decidualization, endometriosis, and endometrial cancer in an isoform-centric manner. In this review, we will cover the activation of AKT in various settings, localization of isoforms in subcellular compartments, and the effect of isoform expression on cellular processes. To fully understand the dynamic molecular processes taking place in the uterus, it is crucial that we better understand the physiological role of AKT isoforms as well as their function in the emergence of diseases.
Collapse
|
50
|
Liao XH, Wang Y, Wang N, Yan TB, Xing WJ, Zheng L, Zhao DW, Li YQ, Liu LY, Sun XG, Hu P, Zhang TC. Human chorionic gonadotropin decreases human breast cancer cell proliferation and promotes differentiation. IUBMB Life 2014; 66:352-60. [PMID: 24753159 DOI: 10.1002/iub.1269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 11/09/2022]
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein produced by placental trophoblasts. Previous studies indicated that hCG could be responsible for the pregnancy-induced protection against breast cancer in women. It is reported that hCG decreases proliferation and invasion of breast cancer MCF-7 cells. Our research also demonstrates that hCG can reduce the proliferation of MCF-7 cells by downregulating the expression of proliferation markers, proliferating cell nuclear antigen (PCNA), and proliferation-related Ki-67 antigen (Ki-67). Interestingly, we find here that hCG elevates the state of cellular differentiation, as characterized by the upregulation of differentiation markers, β-casein, cytokeratin-18 (CK-18), and E-cadherin. Inhibition of hCG secretion or luteinizing hormone/hCG receptors (LH/hCGRs) synthesis can weaken the effect of hCG on the induction of cell differentiation. Furthermore, hCG can suppress the expression of estrogen receptor alpha. hCG activated receptor-mediated cyclic adenosine monophosphate/protein kinase A signaling pathway. These findings indicated that a protective effect of hCG against breast cancer may be associated with its growth inhibitory and differentiation induction function in breast cancer cells.
Collapse
Affiliation(s)
- Xing-Hua Liao
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education and Tianjin, Tianjin University of Science and Technology, Tianjin, People's Republic of China; Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|