1
|
Stojilkovic SS, Balla T. PI(4,5)P2-dependent and -independent roles of PI4P in the control of hormone secretion by pituitary cells. Front Endocrinol (Lausanne) 2023; 14:1118744. [PMID: 36777340 PMCID: PMC9911653 DOI: 10.3389/fendo.2023.1118744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Plasma membrane and organelle membranes are home to seven phosphoinositides, an important class of low-abundance anionic signaling lipids that contribute to cellular functions by recruiting cytoplasmic proteins or interacting with the cytoplasmic domains of membrane proteins. Here, we briefly review the functions of three phosphoinositides, PI4P, PI(4,5)P2, and PI(3,4,5)P3, in cellular signaling and exocytosis, focusing on hormone-producing pituitary cells. PI(4,5)P2, acting as a substrate for phospholipase C, plays a key role in the control of pituitary cell functions, including hormone synthesis and secretion. PI(4,5)P2 also acts as a substrate for class I PI3-kinases, leading to the generation of two intracellular messengers, PI(3,4,5)P3 and PI(3,4)P2, which act through their intracellular effectors, including Akt. PI(4,5)P2 can also influence the release of pituitary hormones acting as an intact lipid to regulate ion channel gating and concomitant calcium signaling, as well as the exocytic pathway. Recent findings also show that PI4P is not only a precursor of PI(4,5)P2, but also a key signaling molecule in many cell types, including pituitary cells, where it controls hormone secretion in a PI(4,5)P2-independent manner.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic,
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Gonçalves PP, Stenovec M, Grácio L, Kreft M, Zorec R. Calcium-dependent subquantal peptide release from single docked lawn-resident vesicles of pituitary lactotrophs. Cell Calcium 2023; 109:102687. [PMID: 36528978 DOI: 10.1016/j.ceca.2022.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Regulated exocytosis consists of the fusion between vesicles and the plasma membranes, leading to the formation of a narrow fusion pore through which secretions exit the vesicle lumen into the extracellular space. An increase in the cytosolic concentration of free Ca2+ ([Ca2+]i) is considered the stimulus of this process. However, whether this mechanism can be preserved in a simplified system of membrane lawns with docked secretory vesicles, devoid of cellular components, is poorly understood. Here, we studied peptide discharge from individual secretory vesicles docked at the plasma membrane, prepared from primary endocrine pituitary cells (the lactotrophs), releasing hormone prolactin. To label secretory vesicles, we transfected lactotrophs to express the fluorescent atrial natriuretic peptide (ANP.emd), previously shown to be expressed in and released from prolactin-containing vesicles. We used stimulating solutions containing different [Ca2+] to evoke vesicle peptide discharge, which appeared similar in membrane lawns and in intact stimulated lactotrophs. All vesicles examined discharged peptides in a subquantal manner, either exhibiting a unitary or sequential time course. In the membrane lawns, the unitary vesicle peptide discharge was predominant and slightly slower than that recorded in intact cells, but with a shorter delay with respect to the stimulation onset. This study revealed directly that Ca2+ triggers peptide discharge from docked single vesicles in the membrane lawns with a half-maximal response of ∼8 µM [Ca2+], consistent with previous whole-cell patch-clamp studies in endocrine cells where the rapid component of exocytosis, interpreted to represent docked vesicles, was fully activated at <10 µM [Ca2+]. Interestingly, the sequential subquantal peptide vesicle discharge indicates that fluctuations between constricted and dilated fusion pore states are preserved in membrane lawns and that fusion pore regulation appears to be an autonomously controlled process.
Collapse
Affiliation(s)
- Paula P Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| | - Luciano Grácio
- CRACS & INESC-TEC - Centre for Research in Advanced Computing Systems & Institute for Systems and Computer Engineering, Technology and Science, Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Department of Biology, University of Ljubljana, Biotechnical Faculty, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Liu W, Stenovec M, Lee W, Montana V, Kreft M, Zorec R, Parpura V. Probing single molecule mechanical interactions of syntaxin 1A with native synaptobrevin 2 residing on a secretory vesicle. Cell Calcium 2022; 104:102570. [PMID: 35314381 PMCID: PMC9119915 DOI: 10.1016/j.ceca.2022.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Interactive mechanical forces between pairs of individual SNARE proteins synaptobrevin 2 (Sb2) and syntaxin 1A (Sx1A) may be sufficient to mediate vesicle docking. This notion, based on force spectroscopy single molecule measurements probing recombinant Sx1A an Sb2 in silico, questioned a predominant view of docking via the ternary SNARE complex formation, which includes an assembly of the intermediate cis binary complex between Sx1A and SNAP25 on the plasma membrane to engage Sb2 on the vesicle. However, whether a trans binary Sx1A-Sb2 complex alone could mediate vesicle docking in a cellular environment remains unclear. To address this issue, we used atomic force microscopy (AFM) in the force spectroscopy mode combined with fluorescence imaging. Using AFM tips functionalized with the full Sx1A cytosolic domain, we probed native Sb2 studding the membrane of secretory vesicles docked at the plasma membrane patches, referred to as "inside-out lawns", identified based on fluorescence stains and prepared from primary culture of lactotrophs. We recorded single molecule Sx1A-Sb2 mechanical interactions and obtained measurements of force (∼183 pN) and extension (∼21.6 nm) necessary to take apart Sx1A-Sb2 binding interactions formed at tip-vesicle contact. Measured interactive force between a single pair of Sx1A-Sb2 molecules is sufficient to hold a single secretory vesicle docked at the plasma membrane within distances up to that of the measured extension. This finding further advances a notion that native vesicle docking can be mediated by a single trans binary Sx1A-Sb2 complex in the absence of SNAP25.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurobiology, Atomic Force Microscopy & Nanotechnology Laboratories, The University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, EU, Slovenia
| | - William Lee
- Department of Neurobiology, Atomic Force Microscopy & Nanotechnology Laboratories, The University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Vedrana Montana
- Department of Neurobiology, Atomic Force Microscopy & Nanotechnology Laboratories, The University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Marko Kreft
- University of Ljubljana, Biotechnical Faculty, Department of Biology, CPAE, Večna pot 111, 1000 Ljubljana, EU, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, EU, Slovenia.
| | - Vladimir Parpura
- Department of Neurobiology, Atomic Force Microscopy & Nanotechnology Laboratories, The University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| |
Collapse
|
4
|
Pirnat S, Božić M, Dolanc D, Horvat A, Tavčar P, Vardjan N, Verkhratsky A, Zorec R, Stenovec M. Astrocyte arborization enhances Ca 2+ but not cAMP signaling plasticity. Glia 2021; 69:2899-2916. [PMID: 34406698 PMCID: PMC9290837 DOI: 10.1002/glia.24076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
The plasticity of astrocytes is fundamental for their principal function, maintaining homeostasis of the central nervous system throughout life, and is associated with diverse exposomal challenges. Here, we used cultured astrocytes to investigate at subcellular level basic cell processes under controlled environmental conditions. We compared astroglial functional and signaling plasticity in standard serum‐containing growth medium, a condition mimicking pathologic conditions, and in medium without serum, favoring the acquisition of arborized morphology. Using opto−/electrophysiologic techniques, we examined cell viability, expression of astroglial markers, vesicle dynamics, and cytosolic Ca2+ and cAMP signaling. The results revealed altered vesicle dynamics in arborized astrocytes that was associated with increased resting [Ca2+]i and increased subcellular heterogeneity in [Ca2+]i, whereas [cAMP]i subcellular dynamics remained stable in both cultures, indicating that cAMP signaling is less prone to plastic remodeling than Ca2+ signaling, possibly also in in vivo contexts.
Collapse
Affiliation(s)
- Samo Pirnat
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Dorian Dolanc
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Tavčar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Božić M, Verkhratsky A, Zorec R, Stenovec M. Exocytosis of large-diameter lysosomes mediates interferon γ-induced relocation of MHC class II molecules toward the surface of astrocytes. Cell Mol Life Sci 2020; 77:3245-3264. [PMID: 31667557 PMCID: PMC7391398 DOI: 10.1007/s00018-019-03350-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Astrocytes are the key homeostatic cells in the central nervous system; initiation of reactive astrogliosis contributes to neuroinflammation. Pro-inflammatory cytokine interferon γ (IFNγ) induces the expression of the major histocompatibility complex class II (MHCII) molecules, involved in antigen presentation in reactive astrocytes. The pathway for MHCII delivery to the astrocyte plasma membrane, where MHCII present antigens, is unknown. Rat astrocytes in culture and in organotypic slices were exposed to IFNγ to induce reactive astrogliosis. Astrocytes were probed with optophysiologic tools to investigate subcellular localization of immunolabeled MHCII, and with electrophysiology to characterize interactions of single vesicles with the plasmalemma. In culture and in organotypic slices, IFNγ augmented the astrocytic expression of MHCII, which prominently co-localized with lysosomal marker LAMP1-EGFP, modestly co-localized with Rab7, and did not co-localize with endosomal markers Rab4A, EEA1, and TPC1. MHCII lysosomal localization was corroborated by treatment with the lysosomolytic agent glycyl-L-phenylalanine-β-naphthylamide, which reduced the number of MHCII-positive vesicles. The surface presence of MHCII was revealed by immunolabeling of live non-permeabilized cells. In IFNγ-treated astrocytes, an increased fraction of large-diameter exocytotic vesicles (lysosome-like vesicles) with prolonged fusion pore dwell time and larger pore conductance was recorded, whereas the rate of endocytosis was decreased. Stimulation with ATP, which triggers cytosolic calcium signaling, increased the frequency of exocytotic events, whereas the frequency of full endocytosis was further reduced. In IFNγ-treated astrocytes, MHCII-linked antigen surface presentation is mediated by increased lysosomal exocytosis, whereas surface retention of antigens is prolonged by concomitant inhibition of endocytosis.
Collapse
Affiliation(s)
- Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain
| | - Robert Zorec
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Matjaž Stenovec
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Astrocyte Specific Remodeling of Plasmalemmal Cholesterol Composition by Ketamine Indicates a New Mechanism of Antidepressant Action. Sci Rep 2019; 9:10957. [PMID: 31358895 PMCID: PMC6662760 DOI: 10.1038/s41598-019-47459-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
Ketamine is an antidepressant with rapid therapeutic onset and long-lasting effect, although the underlying mechanism(s) remain unknown. Using FRET-based nanosensors we found that ketamine increases [cAMP]i in astrocytes. Membrane capacitance recordings, however, reveal fundamentally distinct mechanisms of effects of ketamine and [cAMP]i on vesicular secretion: a rise in [cAMP]i facilitated, whereas ketamine inhibited exocytosis. By directly monitoring cholesterol-rich membrane domains with a fluorescently tagged cholesterol-specific membrane binding domain (D4) of toxin perfringolysin O, we demonstrated that ketamine induced cholesterol redistribution in the plasmalemma in astrocytes, but neither in fibroblasts nor in PC 12 cells. This novel mechanism posits that ketamine affects density and distribution of cholesterol in the astrocytic plasmalemma, consequently modulating a host of processes that may contribute to ketamine's rapid antidepressant action.
Collapse
|
7
|
Kreft M, Jorgačevski J, Stenovec M, Zorec R. Ångstrom-size exocytotic fusion pore: Implications for pituitary hormone secretion. Mol Cell Endocrinol 2018; 463:65-71. [PMID: 28457949 DOI: 10.1016/j.mce.2017.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023]
Abstract
In the past, vesicle content release was thought to occur immediately and completely after triggering of exocytosis. However, vesicles may merge with the plasma membrane to form an Ångstrom diameter fusion pore that prevents the exit of secretions from the vesicle lumen. The advantage of such a narrow pore is to minimize the delay between the trigger and the release. Instead of stimulating a sequence of processes, leading to vesicle merger with the plasma membrane and a formation of a fusion pore, the stimulus only widens the pre-established fusion pore. The fusion pore may be stable and may exhibit repetitive opening of the vesicle lumen to the cell exterior accompanied by a content discharge. Such release of vesicle content is partial (subquantal), and depends on fusion pore open time, diameter and the diffusibility of the cargo. Such transient mode of fusion pore opening was not confirmed until the development of the membrane capacitance patch-clamp technique, which enables high-resolution measurement of changes in membrane surface area. It allows millisecond dwell-time measurements of fusion pores with subnanometer diameters. Currently, the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins are considered to be key entities in end-stage exocytosis, and the SNARE complex assembly/disassembly may regulate the fusion pore. Moreover, lipids or other membrane constituents with anisotropic (non-axisymmetric) geometry may also favour the establishment of stable narrow fusion pores, if positioned in the neck of the fusion pore.
Collapse
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Abstract
Regulated exocytosis can be split into a sequence of steps ending with the formation and the dilation of a fusion pore, a neck-like connection between the vesicle and the plasma membrane. Each of these steps is precisely controlled to achieve the optimal spatial and temporal profile of the release of signalling molecules. At the level of the fusion pore, tuning of the exocytosis can be achieved by preventing its formation, by stabilizing the unproductive narrow fusion pore, by altering the speed of fusion pore expansion and by completely closing the fusion pore. The molecular structure and dynamics of fusion pores have become a major focus of cell research, especially as a promising target for therapeutic strategies. Electrophysiological, optical and electrochemical methods have been used extensively to illuminate how cells regulate secretion at the level of a single fusion pore. Here, we describe recent advances in the structure and mechanisms of the initial fusion pore formation and the progress in therapeutic strategies with the focus on exocytosis.
Collapse
|
9
|
Kreft M, Jorgačevski J, Vardjan N, Zorec R. Unproductive exocytosis. J Neurochem 2016; 137:880-9. [DOI: 10.1111/jnc.13561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
- Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| |
Collapse
|
10
|
Cholesterol-mediated membrane surface area dynamics in neuroendocrine cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1228-38. [PMID: 24046863 DOI: 10.1016/j.bbalip.2013.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How cholesterol, a key membrane constituent, affects membrane surface area dynamics in secretory cells is unclear. Using methyl-beta-cyclodextrin (MbetaCD) to deplete cholesterol, we imaged melanotrophs from male Wistar rats in real-time and monitored membrane capacitance (C(m)), fluctuations of which reflect exocytosis and endocytosis. Treatment with MbetaCD reduced cellular cholesterol and caused a dose-dependent attenuation of the Ca(2+)-evoked increase in C(m) (IC50 = 5.3 mM) vs. untreated cells. Cytosol dialysis of MbetaCD enhanced the attenuation of C(m) increase (IC50 = 3.3 mM), suggesting cholesterol depletion at intracellular membrane sites was involved in attenuating exocytosis. Acute extracellular application of MbetaCD resulted in an immediate C(m) decline, which correlated well with the cellular surface area decrease, indicating the involvement of cholesterol in the regulation of membrane surface area dynamics. This decline in C(m) was three-fold slower than MbetaCD-mediated fluorescent cholesterol decay, implying that exocytosis is the likely physiological means for plasma membrane cholesterol replenishment. MbetaCD had no effect on the specific C(m) and the blockade of endocytosis by Dyngo 4a, confirmed by inhibition of dextran uptake, also had no effect on the time-course of MbetaCD-induced C(m) decline. Thus acute exposure to MbetaCD evokes a C(m) decline linked to the removal of membrane cholesterol, which cannot be compensated for by exocytosis. We propose that the primary contribution of cholesterol to surface area dynamics is via its role in regulated exocytosis.
Collapse
|
11
|
Flašker A, Jorgačevski J, Calejo AI, Kreft M, Zorec R. Vesicle size determines unitary exocytic properties and their sensitivity to sphingosine. Mol Cell Endocrinol 2013; 376:136-47. [PMID: 23791846 DOI: 10.1016/j.mce.2013.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 11/23/2022]
Abstract
Neuroendocrine cells contain small and large vesicles, but the functional significance of vesicle diameter is unclear. We studied unitary exocytic events of prolactin-containing vesicles in lactotrophs by monitoring discrete steps in membrane capacitance. In the presence of sphingosine, which recruits VAMP2 for SNARE complex formation, the frequency of transient and full fusion events increased. Vesicles with larger diameters proceeded to full fusion, but smaller vesicles remained entrapped in transient exocytosis. The diameter of vesicle dense cores released by full fusion exocytosis into the extracellular space was larger than the diameter of the remaining intracellular vesicles beneath the plasma membrane. Labeling with prolactin- and VAMP2-antibodies revealed a correlation between the diameters of colocalized prolactin- and VAMP2-positive structures. It is proposed that sphingosine-mediated facilitation of regulated exocytosis is not only related to the number of SNARE complexes per vesicle but also depends on the vesicle size, which may determine the transition between transient and full fusion exocytosis.
Collapse
Affiliation(s)
- Ajda Flašker
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
12
|
Stenovec M, Gonçalves PP, Zorec R. Peptide hormone release monitored from single vesicles in "membrane lawns" of differentiated male pituitary cells: SNAREs and fusion pore widening. Endocrinology 2013; 154:1235-46. [PMID: 23372020 DOI: 10.1210/en.2012-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study we used live-cell immunocytochemistry and confocal microscopy to study the release from a single vesicle in a simplified system called membrane lawns. The lawns were prepared by exposing differentiated pituitary prolactin (PRL)-secreting cells to a hypoosmotic shear stress. The density of the immunolabeled ternary soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complexes that bind complexin was approximately 10 times lower than the PRL-positive, lawn-resident vesicles; this indicates that some but not all vesicles are associated with ternary SNARE complexes. However, lawn-resident PRL vesicles colocalized relatively well with particular SNARE proteins: synaptobrevin 2 (35%), syntaxin 1 (22%), and 25-kDa synaptosome associated protein (6%). To study vesicle discharge, we prepared lawn-resident vesicles, derived from atrial natriuretic peptide tagged with emerald fluorescent protein (ANP.emd)-transfected cells, which label vesicles. These maintained the structural passage to the exterior because approximately 40% of ANP.emd-loaded vesicles were labeled by extracellular PRL antibodies. Cargo release from the lawn-resident vesicles, monitored by the decline in the ANP.emd fluorescence intensity, was similar to that in intact cells. It is likely that SNARE proteins are required for calcium-dependent release from these vesicles. This is because the expression of the dominant-negative SNARE peptide, which interferes with SNARE complex formation, reduced the number of PRL-positive spots per cell (PRL antibodies placed extracellularly) significantly, from 58 ± 9 to 4 ± 2. In dominant-negative SNARE-treated cells, the PRL-positive area was reduced from 0.259 ± 0.013 to 0.123 ± 0.014 μm(2), which is consistent with a hindered vesicle luminal access for extracellular PRL antibodies. These results indicate that vesicle discharge is regulated by SNARE-mediated fusion pore widening.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica Biomedical Center, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
13
|
Abstract
Exocytosis is a multistage process involving a merger between the vesicle and the plasma membranes, leading to the formation of a fusion pore, a channel, through which secretions are released from the vesicle to the cell exterior. A stimulus may influence the pore by either dilating it completely (full-fusion exocytosis) or mediating a reversible closure (transient exocytosis). In neurons, these transitions are short-lived and not accessible for experimentation. However, in some neuroendocrine cells, initial fusion pores may reopen several hundred times, indicating their stability. Moreover, these pores are too narrow to pass luminal molecules to the extracellular space, termed release-unproductive. However, on stimulation, their diameter dilates, initiating the release of cargo without de novo fusion pore formation. To explain the stability of the initial narrow fusion pores, anisotropic membrane constituents with non-axisymmetrical shape were proposed to accumulate in the fusion pore membrane. Although the nature of these is unclear, they may consist of lipids and proteins, including SNAREs, which may facilitate and regulate the pre- and post-fusional stages of exocytosis. In the future, a more detailed insight into the molecular control of fusion pore stabilization and regulation will generate a better understanding of fusion pore physiology in health and disease.
Collapse
|
14
|
Rituper B, Flašker A, Guček A, Chowdhury HH, Zorec R. Cholesterol and regulated exocytosis: A requirement for unitary exocytotic events. Cell Calcium 2012; 52:250-8. [DOI: 10.1016/j.ceca.2012.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/07/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022]
|
15
|
Fusion pore regulation in peptidergic vesicles. Cell Calcium 2012; 52:270-6. [PMID: 22571866 DOI: 10.1016/j.ceca.2012.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/02/2012] [Accepted: 04/14/2012] [Indexed: 12/19/2022]
Abstract
Regulated exocytosis, which involves fusion of secretory vesicles with the plasma membrane, is an important mode of communication between cells. In this process, signalling molecules that are stored in secretory vesicles are released into the extracellular space. During the initial stage of fusion, the interior of the vesicle is connected to the exterior of the cell with a narrow, channel-like structure: the fusion pore. It was long believed that the fusion pore is a short-lived intermediate state leading irreversibly to fusion pore dilation. However, recent results show that the diameter of the fusion pore can fluctuate, suggesting that the fusion pore is a subject of stabilization. A possible mechanism is addressed in this article, involving the local anisotropicity of membrane constituents that can stabilize the fusion pore. The molecular nature of such a stable fusion pore to predict how interacting molecules (proteins and/or lipids) mediate changes that affect the stability of the fusion pore and exocytosis is also considered. The fusion pore likely attains stability via multiple mechanisms, which include the shape of the lipid and protein membrane constituents and the interactions between them.
Collapse
|
16
|
Calejo AI, Jorgačevski J, Silva VS, Stenovec M, Kreft M, Gonçalves PP, Zorec R. Aluminium-induced changes of fusion pore properties attenuate prolactin secretion in rat pituitary lactotrophs. Neuroscience 2011; 201:57-66. [PMID: 22123165 DOI: 10.1016/j.neuroscience.2011.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 02/09/2023]
Abstract
Hormone secretion is mediated by Ca(2+)-regulated exocytosis. The key step of this process consists of the merger of the vesicle and the plasma membranes, leading to the formation of a fusion pore. This is an aqueous channel through which molecules stored in the vesicle lumen exit into the extracellular space on stimulation. Here we studied the effect of sub-lethal dose of aluminium on prolactin secretion in isolated rat pituitary lactotrophs with an enzyme immunoassay and by monitoring electrophysiologically the interaction of a single vesicle with the plasma membrane in real time, by monitoring membrane capacitance. After 24-h exposure to sub-lethal AlCl(3) (30 μM), the secretion of prolactin was reduced by 14±8% and 46±11% under spontaneous and K(+)-stimulated conditions, respectively. The frequency of unitary exocytotic events, recorded by the high-resolution patch-clamp monitoring of membrane capacitance, a parameter linearly related to the membrane area, under spontaneous and stimulated conditions, was decreased in aluminium-treated cells. Moreover, while the fusion pore dwell-time was increased in the presence of aluminium, the fusion pore conductance, a measure of fusion pore diameter, was reduced, both under spontaneous and stimulated conditions. These results suggest that sub-lethal aluminium concentrations reduce prolactin secretion downstream of the stimulus secretion coupling by decreasing the frequency of unitary exocytotic events and by stabilizing the fusion pore diameter to a value smaller than prolactin molecule, thus preventing its discharge into the extracellular space.
Collapse
Affiliation(s)
- A I Calejo
- Departamento de Biologia and CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
17
|
Rituper B, Davletov B, Zorec R. Lipid–protein interactions in exocytotic release of hormones and neurotransmitters. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Jorgačevski J, Fošnarič M, Vardjan N, Stenovec M, Potokar M, Kreft M, Kralj-Iglič V, Iglič A, Zorec R. Fusion pore stability of peptidergic vesicles. Mol Membr Biol 2010; 27:65-80. [DOI: 10.3109/09687681003597104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Grilc S, Zorec R. The fusion pore and vesicle cargo discharge modulation. Ann N Y Acad Sci 2009; 1152:135-44. [PMID: 19161384 DOI: 10.1111/j.1749-6632.2008.04007.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exocytosis, the merger of the vesicle membrane with the plasma membrane, is thought to mediate the release of hormones and neurotransmitters from secretory vesicles. The work of Bernard Katz and colleagues decades ago considered that vesicle cargo discharge initially requires the delivery of secretory vesicles to the plasma membrane where vesicles dock and are primed for fusion with the plasma membrane. Then, upon stimulation, the vesicle and the plasma membranes fuse to form a transient fusion pore through which cargo molecules diffuse out of the vesicle lumen into the extracellular space. Katz and colleagues considered this process to occur in an all-or-none fashion. However, recent studies show that this may not be so simple. The aim of this overview is to highlight the novel findings that indicate that fusion pores are subject to regulations, which affect the release competence of a single vesicle. Here we discuss the elementary properties of spontaneous and stimulated peptidergic vesicle discharge, which appears to be modulated, at least in pituitary lactotrophs, by fusion pore conductance (pore diameter) and fusion pore gating (kinetics).
Collapse
|