1
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
2
|
Lazcano I, Pech-Pool SM, Olvera A, García-Martínez I, Palacios-Pérez S, Orozco A. The importance of thyroid hormone signaling during early development: Lessons from the zebrafish model. Gen Comp Endocrinol 2023; 334:114225. [PMID: 36709002 DOI: 10.1016/j.ygcen.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The zebrafish is an optimal experimental model to study thyroid hormone (TH) involvement in vertebrate development. The use of state-of-the-art zebrafish genetic tools available for the study of the effect of gene silencing, cell fate decisions and cell lineage differentiation have contributed to a more insightful comprehension of molecular, cellular, and tissue-specific TH actions. In contrast to intrauterine development, extrauterine embryogenesis observed in zebrafish has facilitated a more detailed study of the development of the hypothalamic-pituitary-thyroid axis. This model has also enabled a more insightful analysis of TH molecular actions upon the organization and function of the brain, the retina, the heart, and the immune system. Consequently, zebrafish has become a trendy model to address paradigms of TH-related functional and biomedical importance. We here compilate the available knowledge regarding zebrafish developmental events for which specific components of TH signaling are essential.
Collapse
Affiliation(s)
- I Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S M Pech-Pool
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - I García-Martínez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S Palacios-Pérez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
3
|
Thyroid Hormone Transporters in Pregnancy and Fetal Development. Int J Mol Sci 2022; 23:ijms232315113. [PMID: 36499435 PMCID: PMC9737226 DOI: 10.3390/ijms232315113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Thyroid hormone is essential for fetal (brain) development. Plasma membrane transporters control the intracellular bioavailability of thyroid hormone. In the past few decades, 15 human thyroid hormone transporters have been identified, and among them, mutations in monocarboxylate transporter (MCT)8 and organic anion transporting peptide (OATP)1C1 are associated with clinical phenotypes. Different animal and human models have been employed to unravel the (patho)-physiological role of thyroid hormone transporters. However, most studies on thyroid hormone transporters focus on postnatal development. This review summarizes the research on the thyroid hormone transporters in pregnancy and fetal development, including their substrate preference, expression and tissue distribution, and physiological and pathophysiological role in thyroid homeostasis and clinical disorders. As the fetus depends on the maternal thyroid hormone supply, especially during the first half of pregnancy, the review also elaborates on thyroid hormone transport across the human placental barrier. Future studies may reveal how the different transporters contribute to thyroid hormone homeostasis in fetal tissues to properly facilitate development. Employing state-of-the-art human models will enable a better understanding of their roles in thyroid hormone homeostasis.
Collapse
|
4
|
Sterenborg RBTM, Galesloot TE, Teumer A, Netea-Maier RT, Speed D, Meima ME, Visser WE, Smit JWA, Peeters RP, Medici M. The Effects of Common Genetic Variation in 96 Genes Involved in Thyroid Hormone Regulation on TSH and FT4 Concentrations. J Clin Endocrinol Metab 2022; 107:e2276-e2283. [PMID: 35262175 PMCID: PMC9315164 DOI: 10.1210/clinem/dgac136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE While most of the variation in thyroid function is determined by genetic factors, single nucleotide polymorphisms (SNPs) identified via genome-wide association analyses have only explained ~5% to 9% of this variance so far. Most SNPs were in or nearby genes with no known role in thyroid hormone (TH) regulation. Therefore, we performed a large-scale candidate gene study investigating the effect of common genetic variation in established TH regulating genes on serum thyrotropin [thyroid-stimulating hormone (TSH)] and thyroxine (FT4) concentrations. METHODS SNPs in or within 10 kb of 96 TH regulating genes were included (30 031 TSH SNPs, and 29 962 FT4 SNPs). Associations were studied in 54 288 individuals from the ThyroidOmics Consortium. Linkage disequilibrium-based clumping was used to identify independently associated SNPs. SNP-based explained variances were calculated using SumHer software. RESULTS We identified 23 novel TSH-associated SNPs in predominantly hypothalamic-pituitary-thyroid axis genes and 25 novel FT4-associated SNPs in mainly peripheral metabolism and transport genes. Genome-wide SNP variation explained ~21% (SD 1.7) of the total variation in both TSH and FT4 concentrations, whereas SNPs in the 96 TH regulating genes explained 1.9% to 2.6% (SD 0.4). CONCLUSION Here we report the largest candidate gene analysis on thyroid function, resulting in a substantial increase in the number of genetic variants determining TSH and FT4 concentrations. Interestingly, these candidate gene SNPs explain only a minor part of the variation in TSH and FT4 concentrations, which substantiates the need for large genetic studies including common and rare variants to unravel novel, yet unknown, pathways in TH regulation.
Collapse
Affiliation(s)
- Rosalie B T M Sterenborg
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tessel E Galesloot
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, Nijmegen, The Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Doug Speed
- Department of Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Marcel E Meima
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johannes W A Smit
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco Medici
- Correspondence: Marco Medici, MD, PhD, Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Salvatore D, Porcelli T, Ettleson MD, Bianco AC. The relevance of T 3 in the management of hypothyroidism. Lancet Diabetes Endocrinol 2022; 10:366-372. [PMID: 35240052 PMCID: PMC9987447 DOI: 10.1016/s2213-8587(22)00004-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
Levothyroxine monotherapy has been the standard of care for treatment of hypothyroidism for more than 40 years. However, patients treated with levothyroxine have relatively lower serum tri-iodothyronine (T3) concentrations than the general population, and symptoms of hypothyroidism persist for some patients despite normalisation of thyroid-stimulating hormone (TSH) concentrations. The understanding that maintenance of normal T3 concentrations is the priority for the thyroid axis has redirected the clinical focus to serum T3 concentrations in patients with hypothyroidism. This Personal View explores whether it is currently feasible to identify patients who could be considered for liothyronine supplementation in combination with levothyroxine. Genetic profiling stands out as a potential future tool to identify patients who do not respond well to levothyroxine due to suboptimal peripheral thyroxine (T4) activation. Moreover, new slow-release liothyronine preparations are being developed to be trialled in these symptomatic patients, in an attempt to restore T3 concentrations and provide conclusive results for the use of T4 plus T3 combination therapy.
Collapse
Affiliation(s)
- Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Matthew D Ettleson
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, IL, USA
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, IL, USA
| |
Collapse
|
6
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Jurado-Flores M, Warda F, Mooradian A. Pathophysiology and Clinical Features of Neuropsychiatric Manifestations of Thyroid Disease. J Endocr Soc 2022; 6:bvab194. [PMID: 35059548 PMCID: PMC8765786 DOI: 10.1210/jendso/bvab194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 01/25/2023] Open
Abstract
Thyroid hormones (TH) have a cardinal role in the development of the central nervous system during embryogenesis and early infancy. However, the TH-responsive genes in the developing brain cease to respond to TH in adulthood. Nevertheless, thyroid dysfunction in adults is commonly associated with a host of cognitive and psychiatric problems. Cognitive decline, dysphoria, and depression are common manifestations of overt hypothyroidism while hyperthyroidism can cause agitation, acute psychosis, and apathy, especially in older people. Whereas levothyroxine treatment can reverse dementia in the setting of hypothyroidism, the effect of levothyroxine on depressive symptoms in subjects with subclinical hypothyroidism is controversial. The use of supraphysiologic doses of TH to treat depression refractory to antidepressant remains a viable therapeutic tool with the caveat that excessive doses of thyroid hormone to treat depression may have potentially damaging effects on other organ systems. The present communication describes the pathophysiology of neuropsychiatric manifestations of thyroid disease, including changes in neurotransmission, alterations in neuronal or glial cell gene expression, blood-brain barrier dysfunction, increased risk of cerebrovascular disease, and occasionally cerebral inflammatory disease in the context of autoimmune thyroid disease. Elucidating the molecular mechanisms of TH effect on cerebral tissue will help identify novel therapeutic targets for managing people with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marilu Jurado-Flores
- Division of Endocrinology, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32209, USA
| | - Firas Warda
- Division of Endocrinology, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32209, USA
| | - Arshag Mooradian
- Division of Endocrinology, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32209, USA
| |
Collapse
|
8
|
Diez D, Morte B, Bernal J. Single-Cell Transcriptome Profiling of Thyroid Hormone Effectors in the Human Fetal Neocortex: Expression of SLCO1C1, DIO2, and THRB in Specific Cell Types. Thyroid 2021; 31:1577-1588. [PMID: 34114484 DOI: 10.1089/thy.2021.0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Thyroid hormones are crucial for brain development, acting through the thyroid hormone nuclear receptors (TR)α1 and β to control gene expression. Triiodothyronine (T3), the receptor-ligand, is transported into the brain from the blood by the monocarboxylate transporter 8 (MCT8). Another source of brain T3 is from the local deiodination of thyroxine (T4) by type 2 deiodinase (DIO2). While these mechanisms are very similar in mice and humans, important species-specific differences confound our understanding of disease using mouse models. To fill this knowledge gap on thyroid hormone action in the human fetal brain, we analyzed the expression of transporters, DIO2, and TRs, which we call thyroid hormone effectors, at single-cell resolution. Methods: We analyzed publicly available single-cell transcriptome data sets of isolated cerebral cortex neural cells from three different studies, with expression data from 393 to almost 40,000 cells. We generated Uniform Manifold Approximation and Projection scatterplots and cell clusters to identify differentially expressed genes between clusters, and correlated their gene signatures with the expression of thyroid effectors. Results: The radial glia, mainly the outer radial glia, and astrocytes coexpress SLCO1C1 and DIO2, indicating close cooperation between the T4 transporter OATP1C1 and DIO2 in local T3 formation. Strikingly, THRB was mainly present in two classes of interneurons: a majority expressing CALB2/calretinin, from the caudal ganglionic eminence, and in somatostatin-expressing interneurons from the medial ganglionic eminence. By contrast, many cell types express SLC16A2 and THRA. Conclusions:SLCO1C1 and DIO2 coexpression in the outer radial glia, the universal stem cell of the cerebral cortex, highlights the likely importance of brain-generated T3 in neurogenesis. The unique expression of THRB in discrete subsets of interneurons is a novel finding whose pathophysiological meaning deserves further investigation.
Collapse
Affiliation(s)
- Diego Diez
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Beatriz Morte
- Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Bernal
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Schäfer AM, Meyer zu Schwabedissen HE, Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain: Physiological and Pharmacological Implications. Pharmaceutics 2021; 13:pharmaceutics13060834. [PMID: 34199715 PMCID: PMC8226904 DOI: 10.3390/pharmaceutics13060834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
The central nervous system (CNS) is an important pharmacological target, but it is very effectively protected by the blood–brain barrier (BBB), thereby impairing the efficacy of many potential active compounds as they are unable to cross this barrier. Among others, membranous efflux transporters like P-Glycoprotein are involved in the integrity of this barrier. In addition to these, however, uptake transporters have also been found to selectively uptake certain compounds into the CNS. These transporters are localized in the BBB as well as in neurons or in the choroid plexus. Among them, from a pharmacological point of view, representatives of the organic anion transporting polypeptides (OATPs) are of particular interest, as they mediate the cellular entry of a variety of different pharmaceutical compounds. Thus, OATPs in the BBB potentially offer the possibility of CNS targeting approaches. For these purposes, a profound understanding of the expression and localization of these transporters is crucial. This review therefore summarizes the current state of knowledge of the expression and localization of OATPs in the CNS, gives an overview of their possible physiological role, and outlines their possible pharmacological relevance using selected examples.
Collapse
Affiliation(s)
- Anima M. Schäfer
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (A.M.S.); (H.E.M.z.S.)
| | - Henriette E. Meyer zu Schwabedissen
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (A.M.S.); (H.E.M.z.S.)
| | - Markus Grube
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology, University Medicine of Greifswald, 17489 Greifswald, Germany
- Correspondence: ; Tel./Fax: +49-3834-865636
| |
Collapse
|
10
|
Ronaldson PT, Brzica H, Abdullahi W, Reilly BG, Davis TP. Transport Properties of Statins by Organic Anion Transporting Polypeptide 1A2 and Regulation by Transforming Growth Factor- β Signaling in Human Endothelial Cells. J Pharmacol Exp Ther 2021; 376:148-160. [PMID: 33168642 PMCID: PMC7839073 DOI: 10.1124/jpet.120.000267] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Our in vivo rodent studies have shown that organic anion transporting polypeptide (Oatp) 1a4 is critical for blood-to-brain transport of statins, drugs that are effective neuroprotectants. Additionally, transforming growth factor-β (TGF-β) signaling via the activin receptor-like kinase 1 (ALK1) receptor regulates Oatp1a4 functional expression. The human ortholog of Oatp1a4 is OATP1A2. Therefore, the translational significance of our work requires demonstration that OATP1A2 can transport statins and is regulated by TGF-β/ALK1 signaling. Cellular uptake and monolayer permeability of atorvastatin, pravastatin, and rosuvastatin were investigated in vitro using human umbilical vein endothelial cells (HUVECs). Regulation of OATP1A2 by the TGF-β/ALK1 pathway was evaluated using bone morphogenetic protein 9 (BMP-9), a selective ALK1 agonist, and LDN193189, an ALK1 antagonist. We showed that statin accumulation in HUVECs requires OATP1A2-mediated uptake but is also affected by efflux transporters (i.e., P-glycoprotein, breast cancer resistance protein). Absorptive flux (i.e., apical-to-basolateral) for all statins was higher than secretory flux (i.e., basolateral-to-apical) and was decreased by an OATP inhibitor (i.e., estrone-3-sulfate). OATP1A2 protein expression, statin uptake, and cellular monolayer permeability were increased by BMP-9 treatment. This effect was attenuated in the presence of LDN193189. Apical-to-basolateral statin transport across human endothelial cellular monolayers requires functional expression of OATP1A2, which can be controlled by therapeutically targeting TGF-β/ALK1 signaling. Taken together with our previous work, the present data show that OATP-mediated drug transport is a critical mechanism in facilitating neuroprotective drug disposition across endothelial barriers of the blood-brain barrier. SIGNIFICANCE STATEMENT: Transporter data derived from rodent models requires validation in human models. Using human umbilical vein endothelial cells, this study has shown that statin transport is mediated by OATP1A2. Additionally, we demonstrated that OATP1A2 is regulated by transforming growth factor-β/activin receptor-like kinase 1 signaling. This work emphasizes the need to consider endothelial transporter kinetics and regulation during preclinical drug development. Furthermore, our forward-thinking approach can identify effective therapeutics for diseases for which drug development has been challenging (i.e., neurological diseases).
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
11
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Low CSF/serum ratio of free T4 is associated with decreased quality of life in mild hypothyroidism - A pilot study. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2020; 19:100218. [PMID: 32154116 PMCID: PMC7052503 DOI: 10.1016/j.jcte.2020.100218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
General health, according to the Likert scale, was considerable affected even in mild hypothyroidism. The level of T4 in the brain, expressed as the CSF/serum f-T4 ratio, was associated with decreased general health. Depressive symptoms, according to the MADRS scale, correlated with the CSF/serum f-T4 ratio. T4 might have a direct effect in the brain, and not only as a storage hormone for the more active T3. Further studies on pharmacokinetics of CSF-thyroxine might be of benefit especially in patients not feeling well.
Background & Objective Patients with mild hypothyroidism often are depressed and have impaired quality of life despite serum free-T4 and T3 within reference values. Therefore, we investigated whether their symptoms were dependent on the concentrations of free -T4 and T3 in the circulation and cerebrospinal fluid (CSF). Methods Twenty-five newly diagnosed, untreated hypothyroid subjects and as many age- and sex-matched healthy controls were investigated. Blood and CSF sampling was performed in the morning after an overnight fast. Quality of life (QoL) was assessed by a Likert scale. In the hypothyroid subjects, the MADRS rating scale was also used to evaluate symptoms of depression. Furthermore, the results obtained by the questionnaires were related to serum and CSF levels of free- T4 and T3 as well as the ratios between them in CSF and in serum. Results Self-reported health was considerably lower in hypothyroid subjects. MADRS was considerably higher than the normal range for healthy individuals. Low CSF/serum free-T4 ratio was correlated with an increased depressed state according to MADRS (p < 0.01), and in addition, CSF/serum free-T4 ratio correlated positively with the self-reported general health Likert scale (p < 0.05). Concentrations of TSH, or free-T3 in serum or CSF, were not associated with an increased depressed state or self-reported general health. Conclusions Low CSF/serum ratio of free-T4 was correlated with impaired general health and mood, in contrast to serum measurements not showing any correlations. These findings might partly explain why some patients with hypothyroidism suffer from mental symptoms, despite adequate serum levels of free-T4. However, the findings need to be confirmed in further and larger studies.
Collapse
Key Words
- AHDS, Allan-Herndon-Dudley syndrome
- BBB, blood brain barrier
- BSA, body surface area
- CON, healthy control group in our study
- CRP, C reactive protein
- CSF, cerebrospinal fluid
- DIO2, type II iodothyronine deiodinase-enzyme
- GHLS, General Health Likert Scale
- HYP, hypothyroid subjects in our study
- Hb, hemoglobulin
- M, mean value
- MADRS
- MADRS, Montgomery Asberg Depression Rating Scale
- MCT8, monocarboxylate transporter 8
- Md, median value
- Mild hypothyroidism
- NS, non-significant
- OATP1C1, organic anion transporter polypeptide 1C1
- PH, primary hypothyroidism in general
- Q1, first quartile
- Q3, third quartile
- QoL, quality of life
- Quality of life
- Subclinical hypothyroidism
- T3, triiodothyronine
- T4, thyroxine
- TPO, thyroid peroxidase antibody
- TSH, thyroid stimulating hormone
- Thyroxine
- Triiodothyronine
- f-T3 and f-T4, free unbound thyroid hormone
- s-, serum
Collapse
|
13
|
Bakos É, Német O, Patik I, Kucsma N, Várady G, Szakács G, Özvegy‐Laczka C. A novel fluorescence‐based functional assay for human OATP1A2 and OATP1C1 identifies interaction between third‐generation P‐gp inhibitors and OATP1A2. FEBS J 2019; 287:2468-2485. [DOI: 10.1111/febs.15156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/16/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Éva Bakos
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Orsolya Német
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Izabel Patik
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Nóra Kucsma
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - György Várady
- Laboratory of Molecular Cell Biology Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Gergely Szakács
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
- Institute of Cancer Research Medical University Vienna Wien Austria
| | - Csilla Özvegy‐Laczka
- Membrane Protein Research Group Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| |
Collapse
|
14
|
Association of prostate cancer SLCO gene expression with Gleason grade and alterations following androgen deprivation therapy. Prostate Cancer Prostatic Dis 2019; 22:560-568. [PMID: 30890759 PMCID: PMC6752995 DOI: 10.1038/s41391-019-0141-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Background. SLCO-encoded transporters have been associated with progression to castration resistant prostate cancer (CRPC) after initiation of androgen deprivation therapy (ADT). Although expressed at lower levels than in CRPC tissues, SLCO-encoded transporters may also play a role in response of primary prostate cancer (PCa) to ADT and biochemical recurrence. Methods. We systematically explored expression of the 11 human SLCO genes in a large sample of untreated and ADT-treated normal prostate (NP) and primary PCa tissues, including tumors treated with neoadjuvant abiraterone. Results. Transporters with the most recognized role in steroid uptake in PCa, including SLCO2B1 (DHEAS) and 1B3 (testosterone), were consistently detected in primary PCa. SLCO1B3 was nearly 5-fold higher in PCa vs NP with no difference in Gleason 3 vs 4 and no change with ADT. SLCO2B1 was detected at 3-fold lower levels in PCa than NP but was nearly 7-fold higher in Gleason 4 vs Gleason 3 and increased 3-fold following ADT (p<0.05 for all). Conclusions. We observed clear differences in SLCO expression in PCa vs NP samples, in Gleason 4 vs Gleason 3 tumors, and in ADT-treated vs untreated tissues. These findings are hypothesis generating due to small sample size, but suggest that baseline and ADT-induced changes in PCa OATP expression may influence steroid uptake and response to ADT, as well as uptake and response to drugs such as abiraterone and docetaxel which are also subject to OATP-mediated transport and are now being routinely combined with ADT in the metastatic castration sensitive setting.
Collapse
|
15
|
Genome-wide association meta-analysis for total thyroid hormone levels in Croatian population. J Hum Genet 2019; 64:473-480. [PMID: 30824882 DOI: 10.1038/s10038-019-0586-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (THs) are key regulators of cellular growth, development, and metabolism. The thyroid gland secretes two THs, thyroxine (T4) and triiodothyronine (T3), into the plasma where they are almost all bound reversibly to plasma proteins. Free forms of THs are metabolically active, however, they represent a very small fraction of total TH levels. No genome-wide studies have been performed to date on total TH levels, comprising of protein-bound and free forms of THs. To detect genetic variants associated with total TH levels, we carried out the first GWAS meta-analysis of total T4 levels in 1121 individuals from two Croatian cohorts (Split and Korcula). We also performed GWAS analyses of total T3 levels in 577 individuals and T3/T4 ratio in 571 individuals from the Split cohort. The top association in GWAS meta-analysis of total T4 was detected for an intronic variant within SLC22A9 gene (rs12282281, P = 4.00 × 10-7). Within the same region, a genome-wide significant variant (rs11822642, P = 2.50 × 10-8) for the T3/T4 ratio was identified. SLC22A9 encodes for an organic anion transporter protein expressed predominantly in the liver and belongs to the superfamily of solute carriers (SLC), a large group of transport membrane proteins. The transport of THs across the plasma membrane in peripheral tissues is facilitated by the membrane proteins, and all TH transport proteins known to date belong to the same SLC superfamily as SLC22A9. These results suggest a potential role for SLC22A9 as a novel transporter protein of THs.
Collapse
|
16
|
Al-Abdulla R, Perez-Silva L, Abete L, Romero MR, Briz O, Marin JJG. Unraveling ‘The Cancer Genome Atlas’ information on the role of SLC transporters in anticancer drug uptake. Expert Rev Clin Pharmacol 2019; 12:329-341. [DOI: 10.1080/17512433.2019.1581605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Lorena Abete
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
17
|
Abstract
Thyroid hormone receptors (TRs) were cloned based on their homology with the retroviral oncogene v-ERBA. In Vertebrates two genes, THRA and THRB, encode respectively many isotypes and isoforms of receptors TRα and TRβ, resulting from alternative splicing and/or internal transcription start sites. We present here a wide overview of this diversity and of their mechanisms of action as transcription regulators, as well as alternative actions through cytoplasmic signaling.
Collapse
|
18
|
TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis 2019; 125:67-76. [PMID: 30682540 DOI: 10.1016/j.nbd.2019.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 02/08/2023] Open
Abstract
TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer's disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer's Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy.
Collapse
|
19
|
Strømme P, Groeneweg S, Lima de Souza EC, Zevenbergen C, Torgersbråten A, Holmgren A, Gurcan E, Meima ME, Peeters RP, Visser WE, Høneren Johansson L, Babovic A, Zetterberg H, Heuer H, Frengen E, Misceo D, Visser TJ. Mutated Thyroid Hormone Transporter OATP1C1 Associates with Severe Brain Hypometabolism and Juvenile Neurodegeneration. Thyroid 2018; 28:1406-1415. [PMID: 30296914 DOI: 10.1089/thy.2018.0595] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thyroid hormones (TH) are essential for brain development and function. The TH transporters monocarboxylate transporter 8 (MCT8) and organic anion transporter1 C1 (OATP1C1) facilitate the transport of TH across the blood-brain barrier and into glia and neuronal cells in the brain. Loss of MCT8 function causes Allan-Herndon-Dudley syndrome (AHDS, OMIM 300523) characterized by severe intellectual and motor disability due to cerebral hypothyroidism. Here, the first patient with loss of OATP1C1 function is described. The patient is a 15.5-year-old girl with normal development in the first year of life, who gradually developed dementia with spasticity and intolerance to cold. Brain imaging demonstrated gray and white matter degeneration and severe glucose hypometabolism. METHODS Exome sequencing of the patient and parents was performed to identify the disease-causing mutation, and the effect of the mutation was studied through a panel of in vitro experiments, including thyroxine uptake studies, immunoblotting, and immunocytochemistry. Furthermore, the clinical effects of treatment with the triiodothyronine analogue triiodothyroacetic acid (Triac) are described. RESULTS Exome sequencing identified a homozygous missense mutation in OATP1C1, changing the highly conserved aspartic acid 252 to asparagine (D252N). In vitro, the mutated OATP1C1 displays impaired plasma membrane localization and decreased cellular thyroxine uptake. After treatment with Triac, the clinical condition improved in several domains. CONCLUSIONS This is the first report of human OATP1C1 deficiency compatible with brain-specific hypothyroidism and neurodegeneration.
Collapse
Affiliation(s)
- Petter Strømme
- 1 Division of Pediatric and Adolescent Medicine; Oslo University Hospital , Oslo, Norway
- 2 Faculty of Medicine, University of Oslo , Oslo, Norway
| | - Stefan Groeneweg
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Elaine C Lima de Souza
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Chantal Zevenbergen
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Anette Torgersbråten
- 4 Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo, Norway
| | - Asbjørn Holmgren
- 4 Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo, Norway
| | - Ebrar Gurcan
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Marcel E Meima
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - Robin P Peeters
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | - W Edward Visser
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| | | | - Almira Babovic
- 5 Department of Nuclear Medicine; Oslo University Hospital , Oslo, Norway
| | - Henrik Zetterberg
- 6 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital , Mölndal, Sweden
- 7 Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg , Mölndal, Sweden
- 8 Department of Molecular Neuroscience, UCL Institute of Neurology , Queen Square, London, United Kingdom
- 9 UK Dementia Research Institute at UCL , London, United Kingdom
| | - Heike Heuer
- 10 Department of Endocrinology, University of Duisburg-Essen , Essen, Germany
| | - Eirik Frengen
- 4 Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo, Norway
| | - Doriana Misceo
- 4 Department of Medical Genetics, Oslo University Hospital and University of Oslo , Oslo, Norway
| | - Theo J Visser
- 3 Erasmus Medical Center, Department of Internal Medicine, Academic Center for Thyroid Diseases , Rotterdam, The Netherlands
| |
Collapse
|
20
|
Brozaitiene J, Skiriute D, Burkauskas J, Podlipskyte A, Jankauskiene E, Serretti A, Mickuviene N. Deiodinases, Organic Anion Transporter Polypeptide Polymorphisms, and Thyroid Hormones in Patients with Myocardial Infarction. Genet Test Mol Biomarkers 2018; 22:270-278. [DOI: 10.1089/gtmb.2017.0283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Julija Brozaitiene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| | - Daina Skiriute
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Burkauskas
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| | - Aurelija Podlipskyte
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| | - Edita Jankauskiene
- Department of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Narseta Mickuviene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| |
Collapse
|
21
|
Santos-Silva AP, Andrade MN, Pereira-Rodrigues P, Paiva-Melo FD, Soares P, Graceli JB, Dias GRM, Ferreira ACF, de Carvalho DP, Miranda-Alves L. Frontiers in endocrine disruption: Impacts of organotin on the hypothalamus-pituitary-thyroid axis. Mol Cell Endocrinol 2018; 460:246-257. [PMID: 28774778 DOI: 10.1016/j.mce.2017.07.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/29/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Abstract
Endocrine disruptors (EDs), chemical substances widely used in industry and ubiquitously distributed in the environment, are able to interfere with the synthesis, release, transport, metabolism, receptor binding, action, or elimination of endogenous hormones. EDs affect homeostasis mainly by acting on nuclear and nonnuclear steroid receptors but also on serotonin, dopamine, norepinephrine and orphan receptors in addition to thyroid hormone receptors. Tributyltin (TBT), an ED widely used as a pesticide and biocide in antifouling paints, has well-documented actions that include inhibiting aromatase and affecting the nuclear receptors PPARγ and RXR. TBT exposure in humans and experimental models has been shown to mainly affect reproductive function and adipocyte differentiation. Since thyroid hormones play a fundamental role in regulating the basal metabolic rate and energy homeostasis, it is crucial to clarify the effects of TBT on the hypothalamus-pituitary-thyroid axis. Therefore, we review herein the main effects of TBT on important metabolic pathways, with emphasis on disruption of the thyroid axis that could contribute to the development of endocrine and metabolic disorders, such as insulin resistance and obesity.
Collapse
Affiliation(s)
- Ana Paula Santos-Silva
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelle Novaes Andrade
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula Pereira-Rodrigues
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Francisca Diana Paiva-Melo
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula Soares
- Institute for Research and Innovation in Health, University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) - Cancer Signalling & Metabolism, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Medical Faculty of Porto University, Porto, Portugal
| | | | - Glaecir Roseni Mundstock Dias
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Andrea Claudia Freitas Ferreira
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Polo de Xerém/NUMPEX, Universidade Federal do Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
|
23
|
Lee JY, Kim MJ, Deliyanti D, Azari MF, Rossello F, Costin A, Ramm G, Stanley EG, Elefanty AG, Wilkinson-Berka JL, Petratos S. Overcoming Monocarboxylate Transporter 8 (MCT8)-Deficiency to Promote Human Oligodendrocyte Differentiation and Myelination. EBioMedicine 2017; 25:122-135. [PMID: 29111262 PMCID: PMC5704066 DOI: 10.1016/j.ebiom.2017.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
Cell membrane thyroid hormone (TH) transport can be facilitated by the monocarboxylate transporter 8 (MCT8), encoded by the solute carrier family 16 member 2 (SLC16A2) gene. Human mutations of the gene, SLC16A2, result in the X-linked-inherited psychomotor retardation and hypomyelination disorder, Allan-Herndon-Dudley syndrome (AHDS). We posited that abrogating MCT8-dependent TH transport limits oligodendrogenesis and myelination. We show that human oligodendrocytes (OL), derived from the NKX2.1-GFP human embryonic stem cell (hESC) reporter line, express MCT8. Moreover, treatment of these cultures with DITPA (an MCT8-independent TH analog), up-regulates OL differentiation transcription factors and myelin gene expression. DITPA promotes hESC-derived OL myelination of retinal ganglion axons in co-culture. Pharmacological and genetic blockade of MCT8 induces significant OL apoptosis, impairing myelination. DITPA treatment limits OL apoptosis mediated by SLC16A2 down-regulation primarily signaling through AKT phosphorylation, driving myelination. Our results highlight the potential role of MCT8 in TH transport for human OL development and may implicate DITPA as a promising treatment for developmentally-regulated myelination in AHDS. NKX2.1-based sorting enhances OL derivation from hESC MCT8 is required for the survival of OL precursor cells DITPA promotes OL differentiation and myelination DITPA overrides SLC16A2 (MCT8) down-regulation to potentiate myelination
Thyroid hormone is vital for oligodendrocyte differentiation and myelination. Lee and colleagues show that MCT8 is an integral thyroid hormone transporter for oligodendrocytes derived from human embryonic stem cells. Knockdown of this transporter induces apoptosis of OLs, which could be prevented by the provision of DITPA.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Min Joung Kim
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Devy Deliyanti
- Department of Diabetes, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Michael F Azari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Fernando Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Adam Costin
- The Clive & Vera Ramaciotti Centre for Cryo Electron Microscopy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Georg Ramm
- The Clive & Vera Ramaciotti Centre for Cryo Electron Microscopy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
24
|
Kersseboom S, van Gucht ALM, van Mullem A, Brigante G, Farina S, Carlsson B, Donkers JM, van de Graaf SFJ, Peeters RP, Visser TJ. Role of the Bile Acid Transporter SLC10A1 in Liver Targeting of the Lipid-Lowering Thyroid Hormone Analog Eprotirome. Endocrinology 2017; 158:3307-3318. [PMID: 28938430 DOI: 10.1210/en.2017-00433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Abstract
The thyroid hormone (TH) analog eprotirome (KB2115) was developed to lower cholesterol through selective activation of the TH receptor (TR) β1 in the liver. Interestingly, eprotirome shows low uptake in nonhepatic tissues, explaining its lipid-lowering action without adverse extrahepatic thyromimetic effects. Clinical trials have shown marked decreases in serum cholesterol levels. We explored the transport of eprotirome across the plasma membrane by members of three TH transporter families: monocarboxylate transporters MCT8 and MCT10; Na-independent organic anion transporters 1A2, 1B1, 1B3, 1C1, 2A1, and 2B1; and Na-dependent organic anion transporters SLC10A1 to SLC10A7. Cellular transport was studied in transfected COS1 cells using [14C]eprotirome and [125I]TH analogs. Of the 15 transporters tested initially, the liver-specific bile acid transporter SLC10A1 showed the highest eprotirome uptake (greater than a sevenfold induction after 60 minutes) as well as TRβ1-mediated transcriptional activity. Uptake of eprotirome by SLC10A1 was Na+ dependent and saturable with a Michaelis constant of 8 μM. Eprotirome transport was inhibited by known substrates for SLC10A1 (e.g., cholate and taurocholate), and by TH analogs such as triiodothyropropionic acid and triiodothyroacetic acid. However, no significant SLC10A1-mediated transport was observed of these [125I]TH analogs. We also studied the plasma disappearance and biliary excretion of [14C]eprotirome injected in control and Slc10a1 knockout mice. Although eprotirome is also transported by mouse Slc10a1, the pharmacokinetics of eprotirome were not affected by Slc10a1 deficiency. In conclusion, we have demonstrated that the liver-specific bile acid transporter SLC10A1 effectively transports eprotirome. However, Slc10a1 does not appear to be critical for the liver targeting of this TH analog in mice. Therefore, the importance of SLC10A1 for liver uptake of eprotirome in humans remains to be elucidated.
Collapse
Affiliation(s)
- Simone Kersseboom
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Anja L M van Gucht
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Alies van Mullem
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Giulia Brigante
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Stefania Farina
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Bo Carlsson
- Karo Bio AB, Novum Research Park, Huddinge S-141 57, Sweden
| | - Joanne M Donkers
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
25
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
26
|
Abstract
Recent studies show that subtle variations in thyroid function, including subclinical thyroid dysfunction, and even variation in thyroid function within the normal range, are associated with morbidity and mortality. It is estimated that 40-65% of the inter-individual variation in serum TSH and FT4 levels is determined by genetic factors. To identify these factors, various linkage and candidate gene studies have been performed in the past, which have identified only a few genes. In the last decade, genome-wide association studies identified many new genes, while recent whole-genome sequencing efforts have also been proven to be effective. In the current review, we provide a systematic overview of these studies, including strengths and limitations. We discuss new techniques which will further clarify the genetic basis of thyroid function in the near future, as well as the potential use of these genetic markers in personalizing the management of thyroid disease patients.
Collapse
Affiliation(s)
- Marco Medici
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Robin P Peeters
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Bourgeois NMA, Van Herck SLJ, Vancamp P, Delbaere J, Zevenbergen C, Kersseboom S, Darras VM, Visser TJ. Characterization of Chicken Thyroid Hormone Transporters. Endocrinology 2016; 157:2560-74. [PMID: 27070099 DOI: 10.1210/en.2015-2025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (TH) transmembrane transporters are key regulators of TH availability in target cells where correct TH signaling is essential for normal development. Although the chicken embryo is a valuable model for developmental studies, the only functionally characterized chicken TH transporter so far is the organic anion transporting polypeptide 1C1 (OATP1C1). We therefore cloned the chicken L-type amino acid transporter 1 (LAT1) and the monocarboxylate transporters 8 (MCT8) and 10 (MCT10), and functionally characterized them, together with OATP1C1, in JEG3, COS1, and DF-1 cells. In addition, we used in situ hybridization to study their mRNA expression pattern during development. MCT8 and OATP1C1 are both high affinity transporters for the prohormone T4, whereas receptor-active T3 is preferably transported by MCT8 and MCT10. The latter one shows lower affinity but has a high Vmax and seems to be especially good at T3 export. Also, LAT1 has a lower affinity for its preferred substrate 3,3'-diiodothyronine. Reverse T3 is transported by all 4 TH transporters and is a good export product for OATP1C1. TH transporters are strongly expressed in eye (LAT1, MCT8, MCT10), pancreas (LAT1, MCT10), kidney, and testis (MCT8). Their extensive expression in the central nervous system, especially at the brain barriers, indicates an important role in brain development. In conclusion, we show TH transport by chicken MCT8, MCT10, and LAT1. Together with OATP1C1, these transporters have functional characteristics similar to their mammalian orthologs and are interesting target genes to further elucidate the role of THs during embryonic development.
Collapse
Affiliation(s)
- Nele M A Bourgeois
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Stijn L J Van Herck
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Joke Delbaere
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Chantal Zevenbergen
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Simone Kersseboom
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Theo J Visser
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
28
|
Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocr Rev 2015; 36:214-44. [PMID: 25751422 DOI: 10.1210/er.2014-1081] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For a long time it has been known that both hypo- and hyperthyroidism are associated with an increased risk of morbidity and mortality. In recent years, it has also become clear that minor variations in thyroid function, including subclinical dysfunction and variation in thyroid function within the reference range, can have important effects on clinical endpoints, such as bone mineral density, depression, metabolic syndrome, and cardiovascular mortality. Serum thyroid parameters show substantial interindividual variability, whereas the intraindividual variability lies within a narrow range. This suggests that every individual has a unique hypothalamus-pituitary-thyroid axis setpoint that is mainly determined by genetic factors, and this heritability has been estimated to be 40-60%. Various mutations in thyroid hormone pathway genes have been identified in persons with thyroid dysfunction or altered thyroid function tests. Because these causes are rare, many candidate gene and linkage studies have been performed over the years to identify more common variants (polymorphisms) associated with thyroid (dys)function, but only a limited number of consistent associations have been found. However, in the past 5 years, advances in genetic research have led to the identification of a large number of new candidate genes. In this review, we provide an overview of the current knowledge about the polygenic basis of thyroid (dys)function. This includes new candidate genes identified by genome-wide approaches, what insights these genes provide into the genetic basis of thyroid (dys)function, and which new techniques will help to further decipher the genetic basis of thyroid (dys)function in the near future.
Collapse
Affiliation(s)
- Marco Medici
- Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
29
|
He L, Pei Y, Jiang Y, Li Y, Liao L, Zhu Z, Wang Y. Global gene expression patterns of grass carp following compensatory growth. BMC Genomics 2015; 16:184. [PMID: 25887225 PMCID: PMC4374334 DOI: 10.1186/s12864-015-1427-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compensatory growth is accelerated compared with normal growth and occurs when growth-limiting conditions are overcome. Most animals, especially fish, are capable of compensatory growth, but the mechanisms remain unclear. Further investigation of the mechanism of compensatory growth in fish is needed to improve feeding efficiency, reduce cost, and explore growth-related genes. RESULTS In the study, grass carp, an important farmed fish in China, were subjected to a compensatory growth experiment followed by transcriptome analysis by RNA-sequencing. Samples of fish from starved and re-feeding conditions were compared with the control. Under starved conditions, 4061 and 1988 differentially expressed genes (DEGs) were detected in muscle and liver tissue when compared the experimental group with control group, respectively. After re-feeding, 349 and 247 DEGs were identified in muscle and liver when the two groups were compared. Moreover, when samples from experimental group in starved and re-feeding conditions were compared, 4903 and 2444 DEGs were found in muscle and liver. Most of these DEGs were involved in metabolic processes, or encoded enzymes or proteins with catalytic activity or binding functions, or involved in metabolic and biosynthetic pathways. A number of the more significant DEGs were subjected to further analysis. Under fasting conditions, many up-regulated genes were associated with protein ubiquitination or degradation, whereas many down-regulated genes were involved in the metabolism of glucose and fatty acids. Under re-feeding conditions, genes participating in muscle synthesis and fatty acid metabolism were up-regulated significantly, and genes related to protein ubiquitination or degradation were down-regulated. Moreover, Several DEGs were random selected for confirmation by real-time quantitative PCR. CONCLUSIONS Global gene expression patterns of grass carp during compensatory growth were determined. To our knowledge, this is a first reported for a teleost fish. The results will enhance our understanding of the mechanism of compensatory growth in teleost fish.
Collapse
Affiliation(s)
- Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yongyan Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yao Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
30
|
|
31
|
Richardson VM, Ferguson SS, Sey YM, DeVito MJ. In vitrometabolism of thyroxine by rat and human hepatocytes. Xenobiotica 2013; 44:391-403. [DOI: 10.3109/00498254.2013.847990] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Muzzio AM, Noyes PD, Stapleton HM, Lema SC. Tissue distribution and thyroid hormone effects on mRNA abundance for membrane transporters Mct8, Mct10, and organic anion-transporting polypeptides (Oatps) in a teleost fish. Comp Biochem Physiol A Mol Integr Physiol 2013; 167:77-89. [PMID: 24113777 DOI: 10.1016/j.cbpa.2013.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022]
Abstract
Many of the actions of thyroid hormones (THs) occur via TH binding to intracellular receptors. Although it was long thought that THs diffused passively across plasma membranes, it is now recognized that cellular entry is mediated by a variety of membrane transporter proteins. In this study, we identified cDNAs encoding the TH transporters monocarboxylate transferases 8 (mct8) and 10 (mct10) as well as eight distinct organic anion-transporting polypeptide (oatp) proteins from fathead minnow (Pimephales promelas). Analysis of the tissue distribution of transporter mRNAs revealed that mct8 and mct10 transcripts were both abundant in liver, but also present at lower levels in brain, gonad and other tissues. Transcripts encoding oatp1c1 were highly abundant in brain, liver and gonad, and exhibited significant sex differences in the liver and gonad. Treatment of adult male minnows with 3,5,3'-triiodothyronine (T3) or the goitrogen methimazole altered gene transcript abundance for several transporters. Fish given exogenous T3 had reduced mct8 and oapt1c1 mRNA levels in the liver compared to methimazole-treated fish. In the brain, transcripts for mct8, mct10, oatp2b1, and oatp3a1 were each reduced in abundance in fish with elevated T3. As a whole, these results provide evidence that TH status influences the transcriptional dynamics of mct8, mct10 and several Oatp genes including oatp1c1 in teleost fish.
Collapse
Affiliation(s)
- Amanda M Muzzio
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | | | | |
Collapse
|
33
|
Roef GL, Rietzschel ER, De Meyer T, Bekaert S, De Buyzere ML, Van daele C, Toye K, Kaufman JM, Taes YE. Associations between single nucleotide polymorphisms in thyroid hormone transporter genes (MCT8, MCT10 and OATP1C1) and circulating thyroid hormones. Clin Chim Acta 2013; 425:227-32. [DOI: 10.1016/j.cca.2013.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
|
34
|
Hagenbuch B, Stieger B. The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 2013; 34:396-412. [PMID: 23506880 DOI: 10.1016/j.mam.2012.10.009] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/19/2012] [Indexed: 01/04/2023]
Abstract
The members of the organic anion transporting polypeptide superfamily (OATPs) are classified within the SLCO solute carrier family. All functionally well characterized members are predicted to have 12 transmembrane domains and are sodium-independent transport systems that mediate the transport of a broad range of endo- as well as xenobiotics. Substrates are mainly amphipathic organic anions with a molecular weight of more than 300Da, but some of the known transported substrates are also neutral or even positively charged. Among the well characterized substrates are numerous drugs including statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antibiotics, antihistaminics, antihypertensives and anticancer drugs. Based on their amino acid sequence identities, the different OATPs cluster into families (in general with more than 40% amino acid sequence identity) and subfamilies (more than 60% amino acid identity). With the sequencing of genomes from different species and the computerized prediction of encoded proteins more than 300 OATPs can be found in the databases, however only a fraction of them have been identified in humans, rodents, and some additional species important for pharmaceutical research like the rhesus monkey (Macaca mulatta), the dog (Canis lupus familiaris) and the pig (Sus scrofa). These OATPs form 6 families (OATP1-OATP6) and 13 subfamilies. In this review we try to summarize what is currently known about OATPs with respect to endogenous substrates, tissue distribution, transport mechanisms, regulation of expression, structure-function relationship and mutations and polymorphisms.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
35
|
Frost M, Petersen I, Hegedüs L, Christiansen L, Brix T, Christensen K. Regulation of the pituitary-thyroid axis in adulthood is not related to birth weight: evidence from extremely birth weight-discordant monozygotic Danish twin pairs. Thyroid 2013; 23:785-90. [PMID: 23308389 PMCID: PMC3704111 DOI: 10.1089/thy.2012.0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Low birth weight has been linked with changes in thyroid function in adulthood, but it is unknown whether fetal programming or underlying genetic and environmental factors explains the association. We hypothesized that birth weight influences the pituitary-thyroid set point in adults. METHODS A total of 152 birth weight-discordant monozygotic twin pairs with a median age of 57 years (interquartile range: 33-63) were ascertained from the Danish Twin Registry in 2010. Serum thyroid-stimulating hormone (TSH), free thyroxine (FT4), and triiodothyronine (T3) levels were measured. Birth weights were retrieved from midwife records (individuals born before 1973) and the Danish Birth Record Registry (all other participants) RESULTS Birth weight was inversely associated with serum levels of FT4 (β=-0.48 pmol/[L·kg], p=0.014) and serum T3 (β=-0.09 nmol/[L·kg], p=0.010), but not serum TSH after adjustment for age, sex, and current use of tobacco products, when the twins were investigated as singletons. Serum levels of TSH and T3 were similar in within twin-pair analyses, while serum FT4 was higher in twins with the lowest birth weight (median difference 0.3 mIU/L). When the analyses were repeated in twin pairs (n=46 pairs) characterized by extreme difference in birth weight (>0.5 kg), serum TSH, T3, and FT4 levels were similar in twins with high and low birth weight. The proportion of individuals with serum TSH level >4 mIU/L or <0.3 mIU/L was identical in both groups. CONCLUSIONS No overall evidence of an association between birth weight and adult pituitary-thyroid axis set point, after control for genetic and environmental factors, could be demonstrated.
Collapse
Affiliation(s)
- Morten Frost
- The Danish Twin Registry, Danish Aging Research Center, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | |
Collapse
|
36
|
Tumor-specific expression of organic anion-transporting polypeptides: transporters as novel targets for cancer therapy. JOURNAL OF DRUG DELIVERY 2013; 2013:863539. [PMID: 23431456 PMCID: PMC3574750 DOI: 10.1155/2013/863539] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/24/2012] [Indexed: 01/16/2023]
Abstract
Members of the organic anion transporter family (OATP) mediate the transmembrane uptake of clinical important drugs and hormones thereby affecting drug disposition and tissue penetration. Particularly OATP subfamily 1 is known to mediate the cellular uptake of anticancer drugs (e.g., methotrexate, derivatives of taxol and camptothecin, flavopiridol, and imatinib). Tissue-specific expression was shown for OATP1B1/OATP1B3 in liver, OATP4C1 in kidney, and OATP6A1 in testis, while other OATPs, for example, OATP4A1, are expressed in multiple cells and organs. Many different tumor entities show an altered expression of OATPs. OATP1B1/OATP1B3 are downregulated in liver tumors, but highly expressed in cancers in the gastrointestinal tract, breast, prostate, and lung. Similarly, testis-specific OATP6A1 is expressed in cancers in the lung, brain, and bladder. Due to their presence in various cancer tissues and their limited expression in normal tissues, OATP1B1, OATP1B3, and OATP6A1 could be a target for tumor immunotherapy. Otherwise, high levels of ubiquitous expressed OATP4A1 are found in colorectal cancers and their metastases. Therefore, this OATP might serve as biomarkers for these tumors. Expression of OATP is regulated by nuclear receptors, inflammatory cytokines, tissue factors, and also posttranslational modifications of the proteins. Through these processes, the distribution of the transporter in the tissue will be altered, and a shift from the plasma membrane to cytoplasmic compartments is possible. It will modify OATP uptake properties and, subsequently, change intracellular concentrations of drugs, hormones, and various other OATP substrates. Therefore, screening tumors for OATP expression before therapy should lead to an OATP-targeted therapy with higher efficacy and decreased side effects.
Collapse
|
37
|
Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 2012; 165:1260-87. [PMID: 22013971 DOI: 10.1111/j.1476-5381.2011.01724.x] [Citation(s) in RCA: 573] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human organic anion and cation transporters are classified within two SLC superfamilies. Superfamily SLCO (formerly SLC21A) consists of organic anion transporting polypeptides (OATPs), while the organic anion transporters (OATs) and the organic cation transporters (OCTs) are classified in the SLC22A superfamily. Individual members of each superfamily are expressed in essentially every epithelium throughout the body, where they play a significant role in drug absorption, distribution and elimination. Substrates of OATPs are mainly large hydrophobic organic anions, while OATs transport smaller and more hydrophilic organic anions and OCTs transport organic cations. In addition to endogenous substrates, such as steroids, hormones and neurotransmitters, numerous drugs and other xenobiotics are transported by these proteins, including statins, antivirals, antibiotics and anticancer drugs. Expression of OATPs, OATs and OCTs can be regulated at the protein or transcriptional level and appears to vary within each family by both protein and tissue type. All three superfamilies consist of 12 transmembrane domain proteins that have intracellular termini. Although no crystal structures have yet been determined, combinations of homology modelling and mutation experiments have been used to explore the mechanism of substrate recognition and transport. Several polymorphisms identified in members of these superfamilies have been shown to affect pharmacokinetics of their drug substrates, confirming the importance of these drug transporters for efficient pharmacological therapy. This review, unlike other reviews that focus on a single transporter family, briefly summarizes the current knowledge of all the functionally characterized human organic anion and cation drug uptake transporters of the SLCO and the SLC22A superfamilies.
Collapse
Affiliation(s)
- Megan Roth
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
38
|
Ho HTB, Dahlin A, Wang J. Expression Profiling of Solute Carrier Gene Families at the Blood-CSF Barrier. Front Pharmacol 2012; 3:154. [PMID: 22936914 PMCID: PMC3426838 DOI: 10.3389/fphar.2012.00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus (CP) is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid (CSF) barrier (BCSFB). A main function of the CP is to secrete CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones, and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC) superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.
Collapse
Affiliation(s)
- Horace T B Ho
- Department of Pharmaceutics, University of Washington Seattle, WA, USA
| | | | | |
Collapse
|
39
|
Schweizer U, Köhrle J. Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta Gen Subj 2012; 1830:3965-73. [PMID: 22890106 DOI: 10.1016/j.bbagen.2012.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND Iodothyronines are charged amino acid derivatives that cannot passively cross a phospholipid bilayer. Transport of thyroid hormones across plasma membranes is mediated by integral membrane proteins belonging to several gene families. These transporters therefore allow or limit access of thyroid hormones into brain. Since thyroid hormones are essential for brain development and cell differentiation, it is expected that genetic deficiency of such transporters would result in neurodevelopmental derangements. SCOPE OF REVIEW We introduce concepts of thyroid hormone transport into the brain and into brain cells. Important thyroid hormone transmembrane transporters are presented along with their expression patterns in different brain cell types. A focus is placed on monocarboxylate transporter 8 (MCT8) which has been identified as an essential thyroid hormone transporter in humans. Mutations in MCT8 underlie one of the first described X-linked mental retardation syndromes, the Allan-Herndon-Dudley syndrome. MAJOR CONCLUSIONS Thyroid hormone transporter molecules are expressed in a developmental and cell type-specific pattern. Any thyroid hormone molecule has to cross consecutively the luminal and abluminal membranes of the capillary endothelium, enter astrocytic foot processes, and leave the astrocyte through the plasma membrane to finally cross another plasma membrane on its way towards its target nucleus. GENERAL SIGNIFICANCE We can expect more transporters being involved in or contributing to in neurodevelopmental or neuropsychiatric disease. Due to their expression in cellular components regulating the hypothalamus-pituitary-thyroid axis, mutations and polymorphisms are expected to impact on negative feedback regulation and hormonal setpoints. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | |
Collapse
|
40
|
Zhu B, Shrivastava A, Luongo C, Chen T, Harney JW, Marsili A, Tran TV, Bhadouria A, Mopala R, Steen AI, Larsen PR, Zavacki AM. Catalysis leads to posttranslational inactivation of the type 1 deiodinase and alters its conformation. J Endocrinol 2012; 214:87-94. [PMID: 22544951 PMCID: PMC3612969 DOI: 10.1530/joe-11-0459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previously, it was shown that the type 1 deiodinase (D1) is subject to substrate-dependent inactivation that is blocked by pretreatment with the inhibitor of D1 catalysis, propylthiouracil (PTU). Using HepG2 cells with endogenous D1 activity, we found that while considerable D1-mediated catalysis of reverse tri-iodothyronine (rT(3)) is observed in intact cells, there was a significant loss of D1 activity in sonicates assayed from the same cells in parallel. This rT(3)-mediated loss of D1 activity occurs despite no change in D1 mRNA levels and is blocked by PTU treatment, suggesting a requirement for catalysis. Endogenous D1 activity in sonicates was inactivated in a dose-dependent manner in HepG2 cells, with a ∼50% decrease after 10 nM rT(3) treatment. Inactivation of D1 was rapid, occurring after only half an hour of rT(3) treatment. D1 expressed in HEK293 cells was inactivated by rT(3) in a similar manner. (75)Se labeling of the D1 selenoprotein indicated that after 4 h rT(3)-mediated inactivation of D1 occurs without a corresponding decrease in D1 protein levels, though rT(3) treatment causes a loss of D1 protein after 8-24 h. Bioluminescence resonance energy transfer studies indicate that rT(3) exposure increases energy transfer between the D1 homodimer subunits, and this was lost when the active site of D1 was mutated to alanine, suggesting that a post-catalytic structural change in the D1 homodimer could cause enzyme inactivation. Thus, both D1 and type 2 deiodinase are subject to catalysis-induced loss of activity although their inactivation occurs via very different mechanisms.
Collapse
Affiliation(s)
- Bo Zhu
- Division of Endocrinology, Diabetes and Hypertension, Thyroid Section, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arjona FJ, de Vrieze E, Visser TJ, Flik G, Klaren PHM. Identification and functional characterization of zebrafish solute carrier Slc16a2 (Mct8) as a thyroid hormone membrane transporter. Endocrinology 2011; 152:5065-73. [PMID: 21952246 DOI: 10.1210/en.2011-1166] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most components of the thyroid system in bony fish have been described and characterized, with the notable exception of thyroid hormone membrane transporters. We have cloned, sequenced, and expressed the zebrafish solute carrier Slc16a2 (also named monocarboxylate transporter Mct8) cDNA and established its role as a thyroid hormone transport protein. The cloned cDNA shares 56-57% homology with its mammalian orthologs. The 526-amino-acid sequence contains 12 predicted transmembrane domains. An intracellular N-terminal PEST domain, thought to be involved in proteolytic processing of the protein, is present in the zebrafish sequence. Measured at initial rate and at the body/rearing temperature of zebrafish (26 C), T(3) uptake by zebrafish Slc16a2 is a saturable process with a calculated Michaelis-Menten constant of 0.8 μM T(3). The rate of T(3) uptake is temperature dependent and Na(+) independent. Interestingly, at 26 C, zebrafish Slc16a2 does not transport T(4). This implies that at a normal body temperature in zebrafish, Slc16a2 protein is predominantly involved in T(3) uptake. When measured at 37 C, zebrafish Slc16a2 transports T(4) in a Na(+)-independent manner. In adult zebrafish, the Slc16a2 gene is highly expressed in brain, gills, pancreas, liver, pituitary, heart, kidney, and gut. Beginning from the midblastula stage, Slc16a2 is also expressed during zebrafish early development, the highest expression levels occurring 48 h after fertilization. This is the first direct evidence for thyroid hormone membrane transporters in fish. We suggest that Slc16a2 plays a key role in the local availability of T(3) in adult tissues as well as during the completion of morphogenesis of primary organ systems.
Collapse
Affiliation(s)
- Francisco J Arjona
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Ross AW, Helfer G, Russell L, Darras VM, Morgan PJ. Thyroid hormone signalling genes are regulated by photoperiod in the hypothalamus of F344 rats. PLoS One 2011; 6:e21351. [PMID: 21731713 PMCID: PMC3120865 DOI: 10.1371/journal.pone.0021351] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/26/2011] [Indexed: 11/19/2022] Open
Abstract
Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD) rats to mimic short day (SD), we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHβ, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis remains to be investigated.
Collapse
Affiliation(s)
- Alexander W. Ross
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Laura Russell
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter J. Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
43
|
Medici M, van der Deure WM, Verbiest M, Vermeulen SH, Hansen PS, Kiemeney LA, Hermus ARMM, Breteler MM, Hofman A, Hegedüs L, Kyvik KO, den Heijer M, Uitterlinden AG, Visser TJ, Peeters RP. A large-scale association analysis of 68 thyroid hormone pathway genes with serum TSH and FT4 levels. Eur J Endocrinol 2011; 164:781-8. [PMID: 21367965 DOI: 10.1530/eje-10-1130] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Minor variation in serum thyroid hormone (TH) levels can have important effects on various clinical endpoints. Although 45-65% of the inter-individual variation in serum TH levels is due to genetic factors, the causative genes are not well established. We therefore studied the effects of genetic variation in 68 TH pathway genes on serum TSH and free thyroxine (FT(4)) levels. DESIGN AND METHODS Sixty-eight genes (1512 polymorphisms) were studied in relation to serum TSH and FT(4) levels in 1121 Caucasian subjects. Promising hits (P<0.01) were studied in three independent Caucasian populations (2656 subjects) for confirmation. A meta-analysis of all four studies was performed. RESULTS For TSH, eight PDE8B polymorphisms (P=4×10(-17)) remained significant in the meta-analysis. For FT(4), two DIO1 (P=8×10(-12)) and one FOXE1 (P=0.0003) polymorphisms remained significant in the meta-analysis. Suggestive associations were detected for one FOXE1 (P=0.0028) and three THRB (P=0.0045) polymorphisms with TSH, and one SLC16A10 polymorphism (P=0.0110) with FT(4), but failed to reach the significant multiple-testing corrected P value (P<0.0022 and P<0.0033 respectively). CONCLUSIONS Using a large-scale association analysis, we replicated previously reported associations with genetic variation in PDE8B, THRB, and DIO1. We demonstrate effects of genetic variation in FOXE1 on serum FT(4) levels, and borderline significant effects on serum TSH levels. A suggestive association of genetic variation in SLC16A10 with serum FT(4) levels was found. These data provide insight into the molecular basis of inter-individual variation in TH serum levels.
Collapse
Affiliation(s)
- Marco Medici
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
König J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol 2011:1-28. [PMID: 21103967 DOI: 10.1007/978-3-642-14541-4_1] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organic anion transporting polypeptides (OATPs, gene family: SLC21/SLCO) mediate the uptake of a broad range of substrates including several widely prescribed drugs into cells. Drug substrates for members of the human OATP family include HMG-CoA-reductase inhibitors (statins), antibiotics, anticancer agents, and cardiac glycosides. OATPs are expressed in a variety of different tissues including brain, intestine, liver, and kidney, suggesting that these uptake transporters are important for drug absorption, distribution, and excretion. Because of their wide tissue distribution and broad substrate spectrum, altered transport kinetics, for example, due to drug-drug interactions or due to the functional consequences of genetic variations (polymorphisms), can contribute to the interindividual variability of drug effects. Therefore, the molecular characteristics of human OATP family members, the role of human OATPs in drug-drug interactions, and the in vitro analysis of the functional consequences of genetic variations in SLCO genes encoding OATP proteins are the focus of this chapter.
Collapse
Affiliation(s)
- Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
45
|
Westholm DE, Marold JD, Viken KJ, Duerst AH, Anderson GW, Rumbley JN. Evidence of evolutionary conservation of function between the thyroxine transporter Oatp1c1 and major facilitator superfamily members. Endocrinology 2010; 151:5941-51. [PMID: 20881245 DOI: 10.1210/en.2010-0640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Organic anion transporting polypeptide 1c1 (Oatp1c1) is a high-affinity T(4) transporter expressed in brain barrier cells. To identify Oatp1c1 amino acid residues critical for T(4) transport, consensus membrane topology was predicted and a three-dimensional Oatp1c1 structure was generated using the known structures of major facilitator superfamily (MFS) transporters, glycerol 3-phosphate transporter, lactose permease, and the multidrug transporter Escherichia coli multidrug resistance protein D as templates. A total of nine amino acid mutations were generated based on amino acid conservation, localization to putative transmembrane domains, and side chain functionality. Mutant constructs were transiently transfected into human embryonic kidney 293 cells and assessed for plasma membrane localization and the capacity to transport substrate (125)I-T(4). Wild-type Oatp1c1, R601S, P609A, W277A/W278A, W277F/W278F, G399A/G409A, and G399L/G409L were all expressed at the plasma membrane. Wild-type Oatp1c1 and W277F/W278F displayed biphasic T(4) transport kinetics, albeit the mutant did so with an approximately 10-fold increase in high-affinity Michaelis constant. The W277A/W278A mutation abolished Oatp1c1 T(4) transport. G399A/G409A and G399V/G409V mutants displayed near wild-type activity in an uptake screen but exhibited diminished T(4) transport activity at high-substrate concentrations, suggesting a substrate binding site collapse or inability to convert between input and output states. Finally, transmembrane domain 11 mutants R601S and P609A displayed partial T(4) transport activity with significantly reduced maximum velocities and higher Michaelis constant. Arg601 is functionally strongly conserved with members of the MFS whose structures and function have been extensively studied. These data provide the experimental foundation for mapping Oatp1c1 substrate binding sites and reveal evolutionary conservation with bacterial MFS transporter members.
Collapse
Affiliation(s)
- Daniel E Westholm
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota-Duluth, Duluth, Minnesota 55812, USA
| | | | | | | | | | | |
Collapse
|
46
|
Brix TH, Hansen PS, Kyvik KO, Hegedüs L. The pituitary-thyroid axis set point in women is uninfluenced by X chromosome inactivation pattern? A twin study. Clin Endocrinol (Oxf) 2010; 73:666-70. [PMID: 20718768 DOI: 10.1111/j.1365-2265.2010.03848.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The pituitary-thyroid axis (PTA) set point is determined by a combination of genetic and environmental factors. However, despite considerable efforts to characterize the background, the causative genes as well as environmental factors are not well established. Theoretically, as shown for autoimmune thyroid disease, the pattern of X chromosome inactivation (XCI) could offer a novel explanation for the observed variability of the PTA set point in women. DESIGN AND PATIENTS To examine the impact of XCI pattern on the PTA set point, we studied whether within-cohort (n = 318 subjects) and within-twin pair (n = 159 pairs) differences in XCI are correlated with serum concentrations of thyrotropin (TSH), free triiodothyronine (FT3) and free thyroxine (FT4). METHODS X chromosome inactivation was determined by PCR analysis of a polymorphic CAG repeat in the first exon of the androgen receptor gene. Thyroid variables were measured using a solid-phase time-resolved fluoroimmunometric assay. Zygosity was established by DNA fingerprinting. RESULTS In the overall study population (within cohort), no significant correlations were found between TSH [regression coefficient (β) = -0·28 (95% confidence intervals, -0·66 to 0·11), P = 0·158], FT3 [β = -0·25 (-0·85 to 0·34), P = 0·403], FT4 [β = 0·08 (-0·91 to 1·07), P = 0·876] and XCI pattern. Essentially similar results were found in the within-pair analysis. Controlling for confounders such as age, body mass index, smoking and zygosity did not change the findings. CONCLUSIONS In a sample of female twins, we found no evidence of a relationship between XCI pattern and PTA set point.
Collapse
Affiliation(s)
- Thomas H Brix
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark.
| | | | | | | |
Collapse
|
47
|
Ianculescu AG, Friesema ECH, Visser TJ, Giacomini KM, Scanlan TS. Transport of thyroid hormones is selectively inhibited by 3-iodothyronamine. MOLECULAR BIOSYSTEMS 2010; 6:1403-10. [PMID: 20358049 PMCID: PMC3257980 DOI: 10.1039/b926588k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thyroid hormone transporters are responsible for the cellular uptake of thyroid hormones, which is a prerequisite for their subsequent metabolism and action at nuclear thyroid hormone receptors. A recently discovered thyroid hormone derivative, 3-iodothyronamine (T(1)AM), has distinct biological effects that are opposite those of thyroid hormone. Here we investigate the effects of T(1)AM on thyroid hormone transporters using COS-1 cells transfected with the multispecific organic anion transporting polypeptides (OATPs) 1A2, 1B3, and 1C1, as well as the specific thyroid hormone transporters MCT8 and MCT10, and show that T(1)AM displays differential inhibition of T(3) and T(4) cellular uptake by these transporters. T(1)AM inhibits T(3) and T(4) transport by OATP1A2 with IC(50) values of 0.27 and 2.1 microM, respectively. T(4) transport by OATP1C1, which is thought to play a key role in thyroid hormone transport across the blood-brain barrier, is inhibited by T(1)AM with an IC(50) of 4.8 microM. T(1)AM also inhibits both T(3) and T(4) uptake via MCT8, the most specific thyroid hormone transporter identified to date, with IC(50) values of 95 and 31 microM, respectively. By contrast, T(1)AM has no effect on thyroid hormone transport by OATP1B3 and MCT10. Given that OATP1A2, OATP1C1, and MCT8 are all present in the brain, T(1)AM may play an important role in modulating thyroid hormone delivery and activity in specific target regions in the central nervous system.
Collapse
Affiliation(s)
- Alexandra G. Ianculescu
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California, USA
| | - Edith C. H. Friesema
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Kathleen M. Giacomini
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California, USA
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
48
|
Visser WE, Friesema ECH, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 2010; 25:1-14. [PMID: 20660303 DOI: 10.1210/me.2010-0095] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The effects of thyroid hormone (TH) on development and metabolism are exerted at the cellular level. Metabolism and action of TH take place intracellularly, which require transport of the hormone across the plasma membrane. This process is mediated by TH transporter proteins. Many TH transporters have been identified at the molecular level, although a few are classified as specific TH transporters, including monocarboxylate transporter (MCT)8, MCT10, and organic anion-transporting polypeptide 1C1. The importance of TH transporters for physiology has been illustrated dramatically by the causative role of MCT8 mutations in males with psychomotor retardation and abnormal serum TH concentrations. Although Mct8 knockout animals have provided insight in the mechanisms underlying parts of the endocrine phenotype, they lack obvious neurological abnormalities. Thus, the pathogenesis of the neurological abnormalities in males with MCT8 mutations is not fully understood. The prospects of identifying other transporters and transporter-based syndromes promise an exciting future in the TH transporter field.
Collapse
Affiliation(s)
- W Edward Visser
- Erasmus University Medical Center, Molewaterplein 50, Rotterdam, The Netherlands
| | | | | |
Collapse
|
49
|
Zhang H, Song YN, Liu WG, Guo XL, Yu LG. Regulation and role of organic anion-transporting polypeptides (OATPs) in drug delivery at the choroid plexus. J Clin Neurosci 2010; 17:679-84. [DOI: 10.1016/j.jocn.2009.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/28/2009] [Accepted: 11/10/2009] [Indexed: 11/25/2022]
|
50
|
Visser WE, Wong WS, van Mullem AAA, Friesema ECH, Geyer J, Visser TJ. Study of the transport of thyroid hormone by transporters of the SLC10 family. Mol Cell Endocrinol 2010; 315:138-45. [PMID: 19682536 DOI: 10.1016/j.mce.2009.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/22/2009] [Accepted: 08/05/2009] [Indexed: 11/21/2022]
Abstract
Transport of (sulfated) iodothyronines across the plasma membrane is required for their intracellular metabolism. Rat Na(+)/taurocholate cotransporting polypeptide (Ntcp; Slc10a1) has been identified as an important transporter protein. We demonstrate that among the 7 members of the solute carrier family SLC10, only human SLC10A1 mediates sodium-dependent transport of the iodothyronine T4 and iodothyronine sulfates T3S and T4S. In contrast to SLC10A2-7, cells co-expressing SLC10A1 and the deiodinase D1 demonstrate a dramatic increase in T3S and T4S metabolism. The SLC10A1 substrates taurocholate, DHEAS and E3S inhibit T3S and T4S transport. Furthermore, co-transfection of SLC10A1 with CRYM, a well-known intracellular iodothyronine-binding protein, results in an enhanced intracellular accumulation of T3S and T4S, indicating that CRYM binds iodothyronine sulfates. The present findings indicate that the liver-specific transporter SLC10A1 transports (sulfated) iodothyronines, thereby increasing their intracellular availability. Therefore, SLC10A1 may fulfill a critical step in providing liver D1 with iodothyronine sulfates for rapid degradation.
Collapse
Affiliation(s)
- W Edward Visser
- Department of Internal Medicine, Erasmus University Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|