1
|
Barsky ST, Monks DA. The role of androgens and global and tissue-specific androgen receptor expression on body composition, exercise adaptation, and performance. Biol Sex Differ 2025; 16:28. [PMID: 40269952 PMCID: PMC12016402 DOI: 10.1186/s13293-025-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/23/2025] [Indexed: 04/25/2025] Open
Abstract
Gonadal testosterone stimulates skeletal muscle anabolism and contributes to sexually differentiated adipose distribution through incompletely understood mechanisms. Observations in humans and animal models have indicated a major role for androgen receptor (AR) in mediating sex differences in body composition throughout the lifespan. Traditional surgical, genetic and pharmacological studies have tested systemic actions of circulating androgens, and more recent transgenic approaches have allowed for tests of AR gene function in specific androgen responsive niches contributing to body composition, including: skeletal muscle and surrounding interstitial cells, white and brown adipose, as well as trabecular and cortical bone. Less well understood is how these functions of gonadal androgens interact with exercise. Here, we summarize the understood mechanisms of action of AR and its interactions with exercise, specifically on outcomes of body composition and muscle function, and the global- and tissue-specific role of AR in regulating skeletal muscle, adipose, and bone morphology. Additionally, we describe the known effects of androgen and AR manipulation on female body composition, muscle morphology, and sport performance, while highlighting a need for greater inclusion of female subjects in human and animal muscle physiology and endocrinology research.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, ON, Canada
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, 3359 Mississauga Road North, Deerfield Hall DH4098, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Giulia G, Ferdinando DS, Carmela S, Rosa D, Carmine L, Pia G, Antimo M, Gabriella C, Marzia DD. Androgens as the "old age stick" in skeletal muscle. Cell Commun Signal 2025; 23:167. [PMID: 40181329 PMCID: PMC11969971 DOI: 10.1186/s12964-025-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Aging is associated with a reduction in skeletal muscle fiber size and number, leading to a decline in physical function and structural integrity-a condition known as sarcopenia. This syndrome is further characterized by elevated levels of inflammatory mediators that promote skeletal muscle catabolism and reduce anabolic signaling.Androgens are involved in various biological processes, including the maintenance, homeostasis and trophism of skeletal muscle mass. The decline in androgen levels contributes, indeed, to androgen deficiency in aging people. Such clinical syndrome exacerbates the muscle loss and fosters sarcopenia progression. Nevertheless, the mechanism(s) by which the reduction in androgen levels influences sarcopenia risk and progression remains debated and the therapeutic benefits of androgen-based interventions are still unclear. Given the significant societal and economic impacts of sarcopenia, investigating the androgen/androgen receptor axis in skeletal muscle function is essential to enhance treatment efficacy and reduce healthcare costs.This review summarizes current knowledge on the role of male hormones and their-dependent signaling pathways in sarcopenia. We also highlight the cellular and molecular features of this condition and discuss the mechanisms by which androgens preserve the muscle homeostasis. The pros and cons of clinical strategies and emerging therapies aimed at mitigating muscle degeneration and aging-related decline are also presented.
Collapse
Affiliation(s)
- Gentile Giulia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - De Stefano Ferdinando
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Sorrentino Carmela
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - D'Angiolo Rosa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Lauretta Carmine
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Giovannelli Pia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Migliaccio Antimo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Castoria Gabriella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Di Donato Marzia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy.
| |
Collapse
|
3
|
Oura M, Son BK, Song Z, Toyoshima K, Nanao-Hamai M, Ogawa S, Akishita M. Testosterone/androgen receptor antagonizes immobility-induced muscle atrophy through Inhibition of myostatin transcription and inflammation in mice. Sci Rep 2025; 15:10568. [PMID: 40148525 PMCID: PMC11950163 DOI: 10.1038/s41598-025-95115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Sarcopenia is caused by excessive muscle protein degradation owing to various factors, including disuse. Although testosterone supplementation is an effective treatment, the underlying molecular mechanisms, particularly the role of the androgen receptor (AR), remain unclear. In this study, we examined the preventive actions of testosterone/AR against muscle atrophy in a murine model of immobilization-induced muscle atrophy. The bilateral hindlimbs of 8-week-old male C57BL/6J mice were immobilized using a wire. Testosterone deficiency and supplementation (50 µg/mL) were conducted by castration and intraperitoneal injection (twice a week for a month), respectively. The results showed a remarkable decline in muscle mass and strength after wire-induced immobilization for 14 days. The expression of muscle atrophic factors (Atrogin1 and MuRF1) and inflammatory factors (F4/80 and interleukin-6 (IL-6)) significantly increased (p < 0.001). Notably, muscular AR expression significantly decreased, whereas myostatin and CCAAT/enhancer-binding protein delta (C/EBPδ), a transcriptional activator of myostatin, were significantly elevated (p < 0.05). After castration, AR expression further decreased, and muscular changes with wire-induced immobilization deteriorated. These exacerbations were completely ameliorated by testosterone supplementation and AR upregulation. Our study provides important therapeutic insights into testosterone/AR in muscular atrophy caused by immobilization and shows that muscular AR in a testosterone-dependent manner regulates C/EBPδ/myostatin and inflammation.
Collapse
Affiliation(s)
- Miya Oura
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Bo-Kyung Son
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Institute for Future Initiatives, Institute of Gerontology, The University of Tokyo, Engineering 8th Building 709, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Institute of Gerontology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Zehan Song
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koichi Toyoshima
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Michiko Nanao-Hamai
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
4
|
Sakai H, Uno H, Yamakawa H, Tanaka K, Ikedo A, Uezumi A, Ohkawa Y, Imai Y. The androgen receptor in mesenchymal progenitors regulates skeletal muscle mass via Igf1 expression in male mice. Proc Natl Acad Sci U S A 2024; 121:e2407768121. [PMID: 39292748 PMCID: PMC11441553 DOI: 10.1073/pnas.2407768121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Androgens exert their effects primarily by binding to the androgen receptor (AR), a ligand-dependent nuclear receptor. While androgens have anabolic effects on skeletal muscle, previous studies reported that AR functions in myofibers to regulate skeletal muscle quality, rather than skeletal muscle mass. Therefore, the anabolic effects of androgens are exerted via nonmyofiber cells. In this context, the cellular and molecular mechanisms of AR in mesenchymal progenitors, which play a crucial role in maintaining skeletal muscle homeostasis, remain largely unknown. In this study, we demonstrated expression of AR in mesenchymal progenitors and found that targeted AR ablation in mesenchymal progenitors reduced limb muscle mass in mature adult, but not young or aged, male mice, although fatty infiltration of muscle was not affected. The absence of AR in mesenchymal progenitors led to remarkable perineal muscle hypotrophy, regardless of age, due to abnormal regulation of transcripts associated with cell death and extracellular matrix organization. Additionally, we revealed that AR in mesenchymal progenitors regulates the expression of insulin-like growth factor 1 (Igf1) and that IGF1 administration prevents perineal muscle atrophy in a paracrine manner. These findings indicate that the anabolic effects of androgens regulate skeletal muscle mass via, at least in part, AR signaling in mesenchymal progenitors.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime791-0295, Japan
| | - Hideaki Uno
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime791-0295, Japan
| | - Harumi Yamakawa
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime791-0295, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka812-0054, Japan
| | - Aoi Ikedo
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime791-0295, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka812-0054, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka812-0054, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime791-0295, Japan
| |
Collapse
|
5
|
Sakai H, Imai Y. Cell-specific functions of androgen receptor in skeletal muscles. Endocr J 2024; 71:437-445. [PMID: 38281756 DOI: 10.1507/endocrj.ej23-0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Androgens play a vital role not only in promoting the development of male sexual characteristics but also in exerting diverse physiological effects, including the regulation of skeletal muscle growth and function. Given that the effects of androgens are mediated through androgen receptor (AR) binding, an understanding of AR functionality is crucial for comprehending the mechanisms of androgen action on skeletal muscles. Drawing from insights gained using conditional knockout mouse models facilitated by Cre/loxP technology, we review the cell-specific functions of AR in skeletal muscles. We focus on three specific cell populations expressing AR within skeletal muscles: skeletal muscle cells, responsible for muscle contraction; satellite cells, which are essential stem cells contributing to the growth and regeneration of skeletal muscles; and mesenchymal progenitors, situated in interstitial areas and playing a crucial role in muscle homeostasis. Furthermore, the indirect effects of androgens on skeletal muscle through extra-muscle tissue are essential, especially for the regulation of skeletal muscle mass. The regulation of genes by AR varies across different cell types and contexts, including homeostasis, regeneration and hypertrophy of skeletal muscles. The varied mechanisms orchestrated by AR collectively influence the physiology of skeletal muscles.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| |
Collapse
|
6
|
Barsky ST, Monks DA. Lifespan Effects of Muscle-Specific Androgen Receptor Overexpression on Body Composition of Male and Female Rats. Endocrinology 2024; 165:bqae012. [PMID: 38301268 DOI: 10.1210/endocr/bqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Androgenic actions of gonadal testosterone are thought to be a major mechanism promoting sex differences in body composition across the lifespan. However, this inference is based on studies of androgen receptor (AR) function in late adolescent or emerging adult rodents. Here we assess body composition and AR expression in skeletal muscle of rats at defined ages, comparing wild-type (WT) to transgenic human skeletal actin-driven AR overexpression (HSAAR) rats which overexpress AR in skeletal muscle. Male and female HSAAR and WT Sprague Dawley rats (N = 288) underwent dual-energy x-ray absorptiometry (DXA) scanning and tissue collection at postnatal day (PND) 1, 10, 21, 42, 70, 183, 243, and 365. Expected sex differences in body composition and muscle mass largely onset with puberty (PND-21), with no associated changes to skeletal muscle AR protein. In adulthood, HSAAR increased tibialis anterior (TA) and extensor digitorum longus mass in males, and reduced the expected gain in gonadal fat mass in both sexes. In WT rats, AR protein was reduced in soleus, but not TA, throughout life. Nonetheless, soleus AR protein expression was greater in male rats than female rats at all ages of sexual development, yet only at PND-70 in TA. Overall, despite muscle AR overexpression effects, results are inconsistent with major sex differences in body composition during sexual development being driven by changes in muscle AR, rather suggesting that changes in ligand promote sexual differentiation of body composition during pubertal timing. Nonetheless, increased skeletal muscle AR in adulthood can be sufficient to increase muscle mass in males, and reduce adipose in both sexes.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
7
|
Hosoi T, Yakabe M, Hashimoto S, Akishita M, Ogawa S. The roles of sex hormones in the pathophysiology of age-related sarcopenia and frailty. Reprod Med Biol 2024; 23:e12569. [PMID: 38476959 PMCID: PMC10927916 DOI: 10.1002/rmb2.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Background Sarcopenia is an age-related condition characterized by a progressive and systemic decline in skeletal muscle mass, quality, and strength. The incidence of sarcopenia contains sex-specific aspects, indicating the contribution of sex hormones to its pathophysiology. This review focuses on changing trends in sarcopenia, discusses alterations in definitions and diagnostic criteria, and emphasizes the association between sarcopenia and sex hormones. Methods A literature search was performed on PubMed for related articles published between 1997 and December 2023 using appropriate keywords. Main Findings Results Advances in research have emphasized the significance of muscle quality and strength over muscle mass, resulting in new diagnostic criteria for sarcopenia. Androgens demonstrated anabolic effects on skeletal muscles and played a significant role in the pathophysiology of sarcopenia. In clinical settings, androgen replacement therapy has exhibited certain positive outcomes for treating sarcopenia, despite concerns about potential side effects. Conversely, estrogen is involved in skeletal muscle maintenance, but the detailed mechanisms remain unclear. Moreover, results regarding the clinical application of estrogen replacement therapy for treating sarcopenia remained inconsistent. Conclusion The elucidation of molecular mechanisms that involve sex hormones is eagerly awaited for novel therapeutic interventions for sarcopenia.
Collapse
Affiliation(s)
- Tatsuya Hosoi
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Seiji Hashimoto
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| |
Collapse
|
8
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
9
|
Barsky ST, Monks DA. Androgen action on myogenesis throughout the lifespan; comparison with neurogenesis. Front Neuroendocrinol 2023; 71:101101. [PMID: 37669703 DOI: 10.1016/j.yfrne.2023.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023]
Abstract
Androgens' pleiotropic actions in promoting sex differences present not only a challenge to providing a comprehensive account of their function, but also an opportunity to gain insights by comparing androgenic actions across organ systems. Although often overlooked by neuroscientists, skeletal muscle is another androgen-responsive organ system which shares with the nervous system properties of electrochemical excitability, behavioral relevance, and remarkable capacity for adaptive plasticity. Here we review androgenic regulation of mitogenic plasticity in skeletal muscle with the goal of identifying areas of interest to those researching androgenic mechanisms mediating sexual differentiation of neurogenesis. We use an organizational-activational framework to relate broad areas of similarity and difference between androgen effects on mitogenesis in muscle and brain throughout the lifespan, from early organogenesis, through pubertal organization, adult activation, and aging. The focus of the review is androgenic regulation of muscle-specific stem cells (satellite cells), which share with neural stem cells essential functions in development, plasticity, and repair, albeit with distinct, muscle-specific features. Also considered are areas of paracrine and endocrine interaction between androgen action on muscle and nervous system, including mediation of neural plasticity of innervating and distal neural populations by muscle-produced trophic factors.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario, Canada.
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
10
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
11
|
Gordon BS, Burns PK, Laskin GR, Dunlap KR, Boykin JR, Rossetti ML, Fukuda DH, Steiner JL. SIRT1 induction in the skeletal muscle of male mice partially preserves limb muscle mass but not contractile force in response to androgen deprivation. J Physiol 2023; 601:3885-3903. [PMID: 37531448 DOI: 10.1113/jp284869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
In males, the factors that decrease limb muscle mass and strength in response to androgen deprivation are largely unknown. Sirtuin1 (SIRT1) protein levels are lower in the limb muscle of male mice subjected to androgen deprivation. The present study aimed to assess whether SIRT1 induction preserved limb muscle mass and force production in response to androgen deprivation. Physically mature male mice containing an inducible muscle-specific SIRT1 transgene were subjected to a sham or castration surgery and compared to sham and castrated male mice where the SIRT1 transgene was not induced. SIRT1 induction partially preserved whole-body lean mass, tibialis anterior (TA) mass and triceps surae muscle mass in response to castration. Further analysis of the TA muscle showed that muscle-specific SIRT1 induction partially preserved limb muscle soluble protein content and fibre cross-sectional area. Unilateral AAV9-mediated SIRT1 induction in the TA muscle showed that SIRT1 partially preserved mass by acting directly in the muscle. Despite those positive outcomes to limb muscle morphology, muscle-specific SIRT1 induction did not preserve the force generating capacity of the TA or triceps surae muscles. Interestingly, SIRT1 induction in females did not alter limb muscle mass or limb muscle strength even though females have naturally low androgen levels. SIRT1 also did not alter the androgen-mediated increase in limb muscle mass or strength in females. In all, these data suggest that decreases in SIRT1 protein in the limb muscle of males may partially contribute to the loss of limb muscle mass in response to androgen deprivation. KEY POINTS: SIRT1 induction in skeletal muscle of male mice subjected to androgen deprivation partially preserved limb muscle mass and fibre cross-sectional area. SIRT1 induction in skeletal muscle of male mice subjected to androgen deprivation did not prevent preserve limb muscle force generating capacity. SIRT1 induction in skeletal muscle of females did not alter baseline limb muscle mass, nor did it affect the androgen-mediated increase in limb muscle mass.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Patrick K Burns
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Grant R Laskin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Jake R Boykin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Michael L Rossetti
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - David H Fukuda
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
12
|
Barsky ST, Monks DA. Myocytic androgen receptor overexpression does not affect sex differences in adaptation to chronic endurance exercise. Biol Sex Differ 2022; 13:59. [PMID: 36274144 PMCID: PMC9590152 DOI: 10.1186/s13293-022-00471-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
Muscle-specific androgen receptor (AR) overexpression (HSAAR transgene) in sedentary male rats results in reduced adiposity, increased mitochondrial enzyme activity, and selective increase in Type 2b myofiber size. Here, we tested chronic endurance exercise interactions with this phenotype in both sexes. Across 9 weeks, rats ran 5×/week on motorized running wheels at increasing speeds and durations. Exercise reduced fat mass in all groups, but sex affected endurance exercise outcomes such that absolute lean mass increased only in females and total body mass decreased only in males. Expected sex differences were observed with males exhibiting greater total body and lean mass; absolute and relative fat mass; bone mineral density; extensor digitorum longus (EDL) myofiber size and glycolytic proportion; but lesser Type 2a and Type 1 myosin expression in tibialis anterior. Observed HSAAR outcomes were not altered by sex, with transgenic rats having greater lean mass, Type 2a myosin expression in soleus, and glycolytic myofiber size in EDL. Tibialis AR content was independently affected by sex, HSAAR, and exercise. No sex differences were observed in tibialis AR expression in wild-type rats, although HSAAR males had greater AR content than HSAAR females. We identified a moderate correlation between AR expression and glycolytic myofiber size, but not whole-body composition. Overall, results suggest myocytic AR overexpression and chronic exercise, despite sharing a similar phenotype to adaptation, are mediated by distinct mechanisms. Further, this study illustrates sex differences in adaptation to chronic endurance exercise, and suggests sex-similarity in the relationship between muscle AR and exercise response. Adaptations in bone, lean, and total mass after forced endurance exercise are sex-dependent in rats. Sex differences in muscle fiber-type size and proportion, lean body mass, and bone density are independent of exercise in rats. Myocytic AR overexpression promotes lean body mass and glycolytic myofiber size in both sexes. Skeletal muscle AR protein is elevated by chronic endurance exercise in rats, and these changes in AR content are correlated with improved glycolytic myofiber size.
Collapse
|
13
|
Basak D, Gregori L, Johora F, Deb S. Preclinical and Clinical Research Models of Prostate Cancer: A Brief Overview. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101607. [PMID: 36295041 PMCID: PMC9605520 DOI: 10.3390/life12101607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major public health concern worldwide. In this narrative review, we have summarized the characteristics of major in vitro and in vivo PCa models including their utility in developing treatment strategies. Androgens, particularly, testosterone and dihydrotestosterone (DHT) activate the androgen receptor (AR) signaling pathway that facilitates the development and progression of castration resistant PCa. Several enzymes namely, CYP17A1, HSD17B, and SRD5A are essential to furnishing DHT from dehydroepiandrosterone in the classical pathway while DHT is formed from androstanediol in the backdoor pathway. The advancement in delineating the molecular heterogeneity of PCa has been possible through the development of several in vitro and in vivo research models. Generally, tissue culture models are advantageous to understand PCa biology and investigate the efficacy and toxicity of novel agents; nevertheless, animal models are indispensable to studying the PCa etiology and treatment since they can simulate the tumor microenvironment that plays a central role in initiation and progression of the disease. Moreover, the availability of several genetically engineered mouse models has made it possible to study the metastasis process. However, the conventional models are not devoid of limitations. For example, the lack of heterogeneity in tissue culture models and the variation of metastatic characteristics in xenograft models are obviously challenging. Additionally, due to the racial and ethnic disparities in PCa pathophysiology, a new model that can represent PCa encompassing different ethnicities is urgently needed. New models should continue to evolve to address the genetic and molecular complexities as well as to further elucidate the finer details of the steroidogenic pathway associated with PCa.
Collapse
|
14
|
Ipulan-Colet LA. Sexual dimorphism through androgen signaling; from external genitalia to muscles. Front Endocrinol (Lausanne) 2022; 13:940229. [PMID: 35983512 PMCID: PMC9379613 DOI: 10.3389/fendo.2022.940229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphisms can be seen in many organisms with some exhibiting subtle differences while some can be very evident. The difference between male and female can be seen on the morphological level such as discrepancies in body mass, presence of body hair in distinct places, or through the presence of specific reproductive structures. It is known that the development of the reproductive structures is governed by hormone signaling, most commonly explained through the actions of androgen signaling. The developmental program of the male and female external genitalia involves a common anlage, the genital tubercle or GT, that later on develop into a penis and clitoris, respectively. Androgen signaling involvement can be seen in the different tissues in the GT that express Androgen receptor and the different genes that are regulated by androgen in the mesenchyme and endoderm component of the GT. Muscles are also known to be responsive to androgen signaling with male and female muscles exhibiting different capabilities. However, the occurrence of sexual dimorphism in muscle development is unclear. In this minireview, a summary on the role of androgen in the sexually dimorphic development of the genital tubercle was provided. This was used as a framework on analyzing the different mechanism employed by androgen signaling to regulate the sexual dimorphism in muscle development.
Collapse
|
15
|
Anabolic Androgenic Steroids in Orthopaedic Surgery: Current Concepts and Clinical Applications. J Am Acad Orthop Surg Glob Res Rev 2022; 6:01979360-202201000-00001. [PMID: 34982051 PMCID: PMC8735789 DOI: 10.5435/jaaosglobal-d-21-00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Despite the well-documented effects of testosterone and its synthetic derivatives—collectively termed anabolic androgenic steroids (AASs)—on the musculoskeletal system, the therapeutic use of these agents has received limited investigation within the field of orthopaedic surgery. In the last 2 decades, preclinical and clinical research has started to identify promising applications of the short-term use of AASs in the perioperative period. There is evidence to suggest that AASs may improve postoperative recovery after anterior cruciate ligament reconstruction and total joint arthroplasty. In addition, AASs may augment the biological healing environment in specific clinical scenarios including muscle injury, fracture repair, and rotator cuff repair. Current literature fails to present strong evidence for or against the use of AASs in orthopaedics, but there is continuous research on this topic. The purpose of this study was to provide a comprehensive overview of the current status of AAS applications in orthopaedic surgery, with an emphasis on preclinical data, clinical studies, and future directions.
Collapse
|
16
|
Rossetti ML, Dunlap KR, Salazar G, Hickner RC, Kim JS, Chase BP, Miller BF, Gordon BS. Systemic delivery of a mitochondria targeted antioxidant partially preserves limb muscle mass and grip strength in response to androgen deprivation. Mol Cell Endocrinol 2021; 535:111391. [PMID: 34245847 PMCID: PMC8403153 DOI: 10.1016/j.mce.2021.111391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Muscle mass is important for health. Decreased testicular androgen production (hypogonadism) contributes to the loss of muscle mass, with loss of limb muscle being particularly debilitating. Androgen replacement is the only pharmacological treatment, which may not be feasible for everyone. Prior work showed that markers of reactive oxygen species and markers of mitochondrial degradation pathways were higher in the limb muscle following castration. Therefore, we tested whether an antioxidant preserved limb muscle mass in male mice subjected to a castration surgery. Subsets of castrated mice were treated with resveratrol (a general antioxidant) or MitoQ (a mitochondria targeted antioxidant). Relative to the non-castrated control mice, lean mass, limb muscle mass, and grip strength were partially preserved only in castrated mice treated with MitoQ. Independent of treatment, markers of mitochondrial degradation pathways remained elevated in all castrated mice. Therefore, a mitochondrial targeted antioxidant may partially preserve limb muscle mass in response to hypogonadism.
Collapse
Affiliation(s)
- Michael L Rossetti
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Robert C Hickner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA; Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Jeong-Su Kim
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA; Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Bryant P Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA; Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
17
|
Hahn VS, Zhang KW, Sun L, Narayan V, Lenihan DJ, Ky B. Heart Failure With Targeted Cancer Therapies: Mechanisms and Cardioprotection. Circ Res 2021; 128:1576-1593. [PMID: 33983833 DOI: 10.1161/circresaha.121.318223] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncology has seen growing use of newly developed targeted therapies. Although this has resulted in dramatic improvements in progression-free and overall survival, challenges in the management of toxicities related to longer-term treatment of these therapies have also become evident. Although a targeted approach often exploits the differences between cancer cells and noncancer cells, overlap in signaling pathways necessary for the maintenance of function and survival in multiple cell types has resulted in systemic toxicities. In particular, cardiovascular toxicities are of important concern. In this review, we highlight several targeted therapies commonly used across a variety of cancer types, including HER2 (human epidermal growth factor receptor 2)+ targeted therapies, tyrosine kinase inhibitors, immune checkpoint inhibitors, proteasome inhibitors, androgen deprivation therapies, and MEK (mitogen-activated protein kinase kinase)/BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors. We present the oncological indications, heart failure incidence, hypothesized mechanisms of cardiotoxicity, and potential mechanistic rationale for specific cardioprotective strategies.
Collapse
Affiliation(s)
- Virginia S Hahn
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD (V.S.H.)
| | - Kathleen W Zhang
- Cardio-Oncology Center of Excellence, Washington University, St Louis, MO (K.W.Z., D.J.L.)
| | - Lova Sun
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Vivek Narayan
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel J Lenihan
- Cardio-Oncology Center of Excellence, Washington University, St Louis, MO (K.W.Z., D.J.L.)
| | - Bonnie Ky
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Division of Cardiovascular Medicine (B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Division of Biostatistics (B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
18
|
Gordon BS, Rossetti ML, Casero RA. Spermidine is not an independent factor regulating limb muscle mass in mice following androgen deprivation. Appl Physiol Nutr Metab 2021; 46:452-460. [PMID: 33125852 DOI: 10.1139/apnm-2020-0404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Maintaining a critical amount of skeletal muscle mass is linked to reduced morbidity and mortality. In males, testicular androgens regulate muscle mass with a loss of androgens being critical as it is associated with muscle atrophy. Atrophy of the limb muscles is particularly important, but the pathways by which androgens regulate limb muscle mass remain equivocal. We used microarray analysis to identify changes to genes involved with polyamine metabolism in the tibialis anterior (TA) muscle of castrated mice. Of the polyamines, the concentration of spermidine (SPD) was significantly reduced in the TA of castrated mice. To assess whether SPD was an independent factor by which androgens regulate limb muscle mass, we treated castrated mice with SPD for 8 weeks and compared them with sham operated mice. Though this treatment paradigm effectively restored SPD concentrations in the TA muscles of castrated mice, mass of the limb muscles (i.e., TA, gastrocnemius, plantaris, and soleus) were not increased to the levels observed in sham animals. Consistent with those findings, muscle force production was also not increased by SPD treatment. Overall, these data demonstrate for the first time that SPD is not an independent factor by which androgens regulate limb skeletal muscle mass. Novelty: Polyamines regulate growth in various cells/tissues. Spermidine concentrations are reduced in the limb skeletal muscle following androgen depletion. Restoring spermidine concentrations in the limb skeletal muscle does not increase limb muscle mass or force production.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Michael L Rossetti
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA
| | - Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
19
|
Tomas D, McLeod VM, Chiam MDF, Wanniarachchillage N, Boon WC, Turner BJ. Dissociation of disease onset, progression and sex differences from androgen receptor levels in a mouse model of amyotrophic lateral sclerosis. Sci Rep 2021; 11:9255. [PMID: 33927243 PMCID: PMC8085012 DOI: 10.1038/s41598-021-88415-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder caused by loss of motor neurons. ALS incidence is skewed towards males with typically earlier age of onset and limb site of onset. The androgen receptor (AR) is the major mediator of androgen effects in the body and is present extensively throughout the central nervous system, including motor neurons. Mutations in the AR gene lead to selective lower motor neuron degeneration in male spinal bulbar muscular atrophy (SBMA) patients, emphasising the importance of AR in maintaining motor neuron health and survival. To evaluate a potential role of AR in onset and progression of ALS, we generated SOD1G93A mice with either neural AR deletion or global human AR overexpression. Using a Cre-LoxP conditional gene knockout strategy, we report that neural deletion of AR has minimal impact on the disease course in SOD1G93A male mice. This outcome was potentially confounded by the metabolically disrupted Nestin-Cre phenotype, which likely conferred the profound lifespan extension observed in the SOD1G93A double transgenic male mice. In addition, overexpression of human AR produced no benefit to disease onset and progression in SOD1G93A mice. In conclusion, the disease course of SOD1G93A mice is independent of AR expression levels, implicating other mechanisms involved in mediating the sex differences in ALS. Our findings using Nestin-Cre mice, which show an inherent metabolic phenotype, led us to hypothesise that targeting hypermetabolism associated with ALS may be a more potent modulator of disease, than AR in this mouse model.
Collapse
Affiliation(s)
- Doris Tomas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Victoria M McLeod
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Mathew D F Chiam
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nayomi Wanniarachchillage
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Wah C Boon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
- Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, WA, 6150, Australia.
| |
Collapse
|
20
|
Coolen RL, Cambier JC, Spantidea PI, van Asselt E, Blok BFM. Androgen receptors in areas of the spinal cord and brainstem: A study in adult male cats. J Anat 2021; 239:125-135. [PMID: 33619726 PMCID: PMC8197961 DOI: 10.1111/joa.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Sex hormones, including androgens and estrogens, play an important role in autonomic, reproductive and sexual behavior. The areas that are important in these behaviors lie within the spinal cord and brainstem. Relevant dysfunctional behavior in patients with altered androgen availability or androgen receptor sensitivity might be explained by the distribution of androgens and their receptors in the central nervous system. We hypothesize that autonomic dysfunction is correlated with the androgen sensitivity of spinal cord and brainstem areas responsible for autonomic functions. In this study, androgen receptor immunoreactive (AR‐IR) nuclei in the spinal cord and brainstem were studied using the androgen receptor antibody PG21 in four uncastrated young adult male cats. A dense distribution of AR‐IR nuclei was detected in the superior layers of the dorsal horn, including lamina I. Intensely stained nuclei, but less densely distributed, were found in lamina X and preganglionic sympathetic and parasympathetic cells of the intermediolateral cell column. Areas in the caudal brainstem showing a high density of AR‐IR nuclei included the area postrema, the dorsal motor vagus nucleus and the retrotrapezoid nucleus. More cranially, the central linear nucleus in the pons contained a dense distribution of AR‐IR nuclei. The mesencephalic periaqueductal gray (PAG) showed a dense distribution of AR‐IR nuclei apart from the most central part of the PAG directly adjacent to the ependymal lining. Other areas in the mesencephalon with a dense distribution of AR‐IR nuclei were the dorsal raphe nucleus, the retrorubral nucleus, the substantia nigra and the ventral tegmental area of Tsai. It is concluded that AR‐IR nuclei are located in specific areas of the central nervous system that are involved in the control of sensory function and autonomic behavior. Furthermore, damage of these AR‐IR areas might explain related dysfunction in humans.
Collapse
Affiliation(s)
- Rosa L Coolen
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Els van Asselt
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bertil F M Blok
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Kraemer WJ, Ratamess NA, Hymer WC, Nindl BC, Fragala MS. Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth With Exercise. Front Endocrinol (Lausanne) 2020; 11:33. [PMID: 32158429 PMCID: PMC7052063 DOI: 10.3389/fendo.2020.00033] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Hormones are largely responsible for the integrated communication of several physiological systems responsible for modulating cellular growth and development. Although the specific hormonal influence must be considered within the context of the entire endocrine system and its relationship with other physiological systems, three key hormones are considered the "anabolic giants" in cellular growth and repair: testosterone, the growth hormone superfamily, and the insulin-like growth factor (IGF) superfamily. In addition to these anabolic hormones, glucocorticoids, mainly cortisol must also be considered because of their profound opposing influence on human skeletal muscle anabolism in many instances. This review presents emerging research on: (1) Testosterone signaling pathways, responses, and adaptations to resistance training; (2) Growth hormone: presents new complexity with exercise stress; (3) Current perspectives on IGF-I and physiological adaptations and complexity these hormones as related to training; and (4) Glucocorticoid roles in integrated communication for anabolic/catabolic signaling. Specifically, the review describes (1) Testosterone as the primary anabolic hormone, with an anabolic influence largely dictated primarily by genomic and possible non-genomic signaling, satellite cell activation, interaction with other anabolic signaling pathways, upregulation or downregulation of the androgen receptor, and potential roles in co-activators and transcriptional activity; (2) Differential influences of growth hormones depending on the "type" of the hormone being assayed and the magnitude of the physiological stress; (3) The exquisite regulation of IGF-1 by a family of binding proteins (IGFBPs 1-6), which can either stimulate or inhibit biological action depending on binding; and (4) Circadian patterning and newly discovered variants of glucocorticoid isoforms largely dictating glucocorticoid sensitivity and catabolic, muscle sparing, or pathological influence. The downstream integrated anabolic and catabolic mechanisms of these hormones not only affect the ability of skeletal muscle to generate force; they also have implications for pharmaceutical treatments, aging, and prevalent chronic conditions such as metabolic syndrome, insulin resistance, and hypertension. Thus, advances in our understanding of hormones that impact anabolic: catabolic processes have relevance for athletes and the general population, alike.
Collapse
Affiliation(s)
- William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: William J. Kraemer
| | - Nicholas A. Ratamess
- Department of Health and Exercise Science, The College of New Jersey, Ewing, NJ, United States
| | - Wesley C. Hymer
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Bradley C. Nindl
- Department of Sports Medicine, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
22
|
Rossetti ML, Esser KA, Lee C, Tomko RJ, Eroshkin AM, Gordon BS. Disruptions to the limb muscle core molecular clock coincide with changes in mitochondrial quality control following androgen depletion. Am J Physiol Endocrinol Metab 2019; 317:E631-E645. [PMID: 31361545 PMCID: PMC6842919 DOI: 10.1152/ajpendo.00177.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Androgen depletion in humans leads to significant atrophy of the limb muscles. However, the pathways by which androgens regulate limb muscle mass are unclear. Our laboratory previously showed that mitochondrial degradation was related to the induction of autophagy and the degree of muscle atrophy following androgen depletion, implying that decreased mitochondrial quality contributes to muscle atrophy. To increase our understanding of androgen-sensitive pathways regulating decreased mitochondrial quality, total RNA from the tibialis anterior of sham and castrated mice was subjected to microarray analysis. Using this unbiased approach, we identified significant changes in the expression of genes that compose the core molecular clock. To assess the extent to which androgen depletion altered the limb muscle clock, the tibialis anterior muscles from sham and castrated mice were harvested every 4 h throughout a diurnal cycle. The circadian expression patterns of various core clock genes and known clock-controlled genes were disrupted by castration, with most genes exhibiting an overall reduction in phase amplitude. Given that the core clock regulates mitochondrial quality, disruption of the clock coincided with changes in the expression of genes involved with mitochondrial quality control, suggesting a novel mechanism by which androgens may regulate mitochondrial quality. These events coincided with an overall increase in mitochondrial degradation in the muscle of castrated mice and an increase in markers of global autophagy-mediated protein breakdown. In all, these data are consistent with a novel conceptual model linking androgen depletion-induced limb muscle atrophy to reduced mitochondrial quality control via disruption of the molecular clock.
Collapse
Affiliation(s)
- Michael L Rossetti
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Alexey M Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Rancho BioSciences, San Diego, California
| | - Bradley S Gordon
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
23
|
Wong AK, Krishnan A, Troyanskaya OG. GIANT 2.0: genome-scale integrated analysis of gene networks in tissues. Nucleic Acids Res 2019; 46:W65-W70. [PMID: 29800226 PMCID: PMC6030827 DOI: 10.1093/nar/gky408] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023] Open
Abstract
GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.
Collapse
Affiliation(s)
- Aaron K Wong
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Arjun Krishnan
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.,Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
24
|
Rubinow KB, Houston B, Wang S, Goodspeed L, Ogimoto K, Morton GJ, McCarty C, Braun RE, Page ST. Androgen receptor deficiency in monocytes/macrophages does not alter adiposity or glucose homeostasis in male mice. Asian J Androl 2019; 20:276-283. [PMID: 29205180 PMCID: PMC5952483 DOI: 10.4103/aja.aja_54_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Androgen deprivation in men leads to increased adiposity, but the mechanisms underlying androgen regulation of fat mass have not been fully defined. Androgen receptor (AR) is expressed in monocytes/macrophages, which are resident in key metabolic tissues and influence energy metabolism in surrounding cells. Male mice bearing a cell-specific knockout of the AR in monocytes/macrophages (M-ARKO) were generated to determine whether selective loss of androgen signaling in these cells would lead to altered body composition. Wild-type (WT) and M-ARKO mice (12–22 weeks of age, n = 12 per group) were maintained on a regular chow diet for 8 weeks and then switched to a high-fat diet for 8 additional weeks. At baseline and on both the regular chow and high-fat diets, no differences in lean mass or fat mass were observed between groups. Consistent with the absence of differential body weight or adiposity, no differences in food intake (3.0 ± 0.5 g per day for WT mice vs 2.8 ± 0.4 g per day for M-ARKO mice) or total energy expenditure (0.6 ± 0.1 Kcal h−1 for WT mice vs 0.5 ± 0.1 Kcal h−1 for M-ARKO mice) were evident between groups during high-fat feeding. Liver weight was greater in M-ARKO than that in WT mice (1.5 ± 0.1 g vs 1.3 ± 0.0 g, respectively, P = 0.02). Finally, M-ARKO mice did not exhibit impairments in glucose tolerance or insulin sensitivity relative to WT mice at any study time point. In aggregate, these findings suggest that AR signaling specifically in monocytes/macrophages does not contribute to the regulation of systemic energy balance, adiposity, or insulin sensitivity in male mice.
Collapse
Affiliation(s)
- Katya B Rubinow
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Barbara Houston
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Shari Wang
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Leela Goodspeed
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kayoko Ogimoto
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Gregory J Morton
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | - Stephanie T Page
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Lam T, McLean M, Hayden A, Poljak A, Cheema B, Gurney H, Stone G, Bahl N, Reddy N, Shahidipour H, Birzniece V. A potent liver-mediated mechanism for loss of muscle mass during androgen deprivation therapy. Endocr Connect 2019; 8:605-615. [PMID: 30991356 PMCID: PMC6510709 DOI: 10.1530/ec-19-0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT Androgen deprivation therapy (ADT) in prostate cancer results in muscular atrophy, due to loss of the anabolic actions of testosterone. Recently, we discovered that testosterone acts on the hepatic urea cycle to reduce amino acid nitrogen elimination. We now hypothesize that ADT enhances protein oxidative losses by increasing hepatic urea production, resulting in muscle catabolism. We also investigated whether progressive resistance training (PRT) can offset ADT-induced changes in protein metabolism. OBJECTIVE To investigate the effect of ADT on whole-body protein metabolism and hepatic urea production with and without a home-based PRT program. DESIGN A randomized controlled trial. PATIENTS AND INTERVENTION Twenty-four prostate cancer patients were studied before and after 6 weeks of ADT. Patients were randomized into either usual care (UC) (n = 11) or PRT (n = 13) starting immediately after ADT. MAIN OUTCOME MEASURES The rate of hepatic urea production was measured by the urea turnover technique using 15N2-urea. Whole-body leucine turnover was measured, and leucine rate of appearance (LRa), an index of protein breakdown and leucine oxidation (Lox), a measure of irreversible protein loss, was calculated. RESULTS ADT resulted in a significant mean increase in hepatic urea production (from 427.6 ± 18.8 to 486.5 ± 21.3; P < 0.01) regardless of the exercise intervention. Net protein loss, as measured by Lox/Lra, increased by 12.6 ± 4.9% (P < 0.05). PRT preserved lean body mass without affecting hepatic urea production. CONCLUSION As early as 6 weeks after initiation of ADT, the suppression of testosterone increases protein loss through elevated hepatic urea production. Short-term PRT was unable to offset changes in protein metabolism during a state of profound testosterone deficiency.
Collapse
Affiliation(s)
- Teresa Lam
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia
- Correspondence should be addressed to T Lam:
| | - Mark McLean
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Amy Hayden
- Department of Radiation Oncology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility and School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Birinder Cheema
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Glenn Stone
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, New South Wales, Australia
| | - Neha Bahl
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Navneeta Reddy
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Haleh Shahidipour
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- School of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Translational Health Research Institute, Penrith, New South Wales, Australia
| | - Vita Birzniece
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Translational Health Research Institute, Penrith, New South Wales, Australia
| |
Collapse
|
26
|
Clarke MV, Russell PK, Zajac JD, Davey RA. The androgen receptor in the hypothalamus positively regulates hind-limb muscle mass and voluntary physical activity in adult male mice. J Steroid Biochem Mol Biol 2019; 189:187-194. [PMID: 30853652 DOI: 10.1016/j.jsbmb.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
We have previously shown that expression of the androgen receptor (AR) in neurons within the brain positively regulates hind-limb muscle mass and physical activity in male mice. To further investigate the region of the brain responsible for mediating these effects of testosterone and to determine whether they are only important for muscle mass accrual during development or whether they are also important for the maintenance of muscle mass in the adult, we deleted the AR specifically in the hypothalamus of adult male mice (Hyp-ARKOs). Hyp-ARKO mice were generated by bilateral stereotaxic microinjection of an adeno-associated virus (AAV) expressing GFP and iCre recombinase under the control of the e-synapsin promoter into the hypothalamus of 10-week-old exon 3-AR floxed male mice. AR mRNA was deleted by 45% in the hypothalamus of Hyp-ARKOs at 5 weeks post-AAV-eSyn-iCre injection. This led to an increase in the mass of the androgen-dependent organs, seminal vesicles and kidneys, by 30% (P < 0.01) and 10% (P < 0.05) respectively, and an increase in serum luteinizing hormone (LH) by 2 fold (P < 0.05). Whilst the mean value for serum testosterone was higher in the Hyp-ARKOs, this did not reach statistical significance. Despite a phenotype consistent with increased androgen bioactivity in Hyp-ARKOs, which would be expected to increase muscle mass, the mass of the hind-limb muscles, gastrocnemius (Gast) (P = 0.001), extensor digitorum longus (EDL) (P < 0.001) and soleus (Sol) (P < 0.01) were paradoxically decreased by 12-19% compared to controls. Voluntary physical activity was reduced by 65% (P < 0.05) in Hyp-ARKO male mice and was associated with a reduction in gene expression of Drd1a and Maob (P ≤ 0.05) in the hypothalamus, suggesting involvement of the brain dopaminergic system. These data provide compelling evidence that androgen signalling via the AR in the hypothalamus acts to positively regulate the maintenance of hind-limb muscle mass and voluntary activity in adult male mice, independent of AR signalling in peripheral tissues.
Collapse
Affiliation(s)
- Michele V Clarke
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Patricia K Russell
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia.
| |
Collapse
|
27
|
Grossmann M, Wierman ME, Angus P, Handelsman DJ. Reproductive Endocrinology of Nonalcoholic Fatty Liver Disease. Endocr Rev 2019; 40:417-446. [PMID: 30500887 DOI: 10.1210/er.2018-00158] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The liver and the reproductive system interact in a multifaceted bidirectional fashion. Sex steroid signaling influences hepatic endobiotic and xenobiotic metabolism and contributes to the pathogenesis of functional and structural disorders of the liver. In turn, liver function affects the reproductive axis via modulating sex steroid metabolism and transport to tissues via sex hormone-binding globulin (SHBG). The liver senses the body's metabolic status and adapts its energy homeostasis in a sex-dependent fashion, a dimorphism signaled by the sex steroid milieu and possibly related to the metabolic costs of reproduction. Sex steroids impact the pathogenesis of nonalcoholic fatty liver disease, including development of hepatic steatosis, fibrosis, and carcinogenesis. Preclinical studies in male rodents demonstrate that androgens protect against hepatic steatosis and insulin resistance both via androgen receptor signaling and, following aromatization to estradiol, estrogen receptor signaling, through regulating genes involved in hepatic lipogenesis and glucose metabolism. In female rodents in contrast to males, androgens promote hepatic steatosis and dysglycemia, whereas estradiol is similarly protective against liver disease. In men, hepatic steatosis is associated with modest reductions in circulating testosterone, in part consequent to a reduction in circulating SHBG. Testosterone treatment has not been demonstrated to improve hepatic steatosis in randomized controlled clinical trials. Consistent with sex-dimorphic preclinical findings, androgens promote hepatic steatosis and dysglycemia in women, whereas endogenous estradiol appears protective in both men and women. In both sexes, androgens promote hepatic fibrosis and the development of hepatocellular carcinoma, whereas estradiol is protective.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Peter Angus
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Departments of Gastroenterology and Hepatology, Heidelberg, Victoria, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Seo JY, Kim JH, Kong YY. Unraveling the Paradoxical Action of Androgens on Muscle Stem Cells. Mol Cells 2019; 42:97-103. [PMID: 30759971 PMCID: PMC6399011 DOI: 10.14348/molcells.2019.0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Androgens act in almost all tissues throughout the lifetime and have important roles in skeletal muscles. The levels of androgens increase during puberty and remain sustained at high levels in adulthood. Because androgens have an anabolic effect on skeletal muscles and muscle stem cells, these increased levels of androgens after puberty should lead to spontaneous muscle hypertrophy and hyperplasia in adulthood. However, the maintenance of muscle volume, myonuclei number per myofiber, and quiescent state of satellite cells in adulthood despite the high levels of androgens produces paradoxical outcomes. Our recent study revealed that the physiological increase of androgens at puberty initiates the transition of muscle stem cells from proliferation to quiescence by the androgen-Mindbomb1-Notch signaling axis. This newly discovered androgen action on skeletal muscles underscores the physiological importance of androgens on muscle homeostasis throughout life. This review will provide an overview of the new androgen action on skeletal muscles and discuss the paradoxical effects of androgens suggested in previous studies.
Collapse
Affiliation(s)
- Ji-Yun Seo
- School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
29
|
Abstract
Sex differences exist in the regulation of energy homeostasis. Better understanding of the underlying mechanisms for sexual dimorphism in energy balance may facilitate development of gender-specific therapies for human diseases, e.g. obesity. Multiple organs, including the brain, liver, fat and muscle, play important roles in the regulations of feeding behavior, energy expenditure and physical activity, which therefore contribute to the maintenance of energy balance. It has been increasingly appreciated that this multi-organ system is under different regulations in male vs. female animals. Much of effort has been focused on roles of sex hormones (including androgens, estrogens and progesterone) and sex chromosomes in this sex-specific regulation of energy balance. Emerging evidence also indicates that other factors (not sex hormones/receptors and not encoded by the sex chromosomes) exist to regulate energy homeostasis differentially in males vs. females. In this review, we summarize factors and signals that have been shown to regulate energy homeostasis in a sexually dimorphic fashion and propose a framework where these factors and signals may be integrated to mediate sex differences in energy homeostasis.
Collapse
Affiliation(s)
- Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
30
|
Rossetti ML, Steiner JL, Gordon BS. Increased mitochondrial turnover in the skeletal muscle of fasted, castrated mice is related to the magnitude of autophagy activation and muscle atrophy. Mol Cell Endocrinol 2018; 473:178-185. [PMID: 29378237 DOI: 10.1016/j.mce.2018.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/07/2023]
Abstract
Androgen-deficiency promotes muscle atrophy in part by increasing autophagy-mediated muscle protein breakdown during the fasted state, but factors contributing to this remain undefined. To identify novel factors, mice were subjected to sham or castration surgery. Seven-weeks post-surgery, mice were fasted overnight, refed for 30 min, and fasted another 4.5 h before sacrifice. BNIP3-mediated turnover of mitochondria was increased within the atrophied tibialis anterior (TA) of castrated mice and related to the magnitude of muscle atrophy and autophagy activation (i.e. decreased p62 protein content), thus linking turnover of potentially dysfunctional mitochondria with autophagy-mediated atrophy. Autophagy induction was likely facilitated by AMPK activation as a stress survival mechanism since phosphorylation of AMPK (Thr172), as well as the pro survival kinases Akt (Thr308) and (ERK1/2 Thr202/Tyr204), were increased by castration. Together, these data identify a novel relationship between mitochondrial turnover in the fasted state with autophagy activation and muscle atrophy following androgen depletion.
Collapse
Affiliation(s)
- Michael L Rossetti
- Department of Nutrition, Food & Exercise Sciences, Florida State University, 600 W. College Ave, Tallahassee, FL 32306, United States
| | - Jennifer L Steiner
- Department of Nutrition, Food & Exercise Sciences, Florida State University, 600 W. College Ave, Tallahassee, FL 32306, United States
| | - Bradley S Gordon
- Department of Nutrition, Food & Exercise Sciences, Florida State University, 600 W. College Ave, Tallahassee, FL 32306, United States.
| |
Collapse
|
31
|
Jardí F, Laurent MR, Dubois V, Kim N, Khalil R, Decallonne B, Vanderschueren D, Claessens F. Androgen and estrogen actions on male physical activity: a story beyond muscle. J Endocrinol 2018; 238:R31-R52. [PMID: 29743340 DOI: 10.1530/joe-18-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
Physical inactivity is a pandemic that contributes to several chronic diseases and poses a significant burden on health care systems worldwide. The search for effective strategies to combat sedentary behavior has led to an intensification of the research efforts to unravel the biological substrate controlling activity. A wide body of preclinical evidence makes a strong case for sex steroids regulating physical activity in both genders, albeit the mechanisms implicated remain unclear. The beneficial effects of androgens on muscle as well as on other peripheral functions might play a role in favoring adaptation to exercise. Alternatively or in addition, sex steroids could act on specific brain circuitries to boost physical activity. This review critically discusses the evidence supporting a role for androgens and estrogens stimulating male physical activity, with special emphasis on the possible role of peripheral and/or central mechanisms. Finally, the potential translation of these findings to humans is briefly discussed.
Collapse
Affiliation(s)
- Ferran Jardí
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Michaël R Laurent
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Gerontology and GeriatricsDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Vanessa Dubois
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nari Kim
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Rougin Khalil
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Harada N. Role of androgens in energy metabolism affecting on body composition, metabolic syndrome, type 2 diabetes, cardiovascular disease, and longevity: lessons from a meta-analysis and rodent studies. Biosci Biotechnol Biochem 2018; 82:1667-1682. [PMID: 29957125 DOI: 10.1080/09168451.2018.1490172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Testosterone is a sex hormone produced by testicular Leydig cells in males. Blood testosterone concentrations increase at three time-periods in male life-fetal, neonatal (which can be separated into newborn and infant periods), and pubertal stages. After peaking in the early 20s, the blood bioactive testosterone level declines by 1-2% each year. It is increasingly apparent that a low testosterone level impairs general physical and mental health in men. Here, this review summarizes recent systematic reviews and meta-analyses of epidemiological studies in males (including cross-sectional, longitudinal, and androgen deprivation studies, and randomized controlled testosterone replacement trials) in relation to testosterone and obesity, body composition, metabolic syndrome, type 2 diabetes, cardiovascular disease, and longevity. Furthermore, underlying mechanisms are discussed using data from rodent studies involving castration or androgen receptor knockout. This review provides an update understanding of the role of testosterone in energy metabolism. Abbreviations AR: androgen receptor; CV: cardiovascular; FDA: US Food and Drug Administration; HFD: high-fat diet; KO: knockout; MetS: metabolic syndrome; RCT: randomized controlled trial; SHBG: sex hormone binding globulin; SRMA: systematic review and meta-analysis; TRT: testosterone replacement therapy; T2DM:type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Naoki Harada
- a Division of Applied Life Sciences , Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai , Osaka , Japan
| |
Collapse
|
33
|
Rossetti ML, Fukuda DH, Gordon BS. Androgens induce growth of the limb skeletal muscles in a rapamycin-insensitive manner. Am J Physiol Regul Integr Comp Physiol 2018; 315:R721-R729. [PMID: 29897818 DOI: 10.1152/ajpregu.00029.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Signaling through the mechanistic target of rapamycin complex 1 (mTORC1) has been well defined as an androgen-sensitive transducer mediating skeletal muscle growth in vitro; however, this has yet to be tested in vivo. As such, male mice were subjected to either sham or castration surgery and allowed to recover for 7 wk to induce atrophy of skeletal muscle. Then, castrated mice were implanted with either a control pellet or a pellet that administered rapamycin (~2.5 mg·kg-1·day-1). Seven days postimplant, a subset of castrated mice with control pellets and all castrated mice with rapamycin pellets were given once weekly injections of nandrolone decanoate (ND) to induce muscle growth over a six-week period. Effective blockade of mTORC1 by rapamycin was noted in the skeletal muscle by the inability of insulin to induce phosphorylation of ribosomal S6 kinase 1 70 kDa (Thr389) and uncoordinated-like kinase 1 (Ser757). While castration reduced tibialis anterior (TA) mass, muscle fiber cross-sectional area, and total protein content, ND administration restored these measures to sham levels in a rapamycin-insensitive manner. Similar findings were also observed in the plantaris and soleus, suggesting this rapamycin-insensitive effect was not specific to the TA or fiber type. Androgen-mediated growth was not due to changes in translational capacity. Despite these findings in the limb skeletal muscle, rapamycin completely prevented the ND-mediated growth of the heart. In all, these data indicate that mTORC1 has a limited role in the androgen-mediated growth of the limb skeletal muscle; however, mTORC1 was necessary for androgen-mediated growth of heart muscle.
Collapse
Affiliation(s)
- Michael L Rossetti
- Department of Nutrition, Food, and Exercise Sciences, Florida State University , Tallahassee, Florida
| | - David H Fukuda
- Institute of Exercise Physiology and Wellness, University of Central Florida , Orlando, Florida
| | - Bradley S Gordon
- Department of Nutrition, Food, and Exercise Sciences, Florida State University , Tallahassee, Florida
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent findings on hepatic actions of androgens in the regulation of protein, lipid and glucose metabolism. The rationale for liver-targeted testosterone use will be provided. RECENT FINDINGS Liver-targeted testosterone administration, via the oral route, induces protein anabolic effect by reducing the rate of protein oxidation to a similar extent to that of systemic testosterone administration. Recent evidence indicates that testosterone exerts whole-body anabolic effect through inhibition of nitrogen loss via the hepatic urea cycle. Several hepatic effects of androgens, particularly on glucose metabolism, are direct and take place before any changes in body composition occur. This includes an increase in insulin secretion and sensitivity, and reduction in hepatic glucose output by testosterone. Furthermore, lack of testosterone in the liver exacerbates diet-induced impairment in glucose metabolism. In the liver, androgens induce the full spectrum of metabolic changes through interaction with growth hormone or aromatization to estradiol. SUMMARY Liver-targeted testosterone therapy may open up a new approach to achieve whole-body anabolism without systemic side-effects. Aromatizable androgens may be superior to nonaromatizable androgens in inducing a complex spectrum of direct, estrogen-mediated and other hormone-mediated effects of androgens.
Collapse
Affiliation(s)
- Vita Birzniece
- School of Medicine, Western Sydney University, Sydney
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown
- Garvan Institute of Medical Research, Sydney
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Abstract
Metabolic disease risk is driven by defects in the function of cells that regulate energy homeostasis, as well as altered communication between the different tissues or organs that these cells occupy. Thus, it is desirable to use model organisms to understand the contribution of different cells, tissues and organs to metabolism. Mice are widely used for metabolic research, since well-characterised mouse strains (in terms of their genotype and phenotype) allow comparative studies and human disease modelling. Such research involves strains containing spontaneous mutations that lead to obesity and diabetes, surgically- and chemically-induced models, those that are secondary to caloric excess, genetic mutants created by transgenesis and gene knockout technologies, and peripheral models generated by Cre-Lox or CRISPR/Cas9 approaches. Focussing on obesity and type 2 diabetes as relevant metabolic diseases, we systematically review each of these models, discussing their use, limitations, and future potential.
Collapse
Affiliation(s)
- Gabriela da Silva Xavier
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London W12 0NN, UK; Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, B15 2TT, UK.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK; COMPARE University of Birmingham and University of Nottingham Midlands, UK.
| |
Collapse
|
36
|
Cheung AS, Grossmann M. Physiological basis behind ergogenic effects of anabolic androgens. Mol Cell Endocrinol 2018; 464:14-20. [PMID: 28159654 DOI: 10.1016/j.mce.2017.01.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/28/2017] [Accepted: 01/29/2017] [Indexed: 11/21/2022]
Abstract
Anabolic androgenic steroids (AAS) are widely abused by the sporting community. Demonstrating performance enhancing effects of AAS in rigorous scientific studies is fraught with difficulty. In controlled studies, AAS have consistently been reported to increase muscle mass and strength. The clinical evidence that these anabolic effects are independent of, and additive to exercise are supported by preclinical studies suggesting that AAS and exercise affect muscle by overlapping, yet distinct mechanisms. AAS may also improve performance by their actions on other organ systems, such as the vasculature, and the erythropoietic and central nervous system, although this evidence is less strong. While most of the actions of AAS are thought to be mediated via classical androgen receptor-mediated genomic signalling, AAS may also produce rapid effects via non-genomic mechanisms.
Collapse
Affiliation(s)
- Ada S Cheung
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Mathis Grossmann
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia.
| |
Collapse
|
37
|
Lamboley CR, Xu H, Dutka TL, Hanson ED, Hayes A, Violet JA, Murphy RM, Lamb GD. Effect of androgen deprivation therapy on the contractile properties of type I and type II skeletal muscle fibres in men with non-metastatic prostate cancer. Clin Exp Pharmacol Physiol 2017; 45:146-154. [DOI: 10.1111/1440-1681.12873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/30/2017] [Accepted: 09/28/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Cedric R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL); College of Sport and Exercise Science; Victoria University; Melbourne Vic. Australia
- School of Life Sciences; La Trobe University; Melbourne Vic. Australia
| | - Hongyang Xu
- Department of Biochemistry and Genetics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne Vic. Australia
| | - Travis L Dutka
- School of Life Sciences; La Trobe University; Melbourne Vic. Australia
| | - Erik D Hanson
- Institute of Sport, Exercise and Active Living (ISEAL); College of Sport and Exercise Science; Victoria University; Melbourne Vic. Australia
- Australian Institute for Musculoskeletal Science (AIMSS); Sunshine Hospital; Western Health; Melbourne Vic. Australia
- College of Health and Biomedicine; Victoria University; Melbourne Vic. Australia
| | - Alan Hayes
- Institute of Sport, Exercise and Active Living (ISEAL); College of Sport and Exercise Science; Victoria University; Melbourne Vic. Australia
- Australian Institute for Musculoskeletal Science (AIMSS); Sunshine Hospital; Western Health; Melbourne Vic. Australia
- College of Health and Biomedicine; Victoria University; Melbourne Vic. Australia
| | - John A Violet
- Division of Radiation Oncology and Cancer Imaging; Peter MacCallum Cancer Centre; East Melbourne Vic. Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne Vic. Australia
| | - Graham D Lamb
- School of Life Sciences; La Trobe University; Melbourne Vic. Australia
| |
Collapse
|
38
|
Takayama KI. The biological and clinical advances of androgen receptor function in age-related diseases and cancer [Review]. Endocr J 2017; 64:933-946. [PMID: 28824023 DOI: 10.1507/endocrj.ej17-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hormonal alterations with aging contribute to the pathogenesis of several diseases. Androgens mediate their effects predominantly through binding to the androgen receptor (AR), a member of the ligand-dependent nuclear receptor superfamily. By androgen treatment, AR is recruited to specific genomic loci dependent on tissue specific pioneer factors to regulate target gene expression. Recent studies have revealed the epigenetic modulation by AR-associated histone modifiers and the roles of non-coding RNAs in AR signaling. Androgens are male sex hormone to induce differentiation of the male reproductive system required for the establishment of adult sexual function. As shown by several reports using AR knockout mouse models, androgens also have anabolic functions in several tissues such as bone, muscle and central nervous systems. Notably, AR has a central role in prostate cancer progression. Prostate cancer is the most frequently diagnosed cancer in men. Androgen-deprivation therapy for cancer patients and decline of serum androgen with aging promote several diseases associated with aging and quality of life of older men such as osteoporosis, sarcopenia and dementia. Thus, androgen replacement therapy for treating late onset hypogonadism (LOH) or new epigenetic regulators have the potential to overcome the symptoms caused by the low androgen, although adverse effects for cardiovascular diseases have been reported. Given the increasing longevity and consequent rise of age-related diseases and prostate cancer patients, a more understanding of the AR actions in male health remains a high research priority.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, the University of Tokyo, Japan
| |
Collapse
|
39
|
Androgen receptors and muscle: a key mechanism underlying life history trade-offs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:51-60. [DOI: 10.1007/s00359-017-1222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
|
40
|
Davey RA, Clarke MV, Russell PK, Rana K, Seto J, Roeszler KN, How JMY, Chia LY, North K, Zajac JD. Androgen Action via the Androgen Receptor in Neurons Within the Brain Positively Regulates Muscle Mass in Male Mice. Endocrinology 2017; 158:3684-3695. [PMID: 28977603 DOI: 10.1210/en.2017-00470] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022]
Abstract
Although it is well established that exogenous androgens have anabolic effects on skeletal muscle mass in humans and mice, data from muscle-specific androgen receptor (AR) knockout (ARKO) mice indicate that myocytic expression of the AR is dispensable for hind-limb muscle mass accrual in males. To identify possible indirect actions of androgens via the AR in neurons to regulate muscle, we generated neuron-ARKO mice in which the dominant DNA binding-dependent actions of the AR are deleted in neurons of the cortex, forebrain, hypothalamus, and olfactory bulb. Serum testosterone and luteinizing hormone levels were elevated twofold in neuron-ARKO males compared with wild-type littermates due to disruption of negative feedback to the hypothalamic-pituitary-gonadal axis. Despite this increase in serum testosterone levels, which was expected to increase muscle mass, the mass of the mixed-fiber gastrocnemius (Gast) and the fast-twitch fiber extensor digitorum longus hind-limb muscles was decreased by 10% in neuron-ARKOs at 12 weeks of age, whereas muscle strength and fatigue of the Gast were unaffected. The mass of the soleus muscle, however, which consists of a high proportion of slow-twitch fibers, was unaffected in neuron-ARKOs, demonstrating a stimulatory action of androgens via the AR in neurons to increase the mass of fast-twitch hind-limb muscles. Furthermore, neuron-ARKOs displayed reductions in voluntary and involuntary physical activity by up to 60%. These data provide evidence for a role of androgens via the AR in neurons to positively regulate fast-twitch hind-limb muscle mass and physical activity in male mice.
Collapse
Affiliation(s)
- Rachel A Davey
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Michele V Clarke
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Patricia K Russell
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Kesha Rana
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Jane Seto
- Murdoch Children's Research Institute, Parkville 3052, Victoria, Australia
| | - Kelly N Roeszler
- Murdoch Children's Research Institute, Parkville 3052, Victoria, Australia
| | - Jackie M Y How
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Ling Yeong Chia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Kathryn North
- Murdoch Children's Research Institute, Parkville 3052, Victoria, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
41
|
Ueberschlag-Pitiot V, Stantzou A, Messéant J, Lemaitre M, Owens DJ, Noirez P, Roy P, Agbulut O, Metzger D, Ferry A. Gonad-related factors promote muscle performance gain during postnatal development in male and female mice. Am J Physiol Endocrinol Metab 2017; 313:E12-E25. [PMID: 28351832 DOI: 10.1152/ajpendo.00446.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/22/2017] [Accepted: 03/22/2017] [Indexed: 11/22/2022]
Abstract
To better define the role of male and female gonad-related factors (MGRF, presumably testosterone, and FGRF, presumably estradiol, respectively) on mouse hindlimb skeletal muscle contractile performance/function gain during postnatal development, we analyzed the effect of castration initiated before puberty in male and female mice. We found that muscle absolute and specific (normalized to muscle weight) maximal forces were decreased in 6-mo-old male and female castrated mice compared with age- and sex-matched intact mice, without alteration in neuromuscular transmission. Moreover, castration decreased absolute and specific maximal powers, another important aspect of muscle performance, in 6-mo-old males, but not in females. Absolute maximal force was similarly reduced by castration in 3-mo-old muscle fiber androgen receptor (AR)-deficient and wild-type male mice, indicating that the effect of MGRF was muscle fiber AR independent. Castration reduced the muscle weight gain in 3-mo mice of both sexes and in 6-mo females but not in males. We also found that bone morphogenetic protein signaling through Smad1/5/9 was not altered by castration in atrophic muscle of 3-mo-old mice of both sexes. Moreover, castration decreased the sexual dimorphism regarding muscle performance. Together, these results demonstrated that in the long term, MGRF and FGRF promote muscle performance gain in mice during postnatal development, independently of muscle growth in males, largely via improving muscle contractile quality (force and power normalized), and that MGFR and FGRF also contribute to sexual dimorphism. However, the mechanisms underlying MGFR and FGRF actions remain to be determined.
Collapse
Affiliation(s)
- Vanessa Ueberschlag-Pitiot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR7104/INSERM U964, Illkirch, France
| | - Amalia Stantzou
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Julien Messéant
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Megane Lemaitre
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Daniel J Owens
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Philippe Noirez
- Institut de Recherche Biomédicale et D'épidemiologie du Sport, EA 7329, Institut National du Sport de l'Expertise et de la Performance, Laboratory of Excellence GR-Ex, Paris, France
- Université Sorbonne Paris Cité, Université Paris Descartes, Paris, France; and
| | - Pauline Roy
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Institut de Biologie Paris-Seine, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR7104/INSERM U964, Illkirch, France
| | - Arnaud Ferry
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France;
- Université Sorbonne Paris Cité, Université Paris Descartes, Paris, France; and
| |
Collapse
|
42
|
Swift-Gallant A, Monks DA. Androgenic mechanisms of sexual differentiation of the nervous system and behavior. Front Neuroendocrinol 2017; 46:32-45. [PMID: 28455096 DOI: 10.1016/j.yfrne.2017.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/23/2023]
Abstract
Testicular androgens are the major endocrine factor promoting masculine phenotypes in vertebrates, but androgen signaling is complex and operates via multiple signaling pathways and sites of action. Recently, selective androgen receptor mutants have been engineered to study androgenic mechanisms of sexual differentiation of the nervous system and behavior. The focus of these studies has been to evaluate androgenic mechanisms within the nervous system by manipulating androgen receptor conditionally in neural tissues. Here we review both the effects of neural loss of AR function as well as the effects of neural overexpression of AR in relation to global AR mutants. Although some studies have conformed to our expectations, others have proved challenging to assumptions underlying the dominant hypotheses. Notably, these studies have called into question both the primacy of direct, neural mechanisms and also the linearity of the relationship between androgenic dose and sexual differentiation of brain and behavior.
Collapse
Affiliation(s)
- A Swift-Gallant
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON L5L 1C6, Canada
| | - D A Monks
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Department of Cells and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
43
|
Lam T, Poljak A, McLean M, Bahl N, Ho KKY, Birzniece V. Testosterone prevents protein loss via the hepatic urea cycle in human. Eur J Endocrinol 2017; 176:489-496. [PMID: 28122810 DOI: 10.1530/eje-16-0868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/05/2017] [Accepted: 01/25/2017] [Indexed: 11/08/2022]
Abstract
CONTEXT The urea cycle is a rate-limiting step for amino acid nitrogen elimination. The rate of urea synthesis is a true indicator of whole-body protein catabolism. Testosterone reduces protein and nitrogen loss. The effect of testosterone on hepatic urea synthesis in humans has not been studied. OBJECTIVE To determine whether testosterone reduces hepatic urea production. DESIGN An open-label study. PATIENTS AND INTERVENTION Eight hypogonadal men were studied at baseline, and after two weeks of transdermal testosterone replacement (Testogel, 100 mg/day). MAIN OUTCOMES MEASURES The rate of hepatic urea synthesis was measured by the urea turnover technique using stable isotope methodology, with 15N2-urea as tracer. Whole-body leucine turnover was measured, from which leucine rate of appearance (LRa), an index of protein breakdown and leucine oxidation (Lox), a measure of irreversible protein loss, were calculated. RESULTS Testosterone administration significantly reduced the rate of hepatic urea production (from 544.4 ± 71.8 to 431.7 ± 68.3 µmol/min; P < 0.01), which was paralleled by a significant reduction in serum urea concentration. Testosterone treatment significantly reduced net protein loss, as measured by percent Lox/LRa, by 19.3 ± 5.8% (P < 0.05). There was a positive association between Lox and hepatic urea production at baseline (r2 = 0.60, P < 0.05) and after testosterone administration (r2 = 0.59, P < 0.05). CONCLUSION Testosterone replacement reduces protein loss and hepatic urea synthesis. We conclude that testosterone regulates whole-body protein metabolism by suppressing the urea cycle.
Collapse
Affiliation(s)
- Teresa Lam
- School of MedicineWestern Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and EndocrinologyBlacktown Hospital, Blacktown, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility and School of Medical SciencesUniversity of New South Wales, New South Wales, Australia
| | - Mark McLean
- School of MedicineWestern Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and EndocrinologyBlacktown Hospital, Blacktown, New South Wales, Australia
| | - Neha Bahl
- School of MedicineWestern Sydney University, Penrith, New South Wales, Australia
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
| | - Ken K Y Ho
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Centres of Health ResearchPrincess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Vita Birzniece
- School of MedicineWestern Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and EndocrinologyBlacktown Hospital, Blacktown, New South Wales, Australia
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- School of MedicineUniversity of New South Wales, New South Wales, Australia
| |
Collapse
|
44
|
Xu Y, O'Malley BW, Elmquist JK. Brain nuclear receptors and body weight regulation. J Clin Invest 2017; 127:1172-1180. [PMID: 28218618 DOI: 10.1172/jci88891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essential roles in the regulation of energy homeostasis. Understanding the role and the underlying mechanisms of NRs in the context of energy balance control may facilitate the identification of novel targets to treat obesity. Notably, NRs are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of energy balance, including feeding, energy expenditure and physical activity. In this Review we summarize some of the recent literature regarding effects of brain NRs on body weight regulation and discuss mechanisms underlying these effects.
Collapse
|
45
|
Moloney EB, Hobo B, De Winter F, Verhaagen J. Expression of a Mutant SEMA3A Protein with Diminished Signalling Capacity Does Not Alter ALS-Related Motor Decline, or Confer Changes in NMJ Plasticity after BotoxA-Induced Paralysis of Male Gastrocnemic Muscle. PLoS One 2017; 12:e0170314. [PMID: 28103314 PMCID: PMC5245795 DOI: 10.1371/journal.pone.0170314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022] Open
Abstract
Terminal Schwann cells (TSCs) are specialized cells that envelop the motor nerve terminal, and play a role in the maintenance and regeneration of neuromuscular junctions (NMJs). The chemorepulsive protein semaphorin 3A (SEMA3A) is selectively up-regulated in TSCs on fast-fatigable muscle fibers following experimental denervation of the muscle (BotoxA-induced paralysis or crush injury to the sciatic nerve) or in the motor neuron disease amyotrophic lateral sclerosis (ALS). Re-expression of SEMA3A in this subset of TSCs is thought to play a role in the selective plasticity of nerve terminals as observed in ALS and following BotoxA-induced paralysis. Using a mouse model expressing a mutant SEMA3A with diminished signaling capacity, we studied the influence of SEMA3A signaling at the NMJ with two denervation paradigms; a motor neuron disease model (the G93A-hSOD1 ALS mouse line) and an injury model (BotoxA-induced paralysis). ALS mice that either expressed 1 or 2 mutant SEMA3A alleles demonstrated no difference in ALS-induced decline in motor behavior. We also investigated the effects of BotoxA-induced paralysis on the sprouting capacity of NMJs in the K108N-SEMA3A mutant mouse, and observed no change in the differential neuronal plasticity found at NMJs on fast-fatigable or slow muscle fibers due to the presence of the SEMA3A mutant protein. Our data may be explained by the residual repulsive activity of the mutant SEMA3A, or it may imply that SEMA3A alone is not a key component of the molecular signature affecting NMJ plasticity in ALS or BotoxA-induced paralysis. Interestingly, we did observe a sex difference in motor neuron sprouting behavior after BotoxA-induced paralysis in WT mice which we speculate may be an important factor in the sex dimorphic differences seen in ALS.
Collapse
Affiliation(s)
- Elizabeth B. Moloney
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Barbara Hobo
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Fred De Winter
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
- Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017; 97:135-187. [PMID: 27807202 PMCID: PMC5539371 DOI: 10.1152/physrev.00033.2015] [Citation(s) in RCA: 526] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
47
|
Laurent MR, Jardí F, Dubois V, Schollaert D, Khalil R, Gielen E, Carmeliet G, Claessens F, Vanderschueren D. Androgens have antiresorptive effects on trabecular disuse osteopenia independent from muscle atrophy. Bone 2016; 93:33-42. [PMID: 27622887 DOI: 10.1016/j.bone.2016.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Aging hypogonadal men are at increased risk of osteoporosis and sarcopenia. Testosterone is a potentially appealing strategy to prevent simultaneous bone and muscle loss. The androgen receptor (AR) mediates antiresorptive effects on trabecular bone via osteoblast-lineage cells, as well as muscle-anabolic actions. Sex steroids also modify the skeletal response to mechanical loading. However, it is unclear whether the effects of androgens on bone remain effective independent of mechanical stimulation or rather require indirect androgen effects via muscle. This study aims to characterize the effects and underlying mechanisms of androgens on disuse osteosarcopenia. Adult male mice received a unilateral botulinum toxin (BTx) injection, and underwent sham surgery or orchidectomy (ORX) without or with testosterone (ORX+T) or dihydrotestosterone (ORX+DHT) replacement. Compared to the contralateral internal control hindlimb, acute trabecular number and bone volume loss was increased by ORX and partially prevented DHT. T was more efficient and increased BV/TV in both hindlimbs over sham values, although it did not reduce the detrimental effect of BTx. Both androgens and BTx regulated trabecular osteoclast surface as well as tartrate-resistant acid phosphatase expression. Androgens also prevented BTx-induced body weight loss but did not significantly influence paralysis or muscle atrophy. BTx and ORX both reduced cortical thickness via endosteal expansion, which was prevented by T but not DHT. In long-term follow-up, the residual trabecular bone volume deficit in sham-BTx hindlimbs was prevented by DHT but T restored it more efficiently to pre-treatment levels. Conditional AR deletion in late osteoblasts and osteocytes or in the satellite cell lineage increased age-related trabecular bone loss in both hindlimbs without influencing the effect of BTx on trabecular osteopenia. We conclude that androgens have antiresorptive effects on trabecular disuse osteopenia which do not require AR actions on bone via muscle or via osteocytes.
Collapse
MESH Headings
- Acute Disease
- Androgens/pharmacology
- Androgens/therapeutic use
- Animals
- Body Weight
- Bone Diseases, Metabolic/complications
- Bone Diseases, Metabolic/drug therapy
- Bone Diseases, Metabolic/pathology
- Bone Diseases, Metabolic/physiopathology
- Bone Remodeling/drug effects
- Bone Resorption/complications
- Bone Resorption/drug therapy
- Bone Resorption/pathology
- Bone Resorption/physiopathology
- Calcification, Physiologic
- Cancellous Bone/diagnostic imaging
- Cancellous Bone/drug effects
- Cancellous Bone/pathology
- Cancellous Bone/physiopathology
- Cortical Bone/diagnostic imaging
- Cortical Bone/drug effects
- Cortical Bone/pathology
- Cortical Bone/physiopathology
- Extracellular Matrix Proteins/metabolism
- Female
- Gene Deletion
- Integrases/metabolism
- Male
- Mice, Inbred C57BL
- Muscular Atrophy/complications
- Muscular Atrophy/drug therapy
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Muscular Disorders, Atrophic/complications
- Muscular Disorders, Atrophic/drug therapy
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/physiopathology
- MyoD Protein/metabolism
- Organ Size
- Receptors, Androgen/metabolism
- X-Ray Microtomography
Collapse
Affiliation(s)
- Michaël R Laurent
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium; Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, Herestraat 49, PO box 7003, 3000 Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium.
| | - Dieter Schollaert
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium.
| | - Rougin Khalil
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, Herestraat 49, PO box 7003, 3000 Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium.
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| |
Collapse
|
48
|
Abstract
Low testosterone levels increase the risk for cardiovascular disease in men and lead to shorter life spans. Our recent study showed that androgen deprivation via castration altered fecal microbiota and exacerbated risk factors for cardiovascular disease, including obesity, impaired fasting glucose, excess hepatic triglyceride accumulation, and thigh muscle weight loss only in high-fat diet (HFD)-fed male mice. However, when mice were administered antibiotics that disrupted the gut microbiota, castration did not increase cardiovascular risks or decrease the ratio of dried feces to food intake. Here, we show that changes in cecal microbiota (e.g., an increased Firmicutes/Bacteroidetes ratio and number of Lactobacillus species) were consistent with changes in feces and that there was a decreased cecal content secondary to castration in HFD mice. Castration increased rectal body temperature and plasma adiponectin, irrespective of diet. Changes in the gut microbiome may provide novel insight into hypogonadism-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Naoki Harada
- Division of Applied Life Sciences, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University,
Sakai, Osaka, Japan,CONTACT Naoki Harada, Ph.D. ,
Division of Applied Life Sciences, Graduate School of Life and
Environmental Sciences, Osaka Prefecture University, 1-1
Gakuen-cho, Naka-ku, Sakai Osaka 599-8531,
Japan
| | - Ryo Hanaoka
- Division of Applied Life Sciences, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University,
Sakai, Osaka, Japan
| | - Kazuki Hanada
- Division of Applied Life Sciences, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University,
Sakai, Osaka, Japan
| | - Takeshi Izawa
- Division of Veterinary Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University,
Izumisano, Osaka, Japan
| | - Hiroshi Inui
- Division of Clinical Nutrition, Graduate
School of Comprehensive Rehabilitation, Osaka Prefecture University,
Habikino, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University,
Sakai, Osaka, Japan
| |
Collapse
|
49
|
Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardí F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol 2016; 432:14-36. [PMID: 26506009 DOI: 10.1016/j.mce.2015.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa.
Collapse
Affiliation(s)
- Michaël R Laurent
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
50
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|