1
|
Oluwagbenga EM, Schober JM, Bergman MM, Karcher DM, Chavez C, Fraley GS. Photostimulation decreases fearfulness, but improves growth performance and egg quality of breeder Pekin ducks. Poult Sci 2025; 104:104563. [PMID: 39608283 PMCID: PMC11636106 DOI: 10.1016/j.psj.2024.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/18/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Lighting is a critical environmental factor that influences production performance and welfare of poultry, however Pekin ducks can typically be housed under 24 h (24 h) of light. 460 hatchlings were randomly allocated to 4 rooms with two pens in each room. The rooms were allocated to 24 h light or PS. PS was achieved by gradually increasing photoperiod by half an hour per week from days 112 to 238 and held at 18 h light for the rest of life. Prior to the onset of lay, pens were organized with 30 hens and 7 drakes/pen (4 pens/treatment). We measured bodyweight at weeks 0, 1, 2, 5, 10, 19, and 29, feed intake at weeks 1 to 7 and feed conversion ratio (FCR) was calculated for weeks 1, 2, and 5. Eggs laid were recorded daily from weeks 20 to 31. Novel object test (NOT) was done at weeks 1, 5, 10, 19, and 29, transect welfare scoring at week 30, egg quality assessment at weeks 28 and 29, and fertility was determined at weeks 28 and 29. Statistical analyses were done using 2-way ANOVA, T-test, or Friedman Test with a Tukey-Kramer test as post-hoc. A p ≤ 0.05 was considered significant. Drakes bodyweight was higher in the PS compared to 24h treatment at weeks 5 (p < 0.01) and 10 (p < 0.001). No difference was observed in FCR, fertility, or transect data. NOT showed lower fear response (p < 0.05) at weeks 5 and 10 in the PS compared to 24 h treatment. The 24 h treatment increased the percent eggs laid at weeks 23 (p < 0.05), 24 (p < 0.01) and 25 (p < 0.05) compared to the PS. However, there was a higher egg weight (p < 0.001), yolk weight (p < 0.05), Haugh unit (p < 0.05), and shell weight (p = 0.05) in the PS compared to 24 h treatment. Our findings support that PS may help decrease fearfulness, improve growth performance and egg quality of breeder ducks.
Collapse
Affiliation(s)
- E M Oluwagbenga
- Animal Sciences, Purdue University, CRTN 2026, West Lafayette, IN 47907, USA
| | - J M Schober
- Animal Sciences, Purdue University, CRTN 2026, West Lafayette, IN 47907, USA
| | - M M Bergman
- Animal Sciences, Purdue University, CRTN 2026, West Lafayette, IN 47907, USA
| | - D M Karcher
- Animal Sciences, Purdue University, CRTN 2026, West Lafayette, IN 47907, USA
| | - C Chavez
- Maple Leaf Farms, Inc., Leesburg, IN, USA
| | - G S Fraley
- Animal Sciences, Purdue University, CRTN 2026, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
3
|
de Souza Granja Barros J, Sartor K, Pedroso TF, Vasconcelos H, Scopacasa VA, Bottura JR, Sena RG, Salvador MJ, de Moura DJ. Impact of light spectrum electromagnetic radiation variations on performance and hormonal profiles in laying hens. Sci Rep 2024; 14:30250. [PMID: 39633043 PMCID: PMC11618619 DOI: 10.1038/s41598-024-81480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Avian photopic curves show energy peaks at different wavelengths than humans, particularly in the ultraviolet, yellow, and red range. Therefore, an illumination system with a spectrum tailored for laying hens, encompassing the entire visible spectrum, can enhance performance and welfare. The primary contribution of this study was the development of two Spectral Power Distributions (SPDs) specifically designed for laying hens, with different spectral proportions (S1 and S2), and the evaluation of their effects on productive performance, egg quality, and hormonal levels, compared to conventional white lighting at 3000 K (C). The SPD with a higher emission of red light to increased egg production and egg mass. It also had a lower melatonin concentration, suggesting an inverse relationship with the egg production rate. Regarding egg quality, SPDs specifically designed for laying hens resulted in eggs with greater weight (S1), shell strength (S2), and yolk height (S1 and S2) and diameter (S2). The study's results indicate that lighting emitting wavelengths within the spectrum visible to poultry, with higher emissions at long wavelengths, appears to be more favorable for laying hens than conventional lighting. A spectrum with higher emissions at shorter wavelengths appears to impair the productive performance of laying hens.
Collapse
Affiliation(s)
| | - Karina Sartor
- Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-875, Brazil
| | - Taise Fonseca Pedroso
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083- 862, Brazil
| | - Hugo Vasconcelos
- Audax Electronics Ltda., São Bernardo do Campo, SP, 09862-300, Brazil
| | | | | | - Rebeca Gonçalves Sena
- Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-875, Brazil
| | - Marcos José Salvador
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083- 862, Brazil
| | - Daniella Jorge de Moura
- Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-875, Brazil
| |
Collapse
|
4
|
Derese DB, Lu L, Shi F. Major regulatory factors for reproductive performances of female chickens. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2024; 13:197-206. [DOI: 10.4103/apjr.apjr_62_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/19/2024] [Indexed: 01/05/2025] Open
Abstract
The reproductive performance of female chickens is critical for determining the efficiency of production and productivity and thus profitability. Studies have shown that the reproductive performance of female chickens is mainly regulated by the feed, hormones, genes, and light conditions. Herein, we review the major factors regulating female chicken reproductive performance and assess the reproductive organs and their functions. In the current review, we highlight how the interconnections of hormones, candidate genes, and photo-stimulation regulate female chicken reproductive hormones and thus regulate the reproductive organ performance. In this regard, the roles of main hormones [gonadotropinreleasing hormone (GnRH) and genes (GnRH-I)] in regulating sexual maturation and ovarian development and maintenance by influencing the survival and function of follicular granulosa cells were also reviewed. In addition, the current review also highlights how feeding female chickens with diets and artificial light-emitting diodes (LEDs) support the effective functioning of their reproductive capacity through the stimulation of sexual maturity at an appropriate age and regeneration of aged reproductive organs.
Collapse
Affiliation(s)
- Debela Bayu Derese
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Department of Animal Science, School of Agriculture, Ambo University, P.O.Box 19, Oromia, Ethiopia
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Charif SE, Dorfman VB. Melatonin, modulation of hypothalamic activity, and reproduction. VITAMINS AND HORMONES 2024; 127:283-303. [PMID: 39864944 DOI: 10.1016/bs.vh.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Light is the most reliable environmental cue allowing animals to breed successfully when conditions are optimal. In seasonal breeders, photoperiod (length of daylight) information is sensed by the eyes and transmitted to the suprachiasmatic nucleus, the master clock region located in the hypothalamus. This structure has a 24-h firing rhythm involving a cycle of clock protein synthesis and degradation, and provides the timing to synchronize the synthesis and release of melatonin, the chemical signal that transduces the photoperiod information. The enzyme arylalkylamine N-acetyltransferase, responsible for melatonin synthesis in the pineal gland, is modulated by environmental light. Melatonin is secreted during the dark hours of the night to blood circulation and cerebrospinal fluid conveying photoperiod information to other tissues. Melatonin exerts its action by binding to specific membrane receptors MT1 and MT2, and can modulate several pathways including neurotransmitters, and hormones like kisspeptin, the gonadotropin-inhibitory hormone, and thyroid hormones, all of them impacting on gonadotropin-releasing hormone (GnRH) secretion. Then, GnRH will modulate in turn the reproductive axis. In conclusion, acting as a transducer of photoperiod information, this hormone exerts precisely timed activation of different pathways that modulate seasonal breeding ensuring optimal conditions for reproduction.
Collapse
Affiliation(s)
- Santiago Elías Charif
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica Berta Dorfman
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
6
|
Zheng CY, Yu YX, Cao SY, Bai X. Epigenetics of inflammation in hypothalamus pituitary gonadal and neuroendocrine disorders. Semin Cell Dev Biol 2024; 154:340-345. [PMID: 37142487 DOI: 10.1016/j.semcdb.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
The hormone producing hypothalamus, pituitary and gonadal are arranged in hierarchy to form the hypothalamic-pituitary-gonadal axis (HPG axis). The axis is neuroendocrine in nature and releases hormones in response to the inputs from nervous systems. The axis maintains homeostasis and ensures smooth body functions, particularly those related to growth and reproduction. A deregulated HPG axis, such as observed under inflammation and other conditions, is therefore associated with several disorders such as polycystic ovary syndrome, functional hypothalamic amenorrhea etc. Several factors, both genetic as well as environmental, in addition to aging, obesity etc. affect HPG axis with resulting effects on puberty, sexual maturation and reproductive health. More research is now indicative of a role of epigenetics in mediating these HPG-affecting factors. Hypothalamus-secreted gonadotropin-releasing hormone is important for eventual release of sex hormones and it is subjected to several neuronal and epigenetic regulations. Gene promoter methylation as well as histone methylations and acetylations form the backbone of epigenetic regulation of HPG-axis, as the incoming reports suggest. Epigenetic events also mediate several feedback mechanisms within HPG axis and between HPG axis and the central nervous system. In addition, data is emerging for a role of non-coding RNAs, particularly the miRNAs, in regulation and normal functioning of HPG axis. Thus, the epigenetic interactions need better understanding to understand the functioning and regulation of HPG axis.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Shi-Yue Cao
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
7
|
Odetayo AF, Akhigbe RE, Bassey GE, Hamed MA, Olayaki LA. Impact of stress on male fertility: role of gonadotropin inhibitory hormone. Front Endocrinol (Lausanne) 2024; 14:1329564. [PMID: 38260147 PMCID: PMC10801237 DOI: 10.3389/fendo.2023.1329564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Studies have implicated oxidative stress-sensitive signaling in the pathogenesis of stress-induced male infertility. However, apart from oxidative stress, gonadotropin inhibitory hormone (GnIH) plays a major role. The present study provides a detailed review of the role of GnIH in stress-induced male infertility. Available evidence-based data revealed that GnIH enhances the release of corticosteroids by activating the hypothalamic-pituitary-adrenal axis. GnIH also mediates the inhibition of the conversion of thyroxine (T4) to triiodothyronine (T3) by suppressing the hypothalamic-pituitary-thyroidal axis. In addition, GnIH inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the hypothalamic-pituitary-testicular axis, and by extension testosterone biosynthesis. More so, GnIH inhibits kisspeptin release. These events distort testicular histoarchitecture, impair testicular and adrenal steroidogenesis, lower spermatogenesis, and deteriorate sperm quality and function. In conclusion, GnIH, via multiple mechanisms, plays a key role in stress-induced male infertility. Suppression of GnIH under stressful conditions may thus be a beneficial prophylactic and/or therapeutic strategy.
Collapse
Affiliation(s)
- Adeyemi F. Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
- The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| | | |
Collapse
|
8
|
Majumdar G, Yadav G, Singh NS. Photoperiodic physiology of summer breeding birds and a search for the role of eye. Photochem Photobiol Sci 2024; 23:197-212. [PMID: 38038950 DOI: 10.1007/s43630-023-00505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Photoperiod regulation of gonadal cycles is well studied and documented in both birds and mammals. Change in photoperiod is considered as the most effective and important cue to time the initiation of the annual physiological cycles in birds. Approaching of long days (as observed in summer months), signal long-day breeding birds to initiation reproduction and other related functions. Birds and other non-mammalian vertebrates use the extraocular photoreceptors which may be present in the mediobasal hypothalamus (MBH) or associated regions to measure the photoperiodic time and so are different from mammals where only the eyes are lone photoreceptive organs. The downstream signaling involves thyroid responsive genes playing a crucial role in mediating photoperiodic signals in both birds and mammals. Role of eyes in the avian seasonal cycle has been a questionable issue with evidences both favoring and negating any role. We propose that morphological as well as physiological data argue that retinal photoreceptors can participate in gonadal cycle, at least in the quail and duck. The present review details the studies of photoneuroendocrine control of gonadal axis in birds and review evidences to decipher the role eyes in photoperiodic mediated physiologies in birds.
Collapse
Affiliation(s)
- Gaurav Majumdar
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Garima Yadav
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | | |
Collapse
|
9
|
Evans MC, Anderson GM. The Role of RFRP Neurons in the Allostatic Control of Reproductive Function. Int J Mol Sci 2023; 24:15851. [PMID: 37958834 PMCID: PMC10648169 DOI: 10.3390/ijms242115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Reproductive function is critical for species survival; however, it is energetically costly and physically demanding. Reproductive suppression is therefore a physiologically appropriate adaptation to certain ecological, environmental, and/or temporal conditions. This 'allostatic' suppression of fertility enables individuals to accommodate unfavorable reproductive circumstances and safeguard survival. The mechanisms underpinning this reproductive suppression are complex, yet culminate with the reduced secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus, which in turn suppresses gonadotropin release from the pituitary, thereby impairing gonadal function. The focus of this review will be on the role of RFamide-related peptide (RFRP) neurons in different examples of allostatic reproductive suppression. RFRP neurons release the RFRP-3 peptide, which negatively regulates GnRH neurons and thus appears to act as a 'brake' on the neuroendocrine reproductive axis. In a multitude of predictable (e.g., pre-puberty, reproductive senescence, and seasonal or lactational reproductive quiescence) and unpredictable (e.g., metabolic, immune and/or psychosocial stress) situations in which GnRH secretion is suppressed, the RFRP neurons have been suggested to act as modulators. This review examines evidence for and against these roles.
Collapse
Affiliation(s)
| | - Greg M. Anderson
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
10
|
Freeman JR, Whitcomb BW, Bertone-Johnson ER, Balzer LB, O'Brien LM, Dunietz GL, Purdue-Smithe AC, Kim K, Silver RM, Schisterman EF, Mumford SL. Preconception sleep duration, sleep timing, and shift work in association with fecundability and live birth among women with a history of pregnancy loss. Fertil Steril 2023; 119:252-263. [PMID: 36586812 PMCID: PMC9899515 DOI: 10.1016/j.fertnstert.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To evaluate the associations between preconception sleep characteristics and shift work with fecundability and live birth. DESIGN Secondary analysis of the Effects of Aspirin in Gestation and Reproduction study, a preconception cohort. SETTING Four US academic medical centers. PATIENT(S) Women aged 18-40 with a history of 1-2 pregnancy losses who were attempting to conceive again. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURES(S) We evaluated baseline, self-reported sleep duration, sleep midpoint, social jetlag, and shift work among 1,228 women who were observed for ≤6 cycles of pregnancy attempts to ascertain fecundability. We ascertained live birth at the end of follow up via chart abstraction. We estimated fecundability odds ratios (FORs) using discrete, Cox proportional hazards models and risk ratios (RRs) for live birth using log-Poisson models. RESULT(S) Sleep duration ≥9 vs. 7 to <8 hours (FOR: 0.81, 95% confidence interval [CI], 0.61; 1.08), later sleep midpoints (3rd tertile vs. 2nd tertile: FOR: 0.85; 95% CI, 0.69, 1.04) and social jetlag (continuous per hour; FOR: 0.93, 95% CI: 0.86, 1.00) were not associated with reduced fecundability. In sensitivity analyses, excluding shift workers, sleep duration ≥9 vs. 7 to <8 hours (FOR: 0.62; 95% CI, 0.42; 0.93) was associated with low fecundability. Night shift work was not associated with fecundability (vs. non-night shift work FOR: 1.17, 95% CI, 0.96; 1.42). Preconception sleep was not associated with live birth. CONCLUSION(S) Overall, there does not appear to be a strong association between sleep characteristics, fecundability, and live birth. Although these findings may suggest weak and imprecise associations with some sleep characteristics, our findings should be evaluated in larger cohorts of women with extremes of sleep characteristics. CLINICAL TRIAL REGISTRATION NUMBER Clinicaltrials.gov NCT00467363.
Collapse
Affiliation(s)
- Joshua R Freeman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts; Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Brian W Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Elizabeth R Bertone-Johnson
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Health Promotion and Policy, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Laura B Balzer
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Louise M O'Brien
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, Michigan; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Galit L Dunietz
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Alexandra C Purdue-Smithe
- Division of Women's Health, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keewan Kim
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Robert M Silver
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Enrique F Schisterman
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Prastiya RA, Madyawati SP, Sari SY, Nugroho AP. Effect of follicle-stimulating hormone and luteinizing hormone levels on egg-laying frequency in hens. Vet World 2022; 15:2890-2895. [PMID: 36718318 PMCID: PMC9880839 DOI: 10.14202/vetworld.2022.2890-2895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Aim Gonadotropins, for example, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are hormones that affect the reproductive process. In hens, optimal levels of FSH and LH can stimulate follicle growth fairly rapidly and thereby increase egg production through follicle development and increased ovulation. Follicle-stimulating hormone acts in the early stages of follicular growth, whereas LH acts on pre-ovulatory follicles. Normal follicular growth is the result of the complementary action of FSH and LH. Low FSH and LH levels result in the formation of follicles but a lack of egg production in chickens. This study aimed to investigate FSH and LH hormone levels from layer chickens with different egg-laying frequencies. Materials and Methods Fifty blood serum samples were collected from 54-week-old ISA brown strain hens that were divided into five groups (with 10 hens per group) as follows: Hens that lay eggs (i) every day, (ii) once every 2 days, (iii) twice every 3 days, (iv) 3 times every 4 days, and (v) hens that do not lay eggs. Follicle-stimulating hormone and LH levels were measured in samples using an enzyme-linked immunosorbent assay, and the data were analyzed using multivariate analysis of variance. Results Follicle-stimulating hormone levels were significantly associated with the frequency of egg laying in ISA brown strain hens (p < 0.05); the highest FSH level (869.005 ± 149.194 pg/mL) was found in hens that lay eggs every day. In contrast, the highest LH level (51.386 ± 2.410 mIU/mL) was found in hens that lay eggs every 2 days. Conclusion High level of FSH (869.005 ± 149.194 pg/mL) was associated with a high frequency of egg laying (every day) in ISA brown strain hens, and LH level of around 30.406 pg/mL was associated with daily egg laying in these hens.
Collapse
Affiliation(s)
- Ragil Angga Prastiya
- Department of Veterinary Sciences Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia,Department of Reproduction, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Banyuwangi, Indonesia,Corresponding author: Ragil Angga Prastiya, e-mail: Co-authors: SPM: , SYS: , APN:
| | - Sri Pantja Madyawati
- Department of Veterinary Sciences Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | |
Collapse
|
12
|
Exogenous Melatonin Regulates Puberty and the Hypothalamic GnRH-GnIH System in Female Mice. Brain Sci 2022; 12:brainsci12111550. [PMID: 36421874 PMCID: PMC9688274 DOI: 10.3390/brainsci12111550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, the age of children entering puberty is getting lower and the incidence of central precocious puberty is increasing. It is known that melatonin plays an increasingly important role in regulating animal reproduction, but the specific role and mechanism of melatonin in regulating the initiation of puberty remain unclear. The purpose of the current study was to investigate the effect of subcutaneous melatonin injection on pubertal development in female mice and its mechanism of action. Female mice that were 22 days old received 1 mg/kg doses of melatonin subcutaneously every day for 10, 15 and 20 days. The vaginal opening was checked daily. Hematoxylin and eosin (HE) stain was used to determine the growth of the uterus and ovaries. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of follicle-stimulating hormone (FSH), gonadotropin-inhibiting hormone (GnIH), and gonadotropin-releasing hormone (GnRH) in serum. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus GnRH, GnIH, Kisspeptin (Kp), Proopiomelanocortin (POMC), Neuropeptide Y (NPY), as well as G protein-coupled receptor 147 (GPR147) were identified. The findings demonstrated that melatonin could suppress ovarian follicle and uterine wall growth as well as delay vaginal opening, decrease serum levels of GnRH and FSH and increase levels of GnIH. Melatonin increased GnIH and GPR147 expression in the hypothalamus in comparison to the saline group, while decreasing the expression of GnRH, Kisspeptin, POMC, and NPY. In conclusion, exogenous melatonin can inhibit the onset of puberty in female mice by modulating the expression of hypothalamic GnRH, GnIH, Kisspeptin, POMC and NPY neurons and suppressing the hypothalamic–pituitary–gonadal axis.
Collapse
|
13
|
Singh P, Anjum S, Srivastava RK, Tsutsui K, Krishna A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front Neuroendocrinol 2022; 65:100979. [PMID: 35122778 DOI: 10.1016/j.yfrne.2022.100979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Shabana Anjum
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Kagamiyama 1-7-1, Higashi-Hiroshima University 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
14
|
Cui YM, Wang J, Zhang HJ, Qi GH, Qiao HZ, Gan LP, Wu SG. Effect of Changes in Photoperiods on Melatonin Expression and Gut Health Parameters in Laying Ducks. Front Microbiol 2022; 13:819427. [PMID: 35359713 PMCID: PMC8961281 DOI: 10.3389/fmicb.2022.819427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
We investigated the effect of photoperiod on ileal morphology, barrier function, short-chain fatty acid (SCFA) contents, microbial flora, melatonin expression, and synthesis in laying ducks. After adaption, a total of 180 Jinding laying ducks (252 days old) were randomly divided into three treatments, receiving 12L (hours of light):12D (hours of darkness), 16L:8D, or 20L:4D. Each treatment had six replicates with 10 birds each. The formal experiment lasted 58 days. Compared with 12L:12D, the significantly higher values of villus height and goblet cell percentage (GCP) were observed in 16L:8D treatment, accompanied with the higher mRNA relative expression of zonula occludens-1, zonula occludens-2, zonula occludens-3, claudin-1, occludin, and mucin 2 (P < 0.05). Besides, significantly higher values of acetate and propionate, butyrate and total SCFA concentrations were simultaneously observed in ileal chyme of 16L:8D treatment (P < 0.05). For the ileal microbial community, the results of principal coordinate analysis (PCoA) visually presented that three photoperiod groups were mainly scattered into three clusters, indicating that the microbiota composition in different photoperiod treatments were quite dissimilar. Lower values of Shannon indicators were observed in the 20L:4D treatment (P < 0.05), meaning that the microbiota α-diversity decreased in the 20-h photoperiod. The relative abundance of Actinobacteria, Fusobacteria, and Proteobacteria at phylum level and Fusobacterium, Clostridium_sensu_stricto_1, and Pectobacterium at genus level kept an appropriate balance in the 16L:8D photoperiod. Melatonin level in serum decreased with the increasing photoperiods at 6:00 and 12:00, which was consistent with melatonin receptor expressions in the hypothalamus and ileal tissue. Meanwhile, the adenosine 3′,5′-cyclic phosphate (cAMP) contents were significantly downregulated in the pineal gland (P < 0.05), in response to the increase in photoperiod. In conclusion, an appropriate photoperiod could improve ileal morphology, barrier function, SCFA profile, and microbial flora, which may be attributed to the appropriate regulation of the circadian rhythm through melatonin as well as its receptor expression, and 16 h could be an adequate photoperiod for laying ducks.
Collapse
Affiliation(s)
- Yao-ming Cui
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han-zhen Qiao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Li-ping Gan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shu-geng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Shu-geng Wu,
| |
Collapse
|
15
|
Advancing reproductive neuroendocrinology through research on the regulation of GnIH and on its diverse actions on reproductive physiology and behavior. Front Neuroendocrinol 2022; 64:100955. [PMID: 34767778 DOI: 10.1016/j.yfrne.2021.100955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
The discovery of gonadotropin-inhibitory hormone (GnIH) in 2000 has led to a new research era of reproductive neuroendocrinology because, for a long time, researchers believed that only gonadotropin-releasing hormone (GnRH) regulated reproduction as a neurohormone. Later studies on GnIH demonstrated that it acts as a new key neurohormone inhibiting reproduction in vertebrates. GnIH reduces gonadotropin release andsynthesis via the GnIH receptor GPR147 on gonadotropes and GnRH neurons. Furthermore, GnIH inhibits reproductive behavior, in addition to reproductive neuroendocrine function. The modification of the synthesis of GnIH and its release by the neuroendocrine integration of environmental and internal factors has also been demonstrated. Thus, the discovery of GnIH has facilitated advances in reproductive neuroendocrinology. Here, we describe the advances in reproductive neuroendocrinology driven by the discovery of GnIH, research on the effects of GnIH on reproductive physiology and behavior, and the regulatory mechanisms underlying GnIH synthesis and release.
Collapse
|
16
|
Gonadotropin-inhibitory hormone as a regulator of social interactions in vertebrates. Front Neuroendocrinol 2022; 64:100954. [PMID: 34757092 DOI: 10.1016/j.yfrne.2021.100954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022]
Abstract
The social environment changes circulating hormone levels and expression of social behavior in animals. Social information is perceived by sensory systems, leading to cellular and molecular changes through neural processes. Peripheral reproductive hormone levels are regulated by activity in the hypothalamic-pituitary-gonadal (HPG) axis. Until the end of the last century, the neurochemical systems that convey social information to the HPG axis were not well understood. Gonadotropin-inhibitory hormone (GnIH) was the first hypothalamic neuropeptide shown to inhibit gonadotropin release, in 2000. GnIH is now regarded as a negative upstream regulator of the HPG axis, and it is becoming increasingly evident that it responds to social cues. In addition to controlling reproductive physiology, GnIH seems to modulate the reproductive behavior of animals. Here, we review studies investigating how GnIH neurons respond to social information and describe the mechanisms through which GnIH regulates social behavior.
Collapse
|
17
|
Ouyang H, Yang B, Lao Y, Tang J, Tian Y, Huang Y. Photoperiod affects the laying performance of the mountain duck by regulating endocrine hormones and gene expression. Vet Med Sci 2021; 7:1899-1906. [PMID: 33955171 PMCID: PMC8464274 DOI: 10.1002/vms3.508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/18/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Light mainly affects animal reproductive performance through the hypothalamus‐ pituitary‐gonadal axis, but the specific regulating mechanism is not yet clear in duck. To reveal the effects of light on the laying performance of ducks and its possible regulatory mechanisms, Shanma ducks at 52 weeks age were divided into three group treated with different photoperiods of 16 hr (control group), 24 hr (long‐photoperiod group, LP), and 8 hr (short‐photoperiod group, SP). Laying performance, endocrine‐related hormones and gene expression of three groups were compared. The results showed that laying performance was greatest in the LP group; including laying rate, average egg weight and feed‐egg ratio. Compared to the SP group, GnIH plasma concentration was decreased in the LP group, whilst FSH was increased in the LP group. GnIHR gene expression in the pituitary and large yellow follicles were downregulated in the LP group. The expression of Mel‐a in large white follicles, and Mel‐b and Mel‐c in the hypothalamus were also downregulated in the LP group. Altogether these results suggest that extended photoperiods may promote the laying performance of ducks by inhibiting the secretion of GnIH and the expression of GnIHR and melatonin receptor genes.
Collapse
Affiliation(s)
- Hongjia Ouyang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Bo Yang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongcong Lao
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Tang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunmao Huang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
18
|
Tsutsui K, Ubuka T. Gonadotropin-inhibitory hormone (GnIH): A new key neurohormone controlling reproductive physiology and behavior. Front Neuroendocrinol 2021; 61:100900. [PMID: 33450199 DOI: 10.1016/j.yfrne.2021.100900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
The discovery of novel neurohormones is important for the advancement of neuroendocrinology. In early 1970s, gonadotropin-releasing hormone (GnRH), a hypothalamic neuropeptide that promotes gonadotropin release, was identified to be an endogenous neurohormone in mammals. In 2000, thirty years later, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), that inhibits gonadotropin release, was found in quail. GnIH acts via GPR147 and inhibits gonadotropin release and synthesis and reproductive function in birds through actions on GnRH neurons in the hypothalamus and pituitary gonadotrophs. Later, GnIH was found in other vertebrates including humans. GnIH studies have advanced the progress of reproductive neuroendocrinology. Furthermore, recent GnIH studies have indicated that abnormal changes in GnIH expression may cause pubertal disorder and reproductive dysfunction. Here, we describe GnIH discovery and its impact on the progress of reproductive neuroendocrinology. This review also highlights advancement and perspective of GnIH studies on drug development for pubertal disorder and reproductive dysfunction. (149/150).
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan.
| | - Takayoshi Ubuka
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
19
|
Song Y, Peng W, Luo J, Zhu Z, Hu W. Organization of the gonadotropin-inhibitory hormone (Lpxrfa) system in the brain of zebrafish (Danio rerio). Gen Comp Endocrinol 2021; 304:113722. [PMID: 33485851 DOI: 10.1016/j.ygcen.2021.113722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/18/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion in birds and mammals. However, the role of GnIH (Lpxrfa) in teleosts is unknown. In this study, a transgenic zebrafish (Danio rerio) line Tg(gnih:mCherry) was developed to determine the organization of GnIH neurons in the brain. Another transgenic line, Tg(gnih:mCherry; gnrh3:eGFP), was established to determine the positional relationships between GnIH and GnRH3 neurons. In these transgenic lines, the mCherry protein was specifically expressed in GnIH neurons, and eGFP was expressed exclusively in GnRH3 neurons. We found that GnIH cell somata were restricted to the posterior periventricular nucleus (NPPv). Most GnIH neuronal processes projected to the hypothalamus, but a few extended to the posterior tuberculum, telencephalon, and olfactory bulb. GnIH neuronal processes were in close apposition with GnRH3 cell somata and processes in the preoptic-hypothalamic area but were seldom in direct contact. However, in the olfactory bulb, GnIH neuronal processes were in proximity to the terminal nerve GnRH3 cell somata. Neither GnIH cell soma nor neuronal processes were detected in the pituitary, although GnIH receptor mRNAs (npffr1l1, npffr1l2, and npffr1l3) were detected. Intraperitoneal administration of GnIH-3 peptides promoted the transcription of brain gnrh3 as well as pituitary fshβ but not lhβ. Thus, GnIH cell somata were specifically distributed in the NPPv, and their fibers extended to the hypothalamus and advanced to the telencephalon and olfactory bulb. We conclude that GnIH may directly stimulate terminal nerve GnRH3 neurons in the zebrafish brain.
Collapse
Affiliation(s)
- Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Junzhi Luo
- Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
20
|
Soni R, Haldar C, Mohini Chaturvedi C. Retinal and extra-retinal photoreceptor responses and reproductive performance of Japanese quail (Coturnix coturnix japonica) following exposure to different photoperiodic regime. Gen Comp Endocrinol 2021; 302:113667. [PMID: 33221313 DOI: 10.1016/j.ygcen.2020.113667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Japanese quail is a truly photoperiodic avian species. In general long days are gonado-stimulatory and short days are gonado-inhibitory for this poultry bird. To investigate the correlation of retinal and extra-retinal photoreceptors with different photoperiodic conditions quail were divided into 2 groups and kept under long day (16L: 8D) and short day (8L: 16D) condition separately to develop photosensitivity and scotosensitivity respectively. Transfer of long day quail to intermediate day-length (13.5L: 10.5D) developed photorefractoriness (relative) and prolonged exposure to short photoperiodic conditions led the birds to develop scotorefractoriness. Increased expression of mRNA and immunosignaling of photoreceptors rhodopsin, transducin in eye and hypothalamus while decreased mRNA expression of melatonin receptors (Mel1b, Mel1c) were noted in the eyes of photosensitive (PS) and scotorefractory (SR) quail compared to photorefractory (PR) and scotosensitive (SS) birds respectively. Decreased expression of hypothalamic GnIH and melatonin receptors mRNA was observed in PS and SR birds compared to PR and SS birds respectively. Modulation of retinal and extra retinal photoreceptors leads to increased spermatogenesis as well as mRNA expression of steroidogenic genes and androgen receptor in the testis of sexually active PS and SR quail. These results led us to conclude that gonadal stimulation in PS as well as SR quail is outcome of activated retinal and extra retinal photoreceptors which lowered melatonin receptors and GnIH expression. Contrarily testicular inhibition in PR and SS is the outcome of decreased photoperception. It is suggested that decreased photoperception in SS quail increases after prolong exposure of the short day (in SR) leading to increased activity of HPG axis.
Collapse
Affiliation(s)
- Richa Soni
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Chandana Haldar
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
21
|
Tan YG, Xu XL, Cao HY, Mao HG, Yin ZZ. RFamide-related peptides' gene expression, polymorphism, and their association with reproductive traits in chickens. Poult Sci 2021; 100:488-495. [PMID: 33518101 PMCID: PMC7858160 DOI: 10.1016/j.psj.2020.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
RFamide-related peptides (RFRP) are synthesized by the hypothalamus and have a regulatory role in gonad development. The goal of this study was to investigate the association between SNP of the RFRP gene and the reproductive traits and hormone levels of Zhenning yellow chickens. The mRNA expression levels were detected based on different tissues, ages, and genotypes. Eleven mutation sites were detected in the RFRP gene, 4 of which were significantly related to reproductive traits and hormone levels. Association analysis revealed that A276G was associated with egg production at 300 d of age (EP300) and amount of prehierarchical follicles (P < 0.05). G1396A was associated with egg weight at 300 d of age and luteinizing hormone (LH) and prolactin levels (P < 0.05). G1694A showed significant associations with fertilization rate and LH levels (P < 0.05), and A2659G was associated with EP300 (P < 0.05). The results of expression analysis showed that the RFRP mRNA expression levels in the hypothalamus were higher than those in other tissues (P < 0.01). The expression in immature individuals was higher than that in mature ones (P < 0.01). There were also differences in mRNA expression levels between different genotypes (P < 0.05). In summary, the results of this study might provide potential markers and a theoretical basis for the improvement of chicken reproductive traits.
Collapse
Affiliation(s)
- Y G Tan
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - X L Xu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - H Y Cao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - H G Mao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Z Z Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
22
|
Renthlei Z, Hmar L, Kumar Trivedi A. High temperature attenuates testicular responses in tree sparrow (Passer montanus). Gen Comp Endocrinol 2021; 301:113654. [PMID: 33129830 DOI: 10.1016/j.ygcen.2020.113654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
The majority of birds use environmental cues to time their reproduction. Photoperiod is the most dominant cue, but other environmental factors may play a critical role in successful reproduction. Some previous studies show the effect of temperature on the timing of nest building and reproduction. Here we tested if the temperature can modulate the reproductive responses of tree sparrows. Three experiments were performed on adult male birds. In experiment 1, birds (n = 5/group) were exposed to either high (30 ± 2 °C) or low temperature (20 ± 2 °C). Change in body mass, bill color, and testes volume was recorded every 30 days. In experiment 2, a similar temperature protocol was followed, but birds were euthanized after 30 days. In experiment 3, birds were first exposed to SD (8L:16D) for 30 days but either with high (30 ± 2 °C) or low temperature (20 ± 2 °C). After 30 days, birds were exposed to LD (14L:10D), but half of the high-temperature birds were moved to low temperature, and half of the low-temperature birds were moved to high temperature. After 30 days, all birds were euthanized. In experiment 2 and 3 immediately after euthanization birds, blood samples were collected, serum was used for hormone assay. mRNA levels of thyroid-stimulating hormone-β (Tshβ), type 2 deiodinase (Dio2), type 3 deiodinase (Dio3), gonadotropin-releasing hormone (GnRH) and gonadotropin inhibitory hormone (GnIH) were measured in hypothalamic tissue. Results from experiment 1 show that high temperature attenuates the testicular responses and accelerates the timing of regression. Experiment 2 shows that on day 30, testicular responses are similar, but reproductive genes express differentially in two groups. Experiment 3 shows that exposure to high temperatures during the photosensitive stage affects the testicular response at the poststimulatory state. Together, these findings suggest that high temperature modulates reproductive responses of tree sparrow.
Collapse
Affiliation(s)
| | - Lalruatthara Hmar
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 976004, India
| | - Amit Kumar Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 976004, India.
| |
Collapse
|
23
|
Tsutsui K, Ubuka T. Discovery of gonadotropin-inhibitory hormone (GnIH), progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction. Mol Cell Endocrinol 2020; 514:110914. [PMID: 32535039 DOI: 10.1016/j.mce.2020.110914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
Based on extensive studies on gonadotropin-releasing hormone (GnRH) it was assumed that GnRH is the only hypothalamic neurohormone regulating gonadotropin release in vertebrates. In 2000, however, Tsutsui's group discovered gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that inhibits gonadotropin release, in quail. Subsequent studies by Tsutsui's group demonstrated that GnIH is conserved among vertebrates, acting as a new key neurohormone regulating reproduction. GnIH inhibits gonadotropin synthesis and release through actions on gonadotropes and GnRH neurons via GnIH receptor, GPR147. Thus, GnRH is not the sole hypothalamic neurohormone controlling vertebrate reproduction. The following studies by Tsutsui's group have further demonstrated that GnIH has several important functions in addition to the control of reproduction. Accordingly, GnIH has drastically changed our understanding about reproductive neuroendocrinology. This review summarizes the discovery of GnIH, progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, 162-8480, Japan.
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, 162-8480, Japan
| |
Collapse
|
24
|
England A, Ruhnke I. The influence of light of different wavelengths on laying hen production and egg quality. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1789023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ashley England
- Animal Science, School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, Australia
| | - Isabelle Ruhnke
- Animal Science, School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, Australia
| |
Collapse
|
25
|
Chung-Davidson YW, Bussy U, Fissette SD, Huerta B, Li W. Waterborne pheromones modulate gonadotropin-inhibitory hormone levels in sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2020; 288:113358. [PMID: 31837303 DOI: 10.1016/j.ygcen.2019.113358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
Abstract
The relationships between pheromone stimuli and neuropeptides are not well established in vertebrates due to the limited number of unequivocally identified pheromone molecules. The sea lamprey (Petromyzon marinus) is an advantageous vertebrate model to study the effects of pheromone exposure on neuropeptides since many pheromone molecules and neuropeptides have been identified in this species. Sexually mature male sea lamprey release pheromones 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate, 3kPZS) and 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3-keto allocholic acid, 3kACA) that differentially regulate gonadotropin-releasing hormone (lGnRH) and steroid levels in sexually immature sea lamprey. However, the effects of these pheromones on gonadotropin-inhibitory hormones (GnIHs), hypothalamic neuropeptides that regulate lGnRH release, are still elusive. In this report, we sought to examine the effects of waterborne pheromones on lamprey GnIH-related neuropeptide levels in sexually immature sea lamprey. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analyses revealed sex differences in GnIH-related neuropeptide levels in the brain and plasma of immature sea lamprey. Exposure to 3kPZS and 3kACA exerted differential effects on GnIH-related neuropeptide levels in both sexes, but the effects were more prominent in female brains. We conclude that sea lamprey pheromones regulate GnIH-related neuropeptide levels in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Skye Daniel Fissette
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Belinda Huerta
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Morris KM, Hindle MM, Boitard S, Burt DW, Danner AF, Eory L, Forrest HL, Gourichon D, Gros J, Hillier LW, Jaffredo T, Khoury H, Lansford R, Leterrier C, Loudon A, Mason AS, Meddle SL, Minvielle F, Minx P, Pitel F, Seiler JP, Shimmura T, Tomlinson C, Vignal A, Webster RG, Yoshimura T, Warren WC, Smith J. The quail genome: insights into social behaviour, seasonal biology and infectious disease response. BMC Biol 2020; 18:14. [PMID: 32050986 PMCID: PMC7017630 DOI: 10.1186/s12915-020-0743-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.
Collapse
Affiliation(s)
- Katrina M Morris
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Matthew M Hindle
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Simon Boitard
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - David W Burt
- The John Hay Building, Queensland Biosciences Precinct, 306 Carmody Road, The University of Queensland, QLD, St Lucia, 4072, Australia
| | - Angela F Danner
- Virology Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Lel Eory
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Heather L Forrest
- Virology Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - David Gourichon
- PEAT Pôle d'Expérimentation Avicole de Tours, Centre de recherche Val de Loire, INRAE, 1295, Nouzilly, UE, France
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724, Cedex 15, Paris, France
- CNRS URA3738, 25 rue du Dr Roux, 75015, Paris, France
| | - LaDeana W Hillier
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Blvd, St Louis, MO, 63108, USA
| | - Thierry Jaffredo
- CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, Sorbonne Université, IBPS, 75005, Paris, France
| | - Hanane Khoury
- CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, Sorbonne Université, IBPS, 75005, Paris, France
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles and Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90027, USA
| | - Christine Leterrier
- UMR85 Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université François Rabelais, IFCE, INRAE, Val de Loire, 37380, Nouzilly, Centre, France
| | - Andrew Loudon
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, 3.001, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew S Mason
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Simone L Meddle
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Francis Minvielle
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Blvd, St Louis, MO, 63108, USA
| | - Frédérique Pitel
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - J Patrick Seiler
- Virology Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Tsuyoshi Shimmura
- Department of Biological Production, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Blvd, St Louis, MO, 63108, USA
| | - Alain Vignal
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - Robert G Webster
- Virology Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Wesley C Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, MO, 65211, USA
| | - Jacqueline Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
27
|
Asiamah Amponsah C, Zou K, Lu LL, Zhang SW, Xue Y, Su Y, Zhao Z. Genetic effects of polymorphisms of candidate genes associated with ovary development and egg production traits in ducks. Anim Reprod Sci 2019; 211:106219. [DOI: 10.1016/j.anireprosci.2019.106219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/06/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022]
|
28
|
Physiological roles of avian eyes in light perception and their responses to photoperiodicity. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Poissenot K, Anger K, Constantin P, Cornilleau F, Lomet D, Tsutsui K, Dardente H, Calandreau L, Beltramo M. Brain mapping of the gonadotropin-inhibitory hormone-related peptide 2 with a novel antibody suggests a connection with emotional reactivity in the Japanese quail (Coturnix japonica, Temminck & Schlegel, 1849). J Comp Neurol 2019; 527:1872-1884. [PMID: 30734308 DOI: 10.1002/cne.24659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/23/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide first discovered in the quail brain that is involved in the control of reproductive physiology and behaviors, and stress response. GnIH gene encodes a second peptide, GnIH-related peptide-2 (RP2), the distribution and function of which remain unknown. We therefore studied GnIH-RP2 distribution by immunohistochemistry using a novel antibody capable of discriminating between GnIH and GnIH-RP2. The overall distribution of GnIH-RP2 is similar to that of GnIH. The vast majority of labeled neurons is located in the paraventricular nucleus (PVN) of the hypothalamus. Labeling of fibers is conspicuous in the diencephalon, but present also in the mesencephalon and telencephalon. Several regions involved in the control of reproduction and stress response (the PVN, septum, bed nucleus of the stria terminalis and nucleus commissura pallii) showed a dense network of immunolabeled fibers. To investigate the potential function of GnIH-RP2 we compared its expression in two quail lines genetically selected for divergence in their emotional reactivity. A quantitative analysis in the above-mentioned brain regions showed that the density of fibers was similar in the two lines. However, the number of GnIH-RP2 labeled neurons was higher in the median portion of the PVN in birds with higher emotional reactivity. These results point to a possible involvement of GnRH-RP2 in modulating stress response and/or emotional reactivity.
Collapse
Affiliation(s)
- Kevin Poissenot
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Karine Anger
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Paul Constantin
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Fabien Cornilleau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Didier Lomet
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Hugues Dardente
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Ludovic Calandreau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Massimiliano Beltramo
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
30
|
Trivedi AK, Sur S, Sharma A, Taufique ST, Gupta NJ, Kumar V. Temperature alters the hypothalamic transcription of photoperiod responsive genes in induction of seasonal response in migratory redheaded buntings. Mol Cell Endocrinol 2019; 493:110454. [PMID: 31121264 DOI: 10.1016/j.mce.2019.110454] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022]
Abstract
We investigated the temperature effects on hypothalamic transcription of genes involved in the induction of photoperiodic response in redheaded buntings. Birds were exposed at 22 and 38 °C to 13-h long photoperiods (LP), with controls at 22 °C on 8-h short photoperiods (SP). At 22 °C, compared to SP, we found higher tshb, eya3 and dio2 and low dio3 and gnih mRNA expressions after a week of LP; concomitant with testis recrudescence this confirmed buntings' responsiveness to LP-induced photostimulation. tshb, dio2 and gnrh mRNA levels were further increased by 2.5 weeks of LP at 38 °C. Temperature sensitive trpm8, but not trpv4, bdnf or adcyap1 also showed LP-induced expression at 22 °C. Concomitant changes in dnmt3b and tet2 mRNA expressions further suggested epigenetic modification of temperature influence on photoperiodic responses. These results demonstrate the role of temperature in hypothalamic molecular regulation of the photoperiodic gonadal response in seasonally breeding birds.
Collapse
Affiliation(s)
| | - Sayantan Sur
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Neelu Jain Gupta
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
31
|
Di Yorio MP, Pérez Sirkin DI, Muñoz-Cueto JA, Delgadin TH, Tsutsui K, Somoza GM, Vissio PG. Morphological relationship between GnIH and GnRH neurons in the brain of the neotropical cichlid fish Cichlasoma dimerus. Gen Comp Endocrinol 2019; 273:144-151. [PMID: 29913169 DOI: 10.1016/j.ygcen.2018.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
Abstract
Reproduction is regulated by the hypothalamic-pituitary-gonadal axis. The first neuropeptide identified that regulates this function was the decapeptide gonadotropin-releasing hormone (GnRH). Nowadays, in gnatostomates, a number of GnRH variants have been identified and classified into three different types: GnRH1, GnRH2, and GnRH3. Almost 30 years later, a new peptide that inhibits gonadotropin synthesis and secretion was discovered and thus named as gonadotropin-inhibitory hormone (GnIH). In avians and mammals, the interaction and regulation between GnRH and GnIH neurons has been widely studied; however, in other vertebrate groups there is little information about the relationship between these neurons. In previous works, three GnRH variants and a GnIH propeptide were characterized in Cichlasoma dimerus, and it was demonstrated that GnIH inhibited gonadotropins release in this species. Because no innervation was detected at the pituitary level, we speculate that GnIH would inhibit gonadotropins via GnRH. Thus, the aim of the present study was to evaluate the anatomical relationship between neurons expressing GnIH and the three GnRH variants by double labelling confocal immunofluorescence in adults of C. dimerus. Our results showed no apparent contacts between GnIH and GnRH1, fiber to fiber interactions between GnIH and GnRH2, and co-localization of GnIH and GnRH3 variant in neurons of the nucleus olfacto-retinalis. In conclusion, whether GnIH regulates the expression or secretion of GnRH1 in this species, an indirect modulation seems more plausible. Moreover, the present results suggest an interaction between GnIH and GnRH2 systems. Finally, new clues were provided to investigate the role of nucleus olfacto-retinalis cells and putative GnIH and GnRH3 interactions in the modulation of the reproductive network in teleost fish.
Collapse
Affiliation(s)
- María P Di Yorio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Tomás H Delgadin
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| | - Gustavo M Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, CONICET-UNSAM, Chascomús, Argentina
| | - Paula G Vissio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Evaluation of the Impact of Light Source on Reproductive Parameters in Laying Hens Housed in Individual Cages. J Poult Sci 2019; 56:148-158. [PMID: 32055209 PMCID: PMC7005406 DOI: 10.2141/jpsa.0180054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Higher light wavelengths have been shown to stimulate extra-retinal photoreceptors more efficiently than lower wavelengths to promote reproduction in poultry. We developed a light emitting diode (LED) bulb that emits 60% of its light in the red spectrum (LED-R), and evaluated the effects of different light sources on growth and reproduction in commercial layer hens. Three rooms equipped with either 100W incandescent, 15W compact fluorescent (CFL), or 10W LED-R bulbs were populated with 96 Lohmann LSL-Lite layers housed in individual cages from 14 to 69 weeks of age (woa). Pullets were initially maintained on a 10-h photoperiod, then photostimulated at 18 woa. Surprisingly, regardless of the light source, plasma levels of estradiol peaked at 16 woa, 2 weeks before photostimulation, and egg-laying was initiated at 19 woa. As a direct correlation between age at first egg and body weight was identified, metabolic cues most likely served as a primary trigger to initiate sexual maturation prior to photostimulation. Overall egg production and cumulative egg numbers were similar among treatments. Interestingly, a second increase in estradiol was observed at 52 woa under all treatments, suggesting an additional ovarian stimulation, possibly associated with an additional follicular recruitment at that age. Overall, changes in estradiol concentrations were more pronounced in hens maintained under LED-R light than in hens exposed to incandescent and CFL, especially for the second increase, suggesting that a higher amount of red light leads to stronger ovarian activity. Maintaining hens under LED-R bulbs also resulted in lower feed consumption, which combined with the lower energy consumption of LED-bulbs (LED-R: 306 kW; incandescent: 2,514 kW; CFL: 422 kW) could reduce the production cost.
Collapse
|
33
|
Di Yorio MP, Muñoz-Cueto JA, Paullada-Salmerón JA, Somoza GM, Tsutsui K, Vissio PG. The Gonadotropin-Inhibitory Hormone: What We Know and What We Still Have to Learn From Fish. Front Endocrinol (Lausanne) 2019; 10:78. [PMID: 30837949 PMCID: PMC6389629 DOI: 10.3389/fendo.2019.00078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-inhibitory hormone, GnIH, is named because of its function in birds and mammals; however, in other vertebrates this function is not yet clearly established. More than half of the vertebrate species are teleosts. This group is characterized by the 3R whole genome duplication, a fact that could have been responsible for the great phenotypic complexity and great variability in reproductive strategies and sexual behavior. In this context, we revise GnIH cell bodies and fibers distribution in adult brains of teleosts, discuss its relationship with GnRH variants and summarize the few reports available about the ontogeny of the GnIH system. Considering all the information presented in this review, we propose that in teleosts, GnIH could have other functions beyond reproduction or act as an integrative signal in the reproductive process. However, further studies are required in order to clarify the role of GnIH in this group including its involvement in development, a key stage that strongly impacts on adult life.
Collapse
Affiliation(s)
- María P. Di Yorio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Paula G. Vissio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Paula G. Vissio
| |
Collapse
|
34
|
Tobari Y, Tsutsui K. Effects of Social Information on the Release and Expression of Gonadotropin-Inhibitory Hormone in Birds. Front Endocrinol (Lausanne) 2019; 10:243. [PMID: 31068902 PMCID: PMC6491735 DOI: 10.3389/fendo.2019.00243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2019] [Indexed: 01/16/2023] Open
Abstract
The social environment changes circulating hormone levels and associated behavior in animals. Although social information is perceived by sensory systems in the brain, and peripheral reproductive hormonal levels are regulated mainly by the hypothalamus-pituitary-gonadal (HPG) axis, the neurochemical systems that convey social information to the HPG axis were not well-understood until the 2000s. In recent years, a growing body of evidence has demonstrated that a neuropeptide localized in the hypothalamus, gonadotropin-inhibitory hormone (GnIH), is responsive to social information. GnIH was first identified in the quail hypothalamo-hypophyseal system and named for its ability to inhibit gonadotropin secretion. Hypothalamic GnIH neurons have thus begun to be regarded as integrators, translating social information into changes in the levels of circulating gonadal hormones through the HPG axis. Here, we review current research investigating the responses of the GnIH neuronal systems to social status, offspring, and the presence/absence of conspecifics, and describe the neurochemical pathways linking visual perception of a potential mate to a rapid change in blood gonadotropin levels via the hypothalamus-pituitary axis in male birds.
Collapse
Affiliation(s)
- Yasuko Tobari
- Laboratory of Animal Genetics and Breeding, Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- *Correspondence: Yasuko Tobari
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan
| |
Collapse
|
35
|
Kanasaki H, Tumurbaatar T, Oride A, Tumurgan Z, Okada H, Hara T, Tsutsui K, Kyo S. Role of RFRP-3 in the Regulation of Kiss-1 Gene Expression in the AVPV Hypothalamic Cell Model mHypoA-50. Reprod Sci 2018; 26:1249-1255. [DOI: 10.1177/1933719118813456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kisspeptin, encoded by the Kiss-1 gene, plays a crucial role in reproductive function by governing the hypothalamic–pituitary–gonadal axis. The recently established Kiss-1-expressing cell model mHypoA-50 displays characteristics of neuronal cells of the anteroventral periventricular (AVPV) region of the mouse hypothalamus. Because Kiss-1 gene expression in these cells is upregulated by estradiol (E2), mHypoA-50 cells are regarded as a valuable model for the study of Kiss-1-expressing neurons in the AVPV region. These cells also express RFamide-related peptide-3 (RFRP-3), a mammalian homolog of gonadotropin inhibitory hormone. The RFRP-3 expression in mHypoA-50 cells was increased by melatonin stimulation. In addition, E2 stimulation increased RFRP-3 expression in these cells. Treatment of the mHypoA-50 cells with exogenous RFRP-3 resulted in the increase of Kiss-1 messenger RNA expression within the cells; however, RFRP-3 did not modify gonadotropin-releasing hormone or kisspeptin-induced Kiss-1 gene expression in these cells. In addition, we found that RFRP-3 stimulation increased the expression of corticotropin-releasing hormone, which may be involved in E2-induced positive feedback in mHypoA-50 cells. Our observations suggest that RFRP-3 might be involved in positive feedback regulation by directly or indirectly increasing Kiss-1 gene expression.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Zolzaya Tumurgan
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Tomomi Hara
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Science, Department of Biology, Waseda University and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
36
|
Tsutsui K, Ubuka T. How to Contribute to the Progress of Neuroendocrinology: Discovery of GnIH and Progress of GnIH Research. Front Endocrinol (Lausanne) 2018; 9:662. [PMID: 30483217 PMCID: PMC6241250 DOI: 10.3389/fendo.2018.00662] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
It is essential to discover novel neuropeptides that regulate the functions of pituitary, brain and peripheral secretory glands for the progress of neuroendocrinology. Gonadotropin-releasing hormone (GnRH), a hypothalamic neuropeptide stimulating gonadotropin release was isolated and its structure was determined by Schally's and Guillemin's groups at the beginning of the 1970s. It was subsequently shown that GnRH is highly conserved among vertebrates. GnRH was assumed the sole hypothalamic neuropeptide that regulates gonadotropin release in vertebrates based on extensive studies of GnRH over the following three decades. However, in 2000, Tsutsui's group isolated and determined the structure of a novel hypothalamic neuropeptide, which inhibits gonadotropin release, in quail, an avian species, and named it gonadotropin-inhibitory hormone (GnIH). Following studies by Tsutsui's group demonstrated that GnIH is highly conserved among vertebrates, from humans to agnathans, and acts as a key neuropeptide inhibiting reproduction. Intensive research on GnIH demonstrated that GnIH inhibits gonadotropin synthesis and release by acting on gonadotropes and GnRH neurons via GPR147 in birds and mammals. Fish GnIH also regulates gonadotropin release according to its reproductive condition, indicating the conserved role of GnIH in the regulation of the hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. Therefore, we can now say that GnRH is not the only hypothalamic neuropeptide controlling vertebrate reproduction. In addition, recent studies by Tsutsui's group demonstrated that GnIH acts in the brain to regulate behaviors, including reproductive behavior. The 18 years of GnIH research with leading laboratories in the world have significantly advanced our knowledge of the neuroendocrine control mechanism of reproductive physiology and behavior as well as interactions of the HPG, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes. This review describes how GnIH was discovered and GnIH research progressed in this new research era of reproductive neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| |
Collapse
|
37
|
Ubuka T, Tsutsui K. Comparative and Evolutionary Aspects of Gonadotropin-Inhibitory Hormone and FMRFamide-Like Peptide Systems. Front Neurosci 2018; 12:747. [PMID: 30405335 PMCID: PMC6200920 DOI: 10.3389/fnins.2018.00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was found in the brain of Japanese quail when investigating the existence of RFamide peptides in birds. GnIH was named because it decreased gonadotropin release from cultured anterior pituitary, which was located in the hypothalamo-hypophysial system. GnIH and GnIH precursor gene related peptides have a characteristic C-terminal LPXRFamide (X = L or Q) motif that is conserved in jawed vertebrates. Orthologous peptides to GnIH are also named RFamide related peptide or LPXRFamide peptide from their structure. A G-protein coupled receptor GPR147 is the primary receptor for GnIH. Similarity-based clustering of neuropeptide precursors in metazoan species indicates that GnIH precursor of vertebrates is evolutionarily related to FMRFamide precursor of mollusk and nematode. FMRFamide peptide is the first RFamide peptide that was identified from the ganglia of the venus clam. In order to infer the evolutionary history of the GnIH-GnIH receptor system we investigate the structural similarities between GnIH and its receptor and well-studied nematode Caenorhabditis elegans (C. elegans) FMRFamide-like peptides (FLPs) and their receptors. We also compare the functions of FLPs of nematode with GnIH of chordates. A multiple sequence alignment and phylogenetic analyses of GnIH, neuropeptide FF (NPFF), a paralogous peptide of GnIH, and FLP precursors have shown that GnIH and NPFF precursors belong to different clades and some FLP precursors have structural similarities to either precursor. The peptide coding regions of FLP precursors in the same clade align well with those of GnIH or NPFF precursors. Alignment of GnIH (LPXRFa) peptides of chordates and FLPs of C. elegans grouped the peptides into five groups according to the last C-terminal amino acid sequences, which were MRFa, LRFa, VRFa, IRFa, and PQRFa. Phylogenetic analysis of receptors suggested that GPR147 has evolutionary relationships with FLP receptors, which regulate reproduction, aggression, locomotion, and feeding. GnIH and some FLPs mediate the effect of stress on reproduction and behavior, which may also be a conserved property of these peptide systems. Future studies are needed to investigate the mechanism of how neuropeptide precursor genes are mutated to evolve new neuropeptides and their inheritance.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| |
Collapse
|
38
|
Bahry MA, Yang H, Tran PV, Do PH, Han G, Eltahan HM, Chowdhury VS, Furuse M. Reduction in voluntary food intake, but not fasting, stimulates hypothalamic gonadotropin-inhibitory hormone precursor mRNA expression in chicks under heat stress. Neuropeptides 2018; 71:90-96. [PMID: 30220422 DOI: 10.1016/j.npep.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/01/2018] [Accepted: 09/02/2018] [Indexed: 01/19/2023]
Abstract
Heat stress is an issue of rising concern across the globe. Recently, we found that mRNA expression of gonadotropin-inhibitory hormone (GnIH), an orexigenic neuropeptide, was increased in the heat-exposed chick brain when food intake was reduced. The aim of the current study was to examine mRNA expression of GnIH and of the glucocorticoid receptors (GRs) in the hypothalamus as well as the plasma corticosterone (CORT) and metabolites in 14-d-old chicks exposed to a high ambient temperature (HT; 40 ± 1 °C for 1 or 5 h) or a control thermoneutral temperature (CT; 30 ± 1 °C), either with free access to food or fasted. Heat stress caused a voluntary reduction of food intake and reduced plasma triacylglycerol concentration, but increased rectal temperature and plasma CORT and glucose concentrations (P < 0.05). Heat stress also increased (P < 0.05) the expression of diencephalic GnIH mRNA in chicks when they reduced food intake voluntarily, but did not do so under fasting conditions. Although the expression of GR mRNA was not altered as a result of heat stress, its expression was decreased (P < 0.05) in fasted chicks at 5 h in comparison with fed chicks. In addition, the rectal temperature of fasted chicks was lower than that of fed chicks under both CT and HT. In conclusion, voluntary reduction of food intake caused an increase in brain GnIH mRNA expression, plasma CORT, and body temperature in chicks under heat stress. Interestingly, brain GnIH mRNA expression was not induced by heat stress in fasted chicks and was not accompanied by a decrease in rectal temperature. These results suggest that the increased expression of brain GnIH mRNA in chicks under heat stress could be a consequence of a mechanism mediated by the voluntary reduction of food intake, but that it is not a consequence of fasting.
Collapse
Affiliation(s)
- Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Phong H Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Hatem M Eltahan
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; Visiting Researcher from Animal Production Research Institute, Agriculture Research Center, Agriculture Ministry, and Division for Poultry Production, Faculty of Agriculture, Kafr-Elsheikh University, Egypt
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
39
|
Feng P, Zhao W, Xie Q, Zeng T, Lu L, Yang L. Polymorphisms of melatonin receptor genes and their associations with egg production traits in Shaoxing duck. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1535-1541. [PMID: 29642678 PMCID: PMC6127595 DOI: 10.5713/ajas.17.0828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/23/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE In birds, three types of melatonin receptors (MTNR1A, MTNR1B, and MTNR1C) have been cloned. Previous researches have showed that three melatonin receptors played an essential role in reproduction and ovarian physiology. However, the association of polymorphisms of the three receptors with duck reproduction traits and egg quality traits is still unknown. In this test, we chose MTNR1A, MTNR1B, and MTNR1C as candidate genes to detect novel sequence polymorphism and analyze their association with egg production traits in Shaoxing duck, and detected their mRNA expression level in ovaries. METHODS In this study, a total of 785 duck blood samples were collected to investigate the association of melatonin receptor genes with egg production traits and egg quality traits using a direct sequencing method. And 6 ducks representing two groups (3 of each) according to the age at first eggs (at 128 days of age or after 150 days of age) were carefully selected for quantitative real-time polymerase chain reaction. RESULTS Seven novel polymorphisms (MTNR1A: g. 268C>T, MTNR1B: g. 41C>T, and g. 161T>C, MTNR1C: g. 10C>T, g. 24A>G, g. 108C>T, g. 363 T>C) were detected. The single nucleotide polymorphism (SNP) of MTNR1A (g. 268C>T) was significantly linked with the age at first egg (p<0.05). And a statistically significant association (p<0.05) was found between MTNR1C g.108 C>T and egg production traits: total egg numbers at 34 weeks old of age and age at first egg. In addition, the mRNA expression level of MTNR1A in ovary was significantly higher in late-mature group than in early-mature group, while MTNR1C showed a contrary tendency (p<0.05). CONCLUSION These results suggest that identified SNPs in MTNR1A and MTNR1C may influence the age at first egg and could be considered as the candidate molecular marker for identify early maturely traits in duck selection and improvement.
Collapse
Affiliation(s)
- Peishi Feng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wanqiu Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Qiang Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lin Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
40
|
Kriegsfeld LJ, Jennings KJ, Bentley GE, Tsutsui K. Gonadotrophin-inhibitory hormone and its mammalian orthologue RFamide-related peptide-3: Discovery and functional implications for reproduction and stress. J Neuroendocrinol 2018; 30:e12597. [PMID: 29624758 PMCID: PMC6263162 DOI: 10.1111/jne.12597] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
At the turn of the millennium, a neuropeptide with pronounced inhibitory actions on avian pituitary gonadotrophin secretion was identified and named gonadotrophin-inhibitory hormone (GnIH). Across bird species, GnIH acts at the level of the pituitary and the gonadotrophin-releasing hormone (GnRH) neuronal system to inhibit reproduction. Subsequent to this initial discovery, orthologues of GnIH have been identified and characterised across a broad range of species. In many vertebrates, the actions of GnIH and its orthologues serve functional roles analogous to those seen in birds. In other cases, GnIH and its orthologues exhibit more diverse actions dependent on sex, species, season and reproductive condition. The present review highlights the discovery and functional implications of GnIH across species, focusing on research domains in which the significance of this neuropeptide has been explored most.
Collapse
Affiliation(s)
- Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, California 94720, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
- Corresponding Author: Lance J. Kriegsfeld, Ph.D. Neurobiology Laboratory, Department of Psychology and The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California 94720-1650, USA, Phone: (510) 642-5148; Fax: (510) 642-5293;
| | - Kimberly J. Jennings
- Department of Psychology, University of California, Berkeley, California 94720, USA
| | - George E. Bentley
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
- Department of Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
41
|
Banerjee S, Shahin S, Chaturvedi CM. Age dependent variations in the deep brain photoreceptors (DBPs), GnRH-GnIH system and testicular steroidogenesis in Japanese quail, Coturnix coturnix japonica. Exp Gerontol 2018; 108:7-17. [PMID: 29580815 DOI: 10.1016/j.exger.2018.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
The complex physiology of aging involves a number of molecular and biochemical events, manifested as signs of senescence. Japanese quail is a very unique and advantageous model to study the signs and symptoms of senescence in the central and peripheral modules of HPG axis. In the present study, we have investigated the age dependent variations in hypothalamic deep brain photoreceptors (DBPs), central GnRH-I/II-GnIH-Mel1cR system, testicular GnRH-GnIH system, testicular steroidogenic genes and proteins, androgen receptor (AR) and serum testosterone level in quail of different age groups [3-wk (sexually immature), 6-wk (sexually mature and crossed the puberty), 16-wk (adult, sexually active and showing full breeding phase) and 144-wk (aged)]. Findings of our present study showed the differential expression of these genes/proteins in quail of different age groups. The low levels of the DBPs, GnRH-I, GnIH, Mel1cR in hypothalamus and GnRH-II in midbrain, significantly decreased testicular GnRH/GnRH-R-GnIH, steroidogenic genes/proteins and serum testosterone were observed in immature quail. The significantly increased expression of opsins in the DBPs, GnRH-I, GnIH, Mel1cR in hypothalamus and GnRH-II in midbrain influences the testicular GnRH-GnIH and stimulate the testicular steroidogenesis in mature and adult quail. In aged quail, the significantly decreased levels of hypothalamic DBPs, GnRH-I, GnIH, Mel1cR and midbrain GnRH-II modulates the testicular GnRH-GnIH and further suppresses the genes/proteins involved in steroidogenesis and results in reduced serum testosterone. Hence, it can be concluded from our findings that the testicular steroidogenesis and its neuroendocrine regulation varies with age, in Japanese quail.
Collapse
Affiliation(s)
- Somanshu Banerjee
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Saba Shahin
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
42
|
viviD D, Bentley GE. Seasonal Reproduction in Vertebrates: Melatonin Synthesis, Binding, and Functionality Using Tinbergen's Four Questions. Molecules 2018; 23:E652. [PMID: 29534047 PMCID: PMC6017951 DOI: 10.3390/molecules23030652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
One of the many functions of melatonin in vertebrates is seasonal reproductive timing. Longer nights in winter correspond to an extended duration of melatonin secretion. The purpose of this review is to discuss melatonin synthesis, receptor subtypes, and function in the context of seasonality across vertebrates. We conclude with Tinbergen's Four Questions to create a comparative framework for future melatonin research in the context of seasonal reproduction.
Collapse
Affiliation(s)
- Dax viviD
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| | - George E Bentley
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
Tsutsui K, Son YL, Kiyohara M, Miyata I. Discovery of GnIH and Its Role in Hypothyroidism-Induced Delayed Puberty. Endocrinology 2018; 159:62-68. [PMID: 28938445 DOI: 10.1210/en.2017-00300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022]
Abstract
It is known that hypothyroidism delays puberty in mammals. Interaction between the hypothalamo-pituitary-thyroid (HPT) and hypothalamo-pituitary-gonadal (HPG) axes may be important processes in delayed puberty. Gonadotropin-inhibitory hormone (GnIH) is a newly discovered hypothalamic neuropeptide that inhibits gonadotropin synthesis and release in quail. It now appears that GnIH is conserved across various mammals and primates, including humans, and inhibits reproduction. We have further demonstrated that GnIH is involved in pubertal delay induced by thyroid dysfunction in female mice. Hypothyroidism delays pubertal onset with the increase in hypothalamic GnIH expression and the decrease in circulating gonadotropin and estradiol levels. Thyroid status regulates GnIH expression by epigenetic modification of the GnIH promoter region. Furthermore, knockout of GnIH gene abolishes the effect of hypothyroidism on delayed pubertal onset. Accordingly, it is considered that GnIH is a mediator of pubertal disorder induced by thyroid dysfunction. This is a novel function of GnIH that interacts between the HPT-HPG axes in pubertal onset delay. This mini-review summarizes the structure, expression, and function of GnIH and highlights the action of GnIH in pubertal disorder induced by thyroid dysfunction.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Shinjuku-ku, Tokyo, Japan
- Center for Medical Life Science of Waseda University, Shinjuku-ku, Tokyo, Japan
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Shinjuku-ku, Tokyo, Japan
- Center for Medical Life Science of Waseda University, Shinjuku-ku, Tokyo, Japan
- Laboratory of Photobiology, Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mika Kiyohara
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Shinjuku-ku, Tokyo, Japan
- Center for Medical Life Science of Waseda University, Shinjuku-ku, Tokyo, Japan
- Department of Pediatrics, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ichiro Miyata
- Department of Pediatrics, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
44
|
Testicular atrophy and reproductive quiescence in photorefractory and scotosensitive quail: Involvement of hypothalamic deep brain photoreceptors and GnRH-GnIH system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:254-268. [DOI: 10.1016/j.jphotobiol.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 02/04/2023]
|
45
|
Wang B, Liu Q, Liu X, Xu Y, Shi B. Molecular characterization of Kiss2 receptor and in vitro effects of Kiss2 on reproduction-related gene expression in the hypothalamus of half-smooth tongue sole (Cynoglossus semilaevis). Gen Comp Endocrinol 2017; 249:55-63. [PMID: 28438528 DOI: 10.1016/j.ygcen.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/12/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Kisspeptin (Kiss) and its receptor, KissR (previously known as GPR54), play a critical role in the control of reproduction and puberty onset in mammals. Additionally, a number of studies have provided evidence of the existence of multiple Kiss/KissR systems in teleosts, but the physiological relevance and functions of these kisspeptin forms (Kiss1 and Kiss2) still remain to be investigated. To this end, we examined the direct actions of Kiss2 on hypothalamic functions in the half-smooth tongue sole (Cynoglossus semilaevis), a representative species of the order Pleuronectiformes. As a first step, the full-length cDNA for kiss2r was identified and kiss2r transcripts were shown to be widely expressed in various tissues, notably in the brain of tongue sole. Then, the effects of Kiss2 decapeptide on reproduction-related gene expression were evaluated using a primary hypothalamus culture system. Our results showed that neither gnrh2 nor gnrh3 mRNA levels were altered by Kiss2. However, Kiss2 significantly increased the amounts of gnih and kiss2 mRNAs. In contrast, Kiss2 elicited an evident inhibitory effect on both gnihr and kiss2r mRNA levels. To the best of our knowledge, this is the first description of a direct and differential regulation of reproduction-related gene expression by Kiss2 at the hypothalamus level of a teleost fish. Overall, this study provides novel information on the role of Kiss2/Kiss2R system in the reproductive function of teleosts.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Quan Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bao Shi
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
46
|
Kim JH, Park JW, Jin YH, Kim DJ, Kwon JY. Effect of melatonin on GnIH precursor gene expression in Nile tilapia, Oreochromis niloticus. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1357336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jung-Hyun Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Jin Woo Park
- Marine Ecosystem and Biological Research Center, Korea Institute Ocean Science & Technology, Ansan, Korea
| | - Ye Hwa Jin
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, Korea
| | - Dae-Jung Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Joon Yeong Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, Korea
| |
Collapse
|
47
|
Dixit AS, Jain Gupta N, Dwivedi V, Bhardwaj SK. Control of annual gonadal cycles in Indian songbirds. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anand S. Dixit
- Department of Zoology, North-Eastern Hill University, Shillong, India
| | | | - Vatsala Dwivedi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | | |
Collapse
|
48
|
Local Actions of Melatonin in Somatic Cells of the Testis. Int J Mol Sci 2017; 18:ijms18061170. [PMID: 28561756 PMCID: PMC5485994 DOI: 10.3390/ijms18061170] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 01/08/2023] Open
Abstract
The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction.
Collapse
|
49
|
Zhang L, Chen F, Cao J, Dong Y, Wang Z, Hu M, Chen Y. Green light inhibits GnRH-I expression by stimulating the melatonin-GnIH pathway in the chick brain. J Neuroendocrinol 2017; 29. [PMID: 28295740 DOI: 10.1111/jne.12468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/18/2017] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
To study the mechanism by which monochromatic light affects gonadotrophin-releasing hormone (GnRH) expression in chicken hypothalamus, a total of 192 newly-hatched chicks were divided into intact, sham-operated and pinealectomy groups and exposed to white (WL), red (RL), green (GL) and blue (BL) lights using a light-emitting diode system for 2 weeks. In the GL intact group, the mRNA and protein levels of GnRH-I in the hypothalamus, the mean cell area and mean cell optical density (OD) of GnRH-I-immunoreactive (-ir) cells of the nucleus commissurae pallii were decreased by 13.2%-34.5%, 5.7%-39.1% and 9.9%-17.3% compared to those in the chicks exposed to the WL, RL and BL, respectively. GL decreased these factors related to GnRH-I expression and the effect of GL was not observed in pinealectomised birds. However, the mRNA and protein levels of hypothalamic gonadotrophin-inhibitory hormone (GnIH) and GnIH receptor (GnIHR), the mean cell area and mean cell OD of the GnIH-ir cells of the paraventricularis magnocellularis, and the plasma melatonin concentration in the chicks exposed to GL were increased by 18.6%-49.2%, 21.1%-60.0% and 8.6%-30.6% compared to the WL, RL and BL intact groups, respectively. The plasma melatonin concentration showed a negative correlation with GnRH-I protein and a positive correlation with GnIH and GnIHR proteins. Protein expression of both GnRH-I and GnIHR showed a negative correlation in the hypothalamus. After pinealectomy, GnRH-I expression increased, whereas plasma melatonin concentration, GnIH and GnIHR expression decreased, and there were no significant differences among the WL, RL, GL and BL groups. Double-labelled immunofluorescence showed that GnIH axon terminals were near GnRH-I neurones, some GnRH-I neurones coexpressed with GnIHR and GnIH neurones coexpressed with melatonin receptor subtype quinone reductase 2. These results demonstrate that green light inhibits GnRH-I expression by increasing melatonin secretion and stimulating melatonin receptor-GnIH-GnIH receptor pathway in the chick brain.
Collapse
Affiliation(s)
- L Zhang
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing, China
| | - F Chen
- Changping Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - J Cao
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Y Dong
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Z Wang
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing, China
| | - M Hu
- College of Animal Medicine, Agricultural University of Hebei, Baoding, China
| | - Y Chen
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|