1
|
Galinelli NC, Bamford NJ, Erdody ML, Mackenzie SA, Warnken T, Harris PA, Sillence MN, Bailey SR. Effect of pergolide treatment on insulin dysregulation in horses and ponies with pituitary pars intermedia dysfunction. Equine Vet J 2025. [PMID: 39967360 DOI: 10.1111/evj.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
BACKGROUND Due to the high frequency of laminitis reported for both conditions, the relationship between pituitary pars intermedia dysfunction (PPID) and insulin dysregulation (ID), and the potential role of dopamine in modifying insulin secretion, requires further investigation. OBJECTIVES To evaluate the effect of pergolide mesylate on insulin sensitivity and postprandial insulin and glucose responses in horses and ponies with ID, both with or without concurrent PPID. STUDY DESIGN Randomised crossover study. METHODS Sixteen horses and ponies, comprising eight matched pairs (PPID+ID or ID-only), were given pergolide mesylate at a dose of 2 μg/kg bwt orally once daily for 4 weeks (plus a 4-week non-treatment control period, with a 4-week washout between phases). A combined glucose and insulin tolerance test (CGIT) and a standard meal test (SMT; containing 1.1 g/kg bwt of starch and 0.1 g/kg bwt of free sugars), were performed before and after each treatment period to determine insulin sensitivity and postprandial insulin and glucose responses, respectively. Variables derived from the CGIT and SMT were analysed using linear mixed models. RESULTS Pergolide treatment did not alter any of the variables derived from the CGIT in either the PPID+ID or ID-only groups (all p > 0.05). For the SMT, insulin responses were reduced by pergolide treatment for the PPID+ID group, with Δ change values for the total area under the curve for insulin over 300 mins (estimated marginal mean [95% confidence interval]) being -25.4 (-39.9 to -7.3) min∙mIU/mL (p = 0.03) and Δ change values for peak insulin concentration being -100 (-167 to -29) μIU/mL (p = 0.04). No effect of pergolide treatment was detected for the ID-only group. MAIN LIMITATIONS Number of animals and heterogeneity among groups. CONCLUSIONS Pergolide had no effect on tissue insulin sensitivity. However, the results suggest that postprandial hyperinsulinaemia may be limited by this dopamine receptor agonist in animals with PPID plus ID.
Collapse
Affiliation(s)
- Nicolas C Galinelli
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Bamford
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Madison L Erdody
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Skye A Mackenzie
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Tobias Warnken
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| | - Patricia A Harris
- Equine Studies Group, Waltham Petcare Science Institute, Melton Mowbray, UK
| | - Martin N Sillence
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon R Bailey
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Li Z, Zheng L, Wang J, Wang L, Qi Y, Amin B, Zhu J, Zhang N. Dopamine in the regulation of glucose and lipid metabolism: a narrative review. Obesity (Silver Spring) 2024; 32:1632-1645. [PMID: 39081007 DOI: 10.1002/oby.24068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Owing to the global obesity epidemic, understanding the regulatory mechanisms of glucose and lipid metabolism has become increasingly important. The dopaminergic system, including dopamine, dopamine receptors, dopamine transporters, and other components, is involved in numerous physiological and pathological processes. However, the mechanism of action of the dopaminergic system in glucose and lipid metabolism is poorly understood. In this review, we examine the role of the dopaminergic system in glucose and lipid metabolism. RESULTS The dopaminergic system regulates glucose and lipid metabolism through several mechanisms. It regulates various activities at the central level, including appetite control and decision-making, which contribute to regulating body weight and energy metabolism. In the pituitary gland, dopamine inhibits prolactin production and promotes insulin secretion through dopamine receptor 2. Furthermore, it can influence various physiological components in the peripheral system, such as pancreatic β cells, glucagon-like peptide-1, adipocytes, hepatocytes, and muscle, by regulating insulin and glucagon secretion, glucose uptake and use, and fatty acid metabolism. CONCLUSIONS The role of dopamine in regulating glucose and lipid metabolism has significant implications for the physiology and pathogenesis of disease. The potential therapeutic value of dopamine lies in its effects on metabolic disorders.
Collapse
Affiliation(s)
- Zhehong Li
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Sawamoto A, Okada M, Matsuoka N, Okuyama S, Nakajima M. Tipepidine activates AMPK and improves adipose tissue fibrosis and glucose intolerance in high-fat diet-induced obese mice. FASEB J 2024; 38:e23542. [PMID: 38466234 DOI: 10.1096/fj.202301861rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Tipepidine (3-[di-2-thienylmethylene]-1-methylpiperidine) (TP) is a non-narcotic antitussive used in Japan. Recently, the potential application of TP in the treatment of neuropsychiatric disorders, such as depression and attention deficit hyperactivity disorder, has been suggested; however, its functions in energy metabolism are unknown. Here, we demonstrate that TP exhibits a metabolism-improving action. The administration of TP reduced high-fat diet-induced body weight gain in mice and lipid accumulation in the liver and increased the weight of epididymal white adipose tissue (eWAT) in diet-induced obese (DIO) mice. Furthermore, TP inhibited obesity-induced fibrosis in the eWAT. We also found that TP induced AMP-activated protein kinase (AMPK) activation in the eWAT of DIO mice and 3T3-L1 cells. TP-induced AMPK activation was abrogated by the transfection of liver kinase B1 siRNA in 3T3-L1 cells. The metabolic effects of TP were almost equivalent to those of metformin, an AMPK activator that is used as a first-line antidiabetic drug. In summary, TP is a potent AMPK activator, suggesting its novel role as an antidiabetic drug owing to its antifibrotic effect on adipose tissues.
Collapse
Affiliation(s)
- Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Madoka Okada
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Nanako Matsuoka
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| |
Collapse
|
4
|
Abu-Toamih-Atamni HJ, Lone IM, Binenbaum I, Mott R, Pilalis E, Chatziioannou A, Iraqi FA. Mapping novel QTL and fine mapping of previously identified QTL associated with glucose tolerance using the collaborative cross mice. Mamm Genome 2024; 35:31-55. [PMID: 37978084 DOI: 10.1007/s00335-023-10025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023]
Abstract
A chronic metabolic illness, type 2 diabetes (T2D) is a polygenic and multifactorial complicated disease. With an estimated 463 million persons aged 20 to 79 having diabetes, the number is expected to rise to 700 million by 2045, creating a significant worldwide health burden. Polygenic variants of diabetes are influenced by environmental variables. T2D is regarded as a silent illness that can advance for years before being diagnosed. Finding genetic markers for T2D and metabolic syndrome in groups with similar environmental exposure is therefore essential to understanding the mechanism of such complex characteristic illnesses. So herein, we demonstrated the exclusive use of the collaborative cross (CC) mouse reference population to identify novel quantitative trait loci (QTL) and, subsequently, suggested genes associated with host glucose tolerance in response to a high-fat diet. In this study, we used 539 mice from 60 different CC lines. The diabetogenic effect in response to high-fat dietary challenge was measured by the three-hour intraperitoneal glucose tolerance test (IPGTT) test after 12 weeks of dietary challenge. Data analysis was performed using a statistical software package IBM SPSS Statistic 23. Afterward, blood glucose concentration at the specific and between different time points during the IPGTT assay and the total area under the curve (AUC0-180) of the glucose clearance was computed and utilized as a marker for the presence and severity of diabetes. The observed AUC0-180 averages for males and females were 51,267.5 and 36,537.5 mg/dL, respectively, representing a 1.4-fold difference in favor of females with lower AUC0-180 indicating adequate glucose clearance. The AUC0-180 mean differences between the sexes within each specific CC line varied widely within the CC population. A total of 46 QTL associated with the different studied phenotypes, designated as T2DSL and its number, for Type 2 Diabetes Specific Locus and its number, were identified during our study, among which 19 QTL were not previously mapped. The genomic interval of the remaining 27 QTL previously reported, were fine mapped in our study. The genomic positions of 40 of the mapped QTL overlapped (clustered) on 11 different peaks or close genomic positions, while the remaining 6 QTL were unique. Further, our study showed a complex pattern of haplotype effects of the founders, with the wild-derived strains (mainly PWK) playing a significant role in the increase of AUC values.
Collapse
Affiliation(s)
- Hanifa J Abu-Toamih-Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Iqbal M Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Ilona Binenbaum
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Str, 11527, Athens, Greece
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Richard Mott
- Department of Genetics, University College of London, London, UK
| | | | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Str, 11527, Athens, Greece
- e-NIOS Applications PC, 196 Syggrou Ave., 17671, Kallithea, Greece
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
5
|
Galinelli NC, Bamford NJ, de Laat MA, Sillence MN, Harris PA, Bailey SR. Evidence for dopamine production and distribution of dopamine D2 receptors in the equine gastrointestinal mucosa and pancreas. PLoS One 2024; 19:e0298660. [PMID: 38412155 PMCID: PMC10898723 DOI: 10.1371/journal.pone.0298660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Insulin dysregulation in horses is characterised by hyperinsulinaemia and/or tissue insulin resistance and is associated with increased risk of laminitis. There is growing evidence in other species that dopamine attenuates insulin release from the pancreas; however, this has yet to be examined in horses. The present study aimed to identify whether there are cells capable of producing or responding to dopamine within the equine gastrointestinal mucosa and pancreas. Tissue samples were collected from the stomach, small and large intestines, and pancreas of six mature horses following euthanasia. Samples of stomach contents and faeces were also collected. Immunohistochemistry was performed to identify tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine production, and dopamine D2 receptors in tissue sections. Additional immunostaining for glucagon, insulin and chromogranin A was performed to identify α cells, β cells and enteroendocrine cells, respectively. Gastric parietal cells expressed both TH and D2 receptors, indicating that they are capable of both producing and responding to dopamine. Dopamine was quantified in stomach contents and faeces by high-performance liquid chromatography with electrochemical detection, with similar concentrations found at both sites. Dopamine D2 receptors were expressed in duodenal epithelial cells but not more distally. A subset of enteroendocrine cells, located sporadically along the gastrointestinal tract, were found to be immunopositive for the D2 receptor. In pancreatic islets, TH was present in α cells, while D2 receptors were strongly expressed in β cells and variably expressed in α cells. These findings are consistent with studies of other species; however, dynamic studies are required to further elucidate the role of dopamine in the modulation of insulin and glucagon secretion in horses. This descriptive study provides preliminary evidence for a potential role of dopamine to act as a paracrine messenger in the gastrointestinal mucosa and endocrine pancreas of horses.
Collapse
Affiliation(s)
- Nicolas C. Galinelli
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J. Bamford
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody A. de Laat
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Martin N. Sillence
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patricia A. Harris
- Equine Studies Group, Waltham Petcare Science Institute, Melton Mowbray, United Kingdom
| | - Simon R. Bailey
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Bonifazi A, Ellenberger M, Farino ZJ, Aslanoglou D, Rais R, Pereira S, Mantilla-Rivas JO, Boateng CA, Eshleman AJ, Janowsky A, Hahn MK, Schwartz GJ, Slusher BS, Newman AH, Freyberg Z. Development of novel tools for dissection of central versus peripheral dopamine D 2-like receptor signaling in dysglycemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581451. [PMID: 38529497 PMCID: PMC10962703 DOI: 10.1101/2024.02.21.581451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Ellenberger
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Comfort A. Boateng
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy J. Eshleman
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Lead Contact
| |
Collapse
|
7
|
Wu Q, Long Y, Peng X, Song C, Xiao J, Wang X, Liu F, Xie P, Yang J, Shi Z, Hu Z, McCaig C, St Clair D, Lang B, Wu R. Prefrontal cortical dopamine deficit may cause impaired glucose metabolism in schizophrenia. Transl Psychiatry 2024; 14:79. [PMID: 38320995 PMCID: PMC10847097 DOI: 10.1038/s41398-024-02800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The brain neurotramsmitter dopamine may play an important role in modulating systemic glucose homeostasis. In seven hundred and four drug- naïve patients with first-episode schizophrenia, we provide robust evidence of positive associations between negative symptoms of schizophrenia and high fasting blood glucose. We then show that glucose metabolism and negative symptoms are improved when intermittent theta burst stimulation (iTBS) on prefrontal cortex (PFC) is performed in patients with predominantly negative symptoms of schizophrenia. These findings led us to hypothesize that the prefrontal cortical dopamine deficit, which is known to be associated with negative symptoms, may be responsible for abnormal glucose metabolism in schizophrenia. To explore this, we optogenetically and chemogenetically inhibited the ventral tegmental area (VTA)-medial prefrontal cortex (mPFC) dopamine projection in mice and found both procedures caused glucose intolerance. Moreover, microinjection of dopamine two receptor (D2R) neuron antagonists into mPFC in mice significantly impaired glucose tolerance. Finally, a transgenic mouse model of psychosis named Disc1tr exhibited depressive-like symptoms, impaired glucose homeostasis, and compared to wild type littermates reduced D2R expression in prefrontal cortex.
Collapse
Affiliation(s)
- Qiongqiong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
| | - Yujun Long
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xingjie Peng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Chuhan Song
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingmei Xiao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyi Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Furu Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinqing Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Colin McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - David St Clair
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Bing Lang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Renrong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Guan X, Chen Y, Wang X, Xiu M, Wu F, Zhang X. Total antioxidant capacity, obesity and clinical correlates in first-episode and drug-naïve patients with schizophrenia. Schizophr Res 2024; 264:81-86. [PMID: 38113675 DOI: 10.1016/j.schres.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Overweight/obesity is a growing concern in schizophrenia (SZ). A few studies have shown that excessive oxidative stress and abnormal antioxidants were associated with pathogenesis and psychiatric symptoms in first episode antipsychotics naïve (FEAN) patients with SZ. However, there is no study has explored the interrelationships between total antioxidant status (TAS) and the severity of psychiatric symptoms in the early stage of SZ. This study aimed to evaluate the impact of overweight/obesity on psychiatric symptoms in FEAN patients with SZ. METHODS A total of 241 patients with FEAN SZ and 119 healthy controls were recruited and symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). TAS levels were also measured in patients and healthy controls. RESULTS We found a significant negative association between body mass index (BMI) and TAS in FEAN patients, but not in controls. In addition, BMI and TAS were negatively associated with psychiatric symptoms. Interestingly, further regression analysis revealed that the interaction between BMI and TAS was associated with the negative symptoms in the early stage of SZ. CONCLUSIONS Our study indicates that abnormal TAS levels interacting with overweight/obesity may be involved in the pathophysiology of SZ, in particular negative symptoms.
Collapse
Affiliation(s)
- Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Yuping Chen
- Qingdao Mental Health Center, Qingdao, China
| | - Xin Wang
- Qingdao Mental Health Center, Qingdao, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Xiangyang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.
| |
Collapse
|
9
|
Li Y, Tan Y, Ren L, Li Q, Sui J, Liu S. Structural and expression analysis of the dopamine receptors reveals their crucial roles in regulating the insulin signaling pathway in oysters. Int J Biol Macromol 2023; 247:125703. [PMID: 37414315 DOI: 10.1016/j.ijbiomac.2023.125703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Dopamine performs its critical role upon binding to receptors. Since dopamine receptors are numerous and versatile, understanding their protein structures and evolution status, and identifying the key receptors involved in the modulation of insulin signaling will provide essential clues to investigate the molecular mechanism of neuroendocrine regulating the growth in invertebrates. In this study, seven dopamine receptors were identified in the Pacific oysters (Crassostrea gigas) and were classified into four subtypes according to their protein secondary and tertiary structures, and ligand-binding activities. Of which, DR2 (dopamine receptor 2) and D(2)RA-like (D(2) dopamine receptor A-like) were considered the invertebrate-specific type 1 and type 2 dopamine receptors, respectively. Expression analysis indicated that the DR2 and D(2)RA-like were highly expressed in the fast-growing oyster "Haida No.1". After in vitro incubation of ganglia and adductor muscle with exogenous dopamine and dopamine receptor antagonists, the expression of these two dopamine receptors and ILPs (insulin-like peptides) was also significantly affected. Dual-fluorescence in situ hybridization results showed that D(2)RA-like and DR2 were co-localized with MIRP3 (molluscan insulin-related peptide 3) and MIRP3-like (molluscan insulin-related peptide 3-like) in the visceral ganglia, and were co-localized with ILP (insulin-like peptide) in the adductor muscle. Furthermore, the downstream components of dopamine signaling, including PKA, ERK, CREB, CaMKK1, AKT, and GSK3β were also significantly affected by the exogenous dopamine and dopamine receptor antagonists. These findings confirmed that dopamine might affect the secretion of ILPs through the invertebrate-specific dopamine receptors D(2)RA-like and DR2, and thus played crucial roles in the growth regulation of the Pacific oysters. Our study establishes the potential regulatory relationship between the dopaminergic system and insulin-like signaling pathway in marine invertebrates.
Collapse
Affiliation(s)
- Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ying Tan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Wilson JB, Epstein M, Lopez B, Brown AK, Lutfy K, Friedman TC. The role of Neurochemicals, Stress Hormones and Immune System in the Positive Feedback Loops between Diabetes, Obesity and Depression. Front Endocrinol (Lausanne) 2023; 14:1224612. [PMID: 37664841 PMCID: PMC10470111 DOI: 10.3389/fendo.2023.1224612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and depression are significant public health and socioeconomic issues. They commonly co-occur, with T2DM occurring in 11.3% of the US population, while depression has a prevalence of about 9%, with higher rates among youths. Approximately 31% of patients with T2DM suffer from depressive symptoms, with 11.4% having major depressive disorders, which is twice as high as the prevalence of depression in patients without T2DM. Additionally, over 80% of people with T2DM are overweight or obese. This review describes how T2DM and depression can enhance one another, using the same molecular pathways, by synergistically altering the brain's structure and function and reducing the reward obtained from eating. In this article, we reviewed the evidence that eating, especially high-caloric foods, stimulates the limbic system, initiating Reward Deficiency Syndrome. Analogous to other addictive behaviors, neurochemical changes in those with depression and/or T2DM are thought to cause individuals to increase their food intake to obtain the same reward leading to binge eating, weight gain and obesity. Treating the symptoms of T2DM, such as lowering HbA1c, without addressing the underlying pathways has little chance of eliminating the disease. Targeting the immune system, stress circuit, melatonin, and other alterations may be more effective.
Collapse
Affiliation(s)
- Julian B. Wilson
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Ma’ayan Epstein
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Psychiatric Emergency Room, Olive View – University of California, Los Angeles (UCLA) Medical Center, Sylmar, CA, United States
| | - Briana Lopez
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| | - Amira K. Brown
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Kabirullah Lutfy
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Theodore C. Friedman
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| |
Collapse
|
11
|
Chien HY, Chen SM, Li WC. Dopamine receptor agonists mechanism of actions on glucose lowering and their connections with prolactin actions. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:935872. [PMID: 36993818 PMCID: PMC10012161 DOI: 10.3389/fcdhc.2023.935872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/20/2023] [Indexed: 03/12/2023]
Abstract
Robust experiment evidence suggests that prolactin can enhance beta-cell proliferation and increase insulin secretion and sensitivity. Apart from acting as an endocrine hormone, it also function as an adipokine and act on adipocytes to modulate adipogenesis, lipid metabolism and inflammation. Several cross-sectional epidemiologic studies consistently showed that circulating prolactin levels positive correlated with increased insulin sensitivity, lower glucose and lipid levels, and lower prevalence of T2D and metabolic syndrome. Bromocriptine, a dopamine receptor agonist used to treat prolactinoma, is approved by Food and Drug Administration for treatment in type 2 diabetes mellitus since 2009. Prolactin lowering suppress insulin secretion and decrease insulin sensitivity, therefore dopamine receptor agonists which act at the pituitary to lower serum prolactin levels are expected to impair glucose tolerance. Making it more complicating, studies exploring the glucose-lowering mechanism of bromocriptine and cabergoline have resulted in contradictory results; while some demonstrated actions independently on prolactin status, others showed glucose lowering partly explained by prolactin level. Previous studies showed that a moderate increase in central intraventricular prolactin levels stimulates hypothalamic dopamine with a decreased serum prolactin level and improved glucose metabolism. Additionally, sharp wave-ripples from the hippocampus modulates peripheral glucose level within 10 minutes, providing evidence for a mechanistic link between hypothalamus and blood glucose control. Central insulin in the mesolimbic system have been shown to suppress dopamine levels thus comprising a feedback control loop. Central dopamine and prolactin levels plays a key role in the glucose homeostasis control, and their dysregulation could lead to the pathognomonic central insulin resistance depicted in the “ominous octet”. This review aims to provide an in-depth discussion on the glucose-lowering mechanism of dopamine receptor agonists and on the diverse prolactin and dopamine actions on metabolism targets.
Collapse
Affiliation(s)
- Hung-Yu Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Su-Mei Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
- Division of Nuclear Medicine, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Wan-Chun Li,
| |
Collapse
|
12
|
The anxiolytic drug opipramol inhibits insulin-induced lipogenesis in fat cells and insulin secretion in pancreatic islets. J Physiol Biochem 2023:10.1007/s13105-023-00950-8. [PMID: 36821072 DOI: 10.1007/s13105-023-00950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
The antidepressant drug opipramol has been reported to exert antilipolytic effect in human adipocytes, suggesting that alongside its neuropharmacological properties, this agent might modulate lipid utilization by peripheral tissues. However, patients treated for depression or anxiety disorders by this tricyclic compound do not exhibit the body weight gain or the glucose tolerance alterations observed with various other antidepressant or antipsychotic agents such as amitriptyline and olanzapine, respectively. To examine whether opipramol reproduces or impairs other actions of insulin, its direct effects on glucose transport, lipogenesis and lipolysis were investigated in adipocytes while its influence on insulin secretion was studied in pancreatic islets. In mouse and rat adipocytes, opipramol did not activate triglyceride breakdown, but partially inhibited the lipolytic action of isoprenaline or forskolin, especially in the 10-100 μM range. At 100 μM, opipramol also inhibited the glucose incorporation into lipids without limiting the glucose transport in mouse adipocytes. In pancreatic islets, opipramol acutely impaired the stimulation of insulin secretion by various activators (high glucose, high potassium, forskolin...). Similar inhibitory effects were observed in mouse and rat pancreatic islets and were reproduced with 100 μM haloperidol, in a manner that was independent from alpha2-adrenoceptor activation but sensitive to Ca2+ release. All these results indicated that the anxiolytic drug opipramol is not only active in central nervous system but also in multiple peripheral tissues and endocrine organs. Due to its capacity to modulate the lipid and carbohydrate metabolisms, opipramol deserves further studies in order to explore its therapeutic potential for the treatment of obese and diabetic states.
Collapse
|
13
|
Valente EEL, Klotz JL, Egert-McLean AM, Costa GW, May JB, Harmon DL. Influence of intra-abomasal administration of L-DOPA on circulating catecholamines and feed intake in cattle. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1127575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Dopamine has multiple physiological functions including feed intake control in which it can act as an anorectic or orexigenic agent. This study had the objective to evaluate intra-abomasal administration of L-DOPA (levodopa; L-3,4-dihydroxyphenylalanine) from -Mucuna pruriens on circulating catecholamines, indicators of energy metabolism and feed intake in cattle. Eight Holstein steers (340 ± 20 kg) fitted with ruminal cannula were used in a replicated 4 x 4 Latin Square design experiment. Intra-abomasal infusion of L-DOPA at 0, 0.5, 1 and 2 mg/kg BW was carried out for seven days and blood samples were collected at 0, 30, 60, 120, 240 and 480 min from L-DOPA infusion on day 7. The area under the curve (AUC) of plasma L-DOPA and free dopamine increased quadratically with the administration of L-DOPA. However, the AUC of plasma total dopamine had a positive linear response with the increase of L-DOPA. Conversely, the serum 5-hydroxytriptophan (5-HTP), plasma serotonin, serum serotonin, serum tyrosine, plasma glucose and plasma free fatty acids were not affected by the intra-abomasal infusion of L-DOPA. The circulating concentration of the epinephrine, norepinephrine, serotonin, glucose and free fatty acids did not change with L-DOPA infusion. It can be concluded that intra-abomasal L-DOPA administration produced a strong increase in circulating dopamine with no change in energy metabolites and feed intake in cattle.
Collapse
|
14
|
Tabatabaei Dakhili SA, Greenwell AA, Yang K, Abou Farraj R, Saed CT, Gopal K, Chan JSF, Chahade JJ, Eaton F, Lee C, Velázquez-Martínez CA, Crawford PA, Glover JNM, Al Batran R, Ussher JR. The Antipsychotic Dopamine 2 Receptor Antagonist Diphenylbutylpiperidines Improve Glycemia in Experimental Obesity by Inhibiting Succinyl-CoA:3-Ketoacid CoA Transferase. Diabetes 2023; 72:126-134. [PMID: 36256885 DOI: 10.2337/db22-0221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/12/2022] [Indexed: 12/31/2022]
Abstract
Despite significant progress in understanding the pathogenesis of type 2 diabetes (T2D), the condition remains difficult to manage. Hence, new therapeutic options targeting unique mechanisms of action are required. We have previously observed that elevated skeletal muscle succinyl CoA:3-ketoacid CoA transferase (SCOT) activity, the rate-limiting enzyme of ketone oxidation, contributes to the hyperglycemia characterizing obesity and T2D. Moreover, we identified that the typical antipsychotic agent pimozide is a SCOT inhibitor that can alleviate obesity-induced hyperglycemia. We now extend those observations here, using computer-assisted in silico modeling and in vivo pharmacology studies that highlight SCOT as a noncanonical target shared among the diphenylbutylpiperidine (DPBP) drug class, which includes penfluridol and fluspirilene. All three DPBPs tested (pimozide, penfluridol, and fluspirilene) improved glycemia in obese mice. While the canonical target of the DPBPs is the dopamine 2 receptor, studies in obese mice demonstrated that acute or chronic treatment with a structurally unrelated antipsychotic dopamine 2 receptor antagonist, lurasidone, was devoid of glucose-lowering actions. We further observed that the DPBPs improved glycemia in a SCOT-dependent manner in skeletal muscle, suggesting that this older class of antipsychotic agents may have utility in being repurposed for the treatment of T2D.
Collapse
Affiliation(s)
- Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kunyan Yang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christina T Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan S F Chan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jadin J Chahade
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Crystal Lee
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, University of Montreal, Montreal, Quebec, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Ferguson TD, Loos CMM, Vanzant ES, Urschel KL, Klotz JL, McLeod KR. Impact of ergot alkaloid and steroidal implant on whole-body protein turnover and expression of mTOR pathway proteins in muscle of cattle. Front Vet Sci 2023; 10:1104361. [PMID: 37143501 PMCID: PMC10151678 DOI: 10.3389/fvets.2023.1104361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Holstein steers (n = 32) were used to determine if the ergot analog, bromocriptine decreases muscle protein synthesis through inhibitory action on the mTOR pathway via a direct effect on signal proteins, and if these negative effects can be alleviated with anabolic agents. Methods Steers were treated with intramuscular administration of bromocriptine (vehicle or 0.1 mg/kg BW) and a subdermal commercial steroidal implant containing trenbolone acetate (TBA) and estradiol 17β (with or without), in a 2×2 factorial design. During the 35 day experiment, intake was restricted to 1.5 times maintenance energy requirement. On days 27 through 32, steers were moved to metabolism stalls for urine collection, and whole-body protein turnover was determined using a single pulse dose of [15N] glycine into the jugular vein on day 28. On day 35, skeletal muscle samples were collected before (basal state) and 60 min after (stimulated state) an i.v. glucose challenge (0.25 g glucose/kg). Blood samples were collected at regular intervals before and after glucose infusion for determination of circulating concentrations of glucose and insulin. Results Bromocriptine reduced insulin and glucose clearance following the glucose challenge, indicating decreased insulin sensitivity and possible disruption of glucose uptake and metabolism in the skeletal muscle. Conversely, analysis of whole-body protein turnover demonstrated that bromocriptine does not appear to affect protein synthesis or urea excretion. Western immunoblot analysis of skeletal muscle showed that it did not affect abundance of S6K1 or 4E-BP1, so bromocriptine does not appear to inhibit activation of the mTOR pathway or protein synthesis. Estradiol/TBA implant decreased urea excretion and protein turnover but had no effect on protein synthesis, suggesting that steroidal implants promote protein accretion through unchanged rates of synthesis and decreased degradation, even in the presence of bromocriptine, resulting in improved daily gains. Implanted steers likely experienced increased IGF-1 signaling, but downstream activation of mTOR, S6K and 4E-BP1, and thus increased protein synthesis did not occur as expected. Conclusions Overall, this data suggests that bromocriptine does not have a negative impact on muscle protein synthetic pathways independent of DMI.
Collapse
Affiliation(s)
- Taylor D. Ferguson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Caroline M. M. Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Eric S. Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kristine L. Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - James L. Klotz
- Forage Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
- *Correspondence: Kyle R. McLeod,
| |
Collapse
|
16
|
Freyberg Z, Gittes GK. Roles of Pancreatic Islet Catecholamine Neurotransmitters in Glycemic Control and in Antipsychotic Drug-Induced Dysglycemia. Diabetes 2023; 72:3-15. [PMID: 36538602 PMCID: PMC9797319 DOI: 10.2337/db22-0522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Catecholamine neurotransmitters dopamine (DA) and norepinephrine (NE) are essential for a myriad of functions throughout the central nervous system, including metabolic regulation. These molecules are also present in the pancreas, and their study may shed light on the effects of peripheral neurotransmission on glycemic control. Though sympathetic innervation to islets provides NE that signals at local α-cell and β-cell adrenergic receptors to modify hormone secretion, α-cells and β-cells also synthesize catecholamines locally. We propose a model where α-cells and β-cells take up catecholamine precursors in response to postprandial availability, preferentially synthesizing DA. The newly synthesized DA signals in an autocrine/paracrine manner to regulate insulin and glucagon secretion and maintain glycemic control. This enables islets to couple local catecholamine signaling to changes in nutritional state. We also contend that the DA receptors expressed by α-cells and β-cells are targeted by antipsychotic drugs (APDs)-some of the most widely prescribed medications today. Blockade of local DA signaling contributes significantly to APD-induced dysglycemia, a major contributor to treatment discontinuation and development of diabetes. Thus, elucidating the peripheral actions of catecholamines will provide new insights into the regulation of metabolic pathways and may lead to novel, more effective strategies to tune metabolism and treat diabetes.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - George K. Gittes
- Division of Pediatric Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
17
|
Ahmad S, Rafiq H, Khan A, Tikmani P, Batool Z, Tabassum S, Arain F, Siddiqi S, Khaliq S, Amin F, Wasim M, Haider S. Ameliorative effects of half-dose saffron and chamomile combination on Psycho-endocrinological changes in a diabetic murine model. PLoS One 2022; 17:e0276236. [PMID: 36302045 PMCID: PMC9612524 DOI: 10.1371/journal.pone.0276236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Diabetes mellitus is a chronic metabolic disorder with an increasing prevalence worldwide. Reduction in blood insulin level alters brain function by inducing oxidative stress with changes in dopamine and norepinephrine neurotransmission, ultimately leading to neuropsychological symptoms. The efficacy of currently available psychotropic drugs is not satisfactory. Therefore, this study was conducted to explore the beneficial effects of a combination of the natural herbs, saffron and chamomile, in treating diabetes and its resultant neuropsychological effects using a rodent model of diabetes mellitus. METHOD The rats were randomly divided in to eight groups (n = 10), healthy control (HC), diabetic control (DC) and six groups of diabetic rats treated with various concentrations and combinations of saffron and chamomile. Diabetic treatment groups individually received methanolic extract and water decoction of chamomile (30 mg/kg) and saffron (10mg/kg) and their combined half doses (saffron 5mg/kg and chamomile 15mg/kg) for two weeks. Open field test (OFT) and forced swim test (FST) were used to measure the anxiolytic and antidepressant effects of herbs, respectively. Finally, biochemical, and neurochemical estimations were made. RESULTS The present study suggests the therapeutic effects of herbs especially in co-administrated decoction, against diabetes with improved antioxidant profile and enhanced levels of dopamine and norepinephrine. Anxiolytic and antidepressant effects were evident with improvements in the OFT and FST. Examination of the cortex of the diabetic group revealed cellular damage and tangle formation, which indicates advanced stages of dementia. CONCLUSION This study shows that the use of a combination of saffron and chamomile improves diabetes control and reduces its related psychiatric effects.
Collapse
Affiliation(s)
- Saara Ahmad
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
- * E-mail: ,
| | - Hamna Rafiq
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Asra Khan
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Prashant Tikmani
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Zehra Batool
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saiqa Tabassum
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Dubai, United Arab Emirates
| | - Fazal Arain
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Salman Siddiqi
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Federal Urdu University of Science, Arts and Technology, Karachi, Pakistan
| | - Faiq Amin
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Muhammad Wasim
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Saida Haider
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
18
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
19
|
Uefune F, Aonishi T, Kitaguchi T, Takahashi H, Seino S, Sakano D, Kume S. Dopamine Negatively Regulates Insulin Secretion Through Activation of D1-D2 Receptor Heteromer. Diabetes 2022; 71:1946-1961. [PMID: 35728809 DOI: 10.2337/db21-0644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
There is increasing evidence that dopamine (DA) functions as a negative regulator of glucose-stimulated insulin secretion; however, the underlying molecular mechanism remains unknown. Using total internal reflection fluorescence microscopy, we monitored insulin granule exocytosis in primary islet cells to dissect the effect of DA. We found that D1 receptor antagonists rescued the DA-mediated inhibition of glucose-stimulated calcium (Ca2+) flux, thereby suggesting a role of D1 in the DA-mediated inhibition of insulin secretion. Overexpression of D2, but not D1, alone exerted an inhibitory and toxic effect that abolished the glucose-stimulated Ca2+ influx and insulin secretion in β-cells. Proximity ligation and Western blot assays revealed that D1 and D2 form heteromers in β-cells. Treatment with a D1-D2 heteromer agonist, SKF83959, transiently inhibited glucose-induced Ca2+ influx and insulin granule exocytosis. Coexpression of D1 and D2 enabled β-cells to bypass the toxic effect of D2 overexpression. DA transiently inhibited glucose-stimulated Ca2+ flux and insulin exocytosis by activating the D1-D2 heteromer. We conclude that D1 protects β-cells from the harmful effects of DA by modulating D2 signaling. The finding will contribute to our understanding of the DA signaling in regulating insulin secretion and improve methods for preventing and treating diabetes.
Collapse
Affiliation(s)
- Fumiya Uefune
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Toru Aonishi
- School of Computing, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Tetsuya Kitaguchi
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Harumi Takahashi
- Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Susumu Seino
- Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
20
|
Prochnik A, Burgueño AL, Rubinstein MR, Marcone MP, Bianchi MS, Gonzalez Murano MR, Genaro AM, Wald MR. Sexual dimorphism modulates metabolic and cognitive alterations under HFD nutrition and chronic stress exposure in mice. Correlation between spatial memory impairment and BDNF mRNA expression in hippocampus and spleen. Neurochem Int 2022; 160:105416. [PMID: 36055604 DOI: 10.1016/j.neuint.2022.105416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 10/31/2022]
Abstract
AIMS The accumulated evidence suggests that lifestyle - specifically dietary habits and stress exposure - plays a detrimental role in health. The purpose of the present study was to analyze the interplay of stress, diet, and sex in metabolic and cognitive alterations. MAIN METHODS For this purpose, one-month-old C57Bl/6J mice were fed with a standard diet or high-fat diet (HFD). After eight weeks, one subgroup of mice from each respective diet was exposed to 20 weeks of chronic mild stress (CMS), whilst the others were left undisturbed. KEY FINDINGS After 28 weeks of HFD feeding, mice from both sexes were overweight, with an increase in caloric intake and abdominal and subcutaneous fat pads. Stress exposure induced a decrease in body weight, related to a decrease in caloric efficiency in both males and females. Results indicate that males are more susceptible than the females in modulating metabolic and cognitive functions under HFD and CMS. Although both sexes demonstrated HFD-induced weight gain, fat accumulation, insulin resistance, high cholesterol, only males exposed to CMS but not females have (i) impaired glucose tolerance with higher glucose level; (ii) significant prolonged latency in Barnes test, suggesting cognitive impairment; (iii) increased IFN-gamma expression in hippocampus, suggesting greater neuroinflammatory response; (iv) poorer cognitive performance related to a decrease in hippocampal and spleen BDNF mRNA expression. SIGNIFICANCE The main finding in this study is the presence of a sexual dimorphism in modulating metabolic and cognitive functions under HFD and CMS, showing males are more susceptible than females. In addition, poorer cognitive performance was related to a decrease in hippocampal BDNF mRNA expression. Interestingly, these changes were observed in the spleen as well.
Collapse
Affiliation(s)
- Andrés Prochnik
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - Adriana L Burgueño
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - Mara R Rubinstein
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - María P Marcone
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - María S Bianchi
- Instituto de Biología y Medicina Experimental. CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - María R Gonzalez Murano
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - Ana M Genaro
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina; Primera Cátedra de Farmacología. Facultad de Medicina, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina.
| | - Miriam R Wald
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Aslanoglou D, Bertera S, Friggeri L, Sánchez-Soto M, Lee J, Xue X, Logan RW, Lane JR, Yechoor VK, McCormick PJ, Meiler J, Free RB, Sibley DR, Bottino R, Freyberg Z. Dual pancreatic adrenergic and dopaminergic signaling as a therapeutic target of bromocriptine. iScience 2022; 25:104771. [PMID: 35982797 PMCID: PMC9379584 DOI: 10.1016/j.isci.2022.104771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Bromocriptine is approved as a diabetes therapy, yet its therapeutic mechanisms remain unclear. Though bromocriptine's actions have been mainly attributed to the stimulation of brain dopamine D2 receptors (D2R), bromocriptine also targets the pancreas. Here, we employ bromocriptine as a tool to elucidate the roles of catecholamine signaling in regulating pancreatic hormone secretion. In β-cells, bromocriptine acts on D2R and α2A-adrenergic receptor (α2A-AR) to reduce glucose-stimulated insulin secretion (GSIS). Moreover, in α-cells, bromocriptine acts via D2R to reduce glucagon secretion. α2A-AR activation by bromocriptine recruits an ensemble of G proteins with no β-arrestin2 recruitment. In contrast, D2R recruits G proteins and β-arrestin2 upon bromocriptine stimulation, demonstrating receptor-specific signaling. Docking studies reveal distinct bromocriptine binding to α2A-AR versus D2R, providing a structural basis for bromocriptine's dual actions on β-cell α2A-AR and D2R. Together, joint dopaminergic and adrenergic receptor actions on α-cell and β-cell hormone release provide a new therapeutic mechanism to improve dysglycemia.
Collapse
Affiliation(s)
- Despoina Aslanoglou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Laura Friggeri
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marta Sánchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeongkyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, UK
| | - Vijay K. Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter J. McCormick
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
- Imagine Pharma, Pittsburgh, PA, USA
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, PA, USA
| |
Collapse
|
22
|
Kajero JA, Seedat S, Ohaeri JU, Akindele A, Aina O. Effects of cannabidiol on weight and fasting blood sugar with chronic and subchronic haloperidol administration. DISCOVER MENTAL HEALTH 2022; 2:18. [PMID: 37861864 PMCID: PMC10501030 DOI: 10.1007/s44192-022-00021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 10/21/2023]
Abstract
OBJECTIVES The duration of administration (e.g., subchronic or chronic) of haloperidol may influence its adverse effects. We studied the effects of duration of administration of haloperidol on body weight and fasting blood sugar (FBS). In addition, we examined whether orally administered cannabidiol (CBD) had any putative mitigating influence on haloperidol-induced body weight changes and FBS elevation. METHODS Haloperidol (5 mg/kg/day) was administered for 21 days (subchronic administration), via the intraperitoneal (IP) route, or monthly (50 mg/kg monthly) for 3 months (chronic administration), via the intramuscular (IM) route, either alone or before CBD (5 mg/kg/day). Oral CBD (5 mg/kg/day) alone and distilled water alone were administered for 21 days. Weight and FBS were measured before administration of pharmacological agents (distilled water in the control group) and post-administration. RESULTS Group differences in average weight across time were significant. Pairwise comparisons showed that mean weight of the subchronic (IP) haloperidol alone group (Group A) and the chronic (IM) haloperidol before CBD group (Group F) increased significantly over time. Post medications, there was a significant increase in mean FBS in the subchronic (IP) haloperidol group compared to the subchronic (IP) haloperidol before CBD group. There was also a significant reduction in mean FBS from the baseline for the control group only. CONCLUSION We demonstrated that the duration of administration of haloperidol influenced weight and FBS in rats, suggesting that metabolic side effects, may be influenced by duration of administration. CBD ameliorated the increase in weight and FBS observed in the subchronic (IP) haloperidol groups.
Collapse
Affiliation(s)
- Jaiyeola Abiola Kajero
- Federal Neuropsychiatric Hospital Yaba, 8, Harvey Road Yaba, P.M.B 2008, Lagos, Nigeria
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive Tygerberg, Cape Town, 7505 South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive Tygerberg, Cape Town, 7505 South Africa
| | - Jude U. Ohaeri
- Department of Psychological Medicine, University of Nigeria Teaching Hospital, Enugu, Enugu State Nigeria
| | - Abidemi Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Private Mail Bag 12003, Lagos, Nigeria
| | - Oluwagbemiga Aina
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), 6, Edmund crescent off Murtala Mohammed way, Yaba, P.M.B. 2013, Lagos, 100001 Nigeria
| |
Collapse
|
23
|
Ferguson TD, Vanzant ES, McLeod KR. Endophyte Infected Tall Fescue: Plant Symbiosis to Animal Toxicosis. Front Vet Sci 2022; 8:774287. [PMID: 35004925 PMCID: PMC8740028 DOI: 10.3389/fvets.2021.774287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Endophyte-infected fescue is a major cool season forage used for livestock production in the United States and through other areas of the world. A unique aspect of this forage resource is the symbiotic relationship with an endophytic fungus (Epichloë coenophiala) that has detrimental impact on herbivores due to toxic ergot alkaloids. Research over the past 50 years has unveiled details regarding this symbiotic relationship. This review focuses on the origin of tall fescue in the United States and the consequences of its wide-spread utilization as a livestock forage, along with the discovery and toxicodynamics of ergot alkaloids produced by E. coenophiala. The majority of past ergot alkaloid research has focused on observing phenotypic changes that occur in livestock affected by ergot alkaloids, but recent investigation of the metabolome, transcriptome, and proteome have shown that fescue toxicity-related illnesses are much more complex than previous research suggests.
Collapse
Affiliation(s)
- Taylor D Ferguson
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Eric S Vanzant
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kyle R McLeod
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
24
|
Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F. Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. Int J Mol Sci 2021; 22:ijms222212366. [PMID: 34830246 PMCID: PMC8619146 DOI: 10.3390/ijms222212366] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia, responsible for the onset of several long-term complications. Recent evidence suggests that cognitive dysfunction represents an emerging complication of DM, but the underlying molecular mechanisms are still obscure. Dopamine (DA), a neurotransmitter essentially known for its relevance in the regulation of behavior and movement, modulates cognitive function, too. Interestingly, alterations of the dopaminergic system have been observed in DM. This review aims to offer a comprehensive overview of the most relevant experimental results assessing DA’s role in cognitive function, highlighting the presence of dopaminergic dysfunction in DM and supporting a role for glucotoxicity in DM-associated dopaminergic dysfunction and cognitive impairment. Several studies confirm a role for DA in cognition both in animal models and in humans. Similarly, significant alterations of the dopaminergic system have been observed in animal models of experimental diabetes and in diabetic patients, too. Evidence is accumulating that advanced glycation end products (AGEs) and their precursor methylglyoxal (MGO) are associated with cognitive impairment and alterations of the dopaminergic system. Further research is needed to clarify the molecular mechanisms linking DM-associated dopaminergic dysfunction and cognitive impairment and to assess the deleterious impact of glucotoxicity.
Collapse
Affiliation(s)
- Francesca Chiara Pignalosa
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Paola Mirra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Cecilia Nigro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Luca Ulianich
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Claudia Miele
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-746-3248
| | - Raffaele Napoli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
| | - Francesca Fiory
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| |
Collapse
|
25
|
Lang X, Zhou Y, Zhao L, Gu Y, Wu X, Zhao Y, Li Z, Zhang X. Differences in patterns of metabolic abnormality and metabolic syndrome between early-onset and adult-onset first-episode drug-naive schizophrenia patients. Psychoneuroendocrinology 2021; 132:105344. [PMID: 34274733 DOI: 10.1016/j.psyneuen.2021.105344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Although metabolic abnormalities and metabolic syndrome (MetS) often occur in schizophrenia, few studies have investigated them in early-onset schizophrenia (EOS) patients. To our knowledge, this was the first to compare clinical correlates of metabolic abnormalities between first-episode drug-naïve (FEDN) EOS and adult-onset schizophrenia (AOS) patients. A total of 489 Chinese FEDN schizophrenia patients (116 EOS and 373 AOS) and 451 healthy controls were recruited in this cross-sectional study. Blood pressure, waist circumference (WC), Body mass index (BMI), total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDLC), low density lipoprotein cholesterol (LDLC), glucose, hemoglobin A1c (HbA1c), insulin and insulin resistance were measured. The Positive and Negative Syndrome Scale (PANSS) was applied to evaluate the clinical symptoms of schizophrenia patients, and higher scores on PANSS indicate increased severity. EOS patients had lower rates of: MetS, elevated WC, hypertriglyceridemia, hypercholesterolemia, and hyper-LDLC than EOS patients (all p < 0.05). In EOS patients, WC was positively associated with PANSS general psychopathology score (p = 0.04). In AOS patients, WC (p = 0.01; p = 0.02) and glucose (p < 0.001; p < 0.001) were positively associated with PANSS general psychopathology and total score. HOMA-IR was positively associated with PANSS total score (p = 0.04). Systolic BP, triglycerides and HDLC were main contributors to MetS in AOS (all p < 0.05), but not in EOS. BMI was a risk factor of MetS in EOS, while BMI and HOMA-IR were risk factors of MetS in AOS (all p < 0.05). Our results indicate differences in metabolic abnormalities patterns, risk factors and their association with clinical characteristics between Chinese EOS and AOS patients. DATA AVAILABILITY STATEMENT: The datasets that support the findings of this study are not publically available due to ongoing analyses for further publications, but are available from the corresponding author X.Z. upon reasonable request.
Collapse
Affiliation(s)
- Xiaoe Lang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yang Zhou
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Lei Zhao
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Yinjun Gu
- Shanghai Jinshan Mental Health Center, Shanghai, China
| | - Xi Wu
- Department of Neurosurgery, Shanghai Changhai Hospital, Shanghai, China
| | - Yuefeng Zhao
- University of Shanghai For Science and Technology, Shanghai, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Çevikaslan A, Parlak M, Ellidağ HY, Kulaksızoğlu SÇ, Yılmaz N. Effects of methylphenidate on height, weight and blood biochemistry parameters in prepubertal boys with attention deficit hyperactivity disorder: an open label prospective study. Scand J Child Adolesc Psychiatr Psychol 2021; 9:163-173. [PMID: 34549033 PMCID: PMC8436573 DOI: 10.21307/sjcapp-2021-018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/17/2021] [Indexed: 11/11/2022] Open
Abstract
Background: Adverse effects of stimulants on growth in children have long been studied, but the results remain to be clarified, because metabolic changes or predictors accompanying the growth deviations were not sufficiently studied. Objective: This open label-prospective study investigated the effects of methylphenidate (MPH) on weight, height, blood biochemistry in children with attention deficit hyperactivity disorder (ADHD). Method: Prepubertal boys treated with MPH in Child and Adolescent Psychiatry Clinic at Antalya Training and Research Hospital in Health Sciences University, Turkey were recruited. Height and weight z-scores and fasting blood samples were taken at baseline and 6th month. Changes were compared by paired-samples t-test or Wilcoxon signed-rank test. Any association between the changes in growth and biochemical values was analyzed by Spearman's Rank-Order Correlation. The statistical significance threshold was p<0.01. Results: 31 boys aged 74 to 104 months were enrolled in the study sample (mean=87.6, Standard Deviation (SD)=9.2). Osmotic release oral system-MPH (18 mg/day) was used in 77.4% (N=24) and immediate release-MPH (5 mg three times a day) in 22.5% (N=7). Average daily drug dose was 0.66 mg/kg (SD=0.12). Baseline weight z-score was 0.63 (SD=1.12), decreased significantly at 6 months (0.24 [SD=1.04]) (Z=-4.44, p=0.000, r=0.5) (median z-score was 0.53 at baseline, -0.11 at 6 months). Baseline height z-score (0.23[SD=0.87]) was not suppressed significantly at 6 months (0.28[SD=0.85])(t(30) = ‒1.50, p=0.14). Glucose (t(30) = -4.33, p=0.000, r=0.6), creatinine (t(30)=-3.28, p=0.003, r=0.5) and 25OH-VitD (N=29, Z=-3.98, p=0.000, r=0.5) increased but alkaline phosphatase (ALP) decreased (t(28)=3.63, p=0.001, r=0.5). The differences in W-SDS and ALP were positively correlated (r=0.47, p=0.009). Conclusions: Our results indicate the importance of monitoring blood variables that may accompany growth changes early in MPH treatment and should be further assessed in larger samples.
Collapse
Affiliation(s)
- Ahmet Çevikaslan
- Child and Adolescent Psychiatry Clinic, Antalya Training and Research Hospital, Turkey
| | - Mesut Parlak
- Pediatric Endocrinology Division, Akdeniz University School of Medicine, Antalya, Turkey
| | - Hamit Yaşar Ellidağ
- Clinical Biochemistry Division, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey
| | | | - Necat Yılmaz
- Clinical Biochemistry Division, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
27
|
Chan JY, Bensellam M, Lin RCY, Liang C, Lee K, Jonas JC, Laybutt DR. Transcriptome analysis of islets from diabetes-resistant and diabetes-prone obese mice reveals novel gene regulatory networks involved in beta-cell compensation and failure. FASEB J 2021; 35:e21608. [PMID: 33977593 DOI: 10.1096/fj.202100009r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 01/02/2023]
Abstract
The mechanisms underpinning beta-cell compensation for obesity-associated insulin resistance and beta-cell failure in type 2 diabetes remain poorly understood. We used a large-scale strategy to determine the time-dependent transcriptomic changes in islets of diabetes-prone db/db and diabetes-resistant ob/ob mice at 6 and 16 weeks of age. Differentially expressed genes were subjected to cluster, gene ontology, pathway and gene set enrichment analyses. A distinctive gene expression pattern was observed in 16 week db/db islets in comparison to the other groups with alterations in transcriptional regulators of islet cell identity, upregulation of glucose/lipid metabolism, and various stress response genes, and downregulation of specific amino acid transport and metabolism genes. In contrast, ob/ob islets displayed a coordinated downregulation of metabolic and stress response genes at 6 weeks of age, suggestive of a preemptive reconfiguration in these islets to lower the threshold of metabolic activation in response to increased insulin demand thereby preserving beta-cell function and preventing cellular stress. In addition, amino acid transport and metabolism genes were upregulated in ob/ob islets, suggesting an important role of glutamate metabolism in beta-cell compensation. Gene set enrichment analysis of differentially expressed genes identified the enrichment of binding motifs for transcription factors, FOXO4, NFATC1, and MAZ. siRNA-mediated knockdown of these genes in MIN6 cells altered cell death, insulin secretion, and stress gene expression. In conclusion, these data revealed novel gene regulatory networks involved in beta-cell compensation and failure. Preemptive metabolic reconfiguration in diabetes-resistant islets may dampen metabolic activation and cellular stress during obesity.
Collapse
Affiliation(s)
- Jeng Yie Chan
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mohammed Bensellam
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Pôle D'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ruby C Y Lin
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Cassandra Liang
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kailun Lee
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jean-Christophe Jonas
- Pôle D'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
28
|
Asai S, Žáková L, Selicharová I, Marek A, Jiráček J. A radioligand receptor binding assay for measuring of insulin secreted by MIN6 cells after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. Anal Bioanal Chem 2021; 413:4531-4543. [PMID: 34050775 DOI: 10.1007/s00216-021-03423-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
We adapted a radioligand receptor binding assay for measuring insulin levels in unknown samples. The assay enables rapid and accurate determination of insulin concentrations in experimental samples, such as from insulin-secreting cells. The principle of the method is based on the binding competition of insulin in a measured sample with a radiolabeled insulin for insulin receptor (IR) in IM-9 cells. Both key components, radiolabeled insulin and IM-9 cells, are commercially available. The IR binding assay was used to determine unknown amounts of insulin secreted by MIN6 β cell line after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. The experimental data obtained by the IR binding assay were compared to the results determined by RIA kits and both methods showed a very good agreement of results. We observed the stimulation of glucose-induced insulin secretion from MIN6 cells by arginine, weaker stimulation by ornithine, but inhibitory effects of dopamine. Serotonin effects were either stimulatory or inhibitory, depending on the concentration of serotonin used. The results will require further investigation. The study also clearly revealed advantages of the IR binding assay that allows the measuring of a higher throughput of measured samples, with a broader range of concentrations than in the case of RIA kits. The IR binding assay can provide an alternative to standard RIA and ELISA assays for the determination of insulin levels in experimental samples and can be especially useful in scientific laboratories studying insulin production and secretion by β cells and searching for new modulators of insulin secretion.
Collapse
Affiliation(s)
- Seiya Asai
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840, Prague 2, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic.
| |
Collapse
|
29
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
30
|
Sundblad V, Garcia-Tornadu IA, Ornstein AM, Martínez Allo VC, Lorenzo R, Gatto SG, Morales RM, Gambarte Tudela JA, Manselle Cocco MN, Croci DO, Becu-Villalobos D, Rabinovich GA. Galectin-1 impacts on glucose homeostasis by modulating pancreatic insulin release. Glycobiology 2021; 31:908-915. [PMID: 33978732 DOI: 10.1093/glycob/cwab040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/10/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is an expanding global health problem, involving defective insulin secretion by pancreatic β-cells and peripheral insulin resistance, leading to impaired glucose regulation. Galectin-1, an endogenous lectin with affinity for N-acetyllactosamine (LacNAc)-containing glycans, has emerged as a regulator of inflammatory and metabolic disorders. However, the role of galectin-1 in glucose homeostasis and pancreatic β-cell function, independently of hypercaloric diets, has not been explored. Here, we identified a phenotype compatible with T2DM, involving alterations in glucose metabolism and pancreatic insulin release, in female but not male mice lacking galectin-1 (Lgals1-/-). Compared with age-matched controls, Lgals1-/female mice exhibited higher body weight and increased food intake ad libitum as well as after fasting and acute re-feeding. Although fasted serum insulin levels and insulin sensitivity were similar in both genotypes, Lgals1-/- female mice presented altered glucose tolerance and higher basal glucose levels depending on the fasting period. Insulin response to glucose overload was impaired, while pancreatic insulin content was enhanced in the absence of galectin-1. Accordingly, recombinant galectin-1 enhanced glucose-stimulated insulin release in vitro. Our study identifies a role for galectin-1 in regulating glucose metabolism through modulation of pancreatic insulin secretion, highlighting novel opportunities to control T2DM.
Collapse
Affiliation(s)
- Victoria Sundblad
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Isabel A Garcia-Tornadu
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Ana M Ornstein
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Verónica C Martínez Allo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Rodrigo Lorenzo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
- Instituto de Ciencias Polares, Recursos Naturales y Ambientes, Universidad Nacional de Tierra del Fuego (ICPA-UNTDF-CONICET), V9410 Ushuaia, Argentina
| | - Sabrina G Gatto
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Rosa M Morales
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Julián A Gambarte Tudela
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Montana N Manselle Cocco
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Diego O Croci
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad de Buenos Aires, Argentina
| |
Collapse
|
31
|
Zhao B, Li S, Guo Z, Chen Z, Zhang X, Xu C, Chen J, Wei C. Dopamine receptor D2 inhibition alleviates diabetic hepatic stellate cells fibrosis by regulating the TGF-β1/Smads and NFκB pathways. Clin Exp Pharmacol Physiol 2021; 48:370-380. [PMID: 33179312 DOI: 10.1111/1440-1681.13437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 10/08/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Diabetic hepatic fibrosis (DHF) is a progressive liver disease and a chronic complication of diabetes mellitus. The main cause of DHF is the activation of quiescent hepatic stellate cells (HSCs) by high glucose stimulation. Dopamine receptor D2 (DRD2)-mediated dopamine signalling can be involved in the regulation of diabetic liver disease, but the exact role of DRD2 in DHF is still poorly understood. This study aimed to investigate the protective effect of DRD2 inhibition on diabetic liver fibrosis and the potential mechanism. We established both streptozotocin (STZ)-induced type 1 diabetes (T1D, fed for 20 weeks) rat model and high glucose (HG, 40 mmol/L)-stimulated HSCs model. The results from both the rats with STZ and the HSCs treated with HG showed increased expression of DRD2, NOX-5, inflammation-related proteins (IL-6 and TNFα) and fibrosis-related proteins (TGF-β1, CO-Ⅰ/Ⅲ/ IV, MMP-2/9 and fibronectin). In vivo, the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total antioxidant capacity (T-AOC) levels were significantly increased, and hematoxylin-eosin (HE) staining, Masson staining, and electron microscopy revealed liver lesions and hepatocyte injury. In addition, HG-treated HSCs exhibited altered oxidative stress - related indexes, including superoxide dismutase (SOD), malondialdehyde (MDA) and reactive oxygen species (ROS), changed and abnormally proliferated in vitro. TGF-β1, the phosphorylated Smad2, nuclear NFκB-p65, phosphorylated NFκB-p65 and phosphorylated IκBα were also increased. Interestingly, haloperidol (DRD2 inhibitor) and n-acetyl-L-cysteine (NAC, an active oxygen scavenger) reduced the above-mentioned changes. In conclusion, DRD2 inhibition can reduce diabetic HSCs oxidative damage and fibrotic proliferation partly via the TGF-β1/Smads and NFκB pathways.
Collapse
Affiliation(s)
- Bingbing Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Siwei Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Zuoming Guo
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhe Chen
- Department of Infectious Diseases, General Hospital for the Head Office of Agricultural Cultivation of Heilongjiang, Harbin, China
| | - Xinying Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Junting Chen
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Aslanoglou D, Bertera S, Sánchez-Soto M, Benjamin Free R, Lee J, Zong W, Xue X, Shrestha S, Brissova M, Logan RW, Wollheim CB, Trucco M, Yechoor VK, Sibley DR, Bottino R, Freyberg Z. Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Transl Psychiatry 2021; 11:59. [PMID: 33589583 PMCID: PMC7884786 DOI: 10.1038/s41398-020-01171-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Dopamine (DA) and norepinephrine (NE) are catecholamines primarily studied in the central nervous system that also act in the pancreas as peripheral regulators of metabolism. Pancreatic catecholamine signaling has also been increasingly implicated as a mechanism responsible for the metabolic disturbances produced by antipsychotic drugs (APDs). Critically, however, the mechanisms by which catecholamines modulate pancreatic hormone release are not completely understood. We show that human and mouse pancreatic α- and β-cells express the catecholamine biosynthetic and signaling machinery, and that α-cells synthesize DA de novo. This locally-produced pancreatic DA signals via both α- and β-cell adrenergic and dopaminergic receptors with different affinities to regulate glucagon and insulin release. Significantly, we show DA functions as a biased agonist at α2A-adrenergic receptors, preferentially signaling via the canonical G protein-mediated pathway. Our findings highlight the interplay between DA and NE signaling as a novel form of regulation to modulate pancreatic hormone release. Lastly, pharmacological blockade of DA D2-like receptors in human islets with APDs significantly raises insulin and glucagon release. This offers a new mechanism where APDs act directly on islet α- and β-cell targets to produce metabolic disturbances.
Collapse
Affiliation(s)
- Despoina Aslanoglou
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Bertera
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA USA
| | - Marta Sánchez-Soto
- grid.94365.3d0000 0001 2297 5165Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - R. Benjamin Free
- grid.94365.3d0000 0001 2297 5165Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Jeongkyung Lee
- grid.21925.3d0000 0004 1936 9000Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Diabetes and Beta Cell Biology Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Wei Zong
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA USA
| | - Xiangning Xue
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA USA
| | - Shristi Shrestha
- grid.412807.80000 0004 1936 9916Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Marcela Brissova
- grid.412807.80000 0004 1936 9916Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Ryan W. Logan
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,grid.249880.f0000 0004 0374 0039Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME USA
| | - Claes B. Wollheim
- grid.8591.50000 0001 2322 4988Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Massimo Trucco
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA USA ,grid.147455.60000 0001 2097 0344Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA USA ,grid.166341.70000 0001 2181 3113College of Medicine, Drexel University, Philadelphia, PA USA
| | - Vijay K. Yechoor
- grid.21925.3d0000 0004 1936 9000Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Diabetes and Beta Cell Biology Center, University of Pittsburgh, Pittsburgh, PA USA
| | - David R. Sibley
- grid.94365.3d0000 0001 2297 5165Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Rita Bottino
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA USA ,grid.147455.60000 0001 2097 0344Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA USA ,grid.166341.70000 0001 2181 3113College of Medicine, Drexel University, Philadelphia, PA USA
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Zhou Y, Song X, Guo Y, Lang X, Li Z, Zhang XY. Sex differences in metabolic disorder patterns of first-episode drug-naive patients with schizophrenia. Psychoneuroendocrinology 2021; 124:105061. [PMID: 33291004 DOI: 10.1016/j.psyneuen.2020.105061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Although metabolic disorders are common in schizophrenia, few studies investigated sex differences in metabolic disorder. This study aimed to examine the sex differences in the clinical correlates of metabolic disorders and MetS in patients with first-episode drug-naïve (FEDN) schizophrenia. A total of 257 FEDN schizophrenia patients and 118 controls were recruited. Body mass index (BMI), waist circumference (WC) and blood pressure were measured. Fasting blood samples were drawn to detect triglycerides, cholesterol, high density lipoprotein cholesterol (HDLC), low density lipoprotein cholesterol (LDLC), blood glucose, glycosylated hemoglobin (HbA1c) and insulin. The Positive and Negative Syndrome Scale (PANSS) was applied to assess the clinical symptoms. There was sex difference in the prevalence of high BMI and dyslipidemia of schizophrenia patients. Female patients had lower prevalence of high BMI (p = 0.03) and hypertriglyceridemia (p = 0.006), but had higher prevalence of hypo-HDLC (p = 0.005), compared with male patients. Further, there were sex differences in the relationship between metabolic parameters and psychopathological dimensions. In male patients, WC was associated with positive symptoms and negative symptoms (r = 0.26, p Bonferroni = 0.02; r = 0.26, p Bonferroni = 0.02). In female patients, BMI (r = 0.26, p Bonferroni = 0.01), WC (r = 0.30, p Bonferroni = 0.004) and HAb1c were associated with positive symptoms (r = 0.27, p Bonferroni = 0.008). Insulin (r = 0.24, p Bonferroni = 0.02; r = 0.23, p Bonferroni = 0.04) and HOMA-IR (r = 0.29, p Bonferroni = 0.004; r = 0.25, p Bonferroni = 0.02) were associated with positive symptoms and general psychopathology symptoms. The contribution of clinical and metabolic components to MetS was almost same between male and female patients. Our study demonstrates sex difference in metabolic disorder patterns in schizophrenia patients.
Collapse
Affiliation(s)
- Yongjie Zhou
- Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Xinxin Song
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Yanhong Guo
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Xiaoe Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiang Yang Zhang
- Shenzhen Kangning Hospital, Shenzhen, Guangdong, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Mitrofanova LB, Perminova AA, Ryzhkova DV, Sukhotskaya AA, Bairov VG, Nikitina IL. Differential Morphological Diagnosis of Various Forms of Congenital Hyperinsulinism in Children. Front Endocrinol (Lausanne) 2021; 12:710947. [PMID: 34497584 PMCID: PMC8419459 DOI: 10.3389/fendo.2021.710947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (CHI) has diffuse (CHI-D), focal (CHI-F) and atypical (CHI-A) forms. Surgical management depends on preoperative [18F]-DOPA PET/CT and intraoperative morphological differential diagnosis of CHI forms. Objective: to improve differential diagnosis of CHI forms by comparative analysis [18F]-DOPA PET/CT data, as well as cytological, histological and immunohistochemical analysis (CHIA). MATERIALS AND METHODS The study included 35 CHI patients aged 3.2 ± 2.0 months; 10 patients who died from congenital heart disease at the age of 3.2 ± 2.9 months (control group). We used PET/CT, CHIA of pancreas with antibodies to ChrA, insulin, Isl1, Nkx2.2, SST, NeuroD1, SSTR2, SSTR5, DR1, DR2, DR5; fluorescence microscopy with NeuroD1/ChrA, Isl1/insulin, insulin/SSTR2, DR2/NeuroD1 cocktails. RESULTS Intraoperative examination of pancreatic smears showed the presence of large nuclei, on average, in: 14.5 ± 3.5 cells of CHI-F; 8.4 ± 1.1 of CHI-D; and 4.5 ± 0.7 of control group (from 10 fields of view, x400). The percentage of Isl1+ and NeuroD1+endocrinocytes significantly differed from that in the control for all forms of CHI. The percentage of NeuroD1+exocrinocytes was also significantly higher than in the control. The proportion of ChrA+ and DR2+endocrinocytes was higher in CHI-D than in CHI-F, while the proportion of insulin+cells was higher in CHI-A. The number of SST+cells was significantly higher in CHI-D and CHI-F than in CHI-A. CONCLUSION For intraoperative differential diagnosis of CHI forms, in addition to frozen sections, quantitative cytological analysis can be used. In quantitative immunohistochemistry, CHI forms differ in the expression of ChrA, insulin, SST and DR2. The development of a NeuroD1 inhibitor would be advisable for targeted therapy of CHI.
Collapse
|
35
|
Diabetes in late-life schizophrenia: Prevalence, factors, and association with clinical symptoms. J Psychiatr Res 2021; 132:44-49. [PMID: 33038565 DOI: 10.1016/j.jpsychires.2020.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The prevalence of diabetes mellitus has been found to be higher in patients with schizophrenia. Older patients are the fastest-growing segment of the schizophrenia population. However, few studies have explored diabetes in older patients with schizophrenia. Therefore, this study aimed to determine the prevalence and characteristics of factors associated with diabetes in Chinese patients with late-life schizophrenia (LLS), which has not been reported in previous studies. METHODS A total of 289 inpatients aged 60 or above who met the DSM-IV criteria for schizophrenia were recruited. The severity of psychopathology was assessed by the Positive and Negative Syndrome Scale (PANSS). Diabetes was diagnosed by fasting blood glucose tests, or oral glucose tolerance tests. RESULTS The overall prevalence of diabetes in LLS patients was 25.3%. The prevalence of diabetes in female patients was significantly higher than that in male patients (35% vs. 21.53%). Other factors associated with diabetes included higher BMI, greater waistline (only for males), higher levels of triglyceride, and more severe positive symptoms. CONCLUSION These results indicate that the prevalence of diabetes in LLS patients is similar to that in the age-matched general population. Female gender, excess weight and abdominal obesity, dyslipidemia, and clinical symptoms can be potential risk factors of diabetes in the LLS patient group.
Collapse
|
36
|
Lin EE, Scott-Solomon E, Kuruvilla R. Peripheral Innervation in the Regulation of Glucose Homeostasis. Trends Neurosci 2020; 44:189-202. [PMID: 33229051 DOI: 10.1016/j.tins.2020.10.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Precise regulation of circulating glucose is crucial for human health and ensures a sufficient supply to the brain, which relies almost exclusively on glucose for metabolic energy. Glucose homeostasis is coordinated by hormone-secreting endocrine cells in the pancreas, as well as glucose utilization and production in peripheral metabolic tissues including the liver, muscle, and adipose tissue. Glucose-regulatory tissues receive dense innervation from sympathetic, parasympathetic, and sensory fibers. In this review, we summarize the functions of peripheral nerves in glucose regulation and metabolism. Dynamic changes in peripheral innervation have also been observed in animal models of obesity and diabetes. Together, these studies highlight the importance of peripheral nerves as a new therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Eugene E Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
37
|
Sakano D, Uefune F, Tokuma H, Sonoda Y, Matsuura K, Takeda N, Nakagata N, Kume K, Shiraki N, Kume S. VMAT2 Safeguards β-Cells Against Dopamine Cytotoxicity Under High-Fat Diet-Induced Stress. Diabetes 2020; 69:2377-2391. [PMID: 32826296 PMCID: PMC7576560 DOI: 10.2337/db20-0207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Vesicular monoamine transporter 2 (VMAT2) uptakes cytoplasmic monoamines into vesicles for storage. VMAT2 plays a role in modulating insulin release by regulating dopamine levels in the pancreas, although the exact mechanism remains elusive. We found that VMAT2 expression in β-cells specifically increases under high blood glucose conditions. The islets isolated from β-cell-specific Vmat2 knockout (βVmat2KO) mice show elevated insulin secretion levels in response to glucose stimulation. Under prolonged high-fat diet feedings, the βVmat2KO mice exhibit impaired glucose and insulin tolerance and progressive β-cell dysfunction. Here we demonstrate VMAT2 uptake of dopamine to protect dopamine from degradation by monoamine oxidase, thereby safeguarding β-cells from excess reactive oxygen species (ROS) exposure. In the context of high demand for insulin secretion, the absence of VMAT2 leads to elevated ROS in β-cells, which accelerates β-cell dedifferentiation and β-cell loss. Therefore, VMAT2 controls the amount of dopamine in β-cells, thereby protecting pancreatic β-cells from excessive oxidative stress.
Collapse
Affiliation(s)
- Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Fumiya Uefune
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiraku Tokuma
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yuki Sonoda
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kumi Matsuura
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Takeda
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
38
|
Boehmer BH, Baker PR, Brown LD, Wesolowski SR, Rozance PJ. Leucine acutely potentiates glucose-stimulated insulin secretion in fetal sheep. J Endocrinol 2020; 247:115-126. [PMID: 32756000 PMCID: PMC7484215 DOI: 10.1530/joe-20-0243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022]
Abstract
A 9-day infusion of leucine into fetal sheep potentiates fetal glucose-stimulated insulin secretion (GSIS). However, there were accompanying pancreatic structural changes that included a larger proportion of β-cells and increased vascularity. Whether leucine can acutely potentiate fetal GSIS in vivo before these structural changes develop is unknown. The mechanisms by which leucine acutely potentiates GSIS in adult islets and insulin-secreting cell lines are well known. These mechanisms involve leucine metabolism, including leucine oxidation. However, it is not clear if leucine-stimulated metabolic pathways are active in fetal islets. We hypothesized that leucine would acutely potentiate GSIS in fetal sheep and that isolated fetal islets are capable of oxidizing leucine. We also hypothesized that leucine would stimulate other metabolic pathways associated with insulin secretion. In pregnant sheep we tested in vivo GSIS with and without an acute leucine infusion. In isolated fetal sheep islets, we measured leucine oxidation with a [1-14C] l-leucine tracer. We also measured concentrations of other amino acids, glucose, and analytes associated with cellular metabolism following incubation of fetal islets with leucine. In vivo, a leucine infusion resulted in glucose-stimulated insulin concentrations that were over 50% higher than controls (P < 0.05). Isolated fetal islets oxidized leucine. Leucine supplementation of isolated fetal islets also resulted in significant activation of metabolic pathways involving leucine and other amino acids. In summary, acute leucine supplementation potentiates fetal GSIS in vivo, likely through pathways related to the oxidation of leucine and catabolism of other amino acids.
Collapse
Affiliation(s)
- Brit H. Boehmer
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Peter R. Baker
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Laura D. Brown
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Paul J. Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| |
Collapse
|
39
|
Farino ZJ, Morgenstern TJ, Maffei A, Quick M, De Solis AJ, Wiriyasermkul P, Freyberg RJ, Aslanoglou D, Sorisio D, Inbar BP, Free RB, Donthamsetti P, Mosharov EV, Kellendonk C, Schwartz GJ, Sibley DR, Schmauss C, Zeltser LM, Moore H, Harris PE, Javitch JA, Freyberg Z. New roles for dopamine D 2 and D 3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry 2020; 25:2070-2085. [PMID: 30626912 PMCID: PMC6616020 DOI: 10.1038/s41380-018-0344-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
Although long-studied in the central nervous system, there is increasing evidence that dopamine (DA) has important roles in the periphery including in metabolic regulation. Insulin-secreting pancreatic β-cells express the machinery for DA synthesis and catabolism, as well as all five DA receptors. In these cells, DA functions as a negative regulator of glucose-stimulated insulin secretion (GSIS), which is mediated by DA D2-like receptors including D2 (D2R) and D3 (D3R) receptors. However, the fundamental mechanisms of DA synthesis, storage, release, and signaling in pancreatic β-cells and their functional relevance in vivo remain poorly understood. Here, we assessed the roles of the DA precursor L-DOPA in β-cell DA synthesis and release in conjunction with the signaling mechanisms underlying DA's inhibition of GSIS. Our results show that the uptake of L-DOPA is essential for establishing intracellular DA stores in β-cells. Glucose stimulation significantly enhances L-DOPA uptake, leading to increased DA release and GSIS reduction in an autocrine/paracrine manner. Furthermore, D2R and D3R act in combination to mediate dopaminergic inhibition of GSIS. Transgenic knockout mice in which β-cell D2R or D3R expression is eliminated exhibit diminished DA secretion during glucose stimulation, suggesting a new mechanism where D2-like receptors modify DA release to modulate GSIS. Lastly, β-cell-selective D2R knockout mice exhibit marked postprandial hyperinsulinemia in vivo. These results reveal that peripheral D2R and D3R receptors play important roles in metabolism through their inhibitory effects on GSIS. This opens the possibility that blockade of peripheral D2-like receptors by drugs including antipsychotic medications may significantly contribute to the metabolic disturbances observed clinically.
Collapse
Affiliation(s)
- Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis J. Morgenstern
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Antonella Maffei
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Matthias Quick
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Alain J. De Solis
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Pattama Wiriyasermkul
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Collaborative Research, Nara Medical University, Kashihara, Nara, Japan
| | - Robin J. Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Denise Sorisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin P. Inbar
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Prashant Donthamsetti
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Eugene V. Mosharov
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Gary J. Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Schmauss
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Lori M. Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Holly Moore
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Paul E. Harris
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Skonieczna-Żydecka K, Łoniewski I, Stachowska E, Marlicz W, Correll CU. Current and Novel Approaches to Mitigate Cardiometabolic Adverse Effects of Second-Generation Antipsychotics. Int J Neuropsychopharmacol 2020; 23:491-495. [PMID: 32239144 PMCID: PMC7689205 DOI: 10.1093/ijnp/pyaa026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Second-generation antipsychotic-related weight gain and metabolic disturbances are a major public health issue given the widespread prescribing of these medications. The lack of clearly known mechanisms of cardiometabolic adverse effects and the relevance of cardiometabolic health for survival make this an important area for research. While nonpharmacologic and some pharmacologic treatments have shown benefits vs control conditions or placebo, the effects are modest and long-term benefits are less clear. Therefore, new approaches to mitigate second-generation antipsychotic-associated cardiometabolic burden are sorely needed.
Collapse
Affiliation(s)
- Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland,Correspondence: Karolina Skonieczna-Żydecka, PhD, Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland ()
| | - Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Christoph U Correll
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY,Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
41
|
Liu M, Ren L, Zhong X, Ding Y, Liu T, Liu Z, Yang X, Cui L, Yang L, Fan Y, Liu Y, Zhang Y. D2-Like Receptors Mediate Dopamine-Inhibited Insulin Secretion via Ion Channels in Rat Pancreatic β-Cells. Front Endocrinol (Lausanne) 2020; 11:152. [PMID: 32318020 PMCID: PMC7154177 DOI: 10.3389/fendo.2020.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
Dopamine (DA) has a vital role in the central nervous system and also modulates lipid and glucose metabolism. The present study aimed to investigate the effect of dopamine on insulin secretion and the underlying mechanisms in rat pancreatic β-cells. Data from the radioimmunoassay indicated that dopamine inhibited insulin secretion in a glucose- and dose-dependent manner. This inhibitory effect of dopamine was mediated mainly by D2-like receptors, but not D1-like receptors. Whole-cell patch-clamp recordings showed that dopamine decreased voltage-dependent Ca2+ channel currents, which could be reversed by inhibition of the D2-like receptor. Dopamine increased voltage-dependent potassium (KV) channel currents and shortened action potential duration, which was antagonized by inhibition of D2-like receptors. Further experiments showed that D2-like receptor activation by quinpirole increased KV channel currents. In addition, using calcium imaging techniques, we found that dopamine reduced intracellular Ca2+ concentration, which was also reversed by D2-like receptor antagonists. Similarly, quinpirole was found to decrease intracellular Ca2+ levels. Taken together, these findings demonstrate that dopamine inhibits insulin secretion mainly by acting on D2-like receptors, inhibiting Ca2+ channels, and activating Kv channels. This process results in shortened action potential duration and decreased intracellular Ca2+ levels in β-cells. This work offers new insights into a glucose-dependent mechanism whereby dopamine regulates insulin secretion.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Yi Zhang
| |
Collapse
|
42
|
Han F, Konkalmatt P, Mokashi C, Kumar M, Zhang Y, Ko A, Farino ZJ, Asico LD, Xu G, Gildea J, Zheng X, Felder RA, Lee REC, Jose PA, Freyberg Z, Armando I. Dopamine D 2 receptor modulates Wnt expression and control of cell proliferation. Sci Rep 2019; 9:16861. [PMID: 31727925 PMCID: PMC6856370 DOI: 10.1038/s41598-019-52528-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
The Wnt/β-catenin pathway is one of the most conserved signaling pathways across species with essential roles in development, cell proliferation, and disease. Wnt signaling occurs at the protein level and via β-catenin-mediated transcription of target genes. However, little is known about the underlying mechanisms regulating the expression of the key Wnt ligand Wnt3a or the modulation of its activity. Here, we provide evidence that there is significant cross-talk between the dopamine D2 receptor (D2R) and Wnt/β-catenin signaling pathways. Our data suggest that D2R-dependent cross-talk modulates Wnt3a expression via an evolutionarily-conserved TCF/LEF site within the WNT3A promoter. Moreover, D2R signaling also modulates cell proliferation and modifies the pathology in a renal ischemia/reperfusion-injury disease model, via its effects on Wnt/β-catenin signaling. Together, our results suggest that D2R is a transcriptional modulator of Wnt/β-catenin signal transduction with broad implications for health and development of new therapeutics.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Dependovirus/genetics
- Dependovirus/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Primary Cell Culture
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Transfection
- Wnt3A Protein/genetics
- Wnt3A Protein/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Fei Han
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Prasad Konkalmatt
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Chaitanya Mokashi
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Megha Kumar
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Yanrong Zhang
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Allen Ko
- Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Laureano D Asico
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Gaosi Xu
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - John Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiaoxu Zheng
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Robin E C Lee
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pedro A Jose
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Ines Armando
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
43
|
Bini J, Sanchez-Rangel E, Gallezot JD, Naganawa M, Nabulsi N, Lim K, Najafzadeh S, Shirali A, Ropchan J, Matuskey D, Huang Y, Herold KC, Harris PE, Sherwin RS, Carson RE, Cline GW. PET Imaging of Pancreatic Dopamine D 2 and D 3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes. J Nucl Med 2019; 61:570-576. [PMID: 31601695 DOI: 10.2967/jnumed.119.234013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) has traditionally been characterized by a complete destruction of β-cell mass (BCM); however, there is growing evidence of possible residual BCM present in T1DM. Given the absence of in vivo tools to measure BCM, routine clinical measures of β-cell function (e.g., C-peptide release) may not reflect BCM. We previously demonstrated the potential utility of PET imaging with the dopamine D2 and D3 receptor agonist 3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol (11C-(+)-PHNO) to differentiate between healthy control (HC) and T1DM individuals. Methods: Sixteen individuals participated (10 men, 6 women; 9 HCs, 7 T1DMs). The average duration of diabetes was 18 ± 6 y (range, 14-30 y). Individuals underwent PET/CT scanning with a 120-min dynamic PET scan centered on the pancreas. One- and 2-tissue-compartment models were used to estimate pancreas and spleen distribution volume. Reference region approaches (spleen as reference) were also investigated. Quantitative PET measures were correlated with clinical outcome measures. Immunohistochemistry was performed to examine colocalization of dopamine receptors with endocrine hormones in HC and T1DM pancreatic tissue. Results: C-peptide release was not detectable in any T1DM individuals, whereas proinsulin was detectable in 3 of 5 T1DM individuals. Pancreas SUV ratio minus 1 (SUVR-1) (20-30 min; spleen as reference region) demonstrated a statistically significant reduction (-36.2%) in radioligand binding (HCs, 5.6; T1DMs, 3.6; P = 0.03). Age at diagnosis correlated significantly with pancreas SUVR-1 (20-30 min) (R 2 = 0.67, P = 0.025). Duration of diabetes did not significantly correlate with pancreas SUVR-1 (20-30 min) (R 2 = 0.36, P = 0.16). Mean acute C-peptide response to arginine at maximal glycemic potentiation did not significantly correlate with SUVR-1 (20-30 min) (R 2 = 0.57, P = 0.05), nor did mean baseline proinsulin (R 2 = 0.45, P = 0.10). Immunohistochemistry demonstrated colocalization of dopamine D3 receptor and dopamine D2 receptor in HCs. No colocalization of the dopamine D3 receptor or dopamine D2 receptor was seen with somatostatin, glucagon, or polypeptide Y. In a separate T1DM individual, no immunostaining was seen with dopamine D3 receptor, dopamine D2 receptor, or insulin antibodies, suggesting that loss of endocrine dopamine D3 receptor and dopamine D2 receptor expression accompanies loss of β-cell functional insulin secretory capacity. Conclusion: Thirty-minute scan durations and SUVR-1 provide quantitative outcome measures for 11C-(+)-PHNO, a dopamine D3 receptor-preferring agonist PET radioligand, to differentiate BCM in T1DM and HCs.
Collapse
Affiliation(s)
- Jason Bini
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, Connecticut; and
| | | | - Mika Naganawa
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Keunpoong Lim
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Anupama Shirali
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Jim Ropchan
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - David Matuskey
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kevan C Herold
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Paul E Harris
- Department of Medicine, Division of Endocrinology, Columbia University, New York, New York
| | - Robert S Sherwin
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Richard E Carson
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Gary W Cline
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
44
|
Wang H, Yao Y, Liu J, Cao Y, Si C, Zheng R, Zeng C, Guan H, Li L. Dopamine D 4 receptor protected against hyperglycemia-induced endothelial dysfunction via PI3K /eNOS pathway. Biochem Biophys Res Commun 2019; 518:554-559. [PMID: 31447121 DOI: 10.1016/j.bbrc.2019.08.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Hyperglycemia-induced endothelial dysfunction is generally believed to be the basis of diabetic vascular complications. Dopamine receptors is known to play an important protective role in diabetes. However, the protective effect of dopamine receptors against hyperglycemia-induced endothelial damage in diabetic rats is still unknown. In the present study, we established a cell model of hyperglycemia-induced endothelial dysfunction by treating human umbilical vein endothelial cells (HUVEC) with high glucose. MTT and lactate dehydrogenase assays results showed that high glucose treatment significantly reduced the cell viability and down-regulated dopamine D4 receptor. Pre-treatment with PD168077, a specific D4 receptor agonist, greatly improved endothelial cell viability and decreased apoptosis. Furthermore, pharmacological inhibition of phosphoinositide 3-kinase (PI3K) and endothelial nitric oxide synthase (eNOS) eliminated the protective effect of D4 receptor against endothelial injury. More importantly, the expression level of D4 receptor was also dramatically down-regulated in the arterial endothelium of rats with streptozotocin-(STZ)-induced diabetes, and the STZ-induced impairment of acetylcholine-induced vasodilation was reversed by activation of D4 receptor. In conclusion, our results indicated that dopamine D4 receptor protected against hyperglycemia-induced endothelial dysfunction via the PI3K/eNOS pathway, which may provide a novel strategy in the treatment of diabetes.
Collapse
Affiliation(s)
- He Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, PR China; Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Yonggang Yao
- Department of Critical Care Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Juncheng Liu
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Yingjie Cao
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Chunying Si
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Rongfei Zheng
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Huaimin Guan
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China.
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, PR China.
| |
Collapse
|
45
|
Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther 2019; 203:107392. [PMID: 31299315 DOI: 10.1016/j.pharmthera.2019.07.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/05/2019] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and DA receptors (DR) have been extensively studied in the central nervous system (CNS), but their role in the periphery is still poorly understood. Here we summarize data on DA and DRs in the eye, cardiovascular system and endocrine pancreas, three districts where DA and DA-related drugs have been studied and the expression of DR documented. In the eye, DA modulates ciliary blood flow and aqueous production, which impacts on intraocular pressure and glaucoma. In the cardiovascular system, DA increases blood pressure and heart activity, mostly through a stimulation of adrenoceptors, and induces vasodilatation in the renal circulation, possibly through D1R stimulation. In pancreatic islets, beta cells store DA and co-release it with insulin. D1R is mainly expressed in beta cells, where it stimulates insulin release, while D2R is expressed in both beta and delta cells (in the latter at higher level), where it inhibits, respectively, insulin and somatostatin release. The formation of D2R-somatostatin receptor 5 heteromers (documented in the CNS), might add complexity to the system. DA may exert both direct autocrine effects on beta cells, and indirect paracrine effects through delta cells and somatostatin. Bromocriptine, an FDA approved drug for diabetes, endowed with both D1R (antagonistic) and D2R (agonistic) actions, may exert complex effects, resulting from the integration of direct effects on beta cells and paracrine effects from delta cells. A full comprehension of peripheral DA signaling deserves further studies that may generate innovative therapeutic drugs to manage conditions such as glaucoma, cardiovascular diseases and diabetes.
Collapse
|
46
|
Soontornniyomkij V, Lee EE, Jin H, Martin AS, Daly RE, Liu J, Tu XM, Eyler LT, Jeste DV. Clinical Correlates of Insulin Resistance in Chronic Schizophrenia: Relationship to Negative Symptoms. Front Psychiatry 2019; 10:251. [PMID: 31065243 PMCID: PMC6488983 DOI: 10.3389/fpsyt.2019.00251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
Higher prevalence of physical comorbidity and premature mortality in persons with schizophrenia (PwS) results primarily from heightened cardiovascular and metabolic risks. The literature suggests that insulin resistance precedes the development of obesity, smoking, and use of antipsychotic medications, although these likely play a compounding role later in the course of the disorder. It is thus important to discover the clinical characteristics of PwS with high insulin resistance, as these individuals may represent an etiopathologically distinct subgroup with a distinct course and treatment needs. We conducted a cross-sectional study and compared insulin resistance between 145 PwS and 140 nonpsychiatric comparison (NC) participants, similar in age, sex, and race distribution. In addition, we examined correlates of insulin resistance in PwS. As expected, PwS had higher levels of insulin resistance [Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)] and body mass index (BMI) compared to the NC participants. HOMA-IR in the PwS was most associated with negative symptoms, BMI, and non-White race/ethnicity. The mechanistic relationships between insulin resistance and negative symptoms in schizophrenia patients warrant further investigation, and future studies should examine outcomes of PwS with this cluster of physical and mental symptoms and determine how management of insulin resistance might improve health of these individuals.
Collapse
Affiliation(s)
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.,Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States
| | - Hua Jin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Averria Sirkin Martin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.,Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States
| | - Rebecca E Daly
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.,Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States
| | - Jinyuan Liu
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States.,Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States
| | - Xin M Tu
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States.,Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States
| | - Lisa Todd Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.,Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Dilip V Jeste
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.,Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States.,Center for Healthy Aging, University of California San Diego, La Jolla, CA, United States.,Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
47
|
Kowalchuk C, Castellani LN, Chintoh A, Remington G, Giacca A, Hahn MK. Antipsychotics and glucose metabolism: how brain and body collide. Am J Physiol Endocrinol Metab 2019; 316:E1-E15. [PMID: 29969315 DOI: 10.1152/ajpendo.00164.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since the serendipitous discovery of the first antipsychotic (AP) drug in the 1950s, APs remain the cornerstone of treatment for schizophrenia. A shift over the past two decades away from first-generation, conventional APs to so-called "atypical" (or 2nd/3rd generation) APs parallels acknowledgment of serious metabolic side-effects associated in particular with these newer agents. As will be reviewed, AP drugs and type 2 diabetes are now inextricably linked, contributing to the three- to fivefold increased risk of type 2 diabetes observed in schizophrenia. However, this association is not straightforward. Biological and lifestyle-related illness factors contribute to the association between type 2 diabetes and metabolic disease independently of AP treatment. In addition, APs have a well-established weight gain propensity which could also account for elevated risk of insulin resistance and type 2 diabetes. However, compelling preclinical and clinical evidence now suggests that these drugs can rapidly and directly influence pathways of glucose metabolism independently of weight gain and even in absence of psychiatric illness. Mechanisms of these direct effects remain poorly elucidated but may involve central and peripheral antagonism of neurotransmitters implicated not only in the therapeutic effects of APs but also in glucose homeostasis, possibly via effects on the autonomic nervous system. The clinical relevance of studying "direct" effects of these drugs on glucose metabolism is underscored by the widespread use of these medications, both on and off label, for a growing number of mental illnesses, extending safety concerns well beyond schizophrenia.
Collapse
Affiliation(s)
- Chantel Kowalchuk
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
| | | | - Araba Chintoh
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
| | - Gary Remington
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Banting and Best Diabetes Centre, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
- Department of Medicine, University of Toronto , Toronto, Ontario Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
- Banting and Best Diabetes Centre, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
48
|
Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ. Role of Macrophage Dopamine Receptors in Mediating Cytokine Production: Implications for Neuroinflammation in the Context of HIV-Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2018; 14:134-156. [PMID: 30519866 DOI: 10.1007/s11481-018-9825-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Despite the success of combination anti-retroviral therapy (cART), around 50% of HIV-infected individuals still display a variety of neuropathological and neurocognitive sequelae known as NeuroHIV. Current research suggests these effects are mediated by long-term changes in CNS function in response to chronic infection and inflammation, and not solely due to active viral replication. In the post-cART era, drug abuse is a major risk-factor for the development of NeuroHIV, and increases extracellular dopamine in the CNS. Our lab has previously shown that dopamine can increase HIV infection of primary human macrophages and increase the production of inflammatory cytokines, suggesting that elevated dopamine could enhance the development of HIV-associated neuropathology. However, the precise mechanism(s) by which elevated dopamine could exacerbate NeuroHIV, particularly in chronically-infected, virally suppressed individuals remain unclear. To determine the connection between dopaminergic alterations and HIV-associated neuroinflammation, we have examined the impact of dopamine exposure on macrophages from healthy and virally suppressed, chronically infected HIV patients. Our data show that dopamine treatment of human macrophages isolated from healthy and cART-treated donors promotes production of inflammatory mediators including IL-1β, IL-6, IL-18, CCL2, CXCL8, CXCL9, and CXCL10. Furthermore, in healthy individuals, dopamine-mediated modulation of specific cytokines is correlated with macrophage expression of dopamine-receptor transcripts, particularly DRD5, the most highly-expressed dopamine-receptor subtype. Overall, these data will provide more understanding of the role of dopamine in the development of NeuroHIV, and may suggest new molecules or pathways that can be useful as therapeutic targets during HIV infection.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - R Muir
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - E K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
49
|
Nadalin S, Rebić J, Ružić K, Buretić-Tomljanović A. The relationship between components of metabolic syndrome and disease onset in patients with schizophrenia. Schizophr Res 2018; 201:420-421. [PMID: 29880450 DOI: 10.1016/j.schres.2018.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Sergej Nadalin
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.
| | - Jelena Rebić
- Psychiatry Clinic, Clinical Hospital Centre, Krešimirova 42, 51000 Rijeka, Croatia
| | - Klementina Ružić
- Psychiatry Clinic, Clinical Hospital Centre, Krešimirova 42, 51000 Rijeka, Croatia
| | - Alena Buretić-Tomljanović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
50
|
Catalano-Iniesta L, Iglesias-Osma MC, Sánchez-Robledo V, Carretero-Hernández M, Blanco EJ, Carretero J, García-Barrado MJ. Variations in adrenal gland medulla and dopamine effects induced by the lack of Irs2. J Physiol Biochem 2018; 74:667-677. [PMID: 30367392 DOI: 10.1007/s13105-018-0655-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/18/2018] [Indexed: 01/26/2023]
Abstract
The adrenomedullary chromaffin cells' hormonal pathway has been related to the pathophysiology of diabetes mellitus. In mice, the deletion of insulin receptor substrate type 2 (Irs2) causes peripheral insulin resistance and reduction in β-cell mass, leading to overt diabetes, with gender differences on adrenergic signaling. To further unravel the relevance of Irs2 on glycemic control, we analyzed in adult Irs2 deficient (Irs2-/-) mice, of both sexes but still normoglycemic, dopamine effects on insulin secretion and glycerol release, as well as their adrenal medulla by an immunohistochemical and morphologic approach. In isolated islets, 10 μM dopamine significantly inhibited insulin release in wild-type (WT) and female Irs2-/- mice; however, male Irs2-/- islets were insensitive to that catecholamine. Similarly, on isolated adipocytes, gender differences were observed between WT and Irs2-/- mice in basal and evoked glycerol release with crescent concentrations of dopamine. By immunohistochemistry, reactivity to tyrosine hydroxylase (TH) in female mice was significantly higher in the adrenal medulla of Irs2-/- compared to WT; although no differences for TH-immunopositivity were observed between the male groups of mice. However, compared to their corresponding WT animals, adrenomedullary chromaffin cells of Irs2-/- mice showed a significant decrease in the cellular and nuclear areas, and even in their percentage of apoptosis. Therefore, our observations suggest that, together with gender differences on dopamine responses in Irs2-/- mice, disturbances in adrenomedullary chromaffin cells could be related to deficiency of Irs2. Accordingly, Irs2 could be necessary for adequate glucose homeostasis and maintenance of the population of the adrenomedullary chromaffin cells.
Collapse
Affiliation(s)
- Leonardo Catalano-Iniesta
- Department of Physiology and Pharmacology, INCyL and IBSAL, Faculty of Medicine, University of Salamanca, Avda. Alfonso X el Sabio, s/n, E-37007, Salamanca, Spain.,Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain.,Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - María Carmen Iglesias-Osma
- Department of Physiology and Pharmacology, INCyL and IBSAL, Faculty of Medicine, University of Salamanca, Avda. Alfonso X el Sabio, s/n, E-37007, Salamanca, Spain.,Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain.,Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Virginia Sánchez-Robledo
- Department of Physiology and Pharmacology, INCyL and IBSAL, Faculty of Medicine, University of Salamanca, Avda. Alfonso X el Sabio, s/n, E-37007, Salamanca, Spain.,Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain.,Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Marta Carretero-Hernández
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain.,Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Enrique J Blanco
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain.,Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - José Carretero
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain.,Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - María José García-Barrado
- Department of Physiology and Pharmacology, INCyL and IBSAL, Faculty of Medicine, University of Salamanca, Avda. Alfonso X el Sabio, s/n, E-37007, Salamanca, Spain. .,Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain. .,Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.
| |
Collapse
|