1
|
Alam MJ, Kamboj P, Sarkar S, Gupta SK, Kasarla SS, Bajpai S, Kumari D, Bisht N, Barge SR, Kashyap B, Deka B, Bharadwaj S, Rahman S, Dutta PP, Borah JC, Talukdar NC, Kumar Y, Banerjee SK. Untargeted metabolomics and phenotype data indicate the therapeutic and prophylactic potential of Lysimachia candida Lindl. towards high-fat high-fructose-induced metabolic syndrome in rats. Mol Omics 2023; 19:787-799. [PMID: 37534494 DOI: 10.1039/d3mo00104k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati - 781101, Assam, India.
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Parul Kamboj
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Soumalya Sarkar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Sonu Kumar Gupta
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Siva Swapna Kasarla
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Sneh Bajpai
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Deepika Kumari
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Neema Bisht
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Sagar Ramrao Barge
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Bhaswati Kashyap
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Barsha Deka
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Simanta Bharadwaj
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Seydur Rahman
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Partha Pratim Dutta
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
- Assam Down Town University, Panikhaiti, Guwahati - 781006, Assam, India
| | - Jagat C Borah
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Narayan Chandra Talukdar
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
- Assam Down Town University, Panikhaiti, Guwahati - 781006, Assam, India
| | - Yashwant Kumar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati - 781101, Assam, India.
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| |
Collapse
|
2
|
Hohor S, Mandanach C, Maftei A, Zugravu CA, Oțelea MR. Impaired Melatonin Secretion, Oxidative Stress and Metabolic Syndrome in Night Shift Work. Antioxidants (Basel) 2023; 12:antiox12040959. [PMID: 37107334 PMCID: PMC10135726 DOI: 10.3390/antiox12040959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome has been associated in many studies with working in shifts. Even if the mechanistic details are not fully understood, forced sleep deprivation and exposure to light, as happens during night shifts, or irregular schedules with late or very early onset of the working program, lead to a sleep-wake rhythm misalignment, metabolic dysregulation and oxidative stress. The cyclic melatonin secretion is regulated by the hypothalamic suprachiasmatic nuclei and light exposure. At a central level, melatonin promotes sleep and inhibits wake-signals. Beside this role, melatonin acts as an antioxidant and influences the functionality of the cardiovascular system and of different metabolic processes. This review presents data about the influence of night shifts on melatonin secretion and oxidative stress. Assembling data from epidemiological, experimental and clinical studies contributes to a better understanding of the pathological links between chronodisruption and the metabolic syndrome related to working in shifts.
Collapse
Affiliation(s)
- Sorina Hohor
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cristina Mandanach
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Andreea Maftei
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- "Dr. Carol Davila" Central Military Emergency University Hospital, 134 Calea Plevnei, Sector 1, 010242 Bucharest, Romania
| | - Corina Aurelia Zugravu
- Department of Hygiene and Ecology, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Marina Ruxandra Oțelea
- Clinical Department 5, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| |
Collapse
|
3
|
Chen IJ, Yang CP, Lin SH, Lai CM, Wong CS. The Circadian Hormone Melatonin Inhibits Morphine-Induced Tolerance and Inflammation via the Activation of Antioxidative Enzymes. Antioxidants (Basel) 2020; 9:antiox9090780. [PMID: 32842597 PMCID: PMC7555201 DOI: 10.3390/antiox9090780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Opioids are commonly prescribed for clinical pain management; however, dose-escalation, tolerance, dependence, and addiction limit their usability for long-term chronic pain. The associated poor sleep pattern alters the circadian neurobiology, and further compromises the pain management. Here, we aim to determine the correlation between constant light exposure and morphine tolerance and explore the potential of melatonin as an adjuvant of morphine for neuropathic pain treatment. Methods: Wistar rats were preconditioned under constant light (LL) or a regular light/dark (LD) cycle before neuropathic pain induction by chronic constriction injury. An intrathecal (i.t.) osmotic pump was used for continued drug delivery to induce morphine tolerance. Pain assessments, including the plantar test, static weight-bearing symmetry, and tail-flick latency, were used to determine the impact of the light disruption or exogenous melatonin on the morphine tolerance progression. Results: constant light exposure significantly aggravates morphine tolerance in neuropathic rats. Continued infusion of low-dose melatonin (3 μg/h) attenuated morphine tolerance in both neuropathic and naïve rats. This protective effect was independent of melatonin receptors, as shown by the neutral effect of melatonin receptors inhibitors. The transcriptional profiling demonstrated a significant enhancement of proinflammatory and pain-related receptor genes in morphine-tolerant rats. In contrast, this transcriptional pattern was abolished by melatonin coinfusion along with the upregulation of the Kcnip3 gene. Moreover, melatonin increased the antioxidative enzymes SOD2, HO-1, and GPx1 in the spinal cord of morphine-tolerant rats. Conclusion: Dysregulated circadian light exposure significantly compromises the efficacy of morphine’s antinociceptive effect, while the cotreatment with melatonin attenuates morphine tolerance/hyperalgesia development. Our results suggest the potential of melatonin as an adjuvant of morphine in clinical pain management, particularly in patients who need long-term opioid treatment.
Collapse
Affiliation(s)
- Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
| | - Chih-Ping Yang
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- Department of Anesthesiology, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Sheng-Hsiung Lin
- Planning & Management Office, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chang-Mei Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence: ; Tel.: +886-2-27082121
| |
Collapse
|
4
|
Zhang C, Dong L, Wu J, Qiao S, Xu W, Ma S, Zhao B, Wang X. Intervention of resistant starch 3 on type 2 diabetes mellitus and its mechanism based on urine metabonomics by liquid chromatography-tandem mass spectrometry. Biomed Pharmacother 2020; 128:110350. [PMID: 32521455 DOI: 10.1016/j.biopha.2020.110350] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
As a severe metabolic disease, type 2 diabetes mellitus (T2DM) has aroused increasing public attentions. Resistant starch 3 (RS3), as a starch resistant to enzymatic hydrolysis owing to its special structure, has a good effect on improving insulin resistance and reducing blood sugar in T2DM patients. However, the possible mechanisms were barely interpreted yet. In our research, we aimed to evaluate the effects and the possible mechanisms of RS3 on the treatment of T2DM. ICR mice treated with high-fat diet (HFD) for eight weeks, and then injected with streptozotocin (STZ) (100 mg/kg) to establish the T2DM. We choose the mice with the fast blood glucose (FBG) more than 11 mmol/L as T2DM. After treated for 11 weeks the relevant data was analyzed. According to the results, the FBG was dramatically reduced (p < 0.05), which also downregulated triglyceride (p < 0.01) and total cholesterol (p < 0.01). Additionally, the insulin resistance indexes were significantly reduced (p < 0.01), the homeostasis model assessment-β and insulin-sensitive index were significantly improved (p < 0.01) in RS3 group. Meanwhile, the metabolic profiles of urine were analyzed and 29 potential biomarkers were screened out, including amino acids and lipids. In conclusion, we speculated that the tricarboxylic acid cycle, amino acid metabolism and lipid metabolism played roles in the therapeutic mechanisms of RS3 on T2DM.
Collapse
Affiliation(s)
- Caijuan Zhang
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Ling Dong
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Jiahui Wu
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Sanyang Qiao
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Wenjuan Xu
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Shuangshuang Ma
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Baosheng Zhao
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Xueyong Wang
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
5
|
Signaling within the pineal gland: A parallelism with the central nervous system. Semin Cell Dev Biol 2018; 95:151-159. [PMID: 30502386 DOI: 10.1016/j.semcdb.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
The pineal gland (PG) derives from the neural tube, like the rest of the central nervous system (CNS). The PG is specialized in synthesizing and secreting melatonin in a circadian fashion. The nocturnal elevation of melatonin is a highly conserved feature among species which proves its importance in nature. Here, we review a limited set of intrinsic and extrinsic regulatory elements that have been shown or proposed to influence the PG's melatonin production, as well as pineal ontogeny and homeostasis. Intrinsic regulators include the transcription factors CREB, Pax6 and NeuroD1. In addition, microglia within the PG participate as extrinsic regulators of these functions. We further discuss how these same elements work in other parts of the CNS, and note similarities and differences to their roles in the PG. Since the PG is a relatively well-defined and highly specialized organ within the CNS, we suggest that applying this comparative approach to additional PG regulators may be a useful tool for understanding complex areas of the brain, as well as the influence of the PG in both health and disease, including circadian functions and disorders.
Collapse
|
6
|
Lewczuk B, Prusik M, Ziółkowska N, Dąbrowski M, Martniuk K, Hanuszewska M, Zielonka Ł. Effects of Streptozotocin-Induced Diabetes on the Pineal Gland in the Domestic Pig. Int J Mol Sci 2018; 19:ijms19103077. [PMID: 30304775 PMCID: PMC6213590 DOI: 10.3390/ijms19103077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Several observations from experiments in rodents and human patients suggest that diabetes affects pineal gland function, including melatonin secretion; however, the accumulated data are not consistent. The aim of the present study was to determine the effects of streptozotocin-induced diabetes on the pineal gland in the domestic pig, a species widely used as a model in various biomedical studies. The study was performed on 10 juvenile pigs, which were divided into two groups: control and diabetic. Diabetes was evoked by administration of streptozotocin (150 mg/kg of body weight). After six weeks, the animals were euthanized between 12.00 and 14.00, and the pineal glands were removed and divided into two equal parts, which were used for biochemical analyses and for preparation of explants for the superfusion culture. The pineal contents (per 100 μg protein) of serotonin, 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid, 5-methoxytryptophol, and 5-methoxytryptamine were significantly lower in diabetic pigs than in control pigs. In contrast, the level of N-acetylserotonin was significantly higher in diabetic animals. No significant differences were found in the level of melatonin between control and experimental pigs. The amounts of 3,4-dihydroxyphenylalanine, dopamine, norepinephrine, and 3,4-dihydroxyphenylacetic acid were significantly lower in the pineal glands of diabetic animals. The level of vanillylmandelic acid was higher in diabetic pigs. No differences were observed in the level of basal and NE-stimulated release of N-acetylserotonin or melatonin between the pineal explants prepared from control and experimental animals. In vitro treatment with insulin was ineffective. In conclusion, streptozotocin-induced diabetes affects both indole metabolism and adrenergic neurotransmission in the pig pineal gland.
Collapse
Affiliation(s)
- Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Magdalena Prusik
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Natalia Ziółkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Kamila Martniuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Maria Hanuszewska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| |
Collapse
|
7
|
Li Y, Wu H, Liu N, Cao X, Yang Z, Lu B, Hu R, Wang X, Wen J. Melatonin exerts an inhibitory effect on insulin gene transcription via MTNR1B and the downstream Raf‑1/ERK signaling pathway. Int J Mol Med 2017; 41:955-961. [PMID: 29207116 DOI: 10.3892/ijmm.2017.3305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/03/2017] [Indexed: 11/06/2022] Open
Abstract
The pineal hormone melatonin influences the secretion of insulin by pancreatic islets via the G‑protein‑coupled melatonin receptors 1 and 2 that are expressed in pancreatic β‑cells. Genome‑wide association studies indicate that melatonin receptor 1B (MTNR1B) single nucleotide polymorphisms are tightly associated with type 2 diabetes mellitus (T2DM). However, the underlying mechanism is unclear. Raf‑1 serves a critical role in the mitogen‑activated protein kinase (MAPK) pathways in β‑cell survival and proliferation and, therefore, may be involved in the mechanism by which melatonin impacts on T2DM through MTNR1B. In the present study, the mRNA expression of the two mouse insulin genes Ins1 and Ins2 was investigated in MIN6 cells treated with different concentrations of melatonin, and insulin secretion was detected under the same conditions. Following the overexpression or silencing of MTNR1B, the activities of components of the MAPK signaling pathway, including Raf‑1 and ERK, were evaluated. The impact of MTNR1B knockdown on the melatonin‑regulated insulin gene expression and insulin secretion were also investigated. The results demonstrated that exogenous melatonin inhibited the expression of insulin mRNA in the MIN6 cells. Insulin secretion by the MIN6 cells, however, was not affected by melatonin. The MAPK signaling pathway was inhibited in MIN6 cells by treatment with melatonin or the overexpression of MTNR1B. The knockdown of MTNR1B totally attenuated the regulating effect of melatonin on insulin gene expression. Additionally, the inductive effect of melatonin on the expression of insulin mRNA was attenuated when the activities of Raf‑1 or ERK were blocked using the chemical inhibitors GW5074 and U0126, respectively. It may be concluded that melatonin exerts an inhibitory effect on insulin transcription via MTNR1B and the downstream MAPK signaling pathway.
Collapse
Affiliation(s)
- Yanliang Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Huihui Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Naijia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xinyi Cao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Renming Hu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xuanchun Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Wen
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
8
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
9
|
Rakshit K, Qian J, Colwell CS, Matveyenko AV. The islet circadian clock: entrainment mechanisms, function and role in glucose homeostasis. Diabetes Obes Metab 2015; 17 Suppl 1:115-22. [PMID: 26332976 PMCID: PMC4562066 DOI: 10.1111/dom.12523] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/01/2015] [Indexed: 12/20/2022]
Abstract
Circadian regulation of glucose homeostasis and insulin secretion has long been appreciated as an important feature of metabolic control in humans. Circadian disruption is becoming increasingly prevalent in today's society and is likely responsible in part for the considerable rise in type 2 diabetes (T2DM) and metabolic syndrome worldwide. Thus, understanding molecular mechanisms driving the inter-relationship between circadian disruption and T2DM is important in context of disease prevention and therapeutics. In this regard, the goal of this article is to highlight the role of the circadian system, and islet circadian clocks in particular, as potential regulators of β-cell function and survival. To date, studies have shown that islet clocks respond to changes in feeding patterns, and regulate a multitude of critical cellular processes in insulin secreting β-cells (e.g. insulin exocytosis, mitochondrial function and response to oxidative stress). Subsequently, either genetic or environmental disruption of normal islet clock performance compromises β-cell function and leads to loss of glycaemic control. Future work is warranted to further unravel the role of circadian clocks in human islet function in health and contributions to pathogenesis of T2DM.
Collapse
Affiliation(s)
- Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic Rochester, Minnesota
| | - Jingyi Qian
- Laboratory for Circadian and Sleep Medicine, Departments of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California
| | - Christopher S. Colwell
- Laboratory for Circadian and Sleep Medicine, Departments of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
10
|
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59:1-23. [PMID: 25904189 DOI: 10.1111/jpi.12240] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin influences insulin secretion, as well as glucagon and somatostatin secretion, both in vivo and in vitro. These effects are mediated by two specific, high-affinity, seven transmembrane, pertussis toxin-sensitive, Gi-protein-coupled melatonin receptors, MT1 and MT2. Both isoforms are expressed in the β-cells, α-cells as well as δ-cells of the pancreatic islets of Langerhans and are involved in the modulation of insulin secretion, leading to inhibition of the adenylate cyclase-dependent cyclic adenosine monophosphate as well as cyclic guanosine monophosphate formation in pancreatic β-cells by inhibiting the soluble guanylate cyclase, probably via MT2 receptors. In this way, melatonin also likely inhibits insulin secretion, whereas using the inositol triphosphate pathway after previous blocking of Gi-proteins by pertussis toxin, melatonin increases insulin secretion. Desynchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genomewide association studies pinpointing variances of the MT2 receptor as a risk factor for this rapidly spreading metabolic disturbance. As melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. Observations of the circadian expression of clock genes (Clock, Bmal1, Per1,2,3, and Cry1,2) in pancreatic islets, as well as in INS1 rat insulinoma cells, may indicate that circadian rhythms are generated in the β-cells themselves. The circadian secretion of insulin from pancreatic islets is clock-driven. Disruption of circadian rhythms and clock function leads to metabolic disturbances, for example, type 2 diabetes. The study of melatonin-insulin interactions in diabetic rat models has revealed an inverse relationship between these two hormones. Both type 2 diabetic rats and patients exhibit decreased melatonin levels and slightly increased insulin levels, whereas type 1 diabetic rats show extremely reduced levels or the absence of insulin, but statistically significant increases in melatonin levels. Briefly, an increase in melatonin levels leads to a decrease in stimulated insulin secretion and vice versa. Melatonin levels in blood plasma, as well as the activity of the key enzyme of melatonin synthesis, AA-NAT (arylalkylamine-N-acetyltransferase) in pineal, are lower in type 2 diabetic rats compared to controls. In contrast, melatonin and pineal AA-NAT mRNA are increased and insulin receptor mRNA is decreased in type 1 diabetic rats, which also indicates a close relationship between insulin and melatonin. As an explanation, it was hypothesized that catecholamines, which reduce insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. This conviction stems from the observation that catecholamines are increased in type 1 but are diminished in type 2 diabetes. In this context, another important line of inquiry involves the fact that melatonin protects β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
11
|
Costes S, Boss M, Thomas AP, Matveyenko AV. Activation of Melatonin Signaling Promotes β-Cell Survival and Function. Mol Endocrinol 2015; 29:682-92. [PMID: 25695910 DOI: 10.1210/me.2014-1293] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by pancreatic islet failure due to loss of β-cell secretory function and mass. Studies have identified a link between a variance in the gene encoding melatonin (MT) receptor 2, T2DM, and impaired insulin secretion. This genetic linkage raises the question whether MT signaling plays a role in regulation of β-cell function and survival in T2DM. To address this postulate, we used INS 832/13 cells to test whether activation of MT signaling attenuates proteotoxicity-induced β-cell apoptosis and through which molecular mechanism. We also used nondiabetic and T2DM human islets to test the potential of MT signaling to attenuate deleterious effects of glucotoxicity and T2DM on β-cell function. MT signaling in β-cells (with duration designed to mimic typical nightly exposure) significantly enhanced activation of the cAMP-dependent signal transduction pathway and attenuated proteotoxicity-induced β-cell apoptosis evidenced by reduced caspase-3 cleavage (∼40%), decreased activation of stress-activated protein kinase/Jun-amino-terminal kinase (∼50%) and diminished oxidative stress response. Activation of MT signaling in human islets was shown to restore glucose-stimulated insulin secretion in islets exposed to chronic hyperglycemia as well as in T2DM islets. Our data suggest that β-cell MT signaling is important for the regulation of β-cell survival and function and implies a preventative and therapeutic potential for preservation of β-cell mass and function in T2DM.
Collapse
Affiliation(s)
- Safia Costes
- Department of Medicine (S.C., M.B., A.P.T., A.V.M.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095; and Department of Physiology and Biomedical Engineering (A.V.M.), Mayo Clinic School of Medicine, Mayo Clinic Rochester, Minnesota 55905
| | | | | | | |
Collapse
|
12
|
Heshmat TS, Kareem HS, Khalil NKM, Shaker OG. The association between the melatonin receptor 1B gene polymorphism rs10830963 and glucose levels in type 2 diabetes. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2014. [DOI: 10.4103/1110-7782.148120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
13
|
She M, Laudon M, Yin W. Melatonin receptors in diabetes: a potential new therapeutical target? Eur J Pharmacol 2014; 744:220-3. [PMID: 25160745 DOI: 10.1016/j.ejphar.2014.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 01/13/2023]
Abstract
Melatonin is synthesized and secreted mainly by the pineal gland in a circadian fashion, and it thus mediates endogenous circadian rhythms and influences other physiological functions. Both the G-protein coupled receptors MT1 (encoded by MTNR1A) and MT2 (encoded by MTNR1B) in mammals mediate the actions of melatonin. Evidence from in vivo and in vitro studies proved a key role of melatonin in the regulation of glucose metabolism and the pathogenesis of diabetes, as further confirmed by the recent studies of human genetic variants of MTNR1B. Remarkably, it was also suggested that genetic variations within MTNR1B disordered β-cells function directly, i.e. insulin secretion. This indicated the functional link between MT2 and T2D risk at the protein level, and it may represent the prevailing pathomechanism for how impaired melatonin signaling causes metabolic disorders and increases the T2D risk. It is speculated that melatonin and its receptors may be a new therapeutic avenue in diabetes.
Collapse
Affiliation(s)
- Meihua She
- Institute of Cardiovascular Research, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China; Department of Biochemistry and Molecular Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| | - Moshe Laudon
- Drug Discovery, Neurim Pharmaceuticals Ltd., Tel Aviv, Israel
| | - Weidong Yin
- Institute of Cardiovascular Research, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China; Department of Biochemistry and Molecular Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China.
| |
Collapse
|
14
|
Faria JA, Kinote A, Ignacio-Souza LM, de Araújo TM, Razolli DS, Doneda DL, Paschoal LB, Lellis-Santos C, Bertolini GL, Velloso LA, Bordin S, Anhê GF. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats. Am J Physiol Endocrinol Metab 2013; 305:E230-42. [PMID: 23695212 DOI: 10.1152/ajpendo.00094.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.
Collapse
Affiliation(s)
- Juliana A Faria
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yaghootkar H, Frayling TM. Recent progress in the use of genetics to understand links between type 2 diabetes and related metabolic traits. Genome Biol 2013; 14:203. [PMID: 23548046 PMCID: PMC3663087 DOI: 10.1186/gb-2013-14-3-203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genome-wide association studies have identified genetic variants associated with increased risk of type 2 diabetes. The aim of this review is to highlight some of the insights into the mechanism underlying type 2 diabetes provided by genetic association studies.
Collapse
|
16
|
Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci 2013; 14:6981-7015. [PMID: 23535335 PMCID: PMC3645673 DOI: 10.3390/ijms14046981] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/15/2022] Open
Abstract
The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes.
Collapse
|
17
|
Peschke E, Hofmann K, Pönicke K, Wedekind D, Mühlbauer E. Catecholamines are the key for explaining the biological relevance of insulin-melatonin antagonisms in type 1 and type 2 diabetes. J Pineal Res 2012; 52:389-96. [PMID: 21929683 DOI: 10.1111/j.1600-079x.2011.00951.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this paper, we analyze the biological relevance of melatonin in diabetogenesis. As has recently been demonstrated, melatonin decreases insulin secretion via specific melatonin receptor isoforms (MT1 and MT2) in the pancreatic β-cells. In addition, type 2 diabetic rats, as well as patients, exhibit decreased melatonin levels, whereas the levels in type 1 diabetic rats are increased. The latter effects were normalized by insulin substitution, which signifies that a specific receptor-mediated insulin-melatonin antagonism exists. These results are in agreement with several recent genome-wide association studies, which have identified a number of single nucleotide polymorphisms in the MTNR1B gene, encoding the MT2 receptor, that were closely associated with a higher prognostic risk of developing type 2 diabetes. We hypothesize that catecholamines, which decrease insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. The present results support this assertion as we show that catecholamines are increased in type 1 but are diminished in type 2 diabetes. Another important line of inquiry involves the fact that melatonin protects the β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes. In this context, it is striking that at advanced ages, melatonin levels are reduced and the incidence of type 2 diabetes is increased. Thus, melatonin appears to have a protective biological role. Here, we strongly repudiate misconceptions, resulting from observations that melatonin reduces the plasma insulin level, that the blockage of melatonin receptors would be of benefit in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- E Peschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | | | |
Collapse
|
18
|
Borjigin J, Zhang LS, Calinescu AA. Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol 2012; 349:13-9. [PMID: 21782887 PMCID: PMC3202635 DOI: 10.1016/j.mce.2011.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/23/2023]
Abstract
The pineal gland is a neuroendocrine organ of the brain. Its main task is to synthesize and secrete melatonin, a nocturnal hormone with diverse physiological functions. This review will focus on the central and pineal mechanisms in generation of mammalian pineal rhythmicity including melatonin production. In particular, this review covers the following topics: (1) local control of serotonin and melatonin rhythms; (2) neurotransmitters involved in central control of melatonin; (3) plasticity of the neural circuit controlling melatonin production; (4) role of clock genes in melatonin formation; (5) phase control of pineal rhythmicity; (6) impact of light at night on pineal rhythms; and (7) physiological function of the pineal rhythmicity.
Collapse
Affiliation(s)
- Jimo Borjigin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
19
|
Peschke E, Hofmann K, Bähr I, Streck S, Albrecht E, Wedekind D, Mühlbauer E. The insulin-melatonin antagonism: studies in the LEW.1AR1-iddm rat (an animal model of human type 1 diabetes mellitus). Diabetologia 2011; 54:1831-40. [PMID: 21491159 DOI: 10.1007/s00125-011-2138-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/14/2011] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS It is well documented that melatonin influences insulin secretion mediated by G-protein-coupled melatonin receptor isoforms MT1 and MT2, which are present in rat and human pancreatic islets, as well as in rat insulinoma cells. Recent investigations have proven that hyperinsulinaemic Goto-Kakizaki (GK) rats, which are a rat model of type 2 diabetic rats, and humans have decreased melatonin plasma levels, whereas a streptozotocin-induced rat model of diabetes developed reduced insulin levels combined with increased melatonin levels. METHODS Plasma levels of glucose, insulin and melatonin as well as RNA expression of pineal Aanat, Hiomt (also known as Asmt), insulin receptor, adrenoceptor β1 and the clock genes Per1 and Bmal1 (also known as Arntl) were determined in male and female LEW.1AR1-iddm rats as well as in insulin-substituted LEW.1AR1-iddm rats. RESULTS Severe hypoinsulinaemia in diabetic LEW.1AR1-iddm rats was associated with decreased body weight and increased melatonin plasma levels combined with mainly elevated expression of Aanat, Hiomt, pineal insulin receptor and adrenoceptor β1. The changes were normalised by insulin substitution. Diurnal profiles of plasma melatonin and of antagonistic clock genes Per1 and Bmal1 were maintained in diabetic and insulin-substituted rats. CONCLUSIONS/INTERPRETATION The assumed causal relation between elevated melatonin and reduced insulin levels in LEW.1AR1-iddm rats is supported by the observation that insulin substitution normalised these changes. Further support for this interpretation comes from the observation that in GK rats an increase of plasma insulin was combined with a decrease of plasma noradrenaline (norepinephrine), the most important activator of melatonin synthesis. These relationships between the noradrenergic and insulin pathway support the existence of melatonin-insulin antagonism.
Collapse
Affiliation(s)
- E Peschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06097 Halle, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Xue B, Sukumaran S, Nie J, Jusko WJ, DuBois DC, Almon RR. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats. PLoS One 2011; 6:e17386. [PMID: 21364767 PMCID: PMC3045458 DOI: 10.1371/journal.pone.0017386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/02/2011] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes (T2DM) is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK) rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic inflammation in adipose tissue from these animals.
Collapse
Affiliation(s)
- Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - William J. Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Debra C. DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Richard R. Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|