1
|
Perkins DO, Jeffries CD, Clark SR, Upthegrove R, Wannan CMJ, Wray NR, Li QS, Do KQ, Walker E, Paul Amminger G, Anticevic A, Cotter D, Ellman LM, Mongan D, Phassouliotis C, Barbee J, Roth S, Billah T, Corcoran C, Calkins ME, Cerrato F, Khadimallah I, Klauser P, Winter-van Rossum I, Nunez AR, Bleggi RS, Martin AR, Bouix S, Pasternak O, Shah JL, Toben C, Wolf DH, Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ), Kahn RS, Kane JM, McGorry PD, Bearden CE, Nelson B, Shenton ME, Woods SW. Body fluid biomarkers and psychosis risk in The Accelerating Medicines Partnership® Schizophrenia Program: design considerations. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:78. [PMID: 40399418 PMCID: PMC12095529 DOI: 10.1038/s41537-025-00610-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/11/2025] [Indexed: 05/23/2025]
Abstract
Advances in proteomic assay methodologies and genomics have significantly improved our understanding of the blood proteome. Schizophrenia and psychosis risk are linked to polygenic scores for schizophrenia and other mental disorders, as well as to altered blood and saliva levels of biomarkers involved in hormonal signaling, redox balance, and chronic systemic inflammation. The Accelerating Medicines Partnership® Schizophrenia (AMP®SCZ) aims to ascertain biomarkers that both predict clinical outcomes and provide insights into the biological processes driving clinical outcomes in persons meeting CHR criteria. AMP®SCZ will follow almost 2000 CHR and 640 community study participants for two years, assessing biomarkers at baseline and two-month follow-up including the collection of blood and saliva samples. The following provides the rationale and methods for plans to utilize polygenic risk scores for schizophrenia and other disorders, salivary cortisol levels, and a discovery-based proteomic platform for plasma analyses. We also provide details about the standardized methods used to collect and store these biological samples, as well as the study participant metadata and quality control measures related to preanalytical factors that could influence the values of the biomarkers. Finally, we discuss our plans for analyzing the results of blood- and saliva-based biomarkers. Watch Dr. Perkins discuss their work and this article: https://vimeo.com/1062879582?share=copy#t=0 .
Collapse
Affiliation(s)
- Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Clark D Jeffries
- Rennaisance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott R Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Woodville, SA, Australia
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK
- Birmingham Womens and Childrens, NHS Foundation Trust, Birmingham, UK
| | - Cassandra M J Wannan
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Naomi R Wray
- Department of Psychiatry, University of Oxford, Oxford, UK
- Institute for Molecular Biosciences, University of Queensland, Queensland, Australia
| | - Qingqin S Li
- JRD Data Science, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK
| | - Elaine Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, United States of America
| | - G Paul Amminger
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - David Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Christina Phassouliotis
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Jenna Barbee
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharin Roth
- Genomics and Biomarker Research, Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, MD, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Cheryl Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felecia Cerrato
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ines Khadimallah
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK
| | - Paul Klauser
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Service of Child and Adolescent Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Angela R Nunez
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Rachel S Bleggi
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alicia R Martin
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, MGB, Massachusetts General Hospital, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, MGB, Massachusetts General Hospital, Boston, MA, USA
| | - Jai L Shah
- Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Catherine Toben
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rene S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hempstead, N.Y, USA
- Institute for Behavioral Science, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Patrick D McGorry
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Carrie E Bearden
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barnaby Nelson
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, MGB, Massachusetts General Hospital, Boston, MA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
2
|
Franco-Villanueva A, Ford NC, Morano RL, Packard BA, Baccei ML, Herman JP. Time-dependent Actions of Corticosterone on Infralimbic Cortex Pyramidal Neurons of Adult Male Rats. J Neurosci 2025; 45:e0867242025. [PMID: 40101963 PMCID: PMC12060656 DOI: 10.1523/jneurosci.0867-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Responses to acute stress function to restore homeostasis. Hence, the study of neurophysiological responses to acute stress helps to understand mechanisms underlying adaptive coping in the face of environmental demands. The infralimbic medial prefrontal cortex (IL-mPFC) modulates the switch between behavioral coping styles, and acute stress enhances glutamatergic neurotransmission on mPFC projection neurons. However, the role of acute stress responses and stress hormones on the physiology of IL-mPFC projection neurons during adulthood remains underexplored. Here, we studied rapid and slow effects of acute corticosterone exposure on synaptic transmission and intrinsic membrane excitability in layer 5 pyramidal neurons of the IL (L5-IL PNs) in adult male rats using ex vivo whole-cell patch-clamp of mPFC slices. We report that corticosterone dynamically modulates the physiology of L5-IL PNs in a time-dependent manner. Specifically, corticosterone elicits a strong rapid shift of the excitatory-inhibitory balance towards enhanced excitation with mineralocorticoid (MR) and glucocorticoid receptors (GR) playing complementarily roles. Also, corticosterone rapidly and transently decreases the firing rate of L5-IL PNs via GR. Moreover, acute stress or corticosterone slowly enhance glutamatergic neurotransmission via MR and GR without modulating inhibitory neurotransmission or intrinsic excitability of adult L5-IL PNs. Our findings highlight the potential relevance of corticosterone effects on L5-IL PNs to promote a homeostatic response in adult male rats. First, corticosterone rapidly attenuates IL intrinsic excitability during the rapid initial phase of the acute stress response. Later on, corticosterone slowly restores IL output function over time to promote adaptive executive responses when context changes.Significance statement Corticosterone modulates physiological processes during stress to support adaptation. However, acute effects of corticosterone on stress control networks remains underexplored. Here, we explored mechanisms underlying corticosterone regulation of the activity of stress regulatory neurons of the infralimbic cortex (IL). Stress levels of corticosterone rapidly shift the excitatory-inhibitory balance of synaptic transmission towards enhanced excitation while diminishing firing of IL excitatory long-range neurons (IL PNs). Slow, lasting effects of corticosterone primarily target excitatory synaptic activity. Synaptic actions of glucocorticoids are cooperatively mediated by the mineralocorticoid (MRs) and glucocorticoid receptors (GRs), whereas the transient reduction in firing relies on GR in IL PNs. Thus, corticosterone provides an adaptive signal that controls IL output over time, promoting adaptive responses to environmental context.
Collapse
Affiliation(s)
- Ana Franco-Villanueva
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, 45267, USA
| | - Neil C Ford
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, Cincinnati, Ohio, 45267, USA
| | - Rachel L Morano
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, 45267, USA
| | - Benjamin A Packard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, 45267, USA
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, Cincinnati, Ohio, 45267, USA
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, 45267, USA
- Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, 45220, USA
| |
Collapse
|
3
|
Liang KJ, Colasurdo EA, Li G, Shofer JB, Galasko D, Quinn JF, Farlow MR, Peskind ER. Sex Differences in Basal Cortisol Levels Across Body Fluid Compartments in a Cross-sectional Study of Healthy Adults. J Endocr Soc 2024; 9:bvae220. [PMID: 39719949 PMCID: PMC11667091 DOI: 10.1210/jendso/bvae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Indexed: 12/26/2024] Open
Abstract
Context Many studies have moved toward saliva and peripheral blood sampling for studying cortisol, even in relation to disorders of the brain. However, the degree to which peripheral cortisol reflects central cortisol levels has yet to be comprehensively described. Data describing the effect that biological characteristics such as age and sex have on cortisol levels across compartments is also limited. Objective To assess the relationships of cortisol levels across cerebrospinal fluid (CSF), saliva, and plasma (total and free) compartments and describe the effects of age and sex on these relationships. Design Multisite cross-sectional observation study. Setting Samples collected in academic outpatient settings in 2001-2004. Patients or Other Participants Healthy community volunteers (n = 157) of both sexes, aged 20-85 years. Interventions None. Main Outcome Measures This study was a secondary analysis of data collected from a previously published study. Results CSF cortisol correlated more strongly with plasma (r = 0.49, P < .0001) than with saliva cortisol levels. Sex but not age was a significant modifier of these relationships. CSF cortisol levels trended higher with older age in men (R2 = 0.31, P < .001) but not women. Age-related cortisol binding globulin trends differed by sex but did not correlate with sex differences in cortisol levels in any compartment. Conclusion Variability in the correlations between central and peripheral cortisol discourages the use of peripheral cortisol as a direct surrogate for central cortisol measures. Further investigation of how mechanistic drivers interact with biological factors such as sex will be necessary to fully understand the dynamics of cortisol regulation across fluid compartments.
Collapse
Affiliation(s)
- Katharine J Liang
- VA Northwest Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth A Colasurdo
- VA Northwest Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Ge Li
- VA Northwest Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jane B Shofer
- VA Northwest Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Douglas Galasko
- San Diego VA Medical Center, San Diego, CA 92161, USA
- Department of Neurosciences, UC San Diego School of Medicine, San Diego, CA 92093, USA
| | - Joseph F Quinn
- Parkinson's Disease Research, Education, and Clinical Center, VA Portland Health Care System, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University School of Medicine, Portland, OR 97239, USA
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elaine R Peskind
- VA Northwest Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Holleman J, Daniilidou M, Kåreholt I, Aspö M, Hagman G, Udeh-Momoh CT, Spulber G, Kivipelto M, Solomon A, Matton A, Sindi S. Diurnal cortisol, neuroinflammation, and neuroimaging visual rating scales in memory clinic patients. Brain Behav Immun 2024; 118:499-509. [PMID: 38503394 DOI: 10.1016/j.bbi.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/18/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Neuroinflammation is a hallmark of the Alzheimer's disease (AD) pathogenic process. Cortisol dysregulation may increase AD risk and is related to brain atrophy. This cross-sectional study aims to examine interactions of cortisol patterns and neuroinflammation markers in their association with neuroimaging correlates. METHOD 134 participants were recruited from the Karolinska University Hospital memory clinic (Stockholm, Sweden). Four visual rating scales were applied to magnetic resonance imaging or computed tomography scans: medial temporal lobe atrophy (MTA), global cortical atrophy (GCA), white matter lesions (WML), and posterior atrophy. Participants provided saliva samples for assessment of diurnal cortisol patterns, and underwent lumbar punctures for cerebrospinal fluid (CSF) sampling. Three cortisol measures were used: the cortisol awakening response, total daily output, and the ratio of awakening to bedtime levels. Nineteen CSF neuroinflammation markers were categorized into five composite scores: proinflammatory cytokines, other cytokines, angiogenesis markers, vascular injury markers, and glial activation markers. Ordinal logistic regressions were conducted to assess associations between cortisol patterns, neuroinflammation scores, and visual rating scales, and interactions between cortisol patterns and neuroinflammation scores in relation to visual rating scales. RESULT Higher levels of angiogenesis markers were associated with more severe WML. Some evidence was found for interactions between dysregulated diurnal cortisol patterns and greater neuroinflammation-related biomarkers in relation to more severe GCA and WML. No associations were found between cortisol patterns and visual rating scales. CONCLUSION This study suggests an interplay between diurnal cortisol patterns and neuroinflammation in relation to brain structure. While this cross-sectional study does not provide information on causality or temporality, these findings suggest that neuroinflammation may be involved in the relationship between HPA-axis functioning and AD.
Collapse
Affiliation(s)
- Jasper Holleman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden.
| | - Makrina Daniilidou
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Institute of Gerontology, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Malin Aspö
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden
| | - Göran Hagman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden
| | - Chinedu T Udeh-Momoh
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK; Division of Public Health Sciences, Wake Forest University School of Medicine, North Carolina, USA; Brain and Mind Institute, Aga Khan University, Nairobi, Kenya
| | - Gabriela Spulber
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Alina Solomon
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK; Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anna Matton
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
5
|
Yi L, Lin X, She X, Gao W, Wu M. Chronic stress as an emerging risk factor for the development and progression of glioma. Chin Med J (Engl) 2024; 137:394-407. [PMID: 38238191 PMCID: PMC10876262 DOI: 10.1097/cm9.0000000000002976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 02/21/2024] Open
Abstract
ABSTRACT Gliomas tend to have a poor prognosis and are the most common primary malignant tumors of the central nervous system. Compared with patients with other cancers, glioma patients often suffer from increased levels of psychological stress, such as anxiety and fear. Chronic stress (CS) is thought to impact glioma profoundly. However, because of the complex mechanisms underlying CS and variability in individual tolerance, the role of CS in glioma remains unclear. This review suggests a new proposal to redivide the stress system into two parts. Neuronal activity is dominant upstream. Stress-signaling molecules produced by the neuroendocrine system are dominant downstream. We discuss the underlying molecular mechanisms by which CS impacts glioma. Potential pharmacological treatments are also summarized from the therapeutic perspective of CS.
Collapse
Affiliation(s)
- Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
7
|
Boyanova ST, Lloyd-Morris E, Corpe C, Rahman KM, Farag DB, Page LK, Wang H, Fleckney AL, Gatt A, Troakes C, Vizcay-Barrena G, Fleck R, Reeves SJ, Thomas SA. Interaction of amisulpride with GLUT1 at the blood-brain barrier. Relevance to Alzheimer's disease. PLoS One 2023; 18:e0286278. [PMID: 37874822 PMCID: PMC10597500 DOI: 10.1371/journal.pone.0286278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction may be involved in the increased sensitivity of Alzheimer's disease (AD) patients to antipsychotics, including amisulpride. Studies indicate that antipsychotics interact with facilitated glucose transporters (GLUT), including GLUT1, and that GLUT1 BBB expression decreases in AD. We tested the hypotheses that amisulpride (charge: +1) interacts with GLUT1, and that BBB transport of amisulpride is compromised in AD. GLUT1 substrates, GLUT1 inhibitors and GLUT-interacting antipsychotics were identified by literature review and their physicochemical characteristics summarised. Interactions between amisulpride and GLUT1 were studied using in silico approaches and the human cerebral endothelial cell line, hCMEC/D3. Brain distribution of [3H]amisulpride was determined using in situ perfusion in wild type (WT) and 5xFamilial AD (5xFAD) mice. With transmission electron microscopy (TEM) we investigated brain capillary degeneration in WT mice, 5xFAD mice and human samples. Western blots determined BBB transporter expression in mouse and human. Literature review revealed that, although D-glucose has no charge, charged molecules can interact with GLUT1. GLUT1 substrates are smaller (184.95±6.45g/mol) than inhibitors (325.50±14.40g/mol) and GLUT-interacting antipsychotics (369.38±16.04). Molecular docking showed beta-D-glucose (free energy binding: -15.39kcal/mol) and amisulpride (-29.04kcal/mol) interact with GLUT1. Amisulpride did not affect [14C]D-glucose hCMEC/D3 accumulation. [3H]amisulpride uptake into the brain (except supernatant) of 5xFAD mice compared to WT remained unchanged. TEM revealed brain capillary degeneration in human AD. There was no difference in GLUT1 or P-glycoprotein BBB expression between WT and 5xFAD mice. In contrast, caudate P-glycoprotein, but not GLUT1, expression was decreased in human AD capillaries versus controls. This study provides new details about the BBB transport of amisulpride, evidence that amisulpride interacts with GLUT1 and that BBB transporter expression is altered in AD. This suggests that antipsychotics could potentially exacerbate the cerebral hypometabolism in AD. Further research into the mechanism of amisulpride transport by GLUT1 is important for improving antipsychotics safety.
Collapse
Affiliation(s)
- Sevda T. Boyanova
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Ethlyn Lloyd-Morris
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Christopher Corpe
- King’s College London, Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, London, United Kingdom
| | | | - Doaa B. Farag
- Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Lee K. Page
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Hao Wang
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Alice L. Fleckney
- King’s College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Ariana Gatt
- King’s College London, Wolfson Centre for Age Related Disease, London, United Kingdom
| | - Claire Troakes
- King’s College London, London Neurodegenerative Diseases Brain Bank, IoPPN, London, United Kingdom
| | - Gema Vizcay-Barrena
- King’s College London, Centre for Ultrastructural Imaging, London, United Kingdom
| | - Roland Fleck
- King’s College London, Centre for Ultrastructural Imaging, London, United Kingdom
| | - Suzanne J. Reeves
- Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Sarah A. Thomas
- King’s College London, Department of Physiology, London, United Kingdom
| |
Collapse
|
8
|
Bering T, Blancas-Velazquez AS, Rath MF. Circadian Clock Genes Are Regulated by Rhythmic Corticosterone at Physiological Levels in the Rat Hippocampus. Neuroendocrinology 2023; 113:1076-1090. [PMID: 37517388 PMCID: PMC10614510 DOI: 10.1159/000533151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION In the hippocampus, clock gene expression is important for memory and mood; however, the signaling mechanism controlling clock gene expression in the hippocampus is unknown. Recent findings suggest that circadian glucocorticoid rhythms driven by the suprachiasmatic nucleus (SCN) control rhythmic clock gene expression in neurons; in addition, dexamethasone modulates hippocampal clock gene expression. We therefore hypothesized that oscillations of clock genes in the hippocampus could be driven by SCN-controlled circadian rhythms in glucocorticoids. METHODS Temporal profiles of hippocampal clock gene expression were established by quantitative reverse-transcription real-time PCR on rat hippocampi, while cellular distribution was established by in situ hybridization. To determine the effect of rhythmic glucocorticoids on hippocampal clock gene expression, the SCN was lesioned, adrenal glands removed and a 24 h exogenous corticosterone rhythm at physiological levels was reestablished by use of a programmable infusion pump. RESULTS Daily rhythms were detected for Per1, Per2, Bmal1, Nr1d1, and Dbp, while clock gene products were confirmed in both the hippocampus proper and the dentate gyrus. In sham controls, differential hippocampal expression of Per1 and Dbp between ZT3 and ZT15 was detectable. This rhythm was abolished by SCN lesion; however, reestablishing the natural rhythm in corticosterone restored differential rhythmic expression of both Per1 and Dbp. Further, a 6 h phase delay in the corticosterone profile caused a predictable shift in expression of Nr1d1. CONCLUSION Our data show that rhythmic corticosterone can drive hippocampal clock gene rhythms suggesting that the SCN regulates the circadian oscillator of the hippocampus by controlling the circadian rhythm in circulating glucocorticoids.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Aurea Susana Blancas-Velazquez
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| |
Collapse
|
9
|
Paton SEJ, Solano JL, Coulombe-Rozon F, Lebel M, Menard C. Barrier-environment interactions along the gut-brain axis and their influence on cognition and behaviour throughout the lifespan. J Psychiatry Neurosci 2023; 48:E190-E208. [PMID: 37253482 PMCID: PMC10234620 DOI: 10.1503/jpn.220218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023] Open
Abstract
Environment is known to substantially alter mental state and behaviour across the lifespan. Biological barriers such as the blood-brain barrier (BBB) and gut barrier (GB) are major hubs for communication of environmental information. Alterations in the structural, social and motor environment at different stages of life can influence function of the BBB and GB and their integrity to exert behavioural consequences. Importantly, each of these environmental components is associated with a distinct immune profile, glucocorticoid response and gut microbiome composition, creating unique effects on the BBB and GB. These barrier-environment interactions are sensitive to change throughout life, and positive or negative alterations at critical stages of development can exert long-lasting cognitive and behavioural consequences. Furthermore, because loss of barrier integrity is implicated in pathogenesis of mental disorders, the pathways of environmental influence represent important areas for understanding these diseases. Positive environments can be protective against stress- and age-related damage, raising the possibility of novel pharmacological targets. This review summarizes known mechanisms of environmental influence - such as social interactions, structural complexity and physical exercise - on barrier composition, morphology and development, and considers the outcomes and implications of these interactions in the context of psychiatric disorders.
Collapse
Affiliation(s)
- Sam E J Paton
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - José L Solano
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - François Coulombe-Rozon
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Manon Lebel
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Caroline Menard
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| |
Collapse
|
10
|
Devine K, Villalobos E, Kyle CJ, Andrew R, Reynolds RM, Stimson RH, Nixon M, Walker BR. The ATP-binding cassette proteins ABCB1 and ABCC1 as modulators of glucocorticoid action. Nat Rev Endocrinol 2023; 19:112-124. [PMID: 36221036 DOI: 10.1038/s41574-022-00745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
Responses to hormones that act through nuclear receptors are controlled by modulating hormone concentrations not only in the circulation but also within target tissues. The role of enzymes that amplify or reduce local hormone concentrations is well established for glucocorticoid and other lipophilic hormones; moreover, transmembrane transporters have proven critical in determining tissue responses to thyroid hormones. However, there has been less consideration of the role of transmembrane transport for steroid hormones. ATP-binding cassette (ABC) proteins were first shown to influence the accumulation of glucocorticoids in cells almost three decades ago, but observations over the past 10 years suggest that differential transport propensities of both exogenous and endogenous glucocorticoids by ABCB1 and ABCC1 transporters provide a mechanism whereby different tissues are preferentially sensitive to different steroids. This Review summarizes this evidence and the new insights provided for the physiology and pharmacology of glucocorticoid action, including new approaches to glucocorticoid replacement.
Collapse
Affiliation(s)
- Kerri Devine
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Elisa Villalobos
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Catriona J Kyle
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ruth Andrew
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rebecca M Reynolds
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Roland H Stimson
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mark Nixon
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Brian R Walker
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Pharmacokinetic Study of Intranasal Dexamethasone and Methylprednisolone Compared with Intravenous Administration: Two Open-Label, Single-Dose, Two-Period, Two-Sequence, Cross-Over Study in Healthy Volunteers. Pharmaceutics 2022; 15:pharmaceutics15010105. [PMID: 36678735 PMCID: PMC9861764 DOI: 10.3390/pharmaceutics15010105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Dexamethasone (DXM) and methylprednisolone (MEP) are potent glucocorticoids used to control several inflammatory conditions. Evidence of delayed DXM reaching the central nervous system (CNS) as well as tachyphylaxis and systemic, undesirable side effects are the main limitations of peripheral delivery. Intranasal administration offers direct access to the brain as it bypasses the blood-brain barrier. The Mucosal Atomization Device is an optimal tool that can achieve rapid absorption into the CNS and the bloodstream across mucosal membranes. This study was designed to evaluate and compare the bioavailability of DXM and MEP after intranasal versus intravenous administration. Two open-label, balanced, randomized, two-treatment, two-period, two-sequence, single-dose, crossover studies were conducted, which involved healthy male and female adult volunteers. After intranasal administration, DXM and MEP were detected in plasma after the first sampling time. Mean peak concentrations of DXM and MEP were 86.61 ng/mL at 60 min and 843.2 ng/mL at 1.5 h post-administration, respectively. DXM and MEP showed high absolute bioavailability, with values of 80% and 95%, respectively. No adverse effects were observed. DXM and MEP systemic bioavailability by intranasal administration was comparable with the intravenous one, suggesting that the intranasal route can be used as a non-invasive and appropriate alternative for systemic drug delivery.
Collapse
|
12
|
Gene Dysregulation in the Adult Rat Paraventricular Nucleus and Amygdala by Prenatal Exposure to Dexamethasone. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071077. [PMID: 35888164 PMCID: PMC9316520 DOI: 10.3390/life12071077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
Fetal programming is the concept that maternal stressors during critical periods of fetal development can alter offspring phenotypes postnatally. Excess glucocorticoids can interact with the fetus to effect genetic and epigenetic changes implicated in adverse developmental outcomes. The present study investigates how chronic exposure to the synthetic glucocorticoid dexamethasone during late gestation alters the expression of genes related to behavior in brain areas relevant to the regulation and function of the hypothalamic–pituitary–adrenal axis. Pregnant Wistar Kyoto rats received subcutaneous injections of dexamethasone (100 μg/kg) daily from gestational day 15–21 or vehicle only as sham controls. The amygdala and paraventricular nucleus (PVN) were micro-punched to extract mRNA for reverse transcription and quantitative polymerase chain reaction for the analysis of the expression of specific genes. In the PVN, the expression of the glucocorticoid receptor NR3C1 was downregulated in female rats in response to programming. The expression of CACNA1C encoding the Cav1.2 pore subunit of L-type voltage-gated calcium channels was downregulated in male and female rats prenatally exposed to dexamethasone. Collectively, the results suggest that prenatal exposure to elevated levels of glucocorticoids plays a role in the dysregulation of the hypothalamic–pituitary–adrenal axis and potentially learning and memory by altering the expression of specific genes within the amygdala and PVN.
Collapse
|
13
|
Whelan G, Sim J, Smith B, Moffatt M, Littlewood C. Are Corticosteroid Injections Associated With Secondary Adrenal Insufficiency in Adults With Musculoskeletal Pain? A Systematic Review and Meta-analysis of Prospective Studies. Clin Orthop Relat Res 2022; 480:1061-1074. [PMID: 35302533 PMCID: PMC9263464 DOI: 10.1097/corr.0000000000002145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/28/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Corticosteroid injection is a common treatment for individuals experiencing musculoskeletal pain, and it is part of the management of numerous orthopaedic conditions. However, there is concern about offering corticosteroid injections for musculoskeletal pain because of the possibility of secondary adrenal insufficiency. QUESTIONS/PURPOSES In this systematic review and meta-analysis of prospective studies, we asked: (1) Are corticosteroid injections associated with secondary adrenal insufficiency as measured by 7-day morning serum cortisol? (2) Does this association differ depending on whether the shot was administered in the spine or the appendicular skeleton? METHODS We searched the Allied and Complementary Medicine (AMED), Embase, EmCare, MEDLINE, CINAHL, and Web of Science from inception to January 22, 2021. We retrieved 4303 unique records, of which 17 were eventually included. Study appraisal was via the Downs and Black tool, with an average quality rating of fair. A Grading of Recommendations, Assessment, Development, and Evaluations assessment was conducted with the overall certainty of evidence being low to moderate. Reflecting heterogeneity in the study estimates, a pooled random-effects estimate of cortisol levels 7 days after corticosteroid injection was calculated. Fifteen studies or subgroups (254 participants) provided appropriate estimates for statistical pooling. A total of 106 participants received a spine injection, and 148 participants received an appendicular skeleton injection, including the glenohumeral joint, subacromial bursa, trochanteric bursa, and knee. RESULTS Seven days after corticosteroid injection, the mean morning serum cortisol was 212 nmol/L (95% confidence interval 133 to 290), suggesting that secondary adrenal insufficiency was a possible outcome. There is a difference in the secondary adrenal insufficiency risk depending on whether the injection was in the spine or the appendicular skeleton. For spinal injection, the mean cortisol was 98 nmol/L (95% CI 48 to 149), suggesting secondary adrenal insufficiency was likely. For appendicular skeleton injection the mean cortisol was 311 nmol/L (95% CI 213 to 409) suggesting hypothalamic-pituitary-adrenal axis integrity was likely. CONCLUSION Clinicians offering spinal injections should discuss the possibility of short-term secondary adrenal insufficiency with patients, and together, they can decide whether the treatment remains appropriate and whether mitigation strategies are needed. Clinicians offering appendicular skeleton injections should not limit care because of concerns about secondary adrenal insufficiency based on the best available evidence, and clinical guidelines could be reviewed accordingly. Further research is needed to understand whether age and/or sex determine risk of secondary adrenal insufficiency and what clinical impact secondary adrenal insufficiency has on patients undergoing spinal injection. LEVEL OF EVIDENCE Level IV, therapeutic study.
Collapse
Affiliation(s)
- Gareth Whelan
- Musculoskeletal Department, York Teaching Hospitals NHS Foundation Trust, York, UK
| | - Julius Sim
- School of Medicine, Keele University, Keele, UK
| | - Benjamin Smith
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK; Rehabilitation & Ageing Research Group, Injury, Inflammation and Recovery Sciences, School of Medicine, University of Nottingham, UK
| | - Maria Moffatt
- Faculty of Health and Education, Manchester Metropolitan University, Manchester, UK
| | - Chris Littlewood
- Faculty of Health and Education, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
14
|
Abeti R, Jasoliya M, Al-Mahdawi S, Pook M, Gonzalez-Robles C, Hui CK, Cortopassi G, Giunti P. A Drug Combination Rescues Frataxin-Dependent Neural and Cardiac Pathophysiology in FA Models. Front Mol Biosci 2022; 9:830650. [PMID: 35664670 PMCID: PMC9160322 DOI: 10.3389/fmolb.2022.830650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Friedreich’s ataxia (FA) is an inherited multisystemic neuro- and cardio-degenerative disorder. Seventy-four clinical trials are listed for FA (including past and present), but none are considered FDA/EMA-approved therapy. To date, FA therapeutic strategies have focused along two main lines using a single-drug approach: a) increasing frataxin and b) enhancing downstream pathways, including antioxidant levels and mitochondrial function. Our novel strategy employed a combinatorial approach to screen approved compounds to determine if a combination of molecules provided an additive or synergistic benefit to FA cells and/or animal models. Eight single drug molecules were administered to FA fibroblast patient cells: nicotinamide riboside, hemin, betamethasone, resveratrol, epicatechin, histone deacetylase inhibitor 109, methylene blue, and dimethyl fumarate. We measured their individual ability to induce FXN transcription and mitochondrial biogenesis in patient cells. Single-drug testing highlighted that dimethyl fumarate and resveratrol increased these two parameters. In addition, the simultaneous administration of these two drugs was the most effective in terms of FXN mRNA and mitobiogenesis increase. Interestingly, this combination also improved mitochondrial functions and reduced reactive oxygen species in neurons and cardiomyocytes. Behavioral tests in an FA mouse model treated with dimethyl fumarate and resveratrol demonstrated improved rotarod performance. Our data suggest that dimethyl fumarate is effective as a single agent, and the addition of resveratrol provides further benefit in some assays without showing toxicity. Therefore, they could be a valuable combination to counteract FA pathophysiology. Further studies will help fully understand the potential of a combined therapeutic strategy in FA pathophysiology.
Collapse
Affiliation(s)
- Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL, Institute of Neurology, London, United Kingdom
- *Correspondence: Rosella Abeti, ; Paola Giunti,
| | - Mittal Jasoliya
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA, United States
| | - Sahar Al-Mahdawi
- Department of Life Sciences, Institute of Environment, Health, and Societies, College of Health and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Mark Pook
- Department of Life Sciences, Institute of Environment, Health, and Societies, College of Health and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Cristina Gonzalez-Robles
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL, Institute of Neurology, London, United Kingdom
| | - Chun Kiu Hui
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA, United States
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA, United States
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL, Institute of Neurology, London, United Kingdom
- *Correspondence: Rosella Abeti, ; Paola Giunti,
| |
Collapse
|
15
|
Enduring glucocorticoid-evoked exacerbation of synaptic plasticity disruption in male rats modelling early Alzheimer's disease amyloidosis. Neuropsychopharmacology 2021; 46:2170-2179. [PMID: 34188184 PMCID: PMC8505492 DOI: 10.1038/s41386-021-01056-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Synaptic dysfunction is a likely proximate cause of subtle cognitive impairment in early Alzheimer's disease. Soluble oligomers are the most synaptotoxic forms of amyloid ß-protein (Aß) and mediate synaptic plasticity disruption in Alzheimer's disease amyloidosis. Because the presence and extent of cortisol excess in prodromal Alzheimer's disease predicts the onset of cognitive symptoms we hypothesised that corticosteroids would exacerbate the inhibition of hippocampal synaptic long-term potentiation in a rat model of Alzheimer's disease amyloidosis. In a longitudinal experimental design using freely behaving pre-plaque McGill-R-Thy1-APP male rats, three injections of corticosterone or the glucocorticoid methylprednisolone profoundly disrupted long-term potentiation induced by strong conditioning stimulation for at least 2 months. The same treatments had a transient or no detectible detrimental effect on synaptic plasticity in wild-type littermates. Moreover, corticosterone-mediated cognitive dysfunction, as assessed in a novel object recognition test, was more persistent in the transgenic animals. Evidence for the involvement of pro-inflammatory mechanisms was provided by the ability of the selective the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome inhibitor Mcc950 to reverse the synaptic plasticity deficit in corticosterone-treated transgenic animals. The marked prolongation of the synaptic plasticity disrupting effects of brief corticosteroid excess substantiates a causal role for hypothalamic-pituitary-adrenal axis dysregulation in early Alzheimer's disease.
Collapse
|
16
|
Bini J, Bhatt S, Hillmer AT, Gallezot JD, Nabulsi N, Pracitto R, Labaree D, Kapinos M, Ropchan J, Matuskey D, Sherwin RS, Jastreboff AM, Carson RE, Cosgrove K, Huang Y. Body Mass Index and Age Effects on Brain 11β-Hydroxysteroid Dehydrogenase Type 1: a Positron Emission Tomography Study. Mol Imaging Biol 2021; 22:1124-1131. [PMID: 32133575 DOI: 10.1007/s11307-020-01490-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONTEXT Cortisol, a glucocorticoid steroid stress hormone, is primarily responsible for stimulating gluconeogenesis in the liver and promoting adipocyte differentiation and maturation. Prolonged excess cortisol leads to visceral adiposity, insulin resistance, hyperglycemia, memory dysfunction, cognitive impairment, and more severe Alzheimer's disease phenotypes. The intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive cortisone to active cortisol; yet the amount of 11β-HSD1 in the brain has not been quantified directly in vivo. OBJECTIVE We analyzed positron emission tomography (PET) scans with an 11β-HSD1 inhibitor radioligand in twenty-eight individuals (23 M/5F): 10 lean, 13 overweight, and 5 obese individuals. Each individual underwent PET imaging on the high-resolution research tomograph PET scanner after injection of 11C-AS2471907 (n = 17) or 18F-AS2471907 (n = 11). Injected activity and mass doses were 246 ± 130 MBq and 0.036 ± 0.039 μg, respectively, for 11C-AS2471907, and 92 ± 15 MBq and 0.001 ± 0.001 μg for 18F-AS2471907. Correlations of mean whole brain and regional distribution volume (VT) with body mass index (BMI) and age were performed with a linear regression model. RESULTS Significant correlations of whole brain mean VT with BMI and age (VT = 15.23-0.63 × BMI + 0.27 × Age, p = 0.001) were revealed. Age-adjusted mean whole brain VT values were significantly lower in obese individuals. Post hoc region specific analyses revealed significantly reduced mean VT values in the thalamus (lean vs. overweight and lean vs. obese individuals). Caudate, hypothalamus, parietal lobe, and putamen also showed lower VT value in obese vs. lean individuals. A significant age-associated increase of 2.7 mL/cm3 per decade was seen in BMI-corrected mean whole brain VT values. CONCLUSIONS In vivo PET imaging demonstrated, for the first time, correlation of higher BMI (obesity) with lower levels of the enzyme 11β-HSD1 in the brain and correlation of increased 11β-HSD1 levels in the brain with advancing age.
Collapse
Affiliation(s)
- Jason Bini
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA. .,Yale University PET Center, 801 Howard Ave, PO Box 208048, New Haven, CT, 06520-8048, USA.
| | - Shivani Bhatt
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Pracitto
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - David Labaree
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Kapinos
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Robert S Sherwin
- Department of Internal Medicine, Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Ania M Jastreboff
- Department of Internal Medicine, Endocrinology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Cosgrove
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Elahi M, Motoi Y, Shimonaka S, Ishida Y, Hioki H, Takanashi M, Ishiguro K, Imai Y, Hattori N. High-fat diet-induced activation of SGK1 promotes Alzheimer's disease-associated tau pathology. Hum Mol Genet 2021; 30:1693-1710. [PMID: 33890983 PMCID: PMC8411983 DOI: 10.1093/hmg/ddab115] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has long been considered a risk factor for Alzheimer’s disease (AD). However, the molecular links between T2DM and AD remain obscure. Here, we reported that serum-/glucocorticoid-regulated kinase 1 (SGK1) is activated by administering a chronic high-fat diet (HFD), which increases the risk of T2DM, and thus promotes Tau pathology via the phosphorylation of tau at Ser214 and the activation of a key tau kinase, namely, GSK-3ß, forming SGK1-GSK-3ß-tau complex. SGK1 was activated under conditions of elevated glucocorticoid and hyperglycemia associated with HFD, but not of fatty acid–mediated insulin resistance. Elevated expression of SGK1 in the mouse hippocampus led to neurodegeneration and impairments in learning and memory. Upregulation and activation of SGK1, SGK1-GSK-3ß-tau complex were also observed in the hippocampi of AD cases. Our results suggest that SGK1 is a key modifier of tau pathology in AD, linking AD to corticosteroid effects and T2DM.
Collapse
Affiliation(s)
- Montasir Elahi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yumiko Motoi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Shotaro Shimonaka
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Yoko Ishida
- Department of Cell Biology and Neuroscience, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Koichi Ishiguro
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- To whom correspondence should be addressed. Tel: +81 368018332; Fax: +81 358000547;
| | - Nobutaka Hattori
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Binayi F, Zardooz H, Ghasemi R, Hedayati M, Askari S, Pouriran R, Sahraei M. The chemical chaperon 4-phenyl butyric acid restored high-fat diet- induced hippocampal insulin content and insulin receptor level reduction along with spatial learning and memory deficits in male rats. Physiol Behav 2021; 231:113312. [PMID: 33412188 DOI: 10.1016/j.physbeh.2021.113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/18/2022]
Abstract
This study assessed the effect of a chronic high-fat diet (HFD) on plasma and hippocampal insulin and corticosterone levels, the hippocampus insulin receptor amount, and spatial learning and memory with or without receiving 4-phenyl butyric acid (4-PBA) in male rats. Rats were divided into high-fat and normal diet groups, then each group was subdivided into dimethyl sulfoxide (DMSO) and 4-PBA groups. After weaning, the rats were fed with HFD for 20 weeks. Then, 4-PBA or DMSO were injected for 3 days. Subsequently, oral glucose tolerance test was done. On the following day, spatial memory tests were performed. Then the hippocampus Bip, Chop, insulin, corticosterone, and insulin receptor levels were determined. HFD increased plasma glucose, leptin and corticosterone concentrations, hippocampus Bip, Chop and corticosterone levels, food intake, abdominal fat weight and body weight along with impaired glucose tolerance. It decreased plasma insulin, and insulin content, and its receptor amount in hippocampus. HFD lengthened escape latency and shortened the duration spent in target zone. 4-PBA administration improved the HFD- induced adverse changes. Chronic HFD possibly through the induction of endoplasmic reticulum (ER) stress and subsequent changes in the levels of hippocampal corticosterone, insulin and insulin receptor along with possible leptin resistance caused spatial learning and memory deficits.
Collapse
Affiliation(s)
- Fateme Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sahraei
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ji E, Weickert CS, Purves-Tyson T, White C, Handelsman DJ, Desai R, O'Donnell M, Liu D, Galletly C, Lenroot R, Weickert TW. Cortisol-dehydroepiandrosterone ratios are inversely associated with hippocampal and prefrontal brain volume in schizophrenia. Psychoneuroendocrinology 2021; 123:104916. [PMID: 33169678 DOI: 10.1016/j.psyneuen.2020.104916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
Abstract
While high levels of glucocorticoids are generally neuro-damaging, a related adrenal steroid, dehydroepiandrosterone (DHEA), has anti-glucocorticoid and neuroprotective properties. Previous work has shown increased circulating levels of DHEA and abnormal cortisol/DHEA ratios in people with schizophrenia, however reports are limited and their relationship to neuropathology is unclear. We performed the largest study to date to compare levels of serum DHEA and cortisol/DHEA ratios in people with schizophrenia and healthy controls, and investigated the extent to which cortisol/DHEA ratios predict brain volume. Serum cortisol and DHEA were assayed in 94 people with schizophrenia and 81 healthy controls. T1-weighted high-resolution anatomical scans were obtained using a 3 T Achieva scanner on a subset of 59 people with schizophrenia and 60 healthy controls. Imaging data were preprocessed and analyzed using SPM12. People with schizophrenia had significantly increased serum DHEA levels (p = 0.002), decreased cortisol/DHEA ratios (p = 0.02) and no difference in cortisol levels compared to healthy controls. Cortisol/DHEA ratios were inversely correlated with hippocampal (r = -0.33 p = 0.01) and dorsolateral prefrontal cortex (r = -0.30, p = 0.02) volumes in patients. Our findings suggest that the cortisol/DHEA ratio may be a molecular blood signature of hippocampal and cortical damage. These results further implicate the role of DHEA and hypothalamic-pituitary-adrenal axis dysfunction in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Ellen Ji
- University of Zurich Psychiatric Hospital, Zurich, Switzerland; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW 2031, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW 2031, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, 13210, New York, USA
| | - Tertia Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW 2031, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher White
- Department of Endocrinology, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, NSW, Australia
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, Concord Hospital, NSW, Australia
| | - Maryanne O'Donnell
- School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Local Health Network, Adelaide, South Australia, Australia; Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia
| | - Rhoshel Lenroot
- School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Thomas W Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW 2031, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, 13210, New York, USA
| |
Collapse
|
20
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
21
|
Linz R, Puhlmann LMC, Apostolakou F, Mantzou E, Papassotiriou I, Chrousos GP, Engert V, Singer T. Acute psychosocial stress increases serum BDNF levels: an antagonistic relation to cortisol but no group differences after mental training. Neuropsychopharmacology 2019; 44:1797-1804. [PMID: 30991416 PMCID: PMC6785147 DOI: 10.1038/s41386-019-0391-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an essential facilitator of neuronal plasticity. By counteracting the adverse effects of excessive stress-induced glucocorticoid signaling, BDNF has been implicated as a resilience factor to psychopathology caused by chronic stress. Insights into the effects of acute stress on peripheral BDNF levels in humans are inconclusive. The short-term interplay between BDNF and cortisol in response to acute psychosocial stress remains unexplored. Furthermore, it is unknown whether mental training that is effective at reducing cortisol reactivity can also influence BDNF during acute stress. In the current study, we investigated serum BDNF levels during an acute psychosocial stress paradigm, the Trier Social Stress Test (TSST), in 301 healthy participants (178 women, mean age = 40.65) recruited as part of the ReSource Project, a large-scale mental training study consisting of three distinct 3-month training modules. Using a cross-sectional study design, we first examined the relationship between BDNF and salivary cortisol in a control group with no mental training. Subsequent analyses focused on differences in BDNF stress levels between control and mental training groups. We show that serum BDNF is indeed stress-sensitive, characterized by a significant post-stress increase and subsequent decline to recovery. While respective increases in BDNF and cortisol were not associated, we found two indications for an antagonistic relationship. Higher BDNF peaks after stress were associated with steeper cortisol recovery. On the other hand, the magnitude of the cortisol stress response was linked to steeper BDNF recovery after stress. BDNF levels were not modulated by any of the mental training modules. Providing novel evidence for the dynamics of BDNF and cortisol during acute stress, our findings may further inform research on the physiological mechanisms involved in stress chronification and the associated health risks.
Collapse
Affiliation(s)
- R Linz
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - L M C Puhlmann
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - F Apostolakou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - E Mantzou
- First Department of Pediatrics, School of Medicine, University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - I Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - G P Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - V Engert
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - T Singer
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| |
Collapse
|
22
|
Dunlop BW, Wong A. The hypothalamic-pituitary-adrenal axis in PTSD: Pathophysiology and treatment interventions. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:361-379. [PMID: 30342071 DOI: 10.1016/j.pnpbp.2018.10.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
Questions of how altered functioning of the hypothalamic pituitary adrenal (HPA) axis contribute to the development and maintenance of posttraumatic stress disorder (PTSD) have been the focus of extensive animal and human research. As a rule, results have been inconsistent across studies, likely due to a variety of confounding variables that have received inadequate attention. Important confounding factors include the effects of early life stress, biological sex, and the glucocorticoid used for interventions. In this manuscript we review: 1) the literature on identified abnormalities of HPA axis function in PTSD, both in terms of basal functioning and as part of challenge paradigms; 2) the role of HPA axis function pre- and immediately post-trauma as a risk factor for PTSD development; 3) the impact of HPA axis genes' allelic variants and epigenetic modifications on PTSD risk; 4) the contributions of HPA axis components to fear learning and extinction; and 5) therapeutic manipulations of the HPA axis to both prevent and treat PTSD, including the role of glucocorticoids as part of medication enhanced psychotherapy.
Collapse
Affiliation(s)
- Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Andrea Wong
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
23
|
Isola M, Ekström J, Isola R, Loy F. Melatonin release by exocytosis in the rat parotid gland. J Anat 2019; 234:338-345. [PMID: 30536666 PMCID: PMC6365479 DOI: 10.1111/joa.12921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Several beneficial effects on oral health are ascribed to melatonin. Due to its lipophilic nature, non-protein-bound circulating melatonin is usually thought to enter the saliva by passive diffusion through salivary acinar gland cells. Recently, however, using transmission electron microscopy (TEM), melatonin was found in acinar secretory granules of human salivary glands. To test the hypothesis that granular located melatonin is actively discharged into the saliva by exocytosis, i.e. contrary to the general belief, the β-adrenergic receptor agonist isoprenaline, which causes the degranulation of acinar parotid serous cells, was administered to anaesthetised rats. Sixty minutes after an intravenous bolus injection of isoprenaline (5 mg kg-1 ), the right parotid gland was removed; pre-administration, the left control gland had been removed. Samples were processed to demonstrate melatonin reactivity using the immunogold staining method. Morphometric assessment was made using TEM. Gold particles labelling melatonin appeared to be preferentially associated with secretory granules, occurring in their matrix and at membrane level but, notably, it was also associated with vesicles, mitochondria and nuclei. Twenty-six per cent of the total granular population (per 100 μm2 per cell area) displayed melatonin labelling in the matrix; three-quarters of this fraction disappeared (P < 0.01) in response to isoprenaline, and melatonin reactivity appeared in dilated lumina. Thus, evidence is provided of an alternative route for melatonin to reach the gland lumen and the oral cavity by active release through exocytosis, a process which is under the influence of parasympathetic and sympathetic nervous activity and is the final event along the so-called regulated secretory pathway. During its stay in granules, anti-oxidant melatonin may protect their protein/peptide constituents from damage.
Collapse
Affiliation(s)
- Michela Isola
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| | - Jörgen Ekström
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
- Institute of Neuroscience and PhysiologyDepartment of PharmacologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Raffaella Isola
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| | - Francesco Loy
- Department of Biomedical SciencesDivision of CytomorphologyUniversity of CagliariCagliariItaly
| |
Collapse
|
24
|
Lapmanee S, Charoenphandhu J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Agomelatine, venlafaxine, and running exercise effectively prevent anxiety- and depression-like behaviors and memory impairment in restraint stressed rats. PLoS One 2017; 12:e0187671. [PMID: 29099859 PMCID: PMC5669450 DOI: 10.1371/journal.pone.0187671] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT), forced swimming test (FST), and Morris water maze (MWM). Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jantarima Charoenphandhu
- Physiology Division, Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- * E-mail:
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nateetip Krishnamra
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
25
|
Mohammadmirzaei N, Rezayof A, Ghasemzadeh Z. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat. Brain Res 2016; 1646:219-226. [DOI: 10.1016/j.brainres.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/03/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
|
26
|
Heart rate response to post-learning stress predicts memory consolidation. Neurobiol Learn Mem 2014; 109:74-81. [DOI: 10.1016/j.nlm.2013.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 01/29/2023]
|
27
|
Krieger S, Sorrells SF, Nickerson M, Pace TWW. Mechanistic insights into corticosteroids in multiple sclerosis: war horse or chameleon? Clin Neurol Neurosurg 2014; 119:6-16. [PMID: 24635918 DOI: 10.1016/j.clineuro.2013.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/19/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Relapse management is a crucial component of multiple sclerosis (MS) care. High-dose corticosteroids (CSs) are used to dampen inflammation, which is thought to hasten the recovery of MS relapse. A diversity of mechanisms drive the heterogeneous clinical response to exogenous CSs in patients with MS. Preclinical research is beginning to provide important insights into how CSs work, both in terms of intended and unintended effects. In this article we discuss cellular, systemic, and clinical characteristics that might contribute to intended and unintended CS effects when utilizing supraphysiological doses in clinical practice. The goal of this article is to consider recent insights about CS mechanisms of action in the context of MS. METHODS We reviewed relevant preclinical and clinical studies on the desirable and undesirable effects of high-dose corticosteroids used in MS care. RESULTS Preclinical studies reviewed suggest that corticosteroids may act in unpredictable ways in the context of autoimmune conditions. The precise timing, dosage, duration, cellular exposure, and background CS milieu likely contribute to their clinical heterogeneity. CONCLUSION It is difficult to predict when patients will respond favorably to CSs, both in terms of therapeutic response and tolerability profile. There are specific cellular, systemic, and clinical characteristics that might merit further consideration when utilizing CSs in clinical practice, and these should be explored in a translational setting.
Collapse
Affiliation(s)
- Stephen Krieger
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shawn F Sorrells
- Department of Neurosurgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | | | - Thaddeus W W Pace
- College of Nursing and College of Medicine (Department of Psychiatry), University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
28
|
Damkier HH, Brown PD, Praetorius J. Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiol Rev 2013; 93:1847-92. [DOI: 10.1152/physrev.00004.2013] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The choroid plexus epithelium is a cuboidal cell monolayer, which produces the majority of the cerebrospinal fluid. The concerted action of a variety of integral membrane proteins mediates the transepithelial movement of solutes and water across the epithelium. Secretion by the choroid plexus is characterized by an extremely high rate and by the unusual cellular polarization of well-known epithelial transport proteins. This review focuses on the specific ion and water transport by the choroid plexus cells, and then attempts to integrate the action of specific transport proteins to formulate a model of cerebrospinal fluid secretion. Significant emphasis is placed on the concept of isotonic fluid transport across epithelia, as there is still surprisingly little consensus on the basic biophysics of this phenomenon. The role of the choroid plexus in the regulation of fluid and electrolyte balance in the central nervous system is discussed, and choroid plexus dysfunctions are described in a very diverse set of clinical conditions such as aging, Alzheimer's disease, brain edema, neoplasms, and hydrocephalus. Although the choroid plexus may only have an indirect influence on the pathogenesis of these conditions, the ability to modify epithelial function may be an important component of future therapies.
Collapse
Affiliation(s)
- Helle H. Damkier
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and Faculty of Life Sciences, Michael Smith Building, Manchester University, Manchester, United Kingdom
| | - Peter D. Brown
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and Faculty of Life Sciences, Michael Smith Building, Manchester University, Manchester, United Kingdom
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and Faculty of Life Sciences, Michael Smith Building, Manchester University, Manchester, United Kingdom
| |
Collapse
|
29
|
Abstract
Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion-transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
30
|
Zuloaga KL, Swift SN, Gonzales RJ, Wu TJ, Handa RJ. The androgen metabolite, 5α-androstane-3β,17β-diol, decreases cytokine-induced cyclooxygenase-2, vascular cell adhesion molecule-1 expression, and P-glycoprotein expression in male human brain microvascular endothelial cells. Endocrinology 2012; 153:5949-60. [PMID: 23117931 PMCID: PMC3512076 DOI: 10.1210/en.2012-1316] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
P-glycoprotein (Pgp), a multiple drug resistance transporter expressed by vascular endothelial cells, is a key component of the blood-brain barrier and has been shown to increase after inflammation. The nonaromatizable androgen, dihydrotestosterone (DHT), decreases inflammatory markers in vascular smooth muscle cells, independent of androgen receptor (AR) stimulation. The principal metabolite of DHT, 5α-androstane-3β,17β-diol (3β-diol), activates estrogen receptor (ER)β and similarly decreases inflammatory markers in vascular cells. Therefore, we tested the hypothesis that either DHT or 3β-diol decrease cytokine-induced proinflammatory mediators, vascular cell adhesion molecule-1 (VCAM-1) and cyclooxygenase-2 (COX-2), to regulate Pgp expression in male primary human brain microvascular endothelial cells (HBMECs). Using RT-qPCR, the mRNAs for AR, ERα, and ERβ and steroid metabolizing enzymes necessary for DHT conversion to 3β-diol were detected in male HBMECs demonstrating that the enzymes and receptors for production of and responsiveness to 3β-diol are present. Western analysis showed that 3β-diol reduced COX-2 and Pgp expression; the effect on Pgp was inhibited by the ER antagonist, ICI-182,780. IL-1β-caused an increase in COX-2 and VCAM-1 that was reduced by either DHT or 3β-diol. 3β-diol also decreased cytokine-induced Pgp expression. ICI-182,780 blocked the effect of 3β-diol on COX-2 and VCAM-1, but not Pgp expression. Therefore, in cytokine-stimulated male HBMECs, the effect of 3β-diol on proinflammatory mediator expression is ER dependent, whereas its effect on Pgp expression is ER independent. These studies suggest a novel role of 3β-diol in regulating blood-brain barrier function and support the concept that 3β-diol can be protective against proinflammatory mediator stimulation.
Collapse
Affiliation(s)
- Kristen L Zuloaga
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Phoenix, AZ 85004-2157, USA
| | | | | | | | | |
Collapse
|
31
|
Giardino G, Fusco A, Romano R, Gallo V, Maio F, Esposito T, Palamaro L, Parenti G, Salerno MC, Vajro P, Pignata C. Betamethasone therapy in ataxia telangiectasia: unraveling the rationale of this serendipitous observation on the basis of the pathogenesis. Eur J Neurol 2012; 20:740-7. [PMID: 23121321 DOI: 10.1111/ene.12024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/20/2012] [Indexed: 11/30/2022]
Abstract
Ataxia telangiectasia (A-T) is a rare autosomal recessive disorder characterized by progressive neurological dysfunction. To date, only supportive care aimed to halt the progressive neurodegeneration is available for the treatment. Recently, an improvement of neurological signs during short-term treatment with betamethasone has been reported. To date, the molecular and biochemical mechanisms by which the steroid produces such effects have not yet been elucidated. Therefore, a review of the literature was carried out to define the potential molecular and functional targets of the steroid effects in A-T. Glucocorticoids (GCs) are capable of diffusing into the CNS by crossing the blood-brain barrier (BBB) where they exert effects on the suppression of inflammation or as antioxidant. GCs have been shown to protect post-mitotic neurons from apoptosis. Eventually, GCs may also modulate synaptic plasticity. A better understanding of the mechanisms of action of GCs in the brain is needed, because in A-T during the initial phase of cell loss the neurological impairment may be rescued by interfering in the biochemical pathways. This would open a new window of intervention in this so far incurable disease.
Collapse
Affiliation(s)
- G Giardino
- Department of Pediatrics, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The multidrug resistance transporter, P-glycoprotein (P-gp), contributes to highly lipophilic molecules penetrating the brain from the blood at a much lower rate than expected, and has numerous substrates, inhibitors and modulators. The drug-transporting isoform of P-gp is coded by a single human gene, ABCB1, and shares 80% homology with the murine drug-transporting isoforms, abcb1a and abcb1b, which share 92% homology with each other. Although these murine isoforms are highly similar, there are known affinity differences between the isoforms, and the localisation of the two isoforms in the brain is also disputed. Studies using mice genetically modified to be deficient in one or both isoforms of P-gp have also resulted in conflicting data. The contribution of the abcb1a isoform, which is considered to contribute most to the central nervous system (CNS)-protective role of P-gp, is investigated in the present study using CF-1-abcb1a(-/-) mice and the well-established brain/choroid plexus perfusion technique. Twenty-minute in situ brain/choroid plexus perfusions in CF-1-abcb1a(-/-) mice indicated the increased accumulation of [(3) H]cortisol, [(3) H]corticosterone and [(3) H]dexamethasone in most of the brain regions examined compared to CF-1-abcb1a(+/+) mice. Taken together with our earlier published studies in abcb1a/b(-/-) mice, these data strongly suggest that the in vivo CNS accumulation of glucocorticoids obtained using single knockout strains [e.g. abcb1a(-/-)] cannot be directly compared with those obtained in double knockout strains [e.g. abcb1a/b(-/-)].
Collapse
Affiliation(s)
- B L Mason
- Institute of Pharmaceutical Science, King's College London, London, UK.
| | | | | |
Collapse
|
33
|
Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 2012; 153:4111-9. [PMID: 22778219 PMCID: PMC3423627 DOI: 10.1210/en.2012-1435] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/19/2012] [Indexed: 12/30/2022]
Abstract
The blood-brain barrier (BBB) separates the central nervous system (CNS) from the peripheral tissues. However, this does not prevent hormones from entering the brain, but shifts the main control of entry to the BBB. In general, steroid hormones cross the BBB by transmembrane diffusion, a nonsaturable process resulting in brain levels that reflect blood levels, whereas thyroid hormones and many peptides and regulatory proteins cross using transporters, a saturable process resulting in brain levels that reflect blood levels and transporter characteristics. Protein binding, brain-to-blood transport, and pharmacokinetics modulate BBB penetration. Some hormones have the opposite effect within the CNS than they do in the periphery, suggesting that these hormones cross the BBB to act as their own counterregulators. The cells making up the BBB are also endocrine like, both responding to circulating substances and secreting substances into the circulation and CNS. By dividing a hormone's receptors into central and peripheral pools, the former of which may not be part of the hormone's negative feed back loop, the BBB fosters the development of variable hormone resistance syndromes, as exemplified by evidence that altered insulin action in the CNS can contribute to Alzheimer's disease. In summary, the BBB acts as a regulatory interface in an endocrine-like, humoral-based communication between the CNS and peripheral tissues.
Collapse
Affiliation(s)
- William A Banks
- Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
34
|
Schoenfelder Y, Hiemke C, Schmitt U. Behavioural consequences of p-glycoprotein deficiency in mice, with special focus on stress-related mechanisms. J Neuroendocrinol 2012; 24:809-17. [PMID: 22339976 DOI: 10.1111/j.1365-2826.2012.02278.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
P-glycoprotein (P-gp), an efflux transporter localised in the blood-brain barrier, limits the access of multiple xenobiotics to the central nervous system. Whether it is also implemented in the transport of the endogenous glucocorticoid corticosterone is a matter of debate. The P-gp knockout mouse model [abcb1a/b (-/-)] has been shown to differ in the functioning of the hypothalamic-pituitary adrenal (HPA) axis. In the present study, we investigated the behaviour of abcb1a/b (-/-) and wild-type mice with respect to stress-related tests and the effects of corticosterone. Behavioural activities were assessed in the open field (OF) test for 4 days, and in the forced swimming test (FST) and tail suspension test (TST) under naïve and stressed conditions. The FST was also conducted after exogenous corticosterone injection (0.25 and 2.5 mg/kg). Moreover, the elevated plus maze test and the RotaRod test (RotaRod Advanced; TSE Systems, Bad Homburg, Germany) were assessed. Brain corticosterone levels were determined by an immunoassay and expression of glucocorticoid receptors by western blot analysis. Abcb1a/1b (-/-) mice showed significantly decreased brain corticosterone levels and elevated glucocorticoid receptor expression. Behavioural analysis revealed a significantly decreased activity in the OF test on the first 2 days in abcb1a/1b (-/-) mice compared to wild-type mice, although the differences disappeared under habituation. Immobility time in the FST was significantly decreased in abcb1a/1b (-/-) mice under basal and under stressed conditions, whereas immobility in the TST was significantly elevated in these mice under all conditions. Injection of exogenous corticosterone resulted in significant reductions of immobility in the FST in abcb1a/1b (-/-) mice, whereas wild-type mice did not respond to the same doses. There were no differences in the elevated plus maze test and RotaRod test. The results obtained in the present study demonstrate that a P-gp deficiency has an impact on the stress-related behaviour, possibly as a result of differences in HPA axis-feedback regulation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/deficiency
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Adaptation, Psychological/physiology
- Animals
- Behavior, Animal/physiology
- Exploratory Behavior/physiology
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiology
- Male
- Mice
- Mice, Knockout
- Motor Activity/physiology
- Physical Conditioning, Animal/physiology
- Pituitary-Adrenal System/metabolism
- Pituitary-Adrenal System/physiology
- Restraint, Physical/psychology
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Swimming/physiology
Collapse
Affiliation(s)
- Y Schoenfelder
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | |
Collapse
|
35
|
O'Brien FE, Dinan TG, Griffin BT, Cryan JF. Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol 2012; 165:289-312. [PMID: 21718296 DOI: 10.1111/j.1476-5381.2011.01557.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The drug efflux pump P-glycoprotein (P-gp) plays an important role in the function of the blood-brain barrier by selectively extruding certain endogenous and exogenous molecules, thus limiting the ability of its substrates to reach the brain. Emerging evidence suggests that P-gp may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. Despite some inconsistency in the literature, clinical investigations of potential associations between functional single nucleotide polymorphisms in ABCB1, the gene which encodes P-gp, and antidepressant response have highlighted a potential link between P-gp function and treatment-resistant depression (TRD). Therefore, co-administration of P-gp inhibitors with antidepressants to patients who are refractory to antidepressant therapy may represent a novel therapeutic approach in the management of TRD. Furthermore, certain antidepressants inhibit P-gp in vitro, and it has been hypothesized that inhibition of P-gp by such antidepressant drugs may play a role in their therapeutic action. The present review summarizes the available in vitro, in vivo and clinical data pertaining to interactions between antidepressant drugs and P-gp, and discusses the potential relevance of these interactions in the treatment of depression.
Collapse
Affiliation(s)
- Fionn E O'Brien
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
36
|
Mason BL, Thomas SA, Lightman SL, Pariante CM. Desipramine treatment has minimal effects on the brain accumulation of glucocorticoids in P-gp-deficient and wild-type mice. Psychoneuroendocrinology 2011; 36:1351-60. [PMID: 21481537 PMCID: PMC3179986 DOI: 10.1016/j.psyneuen.2011.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/18/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis in patients with depression can be reduced by antidepressants, which are thought to improve endogenous glucocorticoid-mediated negative feedback. A proportion of peripherally released glucocorticoids need to enter brain tissue, protected by the blood-brain barrier (BBB), in order to achieve this negative feedback effect at the level of the central nervous systems (CNS). The multidrug resistance transporter P-glycoprotein (P-gp) has been shown to actively transport glucocorticoid hormones and has been implicated in the regulation of glucocorticoid access to the CNS. Using an in situ brain/choroid plexus perfusion method, we tested the hypothesis that the antidepressant desipramine increases glucocorticoid accumulation in the mouse brain by inhibiting P-gp, following either chronic treatment (8 days, 20 mg/kg/day, IP) or acute administration (20 min brain perfusion in the presence of either 0.9 μM or 10 μM desipramine). Contrary to our hypothesis, chronic treatment with desipramine did not affect the accumulation of [³H]dexamethasone in any sample compared to saline-treated mice. Acute desipramine had limited and variable effects on glucocorticoid accumulation in the CNS, with accumulation of [³H]dexamethasone increased in the cerebellum, accumulation of [³H]cortisol reduced in the frontal cortex, hypothalamus, and cerebellum, and accumulation of [³H]corticosterone (the endogenous glucocorticoid in rodents) not affected. Overall, under the conditions tested, these results do not support the hypothesis that treatment with desipramine can inhibit P-gp at the BBB and subsequently increase the accumulation of glucocorticoids in the brain.
Collapse
Affiliation(s)
- Brittany L Mason
- Institute of Pharmaceutical Science, King's College London, London, UK.
| | | | | | | |
Collapse
|
37
|
Lagaraine C, Skipor J, Szczepkowska A, Dufourny L, Thiery JC. Tight junction proteins vary in the choroid plexus of ewes according to photoperiod. Brain Res 2011; 1393:44-51. [PMID: 21529785 DOI: 10.1016/j.brainres.2011.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/07/2011] [Accepted: 04/02/2011] [Indexed: 10/18/2022]
Abstract
Sheep from temperate latitudes exhibit seasonal variations in many physiological functions such as reproduction, food intake, body weight, and pelage growth. Majority of seasonal changes are controlled by the annual photoperiodic cycle and melatonin secretion. For reproduction, the resulting key event is a modulation of the negative feedback of steroids on gonadotropin secretion. However, this seasonal effect could also depend on variable uptake of steroids by the brain. Seasonal regulation of food intake also involves numerous peripheral hormones, among which the protein hormone leptin informs the brain on the metabolic status of the animal. It has been shown previously that access of progesterone, estradiol and leptin to the cerebrospinal fluid (CSF) increases under long days. This physiological modulation of the passage of hormones to the brain could depend on regulation of the permeability of the blood-CSF barrier. This study therefore compared the tight junction proteins in the choroid plexus of ewes exposed to short days or long days. Levels of occludin, zonula occludens proteins (ZO) ZO-1 and ZO-2, afadin and cadherin were significantly higher during short days, but no statistical difference was observed for junctional adhesion molecule 1 (JAM-1), ZO-3 or claudins 1 and 5. These results are consistent with an increase in the blood-CSF barrier permeability during long days through a regulation of tight junctions and show that the permeability could depend upon physiological conditions such as photoperiodic status.
Collapse
Affiliation(s)
- Christine Lagaraine
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | | | | | | | | |
Collapse
|