1
|
Yi C, Kitamura Y, Maezawa S, Namekawa SH, Cairns BR. ZBTB16/PLZF regulates juvenile spermatogonial stem cell development through an extensive transcription factor poising network. Nat Struct Mol Biol 2025:10.1038/s41594-025-01509-5. [PMID: 40033150 DOI: 10.1038/s41594-025-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Spermatogonial stem cells balance self-renewal with differentiation and spermatogenesis to ensure continuous sperm production. Here, we identify roles for the transcription factor zinc finger and BTB domain-containing protein 16 (ZBTB16; also known as promyelocytic leukemia zinc finger (PLZF)) in juvenile mouse undifferentiated spermatogonia (uSPG) in promoting self-renewal and cell-cycle progression to maintain uSPG and transit-amplifying states. Notably, ZBTB16, Spalt-like transcription factor 4 (SALL4) and SRY-box transcription factor 3 (SOX3) colocalize at over 12,000 promoters regulating uSPG and meiosis. These regions largely share broad histone 3 methylation and acetylation (H3K4me3 and H3K27ac), DNA hypomethylation, RNA polymerase II (RNAPol2) and often CCCTC-binding factor (CTCF). Hi-C analyses show robust three-dimensional physical interactions among these cobound promoters, suggesting the existence of a transcription factor and higher-order active chromatin interaction network within uSPG that poises meiotic promoters for subsequent activation. Conversely, these factors do not notably occupy germline-specific promoters driving spermiogenesis, which instead lack promoter-promoter physical interactions and bear DNA hypermethylation, even when active. Overall, ZBTB16 promotes uSPG cell-cycle progression and colocalizes with SALL4, SOX3, CTCF and RNAPol2 to help establish an extensive and interactive chromatin poising network.
Collapse
Affiliation(s)
- Chongil Yi
- Howard Hughes Medical Institute, Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Tan K, Wilkinson MF. Developmental regulators moonlighting as transposons defense factors. Andrology 2023; 11:891-903. [PMID: 36895139 PMCID: PMC11162177 DOI: 10.1111/andr.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The germline perpetuates genetic information across generations. To maintain the integrity of the germline, transposable elements in the genome must be silenced, as these mobile elements would otherwise engender widespread mutations passed on to subsequent generations. There are several well-established mechanisms that are dedicated to providing defense against transposable elements, including DNA methylation, RNA interference, and the PIWI-interacting RNA pathway. OBJECTIVES Recently, several studies have provided evidence that transposon defense is not only provided by factors dedicated to this purpose but also factors with other roles, including in germline development. Many of these are transcription factors. Our objective is to summarize what is known about these "bi-functional" transcriptional regulators. MATERIALS AND METHODS Literature search. RESULTS AND CONCLUSION We summarize the evidence that six transcriptional regulators-GLIS3, MYBL1, RB1, RHOX10, SETDB1, and ZBTB16-are both developmental regulators and transposable element-defense factors. These factors act at different stages of germ cell development, including in pro-spermatogonia, spermatogonial stem cells, and spermatocytes. Collectively, the data suggest a model in which specific key transcriptional regulators have acquired multiple functions over evolutionary time to influence developmental decisions and safeguard transgenerational genetic information. It remains to be determined whether their developmental roles were primordial and their transposon defense roles were co-opted, or vice versa.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Feng Y, Zhong ZW, Xu Y, Zhang ZY, Ao LL, Yang Z, Wang YL, Jiang YH. Characterization of the transcription factor Sox3 regulating the gonadal development of pearlscale angelfish (Centropyge vrolikii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1193-1207. [PMID: 35963922 DOI: 10.1007/s10695-022-01110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As a member of the Sox gene family, Sox3 plays a vital role in gonadal development and gametogenesis. Nevertheless, the exact expression pattern of this gene in fish is still unknown. Here, we identified the Sox3 gene of Centropyge vrolikii, namely, Cv-Sox3. The Cv-Sox3 mRNA expression in the ovary and testis was detected by reverse transcription-polymerase chain reaction (RT-PCR) analysis, and the mRNA expression level of Cv-Sox3 in the ovary in the resting stage was significantly higher than that in other tissues. The phylogenetic tree and alignment of multiple sequences were constructed to analyze the evolutionary relationships of Cv-Sox3. Cv-Sox3 was relatively conserved in the evolution of teleost fish, indicating the importance and similarity of its function. The in situ hybridization results demonstrate that Cv-Sox3 was present in the follicle cells and cytoplasm of oocytes in the ovary of different stages, and the positive signals occurred in germ cells of the testis. After interfering with Cv-Sox3, the growth rate of ovarian cells in culture became slow, and the expression of ovary-bias-related genes Cyp19a and Foxl2 significantly increased. Meanwhile, the expression of testis-bias-related genes Dmrt1, Sox9, Cyp11a, Amh, and Sox8 significantly decreased. These results suggest that Cv-Sox3 gene might be expressed in the germ cells of male and female gonads during gonadal development. This study provides a precise expression pattern of Cv-Sox3 and demonstrates that Cv-Sox3 might play a significant role in the reproductive regulation of C. vrolikii. In this study, Sox3 of C. vrolikii (Cv-Sox3) was cloned to understand the expression pattern in the gonadal development, which is expressed in germ cells, involved in the process of gonadal development. The results demonstrated that Cv-Sox3 may play a significant role in the reproductive regulation of C. vrolikii.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Zhao-Wei Zhong
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Yan Xu
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Ze-Yu Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Lu-Lu Ao
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Zhen Yang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Yi-Lei Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China.
| | - Yong-Hua Jiang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
4
|
Liu Y, Bai S, Wang Y, Li X, Qu J, Han M, Zhai J, Li W, Liu J, Zhang Q. Intensive masculinization caused by chronic heat stress in juvenile Cynoglossus semilaevis: Growth performance, gonadal histology and gene responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113250. [PMID: 35121259 DOI: 10.1016/j.ecoenv.2022.113250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The sea temperature has been observed to chronically increase during the past decades, leaving unpredictable influences to the marine biological resources. Thus, it is of vital significance to study the biological responses of ocean inhabited organisms with the artificially stimulated heat stress environment. Cynoglossus semilaevis provides us with an ideal model to study the influence of chronic heat stress on the sexual differentiation in marine teleosts for its genetic sex determination (GSD) + environmental effected (EE) sex determination system. In this study, the comparative experiment was conducted employing heated seawater (HT group) and ambient seawater (CT group) to cultivate juvenile C. semilaevis respectively. Significant differences were exhibited in growth performance and a delayed germ cell development effect was found in pseudomales formed under chronic heat stress. Using transcriptome analysis, the transcription profile of 55 days post fertilization (dpf) and 100 dpf juveniles' gonads were studied. A total of 47 libraries were constructed with an average mapping rate of 94.63% after assembling. GO and KEGG enrichment were proceeded using DEGs screened out between (1) pseudomale gonads at 55 dpf and 100 dpf in HT and CT group (2) pseudomale and female gonads at 55 dpf and 100 dpf in HT and CT group. Terms and pathways involved in steroid stimulation, reproduction ability, germ cell proliferation et al. were shed light on. The expression pattern of 29 DEGs including amh, hsp90b1, pgr et al. were also provided to supplement the results of functional enrichment. Weighted gene co-expression networks analysis (WGCNA) was constructed and hspb8-like, histone H2A.V were exhibited to play vital roles in the heat-induced masculinization. Our findings facilitate the understanding for transcriptional variations in intensive masculinization cause by chronic heat stress of C. semilaevis and provide referable study of the influences on the teleosts in elevated sea temperature.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Shujun Bai
- Laboratory of Fisheries Oceanography, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Xiaoqi Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jieming Zhai
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
5
|
Qin S, Wang X, Wang J. Identification of an SRY-negative 46,XX infertility male with a heterozygous deletion downstream of SOX3 gene. Mol Cytogenet 2022; 15:2. [PMID: 35164824 PMCID: PMC8842887 DOI: 10.1186/s13039-022-00580-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A male individual with a karyotype of 46,XX is very rare. We explored the genetic aetiology of an infertility male with a kayrotype of 46,XX and SRY negative.
Methods
The peripheral blood sample was collected from the patient and subjected to a few genetic testing, including chromosomal karyotyping, azoospermia factor (AZF) deletion, short tandem repeat (STR) analysis for AMELX, AMELY and SRY, fluorescence in situ hybridization (FISH) with specific probes for CSP 18/CSP X/CSP Y/SRY, chromosomal microarray analysis (CMA) for genomic copy number variations(CNVs), whole-genome analysis(WGA) for genomic SNV&InDel mutation, and X chromosome inactivation (XCI) analysis.
Results
The patient had a karyotype of 46,XX. AZF analysis showed that he missed the AZF region (including a, b and c) and SRY gene. STR assay revealed he possessed the AMELX in the X chromosome, but he had no the AMELY and SRY in the Y chromosome. FISH analysis with CSP X/CSP Y/SRY showed only two X centromeric signals, but none Y chromosome and SRY. The above results of the karyotype, FISH and STR analysis did not suggest a Y chromosome chimerism existed in the patient's peripheral blood. The result of the CMA indicated a heterozygous deletion with an approximate size of 867 kb in Xq27.1 (hg19: chrX: 138,612,879–139,480,163 bp), located at 104 kb downstream of SOX3 gene, including F9, CXorf66, MCF2 and ATP11C. WGA also displayed the above deletion fragment but did not present known pathogenic or likely pathogenic SNV&InDel mutation responsible for sex determination and development. XCI assay showed that he had about 75% of the X chromosome inactivated.
Conclusions
Although the pathogenicity of 46,XX male patients with SRY negative remains unclear, SOX3 expression of the acquired function may be associated with partial testis differentiation of these patients. Therefore, the CNVs analysis of the SOX3 gene and its regulatory region should be performed routinely for these patients.
Collapse
|
6
|
Yan G, Tian F, Liu P, Sun J, Mao J, Han W, Mo R, Guo S, Yu Q. Sheng Jing Decoction Can Promote Spermatogenesis and Increase Sperm Motility of the Oligozoospermia Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3686494. [PMID: 34899947 PMCID: PMC8654543 DOI: 10.1155/2021/3686494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 01/23/2023]
Abstract
Sheng Jing Decoction (SJD), as a traditional Chinese medicine prescription, is mainly be used to treat male infertility. However, the pharmacological functions and molecular mechanisms of SJD are poorly understood. In this study, we investigated the functions of SJD on spermatogenesis and sperm motility and explored the potential mechanisms involved. Here, we demonstrated that high, medium, and low doses of SJD are effective in restoring the impairments of the whole body and testicular tissue by cyclophosphamide inducing and to rescue the damage of testicular tissue cells including Sertoli cells and germ cells. SJD can partly restore the decrease in sperm concentration, sperm vitality, sperm motility, and normal sperm morphology rate in oligozoospermic mouse models. Ki67 staining analyses confirm SJD can promote testicular tissue cell proliferation. Real-time RT-PCR analyses also reveal that SJD can upregulate the expression of proliferation-associated gene Lin28a and differentiation-associated genes Kit, Sohlh2, and Stra8. SJD can also reduce the impairment of mitochondrial membrane potential (MMP) and sperm plasma membrane integrity by cyclophosphamide inducing. Our results reveal that SJD is effective in improving both sperm quantity and quality by increasing the sperm concentration, sperm vitality, sperm motility, and normal sperm morphology rate. SJD can promote spermatogenesis by upregulating the expression of the proliferation-associated gene Lin28a and the differentiation-associated genes (Kit, Sohlh2, and Stra8). SJD can sustain MMP and sperm plasma membrane integrity to increase sperm motility.
Collapse
Affiliation(s)
- Guang Yan
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Peng Liu
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Jianming Sun
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Jianmin Mao
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Wenjun Han
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Ran Mo
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Shishuai Guo
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Quanyao Yu
- Department of Urology and Reproductive Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| |
Collapse
|
7
|
Identification of a novel Sox5 transcript in mouse testis. Gene Expr Patterns 2021; 41:119197. [PMID: 34171463 DOI: 10.1016/j.gep.2021.119197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022]
Abstract
The transcription factor SOX5 is present in two distinct isoforms in both human and mouse, L-SOX5 and S-SOX5 (long and short isoforms of SOX5). Here, we identified and characterized a novel transcript of Sox5 (S-Sox5 variant) in mouse testis. eCLIP-based amplification of cDNA ends were performed to identify the potential Sox5 mRNA variant. This novel transcript shares a high similarity with the previously reported S-Sox5 in nucleotide sequence, but with a unique stretch of 5'UTR and an additional exon 9. Semi-quantitative PCR analysis revealed both S-Sox5 variant and S-Sox5 express specifically in mouse testis. Both transcripts increase significantly in mouse testis at postnatal day 21, when round spermatids appear. We further made a series of truncated Sox5 constructs and tagged them with eGFP in HeLa cells. In vitro transfection assay identified the N-terminus and the DNA-binding HMG domain are required for the nuclear localization of SOX5. Our results provides a basis for the future study to investigate the biological function of SOX5 in spermatogenesis.
Collapse
|
8
|
McAninch D, Thomson EP, Thomas PQ. Genome-wide DNA-binding profile of SRY-box transcription factor 3 (SOX3) in mouse testes. Reprod Fertil Dev 2020; 32:1260-1270. [PMID: 33166488 DOI: 10.1071/rd20108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is the male version of gametogenesis, where germ cells are transformed into haploid spermatozoa through a tightly controlled series of mitosis, meiosis and differentiation. This process is reliant on precisely timed changes in gene expression controlled by several different hormonal and transcriptional mechanisms. One important transcription factor is SRY-box transcription factor 3 (SOX3), which is transiently expressed within the uncommitted spermatogonial stem cell population. Sox3-null mouse testes exhibit a block in spermatogenesis, leading to infertility or subfertility. However, the molecular role of SOX3 during spermatogonial differentiation remains poorly understood because the genomic regions targeted by this transcription factor have not been identified. In this study we used chromatin immunoprecipitation sequencing to identify and characterise the endogenous genome-wide binding profile of SOX3 in mouse testes at Postnatal Day 7. We show that neurogenin3 (Neurog3 or Ngn3) is directly targeted by SOX3 in spermatogonial stem cells via a novel testes-specific binding site. We also implicate SOX3, for the first time, in direct regulation of histone gene expression and demonstrate that this function is shared by both neural progenitors and testes, and with another important transcription factor required for spermatogenesis, namely promyelocytic leukaemia zinc-finger (PLZF). Together, these data provide new insights into the function of SOX3 in different stem cell contexts.
Collapse
Affiliation(s)
- Dale McAninch
- School of Biological Sciences and Robinson Research Institute, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Ella P Thomson
- School of Biological Sciences and Robinson Research Institute, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Paul Q Thomas
- School of Biological Sciences and Robinson Research Institute, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; and Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; and Precision Medicine Theme, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; and Corresponding author.
| |
Collapse
|
9
|
Ashrafizadeh M, Taeb S, Hushmandi K, Orouei S, Shahinozzaman M, Zabolian A, Moghadam ER, Raei M, Zarrabi A, Khan H, Najafi M. Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacol Res 2020; 161:105159. [PMID: 32818654 DOI: 10.1016/j.phrs.2020.105159] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors are potential targets in disease therapy, particularly in cancer. This is due to the fact that transcription factors regulate a variety of cellular events, and their modulation has opened a new window in cancer therapy. Sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are potential transcription factors that are involved in developmental processes such as embryogenesis. It has been reported that abnormal expression of SOX proteins is associated with development of different cancers, particularly ovarian cancer (OC). In the present review, our aim is to provide a mechanistic review of involvement of SOX members in OC. SOX members may suppress and/or promote aggressiveness and proliferation of OC cells. Clinical studies have also confirmed the potential of transcription factors as diagnostic and prognostic factors in OC. Notably, studies have demonstrated the relationship between SOX members and other molecular pathways such as ST6Ga1-I, PI3K, ERK and so on, leading to more complexity. Furthermore, SOX members can be affected by upstream mediators such as microRNAs, long non-coding RNAs, and so on. It is worth mentioning that the expression of each member of SOX proteins is corelated with different stages of OC. Furthermore, their expression determines the response of OC cells to chemotherapy. These topics are discussed in this review to shed some light on role of SOX transcription factors in OC.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Law NC, Oatley JM. Developmental underpinnings of spermatogonial stem cell establishment. Andrology 2020; 8:852-861. [PMID: 32356598 DOI: 10.1111/andr.12810] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The germline serves as a conduit for transmission of genetic and epigenetic information from one generation to the next. In males, spermatozoa are the final carriers of inheritance and their continual production is supported by a foundational population of spermatogonial stem cells (SSCs) that forms from prospermatogonial precursors during the early stages of neonatal development. In mammals, the timing for which SSCs are specified and the underlying mechanisms guiding this process remain to be completely understood. OBJECTIVES To propose an evolving concept for how the foundational SSC population is established. MATERIALS AND METHODS This review summarizes recent and historical findings from peer-reviewed publications made primarily with mouse models while incorporating limited studies from humans and livestock. RESULTS AND CONCLUSION Establishment of the SSC population appears to follow a biphasic pattern involving a period of fate programming followed by an establishment phase that culminates in formation of the SSC population. This model for establishment of the foundational SSC population from precursors is anticipated to extend across mammalian species and include humans and livestock, albeit on different timescales.
Collapse
Affiliation(s)
- Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
SOX3 promotes generation of committed spermatogonia in postnatal mouse testes. Sci Rep 2020; 10:6751. [PMID: 32317665 PMCID: PMC7174399 DOI: 10.1038/s41598-020-63290-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
SOX3 is a transcription factor expressed within the developing and adult nervous system where it mostly functions to help maintain neural precursors. Sox3 is also expressed in other locations, notably within the spermatogonial stem/progenitor cell population in postnatal testis. Independent studies have shown that Sox3 null mice exhibit a spermatogenic block as young adults, the mechanism of which remains poorly understood. Using a panel of spermatogonial cell marker genes, we demonstrate that Sox3 is expressed within the committed progenitor fraction of the undifferentiated spermatogonial pool. Additionally, we use a Sox3 null mouse model to define a potential role for this factor in progenitor cell function. We demonstrate that Sox3 expression is required for transition of undifferentiated cells from a GFRα1+ self-renewing state to the NGN3 + transit-amplifying compartment. Critically, using chromatin immunoprecipitation, we demonstrate that SOX3 binds to a highly conserved region in the Ngn3 promoter region in vivo, indicating that Ngn3 is a direct target of SOX3. Together these studies indicate that SOX3 functions as a pro-commitment factor in spermatogonial stem/progenitor cells.
Collapse
|
12
|
Law NC, Oatley MJ, Oatley JM. Developmental kinetics and transcriptome dynamics of stem cell specification in the spermatogenic lineage. Nat Commun 2019; 10:2787. [PMID: 31243281 PMCID: PMC6594958 DOI: 10.1038/s41467-019-10596-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Continuity, robustness, and regeneration of cell lineages relies on stem cell pools that are established during development. For the mammalian spermatogenic lineage, a foundational spermatogonial stem cell (SSC) pool arises from prospermatogonial precursors during neonatal life via mechanisms that remain undefined. Here, we mapped the kinetics of this process in vivo using a multi-transgenic reporter mouse model, in silico with single-cell RNA sequencing, and functionally with transplantation analyses to define the SSC trajectory from prospermatogonia. Outcomes revealed that a heterogeneous prospermatogonial population undergoes dynamic changes during late fetal and neonatal development. Differential transcriptome profiles predicted divergent developmental trajectories from fetal prospermatogonia to descendant postnatal spermatogonia. Furthermore, transplantation analyses demonstrated that a defined subset of fetal prospermatogonia is fated to function as SSCs. Collectively, these findings suggest that SSC fate is preprogrammed within a subset of fetal prospermatogonia prior to building of the foundational pool during early neonatal development. In neonatal testes, prospermatogonia generate both spermatogonia for the first wave of spermatogenesis and spermatogonial stem cells (SSCs) for maintenance of spermatogenesis in males. Here the authors characterize the development of mouse SSCs from prospermatogonia using single-cell RNA-seq and transplantation assays.
Collapse
Affiliation(s)
- Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
13
|
Lin Z, Tong MH. m 6A mRNA modification regulates mammalian spermatogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:403-411. [PMID: 30391644 DOI: 10.1016/j.bbagrm.2018.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Mammalian spermatogenesis is a highly specialized differentiation process involving precise regulatory mechanisms at the transcriptional, posttranscriptional, and translational levels. Emerging evidence has shown that N6-methyladenosine (m6A), an epitranscriptomic regulator of gene expression, can influence pre-mRNA splicing, mRNA export, turnover, and translation, which are controlled in the male germline to ensure coordinated gene expression. In this review, we summarize the typical features of m6A RNA modification on mRNA during male germline development, and highlight the function of writers, erasers, and readers of m6A during mouse spermatogenesis.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
14
|
Marjanovic Vicentic J, Drakulic D, Garcia I, Vukovic V, Aldaz P, Puskas N, Nikolic I, Tasic G, Raicevic S, Garros-Regulez L, Sampron N, Atkinson MJ, Anastasov N, Matheu A, Stevanovic M. SOX3 can promote the malignant behavior of glioblastoma cells. Cell Oncol (Dordr) 2018; 42:41-54. [PMID: 30209685 DOI: 10.1007/s13402-018-0405-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Glioblastoma is the most common and lethal adult brain tumor. Despite current therapeutic strategies, including surgery, radiation and chemotherapy, the median survival of glioblastoma patients is 15 months. The development of this tumor depends on a sub-population of glioblastoma stem cells governing tumor propagation and therapy resistance. SOX3 plays a role in both normal neural development and carcinogenesis. However, little is known about its role in glioblastoma. Thus, the aim of this work was to elucidate the role of SOX3 in glioblastoma. METHODS SOX3 expression was assessed using real-time quantitative PCR (RT-qPCR), Western blotting and immunohistochemistry. MTT, immunocytochemistry and Transwell assays were used to evaluate the effects of exogenous SOX3 overexpression on the viability, proliferation, migration and invasion of glioblastoma cells, respectively. The expression of Hedgehog signaling pathway components and autophagy markers was assessed using RT-qPCR and Western blot analyses, respectively. RESULTS Higher levels of SOX3 expression were detected in a subset of primary glioblastoma samples compared to those in non-tumoral brain tissues. Exogenous overexpression of this gene was found to increase the proliferation, viability, migration and invasion of glioblastoma cells. We also found that SOX3 up-regulation was accompanied by an enhanced activity of the Hedgehog signaling pathway and by suppression of autophagy in glioblastoma cells. Additionally, we found that SOX3 expression was elevated in patient-derived glioblastoma stem cells, as well as in oncospheres derived from glioblastoma cell lines, compared to their differentiated counterparts, implying that SOX3 expression is associated with the undifferentiated state of glioblastoma cells. CONCLUSION From our data we conclude that SOX3 can promote the malignant behavior of glioblastoma cells.
Collapse
Affiliation(s)
- Jelena Marjanovic Vicentic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Idoia Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Vladanka Vukovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Paula Aldaz
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Nela Puskas
- Institute of Histology and Embryology "Aleksandar Ð. Kostić", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Igor Nikolic
- Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Goran Tasic
- Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Savo Raicevic
- Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia
| | - Laura Garros-Regulez
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Nicolas Sampron
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,Neuro-oncology Tumor Board, Donostia Hospital, San Sebastian, Spain
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Radiation Biology, Technical University of Munich, Munich, Germany
| | - Natasa Anastasov
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,Neuro-oncology Tumor Board, Donostia Hospital, San Sebastian, Spain
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
15
|
Bai S, Fu K, Yin H, Cui Y, Yue Q, Li W, Cheng L, Tan H, Liu X, Guo Y, Zhang Y, Xie J, He W, Wang Y, Feng H, Xin C, Zhang J, Lin M, Shen B, Sun Z, Guo X, Zheng K, Ye L. Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development 2018; 145:dev.164855. [PMID: 29866902 DOI: 10.1242/dev.164855] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
Abstract
Transcription factors of the Sox protein family contain a DNA-binding HMG box and are key regulators of progenitor cell fate. Here, we report that expression of Sox30 is restricted to meiotic spermatocytes and postmeiotic haploids. Sox30 mutant males are sterile owing to spermiogenic arrest at the early round spermatid stage. Specifically, in the absence of Sox30, proacrosomic vesicles fail to form a single acrosomal organelle, and spermatids arrest at step 2-3. Although most Sox30 mutant spermatocytes progress through meiosis, accumulation of diplotene spermatocytes indicates a delayed or impaired transition from meiotic to postmeiotic stages. Transcriptome analysis of isolated stage-specific spermatogenic cells reveals that Sox30 controls a core postmeiotic gene expression program that initiates as early as the late meiotic cell stage. ChIP-seq analysis shows that Sox30 binds to specific DNA sequences in mouse testes, and its genomic occupancy correlates positively with expression of many postmeiotic genes including Tnp1, Hils1, Ccdc54 and Tsks These results define Sox30 as a crucial transcription factor that controls the transition from a late meiotic to a postmeiotic gene expression program and subsequent round spermatid development.
Collapse
Affiliation(s)
- Shun Bai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Huiqi Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Wenbo Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Le Cheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yingwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Wenxiu He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Hua Feng
- Omics Core of Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Changpeng Xin
- Omics Core of Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
16
|
Schafler ED, Thomas PA, Ha S, Wang Y, Bermudez-Hernandez K, Tang Z, Fenyö D, Vigodner M, Logan SK. UXT is required for spermatogenesis in mice. PLoS One 2018; 13:e0195747. [PMID: 29649254 PMCID: PMC5896988 DOI: 10.1371/journal.pone.0195747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/28/2018] [Indexed: 12/25/2022] Open
Abstract
Male mammals must simultaneously produce prodigious numbers of sperm and maintain an adequate reserve of stem cells to ensure continuous production of gametes throughout life. Failures in the mechanisms responsible for balancing germ cell differentiation and spermatogonial stem cell (SSC) self-renewal can result in infertility. We discovered a novel requirement for Ubiquitous Expressed Transcript (UXT) in spermatogenesis by developing the first knockout mouse model for this gene. Constitutive deletion of Uxt is embryonic lethal, while conditional knockout in the male germline results in a Sertoli cell-only phenotype during the first wave of spermatogenesis that does not recover in the adult. This phenotype begins to manifest between 6 and 7 days post-partum, just before meiotic entry. Gene expression analysis revealed that Uxt deletion downregulates the transcription of genes governing SSC self-renewal, differentiation, and meiosis, consistent with its previously defined role as a transcriptional co-factor. Our study has revealed the first in vivo function for UXT in the mammalian germline as a regulator of distinct transcriptional programs in SSCs and differentiating spermatogonia.
Collapse
Affiliation(s)
- Eric D. Schafler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Pathobiology and Translational Medicine Training Program, New York University School of Medicine, New York, NY, United States of America
| | - Phillip A. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
| | - Susan Ha
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Department of Urology, New York University School of Medicine, New York, NY, United States of America
| | - Yu Wang
- Department of Urology, New York University School of Medicine, New York, NY, United States of America
- Department of Microbiology, New York University School of Medicine, New York, NY, United States of America
| | - Keria Bermudez-Hernandez
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, United States of America
| | - Zuojian Tang
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, United States of America
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, United States of America
| | - Margarita Vigodner
- Department of Biology, Stern College, Yeshiva University, New York, NY, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Susan K. Logan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
- Department of Urology, New York University School of Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
17
|
Roumaud P, Haché J, Martin LJ. Expression profiles of Sox transcription factors within the postnatal rodent testes. Mol Cell Biochem 2018; 447:175-187. [PMID: 29383560 DOI: 10.1007/s11010-018-3302-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/25/2018] [Indexed: 12/22/2022]
Abstract
SRY-related box (Sox) transcription factors are conserved among vertebrate species. These proteins regulate multiple processes including sex determination and testis differentiation of the male embryo. Members of the Sox family have been identified in pre- and postnatal testis and are known to play an important role in sex determination (Sry, Sox9), male gonadal development, and fertility (Sox4, Sox8, Sox30). However, their expression profiles per cell types remain elusive. The objectives of this research were to characterize the expression profiles of Sox family members within adult testes using publically available datasets and to determine whether these findings are consistent with literature as well as immunofluorescence and in situ hybridization results. We have found that Sox4, Sox8, Sox9, and Sox12 are highly expressed in Sertoli cells, whereas Sox5, Sox6, and Sox30 were typically expressed in spermatocytes and spermatids. Spermatogonia were characterized by the expressions of Sox3, Sox4, Sox12, Sox13, and Sox18. Hence, these results suggest that Sox transcription factors may play different roles according to cell types of the adult mammalian testis.
Collapse
Affiliation(s)
- Pauline Roumaud
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Josée Haché
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
18
|
Schartl M, Schories S, Wakamatsu Y, Nagao Y, Hashimoto H, Bertin C, Mourot B, Schmidt C, Wilhelm D, Centanin L, Guiguen Y, Herpin A. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol 2018; 16:16. [PMID: 29378592 PMCID: PMC5789577 DOI: 10.1186/s12915-018-0485-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Background Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. Results We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Conclusions Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element. Electronic supplementary material The online version of this article (10.1186/s12915-018-0485-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital, 97080, Würzburg, Germany.,Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Susanne Schories
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Yuko Wakamatsu
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Yusuke Nagao
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hisashi Hashimoto
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Chloé Bertin
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Brigitte Mourot
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Cornelia Schmidt
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Dagmar Wilhelm
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lazaro Centanin
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Amaury Herpin
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany. .,INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France.
| |
Collapse
|
19
|
Su R, Cao S, Ma J, Liu Y, Liu X, Zheng J, Chen J, Liu L, Cai H, Li Z, Zhao L, He Q, Xue Y. Knockdown of SOX2OT inhibits the malignant biological behaviors of glioblastoma stem cells via up-regulating the expression of miR-194-5p and miR-122. Mol Cancer 2017; 16:171. [PMID: 29132362 PMCID: PMC5683208 DOI: 10.1186/s12943-017-0737-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/29/2017] [Indexed: 12/22/2022] Open
Abstract
Background Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of glioblastoma stem cells (GSCs). Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-SOX2OT on the biological behaviors of GSCs. Results Real-time PCR demonstrated that SOX2OT expression was up-regulated in glioma tissues and GSCs. Knockdown of SOX2OT inhibited the proliferation, migration and invasion of GSCs, and promoted GSCs apoptosis. MiR-194-5p and miR-122 were down-regulated in human glioma tissues and GSCs, and miR-194-5p and miR-122 respectively exerted tumor-suppressive functions by inhibiting the proliferation, migration and invasion of GSCs, while promoting GSCs apoptosis. Knockdown of SOX2OT significantly increased the expression of miR-194-5p and miR-122 in GSCs. Dual-luciferase reporter assay revealed that SOX2OT bound to both miR-194-5p and miR-122. SOX3 and TDGF-1 were up-regulated in human glioma tissues and GSCs. Knockdown of SOX3 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and decreased TDGF-1 mRNA and protein expression through direct binding to the TDGF-1 promoter. Over-expression of miR-194-5p and miR-122 decreased the mRNA and protein expression of SOX3 by targeting its 3’UTR. Knockdown of TDGF-1 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and inhibited the JAK/STAT signaling pathway. Furthermore, SOX3 knockdown also inhibited the SOX2OT expression through direct binding to the SOX2OT promoter and formed a positive feedback loop. Conclusion This study is the first to demonstrate that the SOX2OT-miR-194-5p/miR-122-SOX3-TDGF-1 pathway forms a positive feedback loop and regulates the biological behaviors of GSCs, and these findings might provide a novel strategy for glioma treatment. Electronic supplementary material The online version of this article (10.1186/s12943-017-0737-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Su
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shuo Cao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Lini Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qianru He
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
20
|
Mettl3-/Mettl14-mediated mRNA N 6-methyladenosine modulates murine spermatogenesis. Cell Res 2017; 27:1216-1230. [PMID: 28914256 DOI: 10.1038/cr.2017.117] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type A1 spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactivation of the m6A RNA methyltransferase Mettl3 or Mettl14 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Combined deletion of Mettl3 and Mettl14 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettl14 in advanced germ cells show normal spermatogenesis. The spermatids from double-mutant mice exhibit impaired translation of haploid-specific genes that are essential for spermiogenesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis.
Collapse
|
21
|
Sex-determining region Y-box3 (SOX3) functions as an oncogene in promoting epithelial ovarian cancer by targeting Src kinase. Tumour Biol 2016; 37:12263-12271. [DOI: 10.1007/s13277-016-5095-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/15/2016] [Indexed: 01/22/2023] Open
|
22
|
Chen Y, Ma L, Hogarth C, Wei G, Griswold MD, Tong MH. Retinoid signaling controls spermatogonial differentiation by regulating expression of replication-dependent core histone genes. Development 2016; 143:1502-1511. [PMID: 26965368 PMCID: PMC4986167 DOI: 10.1242/dev.135939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022]
Abstract
Retinoic acid (RA) signaling is crucial for spermatogonial differentiation, which is a key step for spermatogenesis. We explored the mechanisms underlying spermatogonial differentiation by targeting expression of a dominant-negative mutant of retinoic acid receptor α (RARα) specifically to the germ cells of transgenic mice to subvert the activity of endogenous receptors. Here we show that: (1) inhibition of retinoid signaling in germ cells completely blocked spermatogonial differentiation identical to vitamin A-deficient (VAD) mice; (2) the blockage of spermatogonial differentiation by impaired retinoid signaling resulted from an arrest of entry of the undifferentiated spermatogonia into S phase; and (3) retinoid signaling regulated spermatogonial differentiation through controlling expression of its direct target genes, including replication-dependent core histone genes. Taken together, our results demonstrate that the action of retinoid signaling on spermatogonial differentiation in vivo is direct through the spermatogonia itself, and provide the first evidence that this is mediated by regulation of expression of replication-dependent core histone genes.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Ma
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cathryn Hogarth
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Gang Wei
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Michael D Griswold
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
23
|
Rajakumar A, Senthilkumaran B. Sox3 binds to 11β-hydroxysteroid dehydrogenase gene promoter suggesting transcriptional interaction in catfish. J Steroid Biochem Mol Biol 2016; 158:90-103. [PMID: 26772480 DOI: 10.1016/j.jsbmb.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
In fishes, the expression of steroidogenic enzyme genes and their related transcription factors (TFs) are critical for the regulation of steroidogenesis and gonadal development. 11-KT is the potent androgen and hence, 11β-hsd, enzyme involved in 11-KT production is important. Regulation of 11β-hsd gene was never studied in any fishes. At first 11β-hsd was cloned and recombinant protein was tested for enzyme activity prior to expression and promoter motif analysis. Expression changes revealed stage- and sex-dependent increase in the ontogenic studies. Further, 11β-hsd expression was higher during spawning phase of reproductive cycle and was found to be gonadotropin inducible both in vivo and in vitro. ∼2kb of 5' upstream region of 11β-hsd, was cloned from catfish genomic DNA library and in silico promoter analysis revealed putative TF binding sites such as Sox3, Wt1, Pax2, Dmrt1 and Ad4BP/SF-1. Luciferase reporter assay using the sequential deletion constructs in human embryonic kidney and Chinese hamster ovary cells revealed considerable promoter activity of the constructs containing Sox3, but not with other motifs largely. Site-directed mutagenesis, Sox3 over expression, electrophoretic mobility shift and chromatin immunoprecipitation assays further substantiated the binding of Sox3 to its corresponding cis-acting element in the upstream promoter motif of 11β-hsd. This is the first report to show that Sox3 binds to the 11β-hsd gene promoter and transactivates to regulate male reproduction in a teleost.
Collapse
Affiliation(s)
- Anbazhagan Rajakumar
- Laboratory of Molecular Endocrinology and Reproductive Biology, Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Balasubramanian Senthilkumaran
- Laboratory of Molecular Endocrinology and Reproductive Biology, Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.
| |
Collapse
|
24
|
Hu YC, Namekawa SH. Functional significance of the sex chromosomes during spermatogenesis. Reproduction 2016; 149:R265-77. [PMID: 25948089 DOI: 10.1530/rep-14-0613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC1.Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC2.
Collapse
Affiliation(s)
- Yueh-Chiang Hu
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Satoshi H Namekawa
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
25
|
Busada JT, Geyer CB. The Role of Retinoic Acid (RA) in Spermatogonial Differentiation. Biol Reprod 2015; 94:10. [PMID: 26559678 PMCID: PMC4809555 DOI: 10.1095/biolreprod.115.135145] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/06/2015] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid (RA) directs the sequential, but distinct, programs of spermatogonial differentiation and meiotic differentiation that are both essential for the generation of functional spermatozoa. These processes are functionally and temporally decoupled, as they occur in distinct cell types that arise over a week apart, both in the neonatal and adult testis. However, our understanding is limited in terms of what cellular and molecular changes occur downstream of RA exposure that prepare differentiating spermatogonia for meiotic initiation. In this review, we describe the process of spermatogonial differentiation and summarize the current state of knowledge regarding RA signaling in spermatogonia.
Collapse
Affiliation(s)
- Jonathan T Busada
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
26
|
Sargent KM, Clopton DT, Lu N, Pohlmeier WE, Cupp AS. VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance. Cell Tissue Res 2015; 363:31-45. [PMID: 26553653 DOI: 10.1007/s00441-015-2297-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Abstract
Despite being well-known for regulating angiogenesis in both normal and tumorigenic environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in nature. Although studies have demonstrated the alternative splicing of VEGFA, including the divergent roles of the two isoform family types, many investigations do not differentiate between them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic isoforms appear to promote seminiferous cord formation and to form a gradient across which cells may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led to further investigation of the way that VEGFA elicits avascular functions within testes. Following treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one another to maintain SSC homeostasis in vivo.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Debra T Clopton
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Ningxia Lu
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - William E Pohlmeier
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
27
|
Cheah PS, Thomas PQ. SOX3 expression in the glial system of the developing and adult mouse cerebellum. SPRINGERPLUS 2015; 4:400. [PMID: 26261758 PMCID: PMC4527974 DOI: 10.1186/s40064-015-1194-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/29/2015] [Indexed: 11/17/2022]
Abstract
Background The cerebellum plays a vital role in equilibrium, motor control, and motor learning. The discrete neural and glial fates of cerebellar cells are determined by the molecular specifications (e.g. transcription factors) of neuroprogenitor cells that are influenced by local microenvironment signals. In this study, we evaluated the expression and function of Sox3, a single-exon gene located on the X chromosome, in the developing cerebellum. Result In the embryonic and early postnatal cerebellum, SOX3-positive-cells were detected in the ventricular zone, indicating that SOX3 expression is present in a subset of the cerebellar precursor cell population. In the young adult cerebellum, this expression was diminished in cerebellar cells, suggesting its limited role in cerebellar progenitors. SOX3-positive-cells were also found in the cerebellar mantle zone. Further immunohistochemistry analyses revealed that SOX3 was not expressed in Purkinje neurons. Using glial markers in the early postnatal cerebellum, we found that virtually all of the SOX3-positive-cells were glial cells, although not all glial cells were SOX3-positive-cells. We also determined the impact of transgenic expression using a loss-of-function (Sox3 null) model. We did not observe any developmental defects in the cerebellum of the Sox3 null mice. Conclusions Our results indicate that the SOX3 protein is not expressed in cerebellar neurons and is instead expressed exclusively in the cerebellar glial system in a subset of mature glial cells. Although the expression of Sox3 cerebellar glial development is lineage-restricted, it appears that the absence of Sox3 in the ventricular germinal epithelium and migrating glia does not affect cerebellar development, suggesting functional redundancy with other SoxB1 subgroup genes. Electronic supplementary material The online version of this article (doi:10.1186/s40064-015-1194-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine, Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Malaysia ; Neurobiology and Genetics Group, Genetics and Regenerative Medicine Research Center, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Malaysia
| | - Paul Q Thomas
- Discipline of Biochemistry, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
28
|
Li TF, Wu QY, Zhang C, Li WW, Zhou Q, Jiang WJ, Cui YX, Xia XY, Shi YC. 46,XX testicular disorder of sexual development with SRY-negative caused by some unidentified mechanisms: a case report and review of the literature. BMC Urol 2014; 14:104. [PMID: 25529318 PMCID: PMC4289540 DOI: 10.1186/1471-2490-14-104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/19/2014] [Indexed: 08/19/2023] Open
Abstract
Background 46,XX testicular disorder of sex development is a rare genetic syndrome, characterized by a complete or partial mismatch between genetic sex and phenotypic sex, which results in infertility because of the absence of the azoospermia factor region in the long arm of Y chromosome. Case presentation We report a case of a 14-year-old male with microorchidism and mild bilateral gynecomastia who referred to our hospital because of abnormal gender characteristics. The patient was treated for congenital scrotal type hypospadias at the age of 4 years. Semen analysis indicated azoospermia by centrifugation of ejaculate. Levels of follicle-stimulating hormone and luteinizing hormone were elevated, while that of testosterone was low and those of estradiol and prolactin were normal. The results of gonadal biopsy showed hyalinization of the seminiferous tubules, but there was no evidence of spermatogenic cells. Karyotype analysis of the patient confirmed 46,XX karyotype and fluorescent in situ hybridization analysis of the sex-determining region Y (SRY) gene was negative. Molecular analysis revealed that the SRY gene and the AZFa, AZFb and AZFc regions were absent. No mutation was detected in the coding region and exon/intron boundaries of the RSPO1, DAX1, SOX9, SOX3, SOX10, ROCK1, and DMRT genes, and no copy number variation in the whole genome sequence was found. Conclusion This study adds a new case of SRY-negative 46,XX testicular disorder of sex development and further verifies the view that the absence of major regions from the Y chromosome leads to an incomplete masculine phenotype, abnormal hormone levels and infertility. To date, the mechanisms for induction of testicular tissue in 46,XX SRY-negative patients remain unknown, although other genetic or environmental factors play a significant role in the regulation of sex determination and differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin-Yi Xia
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China.
| | | |
Collapse
|
29
|
Bachelard E, Raucci F, Montillet G, Pain B. Identification of side population cells in chicken embryonic gonads. Theriogenology 2014; 83:377-84. [PMID: 25447150 DOI: 10.1016/j.theriogenology.2014.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/23/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022]
Abstract
The side population (SP) phenotype, defined by the ability of a cell to efflux fluorescent dyes such as Hoechst, is common to several stem/progenitor cell types. In avian species, SP phenotype has been identified in pubertal and adult testes, but nothing is known about its expression during prenatal development of a male gonad. In this study, we characterized the Hoechst SP phenotype via the cytofluorimetric analysis of disaggregated testes on different days of chicken embryonic development. Male prenatal gonads contained a fraction of SP cells at each stage analyzed. At least two main SP fractions, named P3 and P4, were identified. The percentage of P3 fraction decreased as development proceeds, whereas P4 cell number was not affected by gonad growth. Functional inhibition of BCRP1 channel membrane using Verapamil and/or Ko143 showed that P3, but not P4 phenotype, was dependent on BCRP1 activity. Molecular analysis of both P3- and P4-sorted fractions revealed a differential RNA expression pattern, indicating that P3 cells mainly contained germinal stem cell markers, whereas P4 was preferentially composed of both Sertoli and Leydig cell progenitor markers. Finally, these findings provided evidence that the SP phenotype is a common feature of both germ and somatic cells detected in chicken developing testis.
Collapse
Affiliation(s)
- Elodie Bachelard
- INSERM, U846, Stem Cell and Brain Research Institute, Bron, France; INRA, USC1361, Bron, France; Université de Lyon, Lyon 1, UMR S 846, Lyon, France
| | - Franca Raucci
- INSERM, U846, Stem Cell and Brain Research Institute, Bron, France; INRA, USC1361, Bron, France; Université de Lyon, Lyon 1, UMR S 846, Lyon, France
| | - Guillaume Montillet
- INSERM, U846, Stem Cell and Brain Research Institute, Bron, France; INRA, USC1361, Bron, France; Université de Lyon, Lyon 1, UMR S 846, Lyon, France
| | - Bertrand Pain
- INSERM, U846, Stem Cell and Brain Research Institute, Bron, France; INRA, USC1361, Bron, France; Université de Lyon, Lyon 1, UMR S 846, Lyon, France.
| |
Collapse
|
30
|
Rajakumar A, Senthilkumaran B. Expression analysis of sox3 during testicular development, recrudescence, and after hCG induction in catfish, Clarias batrachus. Sex Dev 2014; 8:376-86. [PMID: 25428198 DOI: 10.1159/000368864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 11/19/2022] Open
Abstract
In teleosts, the expression of steroidogenic enzymes and related transcription factor genes occurs in a stage- and tissue-specific manner causing sexual development. The role of sox3, an evolutionary ancestor of SRY, has not been studied in detail. Therefore, the full-length cDNA of sox3 (1,197 kb) was cloned from catfish testis, and mRNA expression was analyzed during gonadal development, during the seasonal reproductive cycle, and after human chorionic gonadotropin (hCG) induction. Tissue distribution analysis showed that sox3 expression was higher in testis, ovary, and brain compared to other tissues analyzed. Developing and mature testis showed higher sox3 expression than ovary of corresponding stages, and more sox3 transcripts were found during the spawning phase of the seasonal reproductive cycle. Expression of sox3 was upregulated by hCG after in vivo and in vitro induction, suggesting that gonadotropins might stimulate it. In situ hybridization and immunohistochemistry showed the presence of sox3 mRNA and protein in somatic and interstitial cell layers of the testis. Sox3 could also be found in the zona radiata of developing and mature oocytes. Exposure of methyltestosterone (1 µg/l) and ethinylestradiol (1 µg/l) for 21 days during testicular development showed lower sox3 expression levels in the testis and brain, indicating a certain feedback intervention. These results suggest a possible role for Sox3 in the regulation of testicular development and function.
Collapse
Affiliation(s)
- Anbazhagan Rajakumar
- Laboratory of Molecular Endocrinology and Reproductive Biology, Department of Animal Biology, School of Life Sciences, Centre for Advanced Studies, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
31
|
Song HW, Wilkinson MF. Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 2014; 30:14-26. [PMID: 24560784 DOI: 10.1016/j.semcdb.2014.02.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Mechanistic insight into the pathology of polyalanine expansion disorders revealed by a mouse model for X linked hypopituitarism. PLoS Genet 2013; 9:e1003290. [PMID: 23505376 PMCID: PMC3591313 DOI: 10.1371/journal.pgen.1003290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/16/2012] [Indexed: 11/19/2022] Open
Abstract
Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 (Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele.
Collapse
|
33
|
Moalem S, Babul-Hirji R, Stavropolous DJ, Wherrett D, Bägli DJ, Thomas P, Chitayat D. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am J Med Genet A 2012; 158A:1759-64. [PMID: 22678921 DOI: 10.1002/ajmg.a.35390] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/01/2012] [Indexed: 11/07/2022]
Abstract
Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY.
Collapse
Affiliation(s)
- Sharon Moalem
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Transcriptome analysis reveals strain-specific and conserved stemness genes in Schmidtea mediterranea. PLoS One 2012; 7:e34447. [PMID: 22496805 PMCID: PMC3319590 DOI: 10.1371/journal.pone.0034447] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 03/05/2012] [Indexed: 02/06/2023] Open
Abstract
The planarian Schmidtea mediterranea is a powerful model organism for studying stem cell biology due to its extraordinary regenerative ability mediated by neoblasts, a population of adult somatic stem cells. Elucidation of the S. mediterranea transcriptome and the dynamics of transcript expression will increase our understanding of the gene regulatory programs that regulate stem cell function and differentiation. Here, we have used RNA-Seq to characterize the S. mediterranea transcriptome in sexual and asexual animals and in purified neoblast and differentiated cell populations. Our analysis identified many uncharacterized genes, transcripts, and alternatively spliced isoforms that are differentially expressed in a strain or cell type-specific manner. Transcriptome profiling of purified neoblasts and differentiated cells identified neoblast-enriched transcripts, many of which likely play important roles in regeneration and stem cell function. Strikingly, many of the neoblast-enriched genes are orthologs of genes whose expression is enriched in human embryonic stem cells, suggesting that a core set of genes that regulate stem cell function are conserved across metazoan species.
Collapse
|
35
|
Suzuki H, Ahn HW, Chu T, Bowden W, Gassei K, Orwig K, Rajkovic A. SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 2011; 361:301-12. [PMID: 22056784 DOI: 10.1016/j.ydbio.2011.10.027] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/12/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022]
Abstract
Spermatogonial self-renewal and differentiation are essential for male fertility and reproduction. We discovered that germ cell specific genes Sohlh1 and Sohlh2, encode basic helix-loop-helix (bHLH) transcriptional regulators that are essential in spermatogonial differentiation. Sohlh1 and Sohlh2 individual mouse knockouts show remarkably similar phenotypes. Here we show that SOHLH1 and SOHLH2 proteins are co-expressed in the entire spermatogonial population except in the GFRA1(+) spermatogonia, which includes spermatogonial stem cells (SSCs). SOHLH1 and SOHLH2 are expressed in both KIT negative and KIT positive spermatogonia, and overlap Ngn3/EGFP and SOX3 expression. SOHLH1 and SOHLH2 heterodimerize with each other in vivo, as well as homodimerize. The Sohlh1/Sohlh2 double mutant phenocopies single mutants, i.e., spermatogonia continue to proliferate but do not differentiate properly. Further analysis revealed that GFRA1(+) population was increased, while meiosis commenced prematurely in both single and double knockouts. Sohlh1 and Sohlh2 double deficiency has a synergistic effect on gene expression patterns as compared to the single knockouts. SOHLH proteins affect spermatogonial development by directly regulating Gfra1, Sox3 and Kit gene expression. SOHLH1 and SOHLH2 suppress genes involved in SSC maintenance, and induce genes important for spermatogonial differentiation.
Collapse
Affiliation(s)
- Hitomi Suzuki
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|