1
|
Estaras M, Martinez R, Garcia A, Ortiz-Placin C, Iovanna JL, Santofimia-Castaño P, Gonzalez A. Melatonin modulates metabolic adaptation of pancreatic stellate cells subjected to hypoxia. Biochem Pharmacol 2022; 202:115118. [PMID: 35671789 DOI: 10.1016/j.bcp.2022.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Pancreatic stellate cells (PSCs), the main cell type responsible for the development of fibrosis in pancreatic cancer, proliferate actively under hypoxia. Melatonin has received attention as a potential antifibrotic agent due to its anti-proliferative actions on PSCs. In this work, we investigated the activation of the PI3K/Akt/mTOR pathway and the metabolic adaptations that PSCs undergo under hypoxic conditions, as well as the probable modulation by melatonin. Incubation of cells under hypoxia induced an increase in cell proliferation, and in the expression of alpha-smooth muscle actin and of collagen type 1. In addition, an increase in the phosphorylation of Akt was observed, whereas a decrease in the phosphorylation of PTEN and GSK-3b was noted. The phosphorylation of mTOR and its substrate p70 S6K was decreased under hypoxia. Treatment of PSCs with melatonin under hypoxia diminished cell proliferation, the levels of alpha-smooth muscle actin and of collagen type 1, the phosphorylation of Akt and increased phosphorylation of mTOR. Mitochondrial activity decreased in PSCs under hypoxia. A glycolytic shift was observed. Melatonin further decreased mitochondrial activity. Under hypoxia, no increase in autophagic flux was noted. However, melatonin treatment induced autophagy activation. Nevertheless, inhibition of this process did not induce detectable changes in the viability of cells treated with melatonin. We conclude that PSCs undergo metabolic adaptation under hypoxia that might help them survive and that pharmacological concentrations of melatonin modulate cell responses to hypoxia. Our results contribute to the knowledge of the mechanisms by which melatonin could modulate fibrosis within the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España
| | - Remigio Martinez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, España
| | - Alfredo Garcia
- Departamento de Producción Animal, CICYTEX-La Orden, Guadajira, Badajoz, España
| | - Candido Ortiz-Placin
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Antonio Gonzalez
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España.
| |
Collapse
|
2
|
Ramalingam M, Jeong HS, Hwang J, Cho HH, Kim BC, Kim E, Jang S. Autophagy Signaling by Neural-Induced Human Adipose Tissue-Derived Stem Cell-Conditioned Medium during Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 23:4193. [PMID: 35457010 PMCID: PMC9031864 DOI: 10.3390/ijms23084193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Rotenone (ROT) inhibits mitochondrial complex I, leading to reactive oxygen species formation, which causes neurodegeneration and alpha-synuclein (α-syn) aggregation and, consequently, Parkinson's disease. We previously found that a neurogenic differentiated human adipose tissue-derived stem cell-conditioned medium (NI-hADSC-CM) was protective against ROT-induced toxicity in SH-SY5Y cells. In the present study, ROT significantly decreased the phospho (p)-mTORC1/total (t)-mTOR, p-mTORC2/t-mTOR, and p-/t-ULK1 ratios and the ATG13 level by increasing the DEPTOR level and p-/t-AMPK ratio. Moreover, ROT increased the p-/t-Akt ratio and glycogen synthase kinase-3β (GSK3β) activity by decreasing the p-/t-ERK1/2 ratios and beclin-1 level. ROT also promoted the lipidation of LC3B-I to LC3B-II by inducing autophagosome formation in Triton X-100-soluble and -insoluble cell lysate fractions. Additionally, the levels of ATG3, 5, 7, and 12 were decreased, along with those of lysosomal LAMP1, LAMP2, and TFEB, leading to lysosomal dysfunction. However, NI-hADSC-CM treatment increased the p-mTORC1, p-mTORC2, p-ULK1, p-Akt, p-ERK1/2, ATG13, and beclin-1 levels and decreased the p-AMPK level and GSK3β activity in response to ROT-induced toxicity. Additionally, NI-hADSC-CM restored the LC3B-I level, increased the p62 level, and normalized the ATG and lysosomal protein amounts to control levels. Autophagy array revealed that the secreted proteins in NI-hADSC-CM could be crucial in the neuroprotection. Taken together, our results showed that the neuroprotective effects of NI-hADSC-CM on the autophagy signaling pathways could alleviate the aggregation of α-syn in Parkinson's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Eungpil Kim
- Jeonnam Biopharmaceutical Research Center, Hwasun 58141, Korea;
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| |
Collapse
|
3
|
Giansanti P, Strating JRPM, Defourny KAY, Cesonyte I, Bottino AMS, Post H, Viktorova EG, Ho VQT, Langereis MA, Belov GA, Nolte-'t Hoen ENM, Heck AJR, van Kuppeveld FJM. Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection. Nat Commun 2020; 11:4332. [PMID: 32859902 PMCID: PMC7455705 DOI: 10.1038/s41467-020-18168-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
The group of enteroviruses contains many important pathogens for humans, including poliovirus, coxsackievirus, rhinovirus, as well as newly emerging global health threats such as EV-A71 and EV-D68. Here, we describe an unbiased, system-wide and time-resolved analysis of the proteome and phosphoproteome of human cells infected with coxsackievirus B3. Of the ~3,200 proteins quantified throughout the time course, a large amount (~25%) shows a significant change, with the majority being downregulated. We find ~85% of the detected phosphosites to be significantly regulated, implying that most changes occur at the post-translational level. Kinase-motif analysis reveals temporal activation patterns of certain protein kinases, with several CDKs/MAPKs immediately active upon the infection, and basophilic kinases, ATM, and ATR engaging later. Through bioinformatics analysis and dedicated experiments, we identify mTORC1 signalling as a major regulation network during enterovirus infection. We demonstrate that inhibition of mTORC1 activates TFEB, which increases expression of lysosomal and autophagosomal genes, and that TFEB activation facilitates the release of virions in extracellular vesicles via secretory autophagy. Our study provides a rich framework for a system-level understanding of enterovirus-induced perturbations at the protein and signalling pathway levels, forming a base for the development of pharmacological inhibitors to treat enterovirus infections. Here, Giansanti et al. perform a system-wide and time-resolved characterization of the changes in the host cell proteome and phosphoproteome of cells infected with the enterovirus coxsackievirus B3 during a full round of replication and identify mTORC1 signalling as a major regulation network during virus infection.
Collapse
Affiliation(s)
- Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Technical University, Munich, Germany
| | - Jeroen R P M Strating
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.,Viroclinics Biosciences, Rotterdam, The Netherlands
| | - Kyra A Y Defourny
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Ieva Cesonyte
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Alexia M S Bottino
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ekaterina G Viktorova
- Department of Veterinary Medicine, University of Maryland and VA-MD College of Veterinary Medicine, College Park, MD, 20742, USA
| | - Vien Quang Tri Ho
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.,Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martijn A Langereis
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.,MSD Animal Health, Boxmeer, The Netherlands
| | - George A Belov
- Department of Veterinary Medicine, University of Maryland and VA-MD College of Veterinary Medicine, College Park, MD, 20742, USA
| | - Esther N M Nolte-'t Hoen
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. .,Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Frank J M van Kuppeveld
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Cunningham DL, Sarhan AR, Creese AJ, Larkins KPB, Zhao H, Ferguson HR, Brookes K, Marusiak AA, Cooper HJ, Heath JK. Differential responses to kinase inhibition in FGFR2-addicted triple negative breast cancer cells: a quantitative phosphoproteomics study. Sci Rep 2020; 10:7950. [PMID: 32409632 PMCID: PMC7224374 DOI: 10.1038/s41598-020-64534-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Fibroblast Growth Factor (FGF) dependent signalling is frequently activated in cancer by a variety of different mechanisms. However, the downstream signal transduction pathways involved are poorly characterised. Here a quantitative differential phosphoproteomics approach, SILAC, is applied to identify FGF-regulated phosphorylation events in two triple- negative breast tumour cell lines, MFM223 and SUM52, that exhibit amplified expression of FGF receptor 2 (FGFR2) and are dependent on continued FGFR2 signalling for cell viability. Comparative Gene Ontology proteome analysis revealed that SUM52 cells were enriched in proteins associated with cell metabolism and MFM223 cells enriched in proteins associated with cell adhesion and migration. FGFR2 inhibition by SU5402 impacts a significant fraction of the observed phosphoproteome of these cells. This study expands the known landscape of FGF signalling and identifies many new targets for functional investigation. FGF signalling pathways are found to be flexible in architecture as both shared, and divergent, responses to inhibition of FGFR2 kinase activity in the canonical RAF/MAPK/ERK/RSK and PI3K/AKT/PDK/mTOR/S6K pathways are identified. Inhibition of phosphorylation-dependent negative-feedback pathways is observed, defining mechanisms of intrinsic resistance to FGFR2 inhibition. These findings have implications for the therapeutic application of FGFR inhibitors as they identify both common and divergent responses in cells harbouring the same genetic lesion and pathways of drug resistance.
Collapse
Affiliation(s)
- Debbie L Cunningham
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Adil R Sarhan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah, 6400, Iraq
| | - Andrew J Creese
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Immunocore, 101 Park Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Hongyan Zhao
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Harriet R Ferguson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Katie Brookes
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anna A Marusiak
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 02-097, Warszawa, Poland
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - John K Heath
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
Antonia RJ, Castillo J, Herring LE, Serafin DS, Liu P, Graves LM, Baldwin AS, Hagan RS. TBK1 Limits mTORC1 by Promoting Phosphorylation of Raptor Ser877. Sci Rep 2019; 9:13470. [PMID: 31530866 PMCID: PMC6748941 DOI: 10.1038/s41598-019-49707-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 08/29/2019] [Indexed: 01/02/2023] Open
Abstract
While best known for its role in the innate immune system, the TANK-binding kinase 1 (TBK1) is now known to play a role in modulating cellular growth and autophagy. One of the major ways that TBK1 accomplishes this task is by modulating the mechanistic Target of Rapamycin (mTOR), a master regulator that when activated promotes cell growth and inhibits autophagy. However, whether TBK1 promotes or inhibits mTOR activity is highly cell type and context dependent. To further understand the mechanism whereby TBK1 regulates mTOR, we tested the hypothesis that TBK1 phosphorylates a key component of the mTOR complex 1 (mTORC1), Raptor. Using kinase assays coupled with mass spectrometry, we mapped the position of the TBK1 dependent phosphorylation sites on Raptor in vitro. Among the sites identified in vitro, we found that TBK1 promotes Raptor Ser877 phosphorylation in cells both basally and in response to pathogen-associated molecules known to induce TBK1 activity. The levels of Raptor Ser877 phosphorylation were inversely correlated with the levels of mTOR activity. Expression of a mutant Raptor that could not be phosphorylated at Ser877 led to an increase in mTORC1 activity. We conclude that TBK1 limits mTORC1 activity by promoting Raptor Ser877 phosphorylation.
Collapse
Affiliation(s)
- Ricardo J Antonia
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, California, USA
| | - Johnny Castillo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - D Stephen Serafin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Lee M Graves
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, Mouneimne G, Langlais PR. Insulin Induces Microtubule Stabilization and Regulates the Microtubule Plus-end Tracking Protein Network in Adipocytes. Mol Cell Proteomics 2019; 18:1363-1381. [PMID: 31018989 PMCID: PMC6601206 DOI: 10.1074/mcp.ra119.001450] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.
Collapse
Affiliation(s)
- Sara S Parker
- From the ‡Department of Cellular & Molecular Medicine
| | - James Krantz
- §Department of Medicine, Division of Endocrinology
| | | | | | - Chris G Deer
- University of Arizona Research Computing, University of Arizona, Tucson, Arizona 85721
| | - Nam Y Lee
- ¶Department of Pharmacology,; ‖Department of Chemistry & Biochemistry, University of Arizona College of Medicine, Tucson, Arizona 85721
| | | | | |
Collapse
|
7
|
Chen KS, Fustino NJ, Shukla AA, Stroup EK, Budhipramono A, Ateek C, Stuart SH, Yamaguchi K, Kapur P, Frazier AL, Lum L, Looijenga LHJ, Laetsch TW, Rakheja D, Amatruda JF. EGF Receptor and mTORC1 Are Novel Therapeutic Targets in Nonseminomatous Germ Cell Tumors. Mol Cancer Ther 2018; 17:1079-1089. [PMID: 29483210 DOI: 10.1158/1535-7163.mct-17-0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/13/2017] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
Germ cell tumors (GCT) are malignant tumors that arise from pluripotent embryonic germ cells and occur in children and young adults. GCTs are treated with cisplatin-based regimens which, while overall effective, fail to cure all patients and cause significant adverse late effects. The seminoma and nonseminoma forms of GCT exhibit distinct differentiation states, clinical behavior, and response to treatment; however, the molecular mechanisms of GCT differentiation are not fully understood. We tested whether the activity of the mTORC1 and MAPK pathways were differentially active in the two classes of GCT. Here we show that nonseminomatous germ cell tumors (NSGCT, including embryonal carcinoma, yolk sac tumor, and choriocarcinoma) from both children and adults display activation of the mTORC1 pathway, while seminomas do not. In seminomas, high levels of REDD1 may negatively regulate mTORC1 activity. In NSGCTs, on the other hand, EGF and FGF2 ligands can stimulate mTORC1 and MAPK signaling, and members of the EGF and FGF receptor families are more highly expressed. Finally, proliferation of NSGCT cells in vitro and in vivo is significantly inhibited by combined treatment with the clinically available agents erlotinib and rapamycin, which target EGFR and mTORC1 signaling, respectively. These results provide an understanding of the signaling network that drives GCT growth and a rationale for therapeutic targeting of GCTs with agents that antagonize the EGFR and mTORC1 pathways. Mol Cancer Ther; 17(5); 1079-89. ©2018 AACR.
Collapse
Affiliation(s)
- Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas
| | - Nicholas J Fustino
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas
| | - Abhay A Shukla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emily K Stroup
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Albert Budhipramono
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christina Ateek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarai H Stuart
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kiyoshi Yamaguchi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas.,Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - A Lindsay Frazier
- Department of Pediatric Oncology, Children's Hospital Dana-Farber Cancer Care, Boston, Massachusetts
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Theodore W Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas
| | - Dinesh Rakheja
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James F Amatruda
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas. .,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
8
|
DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses. Blood 2013; 122:1833-42. [PMID: 23881914 DOI: 10.1182/blood-2013-03-488486] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.
Collapse
|
9
|
Pham K, Langlais P, Zhang X, Chao A, Zingsheim M, Yi Z. Insulin-stimulated phosphorylation of protein phosphatase 1 regulatory subunit 12B revealed by HPLC-ESI-MS/MS. Proteome Sci 2012; 10:52. [PMID: 22937917 PMCID: PMC3546068 DOI: 10.1186/1477-5956-10-52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/31/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. Protein phosphatase 1 regulatory subunit 12B (PPP1R12B), one of the regulatory subunits of PP1, can bind to PP1cδ, one of the catalytic subunits of PP1, and modulate the specificity and activity of PP1cδ against its substrates. Phosphorylation of PPP1R12B on threonine 646 by Rho kinase inhibits the activity of the PP1c-PPP1R12B complex. However, it is not currently known whether PPP1R12B phosphorylation at threonine 646 and other sites is regulated by insulin. We set out to identify phosphorylation sites in PPP1R12B and to quantify the effect of insulin on PPP1R12B phosphorylation by using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. RESULTS 14 PPP1R12B phosphorylation sites were identified, 7 of which were previously unreported. Potential kinases were predicted for these sites. Furthermore, relative quantification of PPP1R12B phosphorylation sites for basal and insulin-treated samples was obtained by using peak area-based label-free mass spectrometry of fragment ions. The results indicate that insulin stimulates the phosphorylation of PPP1R12B significantly at serine 29 (3.02 ± 0.94 fold), serine 504 (11.67 ± 3.33 fold), and serine 645/threonine 646 (2.34 ± 0.58 fold). CONCLUSION PPP1R12B was identified as a phosphatase subunit that undergoes insulin-stimulated phosphorylation, suggesting that PPP1R12B might play a role in insulin signaling. This study also identified novel targets for future investigation of the regulation of PPP1R12B not only in insulin signaling in cell models, animal models, and in humans, but also in other signaling pathways.
Collapse
Affiliation(s)
- Kimberly Pham
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Paul Langlais
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Xiangmin Zhang
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI, USA
| | - Alex Chao
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Morgan Zingsheim
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Zhengping Yi
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI, USA
| |
Collapse
|
10
|
Chao A, Zhang X, Ma D, Langlais P, Luo M, Mandarino LJ, Zingsheim M, Pham K, Dillon J, Yi Z. Site-specific phosphorylation of protein phosphatase 1 regulatory subunit 12A stimulated or suppressed by insulin. J Proteomics 2012; 75:3342-50. [PMID: 22516431 DOI: 10.1016/j.jprot.2012.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/08/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. So far, only few specific phosphorylation sites of PP1 regulatory subunit 12A (PPP1R12A) have been shown to regulate the PP1 activity. The effect of insulin on PPP1R12A phosphorylation is largely unknown. Utilizing a mass spectrometry based phosphorylation identification and quantification approach, we identified 21 PPP1R12A phosphorylation sites (7 novel sites, including Ser20, Thr22, Thr453, Ser478, Thr671, Ser678, and Ser680) and quantified 16 of them under basal and insulin stimulated conditions in hamster ovary cells overexpressing the insulin receptor (CHO/IR), an insulin sensitive cell model. Insulin stimulated the phosphorylation of PPP1R12A significantly at Ser477, Ser478, Ser507, Ser668, and Ser695, while simultaneously suppressing the phosphorylation of PPP1R12A at Ser509 (more than 2-fold increase or decrease compared to basal). Our data demonstrate that PPP1R12A undergoes insulin stimulated/suppressed phosphorylation, suggesting that PPP1R12A phosphorylation may play a role in insulin signal transduction. The novel PPP1R12A phosphorylation sites as well as the new insulin-responsive phosphorylation sites of PPP1R12A in CHO/IR cells provide targets for investigation of the regulation of PPP1R12A and the PPP1R12A-PP1cδ complex in insulin action and other signaling pathways in other cell models, animal models, and humans.
Collapse
Affiliation(s)
- Alex Chao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Langlais P, Yi Z, Finlayson J, Luo M, Mapes R, De Filippis E, Meyer C, Plummer E, Tongchinsub P, Mattern M, Mandarino LJ. Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 2011; 54:2878-89. [PMID: 21850561 PMCID: PMC3882165 DOI: 10.1007/s00125-011-2271-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/08/2011] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS IRS-1 serine phosphorylation is often elevated in insulin resistance models, but confirmation in vivo in humans is lacking. We therefore analysed IRS-1 phosphorylation in human muscle in vivo. METHODS We used HPLC-electrospray ionisation (ESI)-MS/MS to quantify IRS-1 phosphorylation basally and after insulin infusion in vastus lateralis muscle from lean healthy, obese non-diabetic and type 2 diabetic volunteers. RESULTS Basal Ser323 phosphorylation was increased in type 2 diabetic patients (2.1 ± 0.43, p ≤ 0.05, fold change vs lean controls). Thr495 phosphorylation was decreased in type 2 diabetic patients (p ≤ 0.05). Insulin increased IRS-1 phosphorylation at Ser527 (1.4 ± 0.17, p ≤ 0.01, fold change, 60 min after insulin infusion vs basal) and Ser531 (1.3 ± 0.16, p ≤ 0.01, fold change, 60 min after insulin infusion vs basal) in the lean controls and suppressed phosphorylation at Ser348 (0.56 ± 0.11, p ≤ 0.01, fold change, 240 min after insulin infusion vs basal), Thr446 (0.64 ± 0.16, p ≤ 0.05, fold change, 60 min after insulin infusion vs basal), Ser1100 (0.77 ± 0.22, p ≤ 0.05, fold change, 240 min after insulin infusion vs basal) and Ser1142 (1.3 ± 0.2, p ≤ 0.05, fold change, 60 min after insulin infusion vs basal). CONCLUSIONS/INTERPRETATION We conclude that, unlike some aspects of insulin signalling, the ability of insulin to increase or suppress certain IRS-1 phosphorylation sites is intact in insulin resistance. However, some IRS-1 phosphorylation sites do not respond to insulin, whereas other Ser/Thr phosphorylation sites are either increased or decreased in insulin resistance.
Collapse
Affiliation(s)
- P. Langlais
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - Z. Yi
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, USA
| | - J. Finlayson
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State wwUniversity, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - M. Luo
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - R. Mapes
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - E. De Filippis
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - C. Meyer
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA; Division of Endocrinology, Carl T. Hayden VA Medical Center, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - E. Plummer
- Division of Endocrinology, Carl T. Hayden VA Medical Center, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - P. Tongchinsub
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - M. Mattern
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA
| | - L. J. Mandarino
- Center for Metabolic and Vascular Biology, School of Life Science, Arizona State University, ISTB1, 550 E. Orange St, Tempe, AZ 85287, USA; Department of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| |
Collapse
|
12
|
Liu D, Huang Y, Zeng J, Chen B, Huang N, Guo N, Liu L, Xu H, Mo X, Li W. Down-regulation of JAK1 by RNA interference inhibits growth of the lung cancer cell line A549 and interferes with the PI3K/mTOR pathway. J Cancer Res Clin Oncol 2011; 137:1629-40. [PMID: 21861134 DOI: 10.1007/s00432-011-1037-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/04/2011] [Indexed: 02/05/2023]
Abstract
PURPOSE The mammalian Janus kinase (JAK) family plays a critical role in cytokine/growth factor signalling pathways and is associated with human cancers. In this study, we explored the role of JAK1 in the non-small cell lung cancer (NSCLC) cell line A549 and its molecular crosstalk with the phosphatidyl inositol-3-kinase (PI3K)/mammalian target of the rapamycin (mTOR) pathway. METHODS One hundred and two NSCLC and 50 normal lung specimens were collected after surgical resection. JAK1 expression and phosphorylation were determined via immunohistochemical staining (IHC) assay. A stable knockdown of JAK1 was performed in A549 cells by RNA interference. Stable cell proliferation, cell cycle, apoptosis, and invasion were characterised in vitro. Tumourigenicity was analysed in vivo. The NSCLC xenograft protein expression of PI3K/mTOR pathway molecules was determined by Western blot assay. RESULTS JAK1 expression was higher in NSCLC tissues than in normal lung tissues (P < 0.01). JAK1 knockdown in A549 cells significantly inhibited cell proliferation and invasion while promoting cell arrest at G0/G1 phase (all P < 0.05). The xenograft model showed that JAK1 suppression inhibited tumour growth compared with normal control (P < 0.05). Moreover, JAK1 knockdown inhibited mTOR or P70 ribosomal protein S6 kinase (P70S6K) phosphorylation, but increased glycogen synthase kinase-3α (GSK-3α) and B-cell lymphoma-extra large (Bcl-xl) phosphorylation. Total protein expression and Akt1/2 phosphorylated status remained unchanged. CONCLUSION Our study suggests that JAK1 expression and phosphorylation is abnormal in NSCLC tissues. The knockdown of JAK1 significantly inhibits tumourigenicity of the A549 cell line and demonstrates that crosstalk between the JAK1 and PI3K/mTOR pathways is involved.
Collapse
Affiliation(s)
- Dan Liu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.
Collapse
Affiliation(s)
- Bing Su
- Department of Immunobiology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|