1
|
Zhao M, Zhao Y, Liu J, Chen H, Zhao R. Glucocorticoid receptor-targeting antagomirs alleviates AFB1-induced hepatotoxicity in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117935. [PMID: 39999627 DOI: 10.1016/j.ecoenv.2025.117935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Aflatoxin B1 (AFB1) exhibits hepatotoxic properties in both humans and animals. Contradictory findings regarding corticosterone suggest that it may either aggravate AFB1 toxicity or reduce its Lethal Dose 50 % (LD50), potentially through the role of the glucocorticoid receptor (GR). Additionally, microRNAs (miRNAs) are known to modulate the toxic effects of AFB1. Nevertheless, whether the modulation of GR-targeting miRNAs can alleviate AFB1-induced hepatotoxicity has not been thoroughly investigated. This study examined the expression of GR and its associated microRNAs in AFB1-induced hepatotoxicity in mice, using GR-targeting antagomirs to mitigate AFB1 toxicity. AFB1 exposure elicited liver inflammation and oxidative stress in mice, while also reducing detoxification capacity. Notably, a decrease in GR protein expression was observed in liver tissue and hepatocytes. Additionally, miR141-3p, miR200a-3p, miR384-5p, miR183-5p, miR181a-5p, and miR181b-5p were upregulated and identified as regulators of GR expression. AFB1 induced cytotoxicity in AML12 cells, as evidenced by decreased GR protein levels and increased expression of miR141-3p, miR200a-3p, and miR495-3p. Inhibition of miR141/200a/495-3p reduced AFB1-induced cytotoxicity in AML12 cells. Furthermore, GR-targeting antagomirs (antagomir141/200a/495-3p) alleviated AFB1-induced hepatotoxicity in mice. This study highlights potential therapeutic targets for AFB1-induced liver diseases and offers new insights into strategies to mitigate the harmful effects of aflatoxin exposure.
Collapse
Affiliation(s)
- Mindie Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| | - Jie Liu
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| | - Huimin Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Thakore P, Karki S, Hrdlicka HC, Garcia-Munoz J, Pereira RC, Delany AM. Decreasing miR-433-3p Activity in the Osteoblast Lineage Blunts Glucocorticoid-mediated Bone Loss. Endocrinology 2025; 166:bqaf008. [PMID: 39820728 PMCID: PMC11791524 DOI: 10.1210/endocr/bqaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
Glucocorticoid excess causes bone loss due to decreased bone formation and increased bone resorption; miR-433-3p is a microRNA (miRNA) that negatively regulates bone formation in male mice by targeting Runx2 as well as RNAs involved in Wnt, protein kinase A, and endogenous glucocorticoid signaling. To examine the impact of miR-433-3p on glucocorticoid-mediated bone loss, transgenic mice expressing a miR-433-3p tough decoy inhibitor in the osteoblast lineage were administered prednisolone via slow-release pellets. Bone loss was greater in control mice treated with prednisolone compared with miR-433-3p tough decoy mice due to higher osteoclast activity in the controls. In whole femurs, Rankl was significantly higher in prednisolone-treated controls compared with miR-433-3p tough decoy mice. Surprisingly, negative regulators of Wnt signaling Sost and Dkk1 were higher in miR-433-3p tough decoy mice and were unaffected by prednisolone. Luciferase- 3'-untranslated region reporter assays demonstrated that Sost is a novel miR-433-3p target, whereas Dkk1 is a previously validated miR-433-3p target. miR-433-3p levels are lower in matrix-synthesizing osteoblasts than in more osteocytic cells; thus the impact of miR-433-3p on the osteoblast lineage may be dependent on cell context: it is a negative regulator in matrix-depositing osteoblasts by targeting RNAs important for differentiation and function but a positive regulator in osteocytes, due to its ability to target prominently expressed negative regulators of Wnt signaling, Sost and Dkk1. The mechanisms by which miR-433-3p indirectly regulates glucocorticoid-mediated osteoclastogenesis remain unknown. However, we speculate that this regulation may be mediated by miR-433-3p activity in osteocytes, which play an important role in controlling osteoclastogenesis.
Collapse
Affiliation(s)
- Prachi Thakore
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - John Garcia-Munoz
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Renata C Pereira
- Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
3
|
Moustafa HAM, Elsakka EGE, Abulsoud AI, Elshaer SS, Rashad AA, El-Dakroury WA, Sallam AAM, Rizk NI, Zaki MB, Gomaa RM, Elesawy AE, Mohammed OA, Abdel Mageed SS, Eleragi AMS, ElBoghdady JA, El-Fayoumi SH, Abdel-Reheim MA, Doghish AS. The miRNA Landscape in Crohn's disease: Implications for novel therapeutic approaches and interactions with Existing therapies. Exp Cell Res 2024; 442:114234. [PMID: 39233267 DOI: 10.1016/j.yexcr.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
MicroRNAs (miRNAs), which are non-coding RNAs consisting of 18-24 nucleotides, play a crucial role in the regulatory pathways of inflammatory diseases. Several recent investigations have examined the potential role of miRNAs in forming Crohn's disease (CD). It has been suggested that miRNAs serve as diagnostics for both fibrosis and inflammation in CD due to their involvement in the mechanisms of CD aggravation and fibrogenesis. More information on CD pathophysiology could be obtained by identifying the miRNAs concerned with CD and their target genes. These findings have prompted several in vitro and in vivo investigations into the putative function of miRNAs in CD treatment. Although there are still many unanswered questions, the growing body of evidence has brought miRNA-based therapy one step closer to clinical practice. This extensive narrative study offers a concise summary of the most current advancements in CD. We go over what is known about the diagnostic and therapeutic benefits of miRNA mimicry and inhibition so far, and we see what additional miRNA family targets could be useful for treating CD-related inflammation and fibrosis.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Al-Aliaa M Sallam
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Ahmed E Elesawy
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaimaa H El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Ahmed S Doghish
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
4
|
Alberca CD, Georgieff EI, Berardino BG, Ferroni NM, Fesser EA, Cantarelli VI, Ponzio MF, Cánepa ET, Chertoff M. Perinatal protein malnutrition alters maternal behavior and leads to maladaptive stress response, neurodevelopmental delay and disruption on DNA methylation machinery in female mice offspring. Horm Behav 2024; 164:105603. [PMID: 39029339 DOI: 10.1016/j.yhbeh.2024.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Deficiencies in maternal nutrition have long-term consequences affecting brain development of the progeny and its behavior. In the present work, female mice were exposed to a normal-protein or a low-protein diet during gestation and lactation. We analyzed behavioral and molecular consequences of malnutrition in dams and how it affects female offspring at weaning. We have observed that a low-protein diet during pregnancy and lactation leads to anxiety-like behavior and anhedonia in dams. Protein malnutrition during the perinatal period delays physical and neurological development of female pups. Glucocorticoid levels increased in the plasma of malnourished female offspring but not in dams when compared to the control group. Interestingly, the expression of glucocorticoid receptor (GR) was reduced in hippocampus and amygdala on both malnourished dams and female pups. In addition, malnourished pups exhibited a significant increase in the expression of Dnmt3b, Gadd45b, and Fkbp5 and a reduction in Bdnf VI variant mRNA in hippocampus. In contrast, a reduction on Dnmt3b has been observed on the amygdala of weaned mice. No changes have been observed on global methylation levels (5-methylcytosine) in hippocampal genomic DNA neither in dams nor female offspring. In conclusion, deregulated behaviors observed in malnourished dams might be mediated by a low expression of GR in brain regions associated with emotive behaviors. Additionally, low-protein diet differentially deregulates the expression of genes involved in DNA methylation/demethylation machinery in female offspring but not in dams, providing an insight into regional- and age-specific mechanisms due to protein malnutrition.
Collapse
Affiliation(s)
- Carolina D Alberca
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Erika I Georgieff
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadina M Ferroni
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Estefanía A Fesser
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica I Cantarelli
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Marina F Ponzio
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, e Instituto de Investigaciones en Ciencias de la Salud (INICSA; CONICET-UNC), Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Eduardo T Cánepa
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela Chertoff
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Azhar S, Shen WJ, Hu Z, Kraemer FB. MicroRNA regulation of adrenal glucocorticoid and androgen biosynthesis. VITAMINS AND HORMONES 2023; 124:1-37. [PMID: 38408797 DOI: 10.1016/bs.vh.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Steroid hormones are derived from a common precursor molecule, cholesterol, and regulate a wide range of physiologic function including reproduction, salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function, and various metabolic processes. Among the steroids synthesized by the adrenal and gonadal tissues, adrenal mineralocorticoids, and glucocorticoids are essential for life. The process of steroidogenesis is regulated at multiple levels largely by transcriptional, posttranscriptional, translational, and posttranslational regulation of the steroidogenic enzymes (i.e., cytochrome P450s and hydroxysteroid dehydrogenases), cellular compartmentalization of the steroidogenic enzymes, and cholesterol processing and transport proteins. In recent years, small noncoding RNAs, termed microRNAs (miRNAs) have been recognized as major post-transcriptional regulators of gene expression with essential roles in numerous biological processes and disease pathologies. Although their role in the regulation of steroidogenesis is still emerging, several recent studies have contributed significantly to our understanding of the role miRNAs play in the regulation of the steroidogenic process. This chapter focuses on the recent developments in miRNA regulation of adrenal glucocorticoid and androgen production in humans and rodents.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States.
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
6
|
Milara J, Morell A, Roger I, Montero P, Cortijo J. Mechanisms underlying corticosteroid resistance in patients with asthma: a review of current knowledge. Expert Rev Respir Med 2023; 17:701-715. [PMID: 37658478 DOI: 10.1080/17476348.2023.2255124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Corticosteroids are the most cost-effective anti-inflammatory drugs available for the treatment of asthma. Despite their effectiveness, several asthmatic patients have corticosteroid resistance or insensitivity and exhibit a poor response. Corticosteroid insensitivity implies a poor prognosis due to challenges in finding alternative therapeutic options for asthma. AREAS COVERED In this review, we describe asthma phenotypes and endotypes, as well as their differential responsiveness to corticosteroids. In addition, we describe the mechanism of action of corticosteroids underlying their regulation of the expression of glucocorticoid receptors (GRs) and their anti-inflammatory effects. Furthermore, we summarize the mechanistic evidence underlying corticosteroid-insensitive asthma, which is mainly related to changes in GR gene expression, structure, and post-transcriptional modifications. Finally, various pharmacological strategies designed to reverse corticosteroid insensitivity are discussed. EXPERT OPINION Corticosteroid insensitivity is influenced by the asthma phenotype, endotype, and severity, and serves as an indication for biological therapy. The molecular mechanisms underlying corticosteroid-insensitive asthma have been used to develop targeted therapeutic strategies. However, the lack of clinical trials prevents the clinical application of these treatments.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Anselm Morell
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
7
|
Huang H, Wang W. Molecular mechanisms of glucocorticoid resistance. Eur J Clin Invest 2023; 53:e13901. [PMID: 36346177 DOI: 10.1111/eci.13901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND As a powerful anti-inflammatory, immunosuppressive, and antiproliferative drug, glucocorticoid (GC) plays an important role in the treatment of various diseases. However, some patients may experience glucocorticoid resistance (GCR) in clinical, and its molecular mechanism have not been determined. METHODS The authors performed a review of the literature on GCR focusing on mutations in the NR3C1 gene and impaired glucocorticoid receptor (GR) signalling, using METSTR (2000 through May 2022) to identify original articles and reviews on this topic. The search terms included 'glucocorticoid resistance/insensitive', 'steroid resistance/insensitive', 'NR3C1', and 'glucocorticoid receptor'. RESULTS Primary GCR is mainly caused by NR3C1 gene mutation, and 31 NR3C1 gene mutations have been reported so far. Secondary GCR is caused by impaired GC signalling pathways, including decreased expression of GR, impaired nuclear translocation of GR, and impaired binding of GR to GC and GR to target genes. However, the current research is more on the expression level of GR, and there are relatively few studies on other mechanisms. In addition, methods for improving GC sensitivity are rarely reported. CONCLUSION The molecular mechanisms of GCR are complex and may differ in different diseases or different patients. In future studies, when exploring the mechanism of GCR, methods to improve GC sensitivity should also be investigated.
Collapse
Affiliation(s)
- Huanming Huang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Wenqing Wang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Vetrivel S, Zhang R, Engel M, Oßwald A, Watts D, Chen A, Wielockx B, Sbiera S, Reincke M, Riester A. Characterization of Adrenal miRNA-Based Dysregulations in Cushing's Syndrome. Int J Mol Sci 2022; 23:ijms23147676. [PMID: 35887024 PMCID: PMC9320303 DOI: 10.3390/ijms23147676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 02/05/2023] Open
Abstract
MiRNAs are important epigenetic players with tissue- and disease-specific effects. In this study, our aim was to investigate the putative differential expression of miRNAs in adrenal tissues from different forms of Cushing’s syndrome (CS). For this, miRNA-based next-generation sequencing was performed in adrenal tissues taken from patients with ACTH-independent cortisol-producing adrenocortical adenomas (CPA), from patients with ACTH-dependent pituitary Cushing’s disease (CD) after bilateral adrenalectomy, and from control subjects. A confirmatory QPCR was also performed in adrenals from patients with other CS subtypes, such as primary bilateral macronodular hyperplasia and ectopic CS. Sequencing revealed significant differences in the miRNA profiles of CD and CPA. QPCR revealed the upregulated expression of miR-1247-5p in CPA and PBMAH (log2 fold change > 2.5, p < 0.05). MiR-379-5p was found to be upregulated in PBMAH and CD (log2 fold change > 1.8, p < 0.05). Analyses of miR-1247-5p and miR-379-5p expression in the adrenals of mice which had been exposed to short-term ACTH stimulation showed no influence on the adrenal miRNA expression profiles. For miRNA-specific target prediction, RNA-seq data from the adrenals of CPA, PBMAH, and control samples were analyzed with different bioinformatic platforms. The analyses revealed that both miR-1247-5p and miR-379-5p target specific genes in the WNT signaling pathway. In conclusion, this study identified distinct adrenal miRNAs as being associated with CS subtypes.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Ru Zhang
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Mareen Engel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; (M.E.); (A.C.)
| | - Andrea Oßwald
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Deepika Watts
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (D.W.); (B.W.)
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; (M.E.); (A.C.)
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (D.W.); (B.W.)
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
- Correspondence: ; Tel.: +49-89-440052111
| |
Collapse
|
9
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|
10
|
Garcia J, Smith SS, Karki S, Drissi H, Hrdlicka HH, Youngstrom DW, Delany AM. miR-433-3p suppresses bone formation and mRNAs critical for osteoblast function in mice. J Bone Miner Res 2021; 36:1808-1822. [PMID: 34004029 DOI: 10.1002/jbmr.4339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of osteoblastic commitment and differentiation. miR-433-3p was previously shown to target Runt-related transcription factor 2 (Runx2) and to be repressed by bone morphogenetic protein (BMP) signaling. Here, we show that miR-433-3p is progressively decreased during osteoblastic differentiation of primary mouse bone marrow stromal cells in vitro, and we confirm its negative regulation of this process. Although repressors of osteoblastic differentiation often promote adipogenesis, inhibition of miR-433-3p did not affect adipocyte differentiation in vitro. Multiple pathways regulate osteogenesis. Using luciferase-3' untranslated region (UTR) reporter assays, five novel miR-433-3p targets involved in parathyroid hormone (PTH), mitogen-activated protein kinase (MAPK), Wnt, and glucocorticoid signaling pathways were validated. We show that Creb1 is a miR-433-3p target, and this transcription factor mediates key signaling downstream of PTH receptor activation. We also show that miR-433-3p targets hydroxysteroid 11-β dehydrogenase 1 (Hsd11b1), the enzyme that locally converts inactive glucocorticoids to their active form. miR-433-3p dampens glucocorticoid signaling, and targeting of Hsd11b1 could contribute to this phenomenon. Moreover, miR-433-3p targets R-spondin 3 (Rspo3), a leucine-rich repeat-containing G-protein coupled receptor (LGR) ligand that enhances Wnt signaling. Notably, Wnt canonical signaling is also blunted by miR-433-3p activity. In vivo, expression of a miR-433-3p inhibitor or tough decoy in the osteoblastic lineage increased trabecular bone volume. Mice expressing the miR-433-3p tough decoy displayed increased bone formation without alterations in osteoblast or osteoclast numbers or surface, indicating that miR-433-3p decreases osteoblast activity. Overall, we showed that miR-433-3p is a negative regulator of bone formation in vivo, targeting key bone-anabolic pathways including those involved in PTH signaling, Wnt, and endogenous glucocorticoids. Local delivery of miR-433-3p inhibitor could present a strategy for the management of bone loss disorders and bone defect repair. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- John Garcia
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Spenser S Smith
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University and Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Henry H Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Daniel W Youngstrom
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
11
|
CPEB3-dowregulated Nr3c1 mRNA translation confers resilience to developing posttraumatic stress disorder-like behavior in fear-conditioned mice. Neuropsychopharmacology 2021; 46:1669-1679. [PMID: 33941859 PMCID: PMC8280193 DOI: 10.1038/s41386-021-01017-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
Susceptibility or resilience to posttraumatic stress disorder (PTSD) depends on one's ability to appropriately adjust synaptic plasticity for coping with the traumatic experience. Activity-regulated mRNA translation synthesizes plasticity-related proteins to support long-term synaptic changes and memory. Hence, cytoplasmic polyadenylation element-binding protein 3-knockout (CPEB3-KO) mice, showing dysregulated translation-associated synaptic rigidity, may be susceptible to PTSD-like behavior. Here, using a context-dependent auditory fear conditioning and extinction paradigm, we found that CPEB3-KO mice exhibited traumatic intensity-dependent PTSD-like fear memory. A genome-wide screen of CPEB3-bound transcripts revealed that Nr3c1, encoding glucocorticoid receptor (GR), was translationally suppressed by CPEB3. Thus, CPEB3-KO neurons with elevated GR expression exhibited increased corticosterone-induced calcium influx and decreased mRNA and protein levels of brain-derived neurotrophic factor (Bdnf). Moreover, the reduced expression of BDNF was associated with increased GR level during fear extinction in CPEB3-KO hippocampi. Intracerebroventricular delivery of BDNF before extinction training mitigated spontaneous fear intrusion in CPEB3-KO mice during extinction recall. Analysis of two GEO datasets revealed decreased transcriptomic expression of CPEB3 but not NR3C1 in peripheral blood mononuclear cells of humans with PTSD. Collectively, this study reveals that CPEB3, as a potential PTSD-risk gene, downregulates Nr3c1 translation to maintain proper GR-BDNF signaling for fear extinction.
Collapse
|
12
|
Lu L, Huang J, Deng X, Sun X, Dong J. Application of glucocorticoids in patients with novel coronavirus infection: From bench to bedside. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s257590002030009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) have potential anti-inflammatory and immunosuppressive effects. There is plenty of controversy about the application of glucocorticoids in the treatment of coronavirus disease 2019 (COVID-19). This paper briefly summarizes the mechanism of glucocorticoids and their receptors and clinical applications in COVID-19. Through reviewing the current literature, our aim is to have a deeper understanding of the mechanism of GCs and their clinical applications, so as to find possible ways to enhance their efficacy and reduce drug resistance or side effects.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
13
|
Meng Z, Zhang H, Li L, Wang K. Clinical significance of miR-142-3p in oral lichen planus and its regulatory role in keratinocyte proliferation. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:441-447. [PMID: 34366268 DOI: 10.1016/j.oooo.2021.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Accumulating microRNAs (miRNAs) have been identified as aberrantly expressed in patients with oral lichen planus (OLP). This study aimed to investigate the role and underlying mechanism of miR-142-3p in OLP. STUDY DESIGN Fifty-six patients with OLP and 44 control participants without OLP were recruited, and real-time quantitative reverse transcription polymerase chain reaction was used for the measurement of miR-142-3p. A receiver operating characteristic (ROC) was counted to assess the diagnostic value. Cell Counting Kit‑8 was used to assess cell proliferation. The luciferase reporter assay was performed to confirm the target gene. RESULTS Compared with the control group, an elevated expression of miR-142-3p was detected in the serum, saliva, and tissues samples from patients with OLP. ROC curve analysis suggested that miR-142-3p could distinguish patients with OLP from those in the control group, and the expression of miR-142-3p was closely associated with the disease severity. Downregulation of miR-142-3p inhibited keratinocyte proliferation. Glucocorticoid receptor α (GRα) was a target gene of miR-142-3p. CONCLUSIONS MiR-142-3p might be a candidate diagnostic biomarker for OLP. Downregulation of miR-142-3p inhibits keratinocyte proliferation, and GRα might be involved in its regulatory role.
Collapse
Affiliation(s)
- Zhichao Meng
- Department of Dermatology, Guangrao People's Hospital, Shandong, China
| | - Hong Zhang
- Department of Dermatology, Linyi City Lanshan District People's Hospital, Linyi, Shandong, China
| | - Leilei Li
- Department of Stomatology, Dongying People's Hospital, Shandong, China
| | - Kuimei Wang
- Department of Dermatology, Mengyin People's Hospital, Shandong, China.
| |
Collapse
|
14
|
Vetrivel S, Zhang R, Engel M, Altieri B, Braun L, Osswald A, Bidlingmaier M, Fassnacht M, Beuschlein F, Reincke M, Chen A, Sbiera S, Riester A. Circulating microRNA Expression in Cushing's Syndrome. Front Endocrinol (Lausanne) 2021; 12:620012. [PMID: 33692756 PMCID: PMC7937959 DOI: 10.3389/fendo.2021.620012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Context Cushing's syndrome (CS) is a rare disease of endogenous hypercortisolism associated with high morbidity and mortality. Diagnosis and classification of CS is still challenging. Objective Circulating microRNAs (miRNAs) are minimally invasive diagnostic markers. Our aim was to characterize the circulating miRNA profiles of CS patients and to identify distinct profiles between the two major CS subtypes. Methods We included three groups of patients from the German Cushing's registry: ACTH-independent CS (Cortisol-Producing-Adenoma; CPA), ACTH-dependent pituitary CS (Cushing's Disease; CD), and patients in whom CS had been ruled out (controls). Profiling of miRNAs was performed by next-generation-sequencing (NGS) in serum samples of 15 CS patients (each before and after curative surgery) and 10 controls. Significant miRNAs were first validated by qPCR in the discovery cohort and then in an independent validation cohort of 20 CS patients and 11 controls. Results NGS identified 411 circulating miRNAs. Differential expression of 14 miRNAs were found in the pre- and postoperative groups. qPCR in the discovery cohort validated 5 of the significant miRNAs from the preoperative group analyses. Only, miR-182-5p was found to be significantly upregulated in the CD group of the validation cohort. Comparing all CS samples as a group with the controls did not reveal any significant differences in expression. Outcome In conclusion, our study identified miR-182-5p as a possible biomarker for CD, which has to be validated in a prospective cohort. Furthermore, our results suggest that presence or absence of ACTH might be at least as relevant for miRNA expression as hypercortisolism itself.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Ru Zhang
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Mareen Engel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Leah Braun
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Andrea Osswald
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Bidlingmaier
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Felix Beuschlein
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zürich, Switzerland
| | - Martin Reincke
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Anna Riester
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
15
|
MicroRNA-124a contributes to glucocorticoid resistance in acute-on-chronic liver failure by negatively regulating glucocorticoid receptor alpha. Ann Hepatol 2021; 19:214-221. [PMID: 31628069 DOI: 10.1016/j.aohep.2019.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Glucocorticoid resistance frequently associating with inflammation, may severely compromise the therapeutic effect of glucocorticoids. In this study, we aimed to investigate the regulation of glucocorticoid resistance by microRNA-124a (miR-124a) in patients with acute-on-chronic liver failure (ACLF). MATERIALS AND METHODS The miR-124a levels and glucocorticoid receptor alpha (GRα) expressions in peripheral blood monocytes and liver tissues were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), flow cytometry, and western blot analyses in the following four groups: healthy controls (HC), moderate chronic hepatitis B (CHB) patients, hepatitis B virus-related ACLF (HBV-ACLF) patients, and alcohol-induced ACLF (A-ACLF) patients. In addition, the serum miR-124a levels and multiple biochemical indices were determined. The effects of miR-124a transfection on GRα expression were assayed by qRT-PCR and western blotting in U937 and HepG2 cells stimulated with lipopolysaccharide (LPS). RESULTS Compared with the CHB patients and HC, the miR-124a levels in HBV-ACLF and A-ACLF patients increased, while GRα expressions decreased. No significant differences in miR-124a levels and GRα expressions were observed between the HBV-ACLF and A-ACLF patients. For the ACLF patients, miR-124a level was negatively related to GRα expression in monocytes and positively correlated with the inflammatory factors such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). In U937 and HepG2 cells, LPS stimulated miR-124a levels but inhibited GRα expressions; meanwhile, increasing miR-124a levels reduced GRα expressions, and inhibiting miR-124a levels increased GRα expressions. CONCLUSIONS This study provides evidence that GRα expression was negatively regulated by miR-124a, which primarily determines the extent of acquired glucocorticoid resistance in ACLF.
Collapse
|
16
|
The Role of DNMT and HDACs in the Fetal Programming of Hypertension by Glucocorticoids. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5751768. [PMID: 32318239 PMCID: PMC7149440 DOI: 10.1155/2020/5751768] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/07/2020] [Indexed: 12/13/2022]
Abstract
The causes of hypertension are complex and involve both genetic and environmental factors. Environment changes during fetal development have been linked to adult diseases including hypertension. Studies show that timed in utero exposure to the synthetic glucocorticoid (GC) dexamethasone (Dex) results in the development of hypertension in adult rats. Evidence suggests that in utero stress can alter patterns of gene expression, possibly a result of alterations in the topology of the genome by epigenetic markers such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). The objective of this study was to determine the effects of epigenetic regulators in the fetal programming and the development of adult hypertension. Specifically, this research examined the effects of the HDAC inhibitor valproic acid (VPA) and the DNMT inhibitor 5-aza-2′-deoxycytidine (5aza2DC) on blood pressure (BP) and gene expression in prenatal Dex-programmed rats. Data suggest that both VPA and 5aza2DC attenuated the Dex-mediated development of hypertension and restored BP to control levels. Epigenetic DNMT inhibition (DNMTi) or HDAC inhibition (HDACi) also successfully attenuated elevations in the majority of altered catecholamine (CA) enzyme expression, phenylethanolamine N-methyltransferase (PNMT) protein, and elevated epinephrine (Epi) levels in males. Although females responded to HDACi similar to males, DNMTi drove increased glucocorticoid receptor (GR) and PNMT expression and elevations in circulating Epi in females despite showing normotensive BP.
Collapse
|
17
|
Hejazian SM, Zununi Vahed S, Moghaddas Sani H, Nariman-Saleh-Fam Z, Bastami M, Hosseiniyan Khatibi SM, Ardalan M, Samadi N. Steroid-resistant nephrotic syndrome: pharmacogenetics and epigenetic points and views. Expert Rev Clin Pharmacol 2020; 13:147-156. [PMID: 31847609 DOI: 10.1080/17512433.2020.1702877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Glucocorticoids (GCs) are the first-line therapy for patients with nephrotic syndrome (NS), a common glomerular disease, that cause complete remission in most of the cases. In response to the treatment, NS patients are divided into glucocorticoid-sensitive and -resistant. This variation is due to the differences in pharmacokinetics and pharmacodynamics of GCs in each patient that affect the response to the treatment modality. Since the genetic variations in drug-metabolizing enzymes and transporter proteins significantly impact the pharmacokinetics, efficacy and safety of the applied medications, this review highlights the basic mechanisms of genetic variations involved in GCs metabolism in drug-resistant NS patients.Areas covered: This review explains the pharmacogenetic variations that influence the profile of GCs responses and their pharmacokinetics in NS patients. Moreover, the epigenetic variations including histone modifications and miRNA gene regulation that have an influence on GCs responses will review. A comprehensive literature search was performed using different keywords to the reviewed topics.Expert opinion: The accumulative data suggest the importance of pharmacogenetic studies to develop personalized therapies and increase the GCs responsiveness in these patients. It is imperative to know that genetic testing does not give absolute answers to all existing questions in steroid resistance.
Collapse
Affiliation(s)
- Seyede Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hakimeh Moghaddas Sani
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Nasser Samadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Azhar S, Dong D, Shen WJ, Hu Z, Kraemer FB. The role of miRNAs in regulating adrenal and gonadal steroidogenesis. J Mol Endocrinol 2020; 64:R21-R43. [PMID: 31671401 PMCID: PMC7202133 DOI: 10.1530/jme-19-0105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
miRNAs are endogenous noncoding single-stranded small RNAs of ~22 nucleotides in length that post-transcriptionally repress the expression of their various target genes. They contribute to the regulation of a variety of physiologic processes including embryonic development, differentiation and proliferation, apoptosis, metabolism, hemostasis and inflammation. In addition, aberrant miRNA expression is implicated in the pathogenesis of numerous diseases including cancer, hepatitis, cardiovascular diseases and metabolic diseases. Steroid hormones regulate virtually every aspect of metabolism, and acute and chronic steroid hormone biosynthesis is primarily regulated by tissue-specific trophic hormones involving transcriptional and translational events. In addition, it is becoming increasingly clear that steroidogenic pathways are also subject to post-transcriptional and post-translational regulations including processes such as phosphorylation/dephosphorylation, protein‒protein interactions and regulation by specific miRNAs, although the latter is in its infancy state. Here, we summarize the recent advances in miRNA-mediated regulation of steroidogenesis with emphasis on adrenal and gonadal steroidogenesis.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford University, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford, California, USA
| | - Dachuan Dong
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford University, Stanford, California, USA
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford University, Stanford, California, USA
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford University, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford, California, USA
| |
Collapse
|
19
|
Jacobsen DP, Eriksen MB, Rajalingam D, Nymoen I, Nielsen MB, Einarsen S, Gjerstad J. Exposure to workplace bullying, microRNAs and pain; evidence of a moderating effect of miR-30c rs928508 and miR-223 rs3848900. Stress 2020; 23:77-86. [PMID: 31339402 DOI: 10.1080/10253890.2019.1642320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Prolonged exposure to bullying behaviors may give rise to symptoms such as anxiety, depression and chronic pain. Earlier data suggest that these symptoms often are associated with stress-induced low-grade systemic inflammation. Here, using data from both animals and humans, we examined the moderating role of microRNAs (miRNAs, miRs) in this process. In the present study, a resident-intruder paradigm, blood samples, tissue harvesting and subsequent qPCR analyses were used to screen for stress-induced changes in circulating miRNAs in rats. The negative acts questionnaire (NAQ), TaqMan assays and a numeric rating scale (NRS) for pain intensity were then used to examine the associations among bullying behaviors, relevant miRNA polymorphisms and pain in a probability sample of 996 Norwegian employees. In rats, inhibited weight gain, reduced pituitary POMC expression, adrenal Nr3c1 mRNA downregulation, as well as increased miR-146a, miR-30c and miR-223 in plasma were observed following 1 week of repeated exposure to social stress. When following up the miRNA findings from the animal study in the human working population, a stronger relationship between NAQ and NRS scores was observed in subjects with the miR-30c GG genotype (rs928508) compared to other subjects. A stronger relationship between NAQ and NRS scores was also seen in men with the miR-223 G genotype (rs3848900) as compared to other men. Our findings show that social stress may induce many physiological changes including changed expression of miRNAs. We conclude that the miR-30c GG genotype in men and women, and the miR-223 G genotype in men, amplify the association between exposure to bullying behaviors and pain.Lay summaryUsing an animal model of social stress, we identified miR-146a, miR-30c and miR-223 as potentially important gene regulatory molecules that may be involved in the stress response. Interestingly, human genotypes affecting the expression of mature miR-30c and miR-223 had a moderating effect on the association between exposure to bullying and pain. Subjects with the miR-30c rs928508 GG genotype had a significantly stronger association between exposure to bullying behaviors and pain than other subjects. The same was observed in men with the miR-223 rs3848900 G genotype, as compared to other men.
Collapse
Affiliation(s)
- Daniel Pitz Jacobsen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | | | | - Morten Birkeland Nielsen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
- Department for Psychosocial Science, University of Bergen, Bergen, Norway
| | - Ståle Einarsen
- Department for Psychosocial Science, University of Bergen, Bergen, Norway
| | - Johannes Gjerstad
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department for Psychosocial Science, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Stone D, Bogaardt H, Linnstaedt SD, Martin-Harris B, Smith AC, Walton DM, Ward E, Elliott JM. Whiplash-Associated Dysphagia: Considerations of Potential Incidence and Mechanisms. Dysphagia 2019; 35:403-413. [PMID: 31377863 DOI: 10.1007/s00455-019-10039-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022]
Abstract
Non-specific self-reports of dysphagia have been described in people with whiplash-associated disorders (WAD) following motor vehicle collision (MVC); however, incidence and mechanistic drivers remain poorly understood. Alterations in oropharyngeal dimensions on magnetic resonance imaging (MRI), along with heightened levels of stress, pain, and changes in stress-dependent microRNA expression (e.g., miR-320a) have been also associated with WAD, suggesting multi-factorial issues may underpin any potential swallowing changes. In this exploratory paper, we examine key biopsychosocial parameters in three patients with persistent WAD reporting swallowing change and three nominating full recovery after whiplash with no reported swallowing change. Parameters included (1) oropharyngeal volume with 3D MRI, (2) peritraumatic miR-320a expression, and (3) psychological distress. These factors were explored to highlight the complexity of patient presentation and propose future considerations in relation to a potential deglutition disorder following WAD. The three participants reporting changes in swallowing all had smaller oropharyngeal volumes at < 1 week and at 3 months post injury and lower levels of peritraumatic miR-320a. At 3 months post MVC, oropharyngeal volumes between groups indicated a large effect size (Hedge's g = 0.96). Higher levels of distress were reported at both time points for those with persistent symptomatology, including self-reported dysphagia, however, this was not featured in those nominating recovery. This paper considers current evidence for dysphagia as a potentially under-recognized feature of WAD and highlights the need for future, larger-scaled, multidimensional investigation into the incidence and mechanisms of whiplash-associated dysphagia.
Collapse
Affiliation(s)
- D Stone
- Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia.
- Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia.
- Neuromuscular Imaging Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia.
- Speech Pathology Department, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | - H Bogaardt
- Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - S D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Martin-Harris
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - A C Smith
- School of Physical Therapy, Regis University, Denver, CO, USA
| | - D M Walton
- School of Physical Therapy, Western University, London, ON, Canada
| | - E Ward
- School of Health and Rehabilitation Sciences, The University of Queensland and Centre for Functioning and Health Research (CFAHR), Metro South Hospital and Health Services, Brisbane, QLD, Australia
| | - J M Elliott
- Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
- Neuromuscular Imaging Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
21
|
Wang Z, Gai Y, Zhou J, Liu J, Cui S. miR-375 mediates the CRF signaling pathway to regulate catecholamine biosynthesis by targeting Sp1 in porcine adrenal gland. Stress 2019; 22:332-346. [PMID: 30714474 DOI: 10.1080/10253890.2018.1561845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Corticotropin-releasing-factor (CRF) is a key regulator of catecholamines (CATs) biosynthesis in the adrenal gland. Furthermore, miR-375 has been confirmed to be localized in the mouse adrenal gland. However, the relationships between miR-375 and CRF in regulating CATs biosynthesis remain to be established. This study was designed to investigate the relationship between CRF and miR-375 in the regulation of CATs biosynthesis in the porcine adrenal gland. Eight adult female pigs (four controls; four injected intracerebroventricularly with 50 μg of CRF) were used for the in vivo experiments in this study. The results showed that miR-375 was exclusively localized in porcine adrenal medullary cells. Functional studies showed that miR-375 negatively regulated CATs synthesis in primary cells by affecting the expression of the CATs synthetases tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), and phenylethanolamine-N-methyltransferase (PNMT). CRF up-regulated the expression of CATs synthetase in primary adrenal medullary cells under basal conditions and upon endogenous miR-375 inhibition; the enhanced effects vanished when cellular miR-375 was overexpressed by transfecting miR-375-mic. CRF decreased the expression of miR-375 both in vivo and in vitro. Our in vitro results showed that CRF significantly decreased the expression of miR-375, perhaps by binding to CRFR1. miR-375 functions by directly binding to the 3'-UTR region of specificity protein 1 (Sp1), which is involved in regulating Th and Dbh expression. These data collectively indicate that miR-375 plays an important role in regulating CATs synthesis and mediates the CRF signaling pathway in porcine adrenal medullary cells.
Collapse
Affiliation(s)
- Zhijuan Wang
- a State Key Laboratory of Agrobiotechnology, College of Biological Sciences , China Agricultural University , Beijing , PR China
| | - Yedan Gai
- a State Key Laboratory of Agrobiotechnology, College of Biological Sciences , China Agricultural University , Beijing , PR China
| | - Jinlian Zhou
- b The 306th Hospital of People's Liberation Army , Beijing , PR China
| | - Jiali Liu
- a State Key Laboratory of Agrobiotechnology, College of Biological Sciences , China Agricultural University , Beijing , PR China
| | - Sheng Cui
- a State Key Laboratory of Agrobiotechnology, College of Biological Sciences , China Agricultural University , Beijing , PR China
| |
Collapse
|
22
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
23
|
De Iudicibus S, Lucafò M, Vitulo N, Martelossi S, Zimbello R, De Pascale F, Forcato C, Naviglio S, Di Silvestre A, Gerdol M, Stocco G, Valle G, Ventura A, Bramuzzo M, Decorti G. High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients. Int J Mol Sci 2018; 19:1399. [PMID: 29738455 PMCID: PMC5983624 DOI: 10.3390/ijms19051399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.
Collapse
Affiliation(s)
- Sara De Iudicibus
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37100 Verona, Italy.
| | - Stefano Martelossi
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Rosanna Zimbello
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Fabio De Pascale
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Claudio Forcato
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Samuele Naviglio
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Alessia Di Silvestre
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Alessandro Ventura
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Giuliana Decorti
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
24
|
Han DX, Sun XL, Xu MQ, Chen CZ, Jiang H, Gao Y, Yuan B, Zhang JB. Roles of differential expression of microRNA-21-3p and microRNA-433 in FSH regulation in rat anterior pituitary cells. Oncotarget 2018; 8:36553-36565. [PMID: 28402262 PMCID: PMC5482676 DOI: 10.18632/oncotarget.16615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/11/2017] [Indexed: 11/29/2022] Open
Abstract
Follicle-stimulating hormone (FSH) secreted by adenohypophyseal cells plays an important role in the regulation of reproduction, but whether microRNAs (miRNAs) regulate the secretion of FSH remains unclear. In the present study, we predicted and screened miRNAs that might act on the follicle-stimulating hormone beta-subunit (FSHb) gene of rats using the TargetScan program and luciferase reporter assays, and the results identified two miRNAs, miR-21-3p and miR-433. We then transfected these miRNAs into rat anterior adenohypophyseal cells and assessed the FSHb expression levels in and FSH secretion by the transfected cells through quantitative PCR and ELISA. The results showed that both miR-21-3p and miR-433 down-regulated the expression levels of FSHb and resulted in the decrease of the secretion of FSH compared with the control group, and treatment with miR-21-3p and miR-433 inhibitors up-regulated the expression levels of FSHb and resulted in the increase of the secretion of FSH. Taken together, our results indicate that miR-21-3p and miR-433 can down-regulate the expression of FSHb by directly targeting the FSHb 3′UTR in rat primary pituitary cells. Our findings provide evidence that miRNAs can regulate FSHb expression and further affect the secretion of FSH and might contribute to the use of miRNAs for the regulation of animal reproduction.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xu-Lei Sun
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Ming-Qiang Xu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Cheng-Zhen Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
25
|
A Tri-Nucleotide Pattern in a 3' UTR Segment Affects The Activity of a Human Glucocorticoid Receptor Isoform. Shock 2018; 47:148-157. [PMID: 27660999 DOI: 10.1097/shk.0000000000000750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously identified a truncated human glucocorticoid receptor (hGR) isoform of 118 amino acids, hGR-S1(-349A), that despite lacking the major functional domains, was more hyperactive after glucocorticoid treatment than the full-length receptor. Furthermore, its 3' untranslated region (UTR) was required. To dissect the underlying mechanisms for hyperactivity, a series of hGR isoforms with consecutive deletions in the 3' UTR were created to test their transactivation potential using reporter assays. The hGR-S1(-349A) isoform retaining 1303 bp of 3' UTR displayed unusually high activity with or without glucocorticoid stimulation. Unexpectedly, a complete loss of significant activity was observed with isoforms retaining 1293 bp or 1263 bp of 3' UTR. Analysis of the 20 bp region neighboring the 1293 bp site showed a pattern: 3'UTR termination at every third base pair in this region resulted in a loss of transactivation potential while the other sites retained hyperactivity with or without glucocorticoid stimulation. Variations in the activity of an hGR isoform, due to changes in the 3' UTR sequence configuration, may provide an important link in explaining inconsistent responses to glucocorticoid treatment in individuals and ultimately enable tailored, patient-specific care. Furthermore, understanding the mechanisms underlying the cyclic hyperactivity/loss of activity phenomenon may be a step toward identifying a novel mechanism of gene regulation.
Collapse
|
26
|
Clayton SA, Jones SW, Kurowska-Stolarska M, Clark AR. The role of microRNAs in glucocorticoid action. J Biol Chem 2018; 293:1865-1874. [PMID: 29301941 PMCID: PMC5808749 DOI: 10.1074/jbc.r117.000366] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are steroids with profound anti-inflammatory and immunomodulatory activities. Synthetic GCs are widely used for managing chronic inflammatory and autoimmune conditions, as immunosuppressants in transplantation, and as anti-tumor agents in certain hematological cancers. However, prolonged GC exposure can cause adverse effects. A detailed understanding of GCs' mechanisms of action may enable harnessing of their desirable actions while minimizing harmful effects. Here, we review the impact on the GC biology of microRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression. Emerging evidence indicates that microRNAs modulate GC production by the adrenal glands and the cells' responses to GCs. Furthermore, GCs influence cell proliferation, survival, and function at least in part by regulating microRNA expression. We propose that the beneficial effects of GCs may be enhanced through combination with reagents targeting specific microRNAs.
Collapse
Affiliation(s)
- Sally A Clayton
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Simon W Jones
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Mariola Kurowska-Stolarska
- the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom.,the Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, and
| | - Andrew R Clark
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, .,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| |
Collapse
|
27
|
Wang H, Gou X, Jiang T, Ouyang J. The effects of microRNAs on glucocorticoid responsiveness. J Cancer Res Clin Oncol 2017; 143:1005-1011. [PMID: 28286901 DOI: 10.1007/s00432-017-2388-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/27/2017] [Indexed: 01/19/2023]
Abstract
PURPOSE Glucocorticoids (GCs) are of wide usage in the clinical treatment of lymphoblastic malignancies such as acute lymphoblastic leukemia. However, individually distinctive responsiveness to the GC therapy may attenuate their clinical efficacy, and more reliable predictor for GC resistance is still eagerly needed. Recent studies indicate that microRNAs (miRNAs), which demonstrate regulatory functions targeting mRNAs during the post-transcription, involved in the regulation of GCs sensitivity through several mechanisms, especially adjusting the magnitude of GC receptors (GRs), which mediates the cellular effects of GCs and plays a pivotal role in GCs sensitivity, inspiring that special miRNAs pattern could serve as the biomarkers to predict GC sensitivity and bring forth potential strategies for overcoming drug resistance. In this review, we discuss related miRNAs and their diverse effects exerted on multifaceted complexity of GCs responsiveness for further exploiting the molecular mechanism of GC resistance and future construction of the molecular diagnostic method and reverse GC resistance. METHODS We have reviewed and searched for eligible literature relating to the effects of microRNAs on GC responsiveness from systematic PubMed searches. RESULTS GC response can be mediated by miRNAs through influence on GC signaling pathway, leading to diverse glucocorticoid responsiveness. Mutations in miRNA gene also influence GC response. As well, GCs regulate the function of several miRNAs, and suggesting a bidirectional influence among them. CONCLUSIONS It is possible and necessary that miRNAs serve as stable biomarkers and GC resistant patients would benefit from an effective and early screening test.
Collapse
Affiliation(s)
- Huimin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xuxu Gou
- Department of Laboratory Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Tang Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Juan Ouyang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
28
|
Dendoncker K, Libert C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev 2017; 35:85-96. [DOI: 10.1016/j.cytogfr.2017.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 01/07/2023]
|
29
|
MicroRNA-210 suppresses glucocorticoid receptor expression in response to hypoxia in fetal rat cardiomyocytes. Oncotarget 2017; 8:80249-80264. [PMID: 29113299 PMCID: PMC5655194 DOI: 10.18632/oncotarget.17801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/29/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia is a common intrauterine stressor, often resulting in intrauterine growth restriction and increased risk for cardiovascular disease later in life. The aim of this work was to test the hypothesis that microRNA-210 (miR-210) mediates the detrimental suppression of glucocorticoid receptor (GR) in response to hypoxia in fetal rat cardiomyocytes. Cardiomyocytes isolated from gestational day 21 Sprague Dawley fetal rats showed increased miR-210 levels and reduced GR abundance after exposure to ex vivo hypoxia (1% O2). In regard to mechanisms, the different contributions of hypoxia response elements (HREs) motifs in the regulation of miR-210 promoter activity and the miR-210-mediated repression of GR expression were determined in rat embryonic heart-derived myogenic cell line H9c2. Moreover, using a cell culture-based model of hypoxia-reoxygenation injury, we assessed the cytotoxic effects of GR suppression under hypoxic conditions. The results showed that hypoxia induced HIF-1α-dependent miR-210 production, as well as miR-210-mediated GR suppression, in cardiomyocytes. Furthermore, inhibition or knockdown of GR exacerbated cell death in response to hypoxia-reoxygenation injury. Altogether, the present study demonstrates that the HIF-1α-dependent miR-210-mediated suppression of GR in fetal rat cardiomyocytes increases cell death in response to hypoxia, providing novel evidence for a possible mechanistic link between fetal hypoxia and programming of ischemic-sensitive phenotype in the developing heart.
Collapse
|
30
|
Equipoise on the Use of Steroids in Systemic Inflammatory Response Syndrome? Pediatr Crit Care Med 2017; 18:378-379. [PMID: 28376001 DOI: 10.1097/pcc.0000000000001112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Nagy Z, Szabó PM, Grolmusz VK, Perge P, Igaz I, Patócs A, Igaz P. MEN1 and microRNAs: The link between sporadic pituitary, parathyroid and adrenocortical tumors? Med Hypotheses 2016; 99:40-44. [PMID: 28110695 DOI: 10.1016/j.mehy.2016.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/17/2016] [Indexed: 01/12/2023]
Abstract
Sporadic tumors of the pituitary, parathyroids and adrenal cortex are unique, as their benign forms are very common, but malignant forms are exceptionally rare. Hereditary forms of these tumors occur in multiple endocrine neoplasia syndrome type 1 (MEN1). We hypothesize that the pathogenic link among the sporadic tumors of these organs of different germ layers might be represented by common molecular pathways involving the MEN1 gene and microRNAs (miR). miR-24 might be a microRNA linking the three tumor entities, but other candidates such as miR-142-3p and microRNAs forming the DLK1-MEG3 miRNA cluster might also be of importance.
Collapse
Affiliation(s)
- Z Nagy
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, H-1088 Budapest, Hungary
| | - P M Szabó
- National Institutes of Health/NCI/DCTD/BRP, 9609 Medical Center Dr Bethesda MD, USA
| | - V K Grolmusz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, H-1088 Budapest, Hungary; "Lendület-2013" Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi str. 46, H-1088 Budapest, Hungary
| | - P Perge
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, H-1088 Budapest, Hungary
| | - I Igaz
- Department of Gastroenterology, Szt Imre Teaching Hospital Budapest, Budapest, Hungary
| | - A Patócs
- "Lendület-2013" Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi str. 46, H-1088 Budapest, Hungary; Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, H-1088 Budapest, Hungary
| | - P Igaz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, H-1088 Budapest, Hungary.
| |
Collapse
|
32
|
Smith SS, Dole NS, Franceschetti T, Hrdlicka HC, Delany AM. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression. J Biol Chem 2016; 291:21717-21728. [PMID: 27551048 DOI: 10.1074/jbc.m116.737890] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/19/2016] [Indexed: 01/10/2023] Open
Abstract
Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3'-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling.
Collapse
Affiliation(s)
- Spenser S Smith
- From the Center for Molecular Medicine, UConn Health, Farmington, Connecticut 06030
| | - Neha S Dole
- From the Center for Molecular Medicine, UConn Health, Farmington, Connecticut 06030
| | | | - Henry C Hrdlicka
- From the Center for Molecular Medicine, UConn Health, Farmington, Connecticut 06030
| | - Anne M Delany
- From the Center for Molecular Medicine, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
33
|
Lewis MA, Buniello A, Hilton JM, Zhu F, Zhang WI, Evans S, van Dongen S, Enright AJ, Steel KP. Exploring regulatory networks of miR-96 in the developing inner ear. Sci Rep 2016; 6:23363. [PMID: 26988146 PMCID: PMC4796898 DOI: 10.1038/srep23363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
Mutations in the microRNA Mir96 cause deafness in mice and humans. In the diminuendo mouse, which carries a single base pair change in the seed region of miR-96, the sensory hair cells crucial for hearing fail to develop fully and retain immature characteristics, suggesting that miR-96 is important for coordinating hair cell maturation. Our previous transcriptional analyses show that many genes are misregulated in the diminuendo inner ear and we report here further misregulated genes. We have chosen three complementary approaches to explore potential networks controlled by miR-96 using these transcriptional data. Firstly, we used regulatory interactions manually curated from the literature to construct a regulatory network incorporating our transcriptional data. Secondly, we built a protein-protein interaction network using the InnateDB database. Thirdly, gene set enrichment analysis was used to identify gene sets in which the misregulated genes are enriched. We have identified several candidates for mediating some of the expression changes caused by the diminuendo mutation, including Fos, Myc, Trp53 and Nr3c1, and confirmed our prediction that Fos is downregulated in diminuendo homozygotes. Understanding the pathways regulated by miR-96 could lead to potential therapeutic targets for treating hearing loss due to perturbation of any component of the network.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Annalisa Buniello
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Fei Zhu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - William I Zhang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephanie Evans
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
34
|
Glucocorticoid-induced fetal origins of adult hypertension: Association with epigenetic events. Vascul Pharmacol 2016; 82:41-50. [PMID: 26903240 DOI: 10.1016/j.vph.2016.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 02/05/2023]
Abstract
Hypertension is a predominant risk factor for cardiovascular diseases and a major health care burden. Accumulating epidemiological and experimental evidence suggest that adult-onset hypertension may have its origins during early development. Upon exposure to glucocorticoids, the fetus develops hypertension, and the offspring may be programmed to continue the hypertensive trajectory into adulthood. Elevated oxidative stress and deranged nitric oxide system are not only hallmarks of adult hypertension but are also observed earlier in life. Endothelial dysfunction and remodeling of the vasculature, which are robustly associated with increased incidence of hypertension, are likely to have been pre-programmed during fetal life. Apparently, genomic, non-genomic, and epigenomic factors play a significant role in the development of hypertension, including glucocorticoid-driven effects on blood pressure. In this review, we discuss the involvement of the aforementioned participants in the pathophysiology of hypertension and suggest therapeutic opportunities for targeting epigenome modifiers, potentially for personalized medicine.
Collapse
|
35
|
Zhou W, Ma CX, Xing YZ, Yan ZY. Identification of candidate target genes of pituitary adenomas based on the DNA microarray. Mol Med Rep 2016; 13:2182-6. [PMID: 26782791 DOI: 10.3892/mmr.2016.4785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to explore molecular mechanisms involved in pituitary adenomas (PAs) and to discover target genes for their treatment. The gene expression profile GSE4488 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the Limma package and analyzed by two‑dimensional hierarchical clustering. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions of DEGs. Subsequently, the protein‑protein interaction (PPI) network was constructed using Cytoscape software. DEGs were then mapped to the connectivity map database to identify molecular agents associated with the underlying mechanisms of PAs. A total of 340 upregulated and 49 downregulated DEGs in PA samples compared with those in normal controls were identified. Hierarchical clustering analysis showed that DEGs were highly differentially expressed, indicating their aptness for distinguishing PA samples from normal controls. Significant gene ontology terms were positive regulation of immune system-associated processes for downregulated DEGs and skeletal system development for upregulated DEGs. Pathways significantly enriched by DEGs included extracellular matrix (ECM)‑receptor interaction, the Hedgehog (Hh) signaling pathway and neuroactive ligand‑receptor interaction. The PPI network was constructed with 117 nodes, 123 edges and CD44 and Gli2 as hub nodes. Furthermore, depudecin, a small molecule drug, was identified to be mechanistically associated with PA. The genes CD44 and Gli2 have important roles in the progression of PAs via ECM‑receptor interaction and the Hh signaling pathway and are therefore potential target genes of PA. In addition, depudecin may be a candidate drug for the treatment of PAs.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Chun-Xiao Ma
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ya-Zhou Xing
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Zhao-Yue Yan
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
36
|
MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity. PLoS One 2015; 10:e0144810. [PMID: 26693910 PMCID: PMC4691205 DOI: 10.1371/journal.pone.0144810] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are post-transcriptional regulators of gene expression that are differentially regulated during development and in inflammatory diseases. A role for miRNAs in allergic asthma is emerging and further investigation is required to determine whether they may serve as potential therapeutic targets. We profiled miRNA expression in murine lungs from an ovalbumin-induced allergic airways disease model, and compared expression to animals receiving dexamethasone treatment and non-allergic controls. Our analysis identified 29 miRNAs that were significantly altered during allergic inflammation. Target prediction analysis revealed novel genes with altered expression in allergic airways disease and suggests synergistic miRNA regulation of target mRNAs. To assess the impacts of one induced miRNA on pathology, we targeted miR-155-5p using a specific antagomir. Antagomir administration successfully reduced miR-155-5p expression with high specificity, but failed to alter the disease phenotype. Interestingly, further investigation revealed that antagomir delivery has variable efficacy across different immune cell types, effectively targeting myeloid cell populations, but exhibiting poor uptake in lymphocytes. Our findings demonstrate that antagomir-based targeting of miRNA function in the lung is highly specific, but highlights cell-specificity as a key limitation to be considered for antagomir-based strategies as therapeutics.
Collapse
|
37
|
Wang XC, Ma Y, Meng PS, Han JL, Yu HY, Bi LJ. miR-433 inhibits oral squamous cell carcinoma (OSCC) cell growth and metastasis by targeting HDAC6. Oral Oncol 2015; 51:674-82. [DOI: 10.1016/j.oraloncology.2015.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/04/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022]
|
38
|
Igaz I, Nyírő G, Nagy Z, Butz H, Nagy Z, Perge P, Sahin P, Tóth M, Rácz K, Igaz P, Patócs A. Analysis of Circulating MicroRNAs In Vivo following Administration of Dexamethasone and Adrenocorticotropin. Int J Endocrinol 2015; 2015:589230. [PMID: 26161091 PMCID: PMC4487905 DOI: 10.1155/2015/589230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 12/21/2022] Open
Abstract
Purpose. The interaction of hormones of the pituitary-adrenal axis and adrenal cortex-associated circulating microRNAs is mostly unknown. We have studied the effects of dexamethasone and adrenocorticotropin on the expression of five circulating microRNAs (hsa-miR-27a, hsa-miR-200b, hsa-miR-214, hsa-miR-483-5p, and hsa-miR-503) reported to be related to the adrenal cortex in plasma samples. Methods. Expression of microRNAs was studied in plasma samples of 10 individuals examined by 1 mg dexamethasone suppression test and another 10 individuals stimulated by 250 μg tetracosactide (adrenocorticotropin). Total RNA was isolated and microRNA expression was analyzed by real-time reverse transcription quantitative polymerase chain reaction normalized to cel-miR-39 as reference. Results. Only circulating hsa-miR-27a proved to be significantly modulated in vivo by hormonal treatments: its expression was upregulated by dexamethasone whereas it was suppressed by adrenocorticotropin. Secreted hsa-miR-27a was significantly induced by dexamethasone in vitro in NCI-H295R cells, as well. The expression of hsa-miR-483-5p proposed as diagnostic marker for adrenocortical malignancy was not affected by dexamethasone or tetracosactide administration. Conclusions. hsa-miR-27a expression is modulated by hormones of the hypothalamic-pituitary-adrenal axis both in vitro and in vivo. The biological relevance of hsa-miR-27a modulation by hormones is unclear, but the responsiveness of circulating microRNAs to hormones of the pituitary-adrenal axis is noteworthy.
Collapse
Affiliation(s)
- Ivan Igaz
- Department of Gastroenterology, Szent Imre Teaching Hospital, Tétényi Street 12-16, Budapest 1115, Hungary
| | - Gábor Nyírő
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Zoltán Nagy
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Henriett Butz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Zsolt Nagy
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
- “Lendület-2013” Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Pál Perge
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Peter Sahin
- Department of Gastroenterology, Szent Imre Teaching Hospital, Tétényi Street 12-16, Budapest 1115, Hungary
| | - Miklós Tóth
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Károly Rácz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Peter Igaz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Attila Patócs
- “Lendület-2013” Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
- *Attila Patócs:
| |
Collapse
|
39
|
Vandevyver S, Dejager L, Libert C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev 2014; 35:671-93. [PMID: 24937701 DOI: 10.1210/er.2014-1010] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are among the most prescribed drugs worldwide for the treatment of numerous immune and inflammatory disorders. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily. There are several GR isoforms resulting from alternative RNA splicing and translation initiation of the GR transcript. Additionally, these isoforms are all subject to several transcriptional, post-transcriptional, and post-translational modifications, all of which affect the protein's stability and/or function. In this review, we summarize recent knowledge on the distinct GR isoforms and the processes that generate them. We also review the importance of all known transcriptional, post-transcriptional, and post-translational modifications, including the regulation of GR by microRNAs. Moreover, we discuss the crucial role of the putative GR-bound DNA sequence as an allosteric ligand influencing GR structure and activity. Finally, we describe how the differential composition and distinct regulation at multiple levels of different GR species could account for the wide and diverse effects of glucocorticoids.
Collapse
Affiliation(s)
- Sofie Vandevyver
- Inflammation Research Center (S.V., L.D., C.L.), Flanders Institute for Biotechnology, B9052 Ghent, Belgium; and Department of Biomedical Molecular Biology (S.V., L.D., C.L.), Ghent University, B9052 Ghent, Belgium
| | | | | |
Collapse
|
40
|
Dominance of the strongest: inflammatory cytokines versus glucocorticoids. Cytokine Growth Factor Rev 2013; 25:21-33. [PMID: 24412262 DOI: 10.1016/j.cytogfr.2013.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 02/08/2023]
Abstract
Pro-inflammatory cytokines are involved in the pathogenesis of many inflammatory diseases, and the excessive expression of many of them is normally counteracted by glucocorticoids (GCs), which are steroids that bind to the glucocorticoid receptor (GR). Hence, GCs are potent inhibitors of inflammation, and they are widely used to treat inflammatory diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease. However, despite the success of GC therapy, many patients show some degree of GC unresponsiveness, called GC resistance (GCR). This is a serious problem because it limits the full therapeutic exploitation of the anti-inflammatory power of GCs. Patients with reduced GC responses often have higher cytokine levels, and there is a complex interplay between GCs and cytokines: GCs downregulate pro-inflammatory cytokines while cytokines limit GC action. Treatment of inflammatory diseases with GCs is successful when GCs dominate. But when cytokines overrule the anti-inflammatory actions of GCs, patients become GC insensitive. New insights into the molecular mechanisms of GR-mediated actions and GCR are needed for the design of more effective GC-based therapies.
Collapse
|
41
|
Hu Z, Shen WJ, Cortez Y, Tang X, Liu LF, Kraemer FB, Azhar S. Hormonal regulation of microRNA expression in steroid producing cells of the ovary, testis and adrenal gland. PLoS One 2013; 8:e78040. [PMID: 24205079 PMCID: PMC3810252 DOI: 10.1371/journal.pone.0078040] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/06/2013] [Indexed: 12/21/2022] Open
Abstract
Background Given the emerging roles of miRNAs as potential posttranscriptional/posttranslational regulators of the steroidogenic process in adrenocortical and gonadal cells, we sought to determine miRNA profiles in rat adrenals from animals treated with vehicle, ACTH, 17α-E2 or dexamethasone. Key observations were also confirmed using hormone (Bt2cAMP)-treated mouse Leydig tumor cells, MLTC-1, and primary rat ovarian granulosa cells. Methodology RNA was extracted from rat adrenal glands and miRNA profiles were established using microarray and confirmed with qRT-PCR. The expression of some of the hormone-sensitive miRNAs was quantified in MLTC-1 and granulosa cells after stimulation with Bt2cAMP. Targets of hormonally altered miRNAs were explored by qRT-PCR and Western blotting in adrenals and granulosa cells. Results Adrenals from ACTH, 17α-E2 and dexamethasone treated rats exhibited miRNA profiles distinct from control animals. ACTH up-regulated the expression of miRNA-212, miRNA-182, miRNA-183, miRNA-132, and miRNA-96 and down-regulated the levels of miRNA-466b, miRNA-214, miRNA-503, and miRNA-27a. The levels of miR-212, miRNA-183, miRNA-182, miRNA-132, miRNA-370, miRNA-377, and miRNA-96 were up-regulated, whereas miR-125b, miRNA-200b, miR-122, miRNA-466b, miR-138, miRNA-214, miRNA-503 and miRNA27a were down-regulated in response to 17α-E2 treatment. Dexamethasone treatment decreased miRNA-200b, miR-122, miR-19a, miRNA-466b and miRNA27a levels, but increased miRNA-183 levels. Several adrenal miRNAs are subject to regulation by more than one hormone. Significant cAMP-induced changes in certain miRNAs were also noted in MLTC-1 and granulosa cells. Some of the hormone-induced miRNAs in steroidogenic cells were predicted to target proteins involved in lipid metabolism/steroidogenesis. We also obtained evidence that miR-132 and miRNA-214 inhibit the expression of SREBP-1c and LDLR, respectively. Conclusion Our results demonstrate that expression of a number of miRNAs in steroidogenic cells of the testis, ovary and adrenal glands is subject to hormonal regulation and that miRNAs and their regulation by specific hormones are likely to play a key role in posttranscriptional/posttranslational regulation of steroidogenesis.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
| | - Yuan Cortez
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Xudong Tang
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
| | - Li-Fen Liu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
| | - Fredric B. Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Lagrange B, Martin RZ, Droin N, Aucagne R, Paggetti J, Largeot A, Itzykson R, Solary E, Delva L, Bastie JN. A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1936-46. [DOI: 10.1016/j.bbamcr.2013.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/01/2013] [Accepted: 04/09/2013] [Indexed: 01/24/2023]
|
43
|
Abstract
Sensory hair cells are exquisitely sensitive vertebrate mechanoreceptors that mediate the senses of hearing and balance. Understanding the factors that regulate the development of these cells is important, not only to increase our understanding of ear development and its functional physiology but also to shed light on how these cells may be replaced therapeutically. In this review, we describe the signals and molecular mechanisms that initiate hair cell development in vertebrates, with particular emphasis on the transcription factor Atoh1, which is both necessary and sufficient for hair cell development. We then discuss recent findings on how microRNAs may modulate the formation and maturation of hair cells. Last, we review recent work on how hair cells are regenerated in many vertebrate groups and the factors that conspire to prevent this regeneration in mammals.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
44
|
Krill KT, Gurdziel K, Heaton JH, Simon DP, Hammer GD. Dicer deficiency reveals microRNAs predicted to control gene expression in the developing adrenal cortex. Mol Endocrinol 2013; 27:754-68. [PMID: 23518926 DOI: 10.1210/me.2012-1331] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous, non-protein-coding RNAs that are an important means of posttranscriptional gene regulation. Deletion of Dicer, a key miRNA processing enzyme, is embryonic lethal in mice, and tissue-specific Dicer deletion results in developmental defects. Using a conditional knockout model, we generated mice lacking Dicer in the adrenal cortex. These Dicer-knockout (KO) mice exhibited perinatal mortality and failure of the adrenal cortex during late gestation between embryonic day 16.5 (E16.5) and E18.5. Further study of Dicer-KO adrenals demonstrated a significant loss of steroidogenic factor 1-expressing cortical cells that was histologically evident as early as E16.5 coincident with an increase in p21 and cleaved-caspase 3 staining in the cortex. However, peripheral cortical proliferation persisted in KO adrenals as assessed by staining of proliferating cell nuclear antigen. To further characterize the embryonic adrenals from Dicer-KO mice, we performed microarray analyses for both gene and miRNA expression on purified RNA isolated from control and KO adrenals of E15.5 and E16.5 embryos. Consistent with the absence of Dicer and the associated loss of miRNA-mediated mRNA degradation, we observed an up-regulation of a small subset of adrenal transcripts in Dicer-KO mice, most notably the transcripts coded by the genes Nr6a1 and Acvr1c. Indeed, several miRNAs, including let-7, miR-34c, and miR-21, that are predicted to target these genes for degradation, were also markedly down-regulated in Dicer-KO adrenals. Together these data suggest a role for miRNA-mediated regulation of a subset of genes that are essential for normal adrenal growth and homeostasis.
Collapse
Affiliation(s)
- Kenneth T Krill
- Program in Cellular and Molecular Biology, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
45
|
Hu Z, Shen WJ, Kraemer FB, Azhar S. MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol Cell Biol 2012; 32:5035-45. [PMID: 23045399 PMCID: PMC3510537 DOI: 10.1128/mcb.01002-12] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/03/2012] [Indexed: 12/25/2022] Open
Abstract
We sought to identify and characterize microRNA (miRNAs) that posttranscriptionally regulate the expression of scavenger receptor class B type I (SR-BI) and SR-BI-linked selective high-density lipoprotein (HDL) cholesteryl ester (CE) transport and steroidogenesis. Four miRNAs (miRNA-125a, miRNA-125b, miRNA-145, and miRNA-455) with a potential to regulate SR-BI were identified in silico and validated by quantitative real-time PCR (qRT-PCR), Western blot analysis, and SR-BI 3' untranslated region (UTR) reporter assays. In vitro treatment of primary rat granulosa cells and MLTC-1 cells with cyclic AMP (cAMP) or in vivo treatment of rat adrenals with adrenocorticotropic hormone (ACTH) decreased the expression of miRNA-125a, miRNA-125b, and miRNA-455 and reciprocally increased SR-BI expression. Using luciferase constructs containing the 3' untranslated region of SR-BI combined with miRNA overexpression and mutagenesis, we have provided evidence that steroidogenic SR-BI is a direct target of miRNA-125a and miRNA-455. Moreover, the transfection of Leydig tumor cells with precursor miRNA 125a (pre-miRNA-125a) or pre-miRNA-455 resulted in the suppression of SR-BI at both the transcript and protein levels and reduced selective HDL CE uptake and HDL-stimulated progesterone production. Transfection of liver Hepa 1-6 cells with pre-miRNA-125a significantly reduced SR-BI expression and its selective transport function. In contrast, overexpression of miRNA-145 did not affect SR-BI expression or selective HDL CE uptake mediated by SR-BI in steroidogenic cell lines. These data suggest that a trophic hormone and cAMP inversely regulate the expression of SR-BI and miRNA-125a and miRNA-455 in steroidogenic tissues/cells and that both miRNA-125a and miRNA-455, by targeting steroidogenic SR-BI, negatively regulate selective HDL CE uptake and HDL CE-supported steroid hormone production.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology
| | - Fredric B. Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
| |
Collapse
|