1
|
Brejchova J, Brejchova K, Kuda O. Metabolic Pathways of Acylcarnitine Synthesis. Physiol Res 2024; 73:S153-S163. [PMID: 38752770 PMCID: PMC11412349 DOI: 10.33549/physiolres.935261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Acylcarnitines are important markers in metabolic studies of many diseases, including metabolic, cardiovascular, and neurological disorders. We reviewed analytical methods for analyzing acylcarnitines with respect to the available molecular structural information, the technical limitations of legacy methods, and the potential of new mass spectrometry-based techniques to provide new information on metabolite structure. We summarized the nomenclature of acylcarnitines based on historical common names and common abbreviations, and we propose the use of systematic abbreviations derived from the shorthand notation for lipid structures. The transition to systematic nomenclature will facilitate acylcarnitine annotation, reporting, and standardization in metabolomics. We have reviewed the metabolic origins of acylcarnitines important for the biological interpretation of human metabolomic profiles. We identified neglected isomers of acylcarnitines and summarized the metabolic pathways involved in the synthesis and degradation of acylcarnitines, including branched-chain lipids and amino acids. We reviewed the primary literature, mapped the metabolic transformations of acyl-CoAs to acylcarnitines, and created a freely available WikiPathway WP5423 to help researchers navigate the acylcarnitine field. The WikiPathway was curated, metabolites and metabolic reactions were annotated, and references were included. We also provide a table for conversion between common names and abbreviations and systematic abbreviations linked to the LIPID MAPS or Human Metabolome Database.
Collapse
Affiliation(s)
- J Brejchova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
2
|
Ji H, Tang Z, Jiang K, Lyu S, Zhao Y, Feng J, Dai R, Liang H. Investigating potential biomarkers of acute pancreatitis in patients with a BMI>30 using Mendelian randomization and transcriptomic analysis. Lipids Health Dis 2024; 23:119. [PMID: 38649912 PMCID: PMC11034057 DOI: 10.1186/s12944-024-02102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) has become a significant global health concern, and a high body mass index (BMI) has been identified as a key risk factor exacerbating this condition. Within this context, lipid metabolism assumes a critical role. The complex relationship between elevated BMI and AP, mediated by lipid metabolism, markedly increases the risk of complications and mortality. This study aimed to accurately define the correlation between BMI and AP, incorporating a comprehensive analysis of the interactions between individuals with high BMI and AP. METHODS Mendelian randomization (MR) analysis was first applied to determine the causal relationship between BMI and the risk of AP. Subsequently, three microarray datasets were obtained from the GEO database. This was followed by an analysis of differentially expressed genes and the application of weighted gene coexpression network analysis (WGCNA) to identify key modular genes associated with AP and elevated BMI. Functional enrichment analysis was then performed to shed light on disease pathogenesis. To identify the most informative genes, machine learning algorithms, including Random Forest (RF), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Least Absolute Shrinkage and Selection Operator (LASSO), were employed. Subsequent analysis focused on the colocalization of the Quantitative Trait Loci (eQTL) data associated with the selected genes and Genome-Wide Association Studies (GWAS) data related to the disease. Preliminary verification of gene expression trends was conducted using external GEO datasets. Ultimately, the diagnostic potential of these genes was further confirmed through the development of an AP model in mice with a high BMI. RESULTS A total of 21 intersecting genes related to BMI>30, AP, and lipid metabolism were identified from the datasets. These genes were primarily enriched in pathways related to cytosolic DNA sensing, cytokine‒cytokine receptor interactions, and various immune and inflammatory responses. Next, three machine learning techniques were utilized to identify HADH as the most prevalent diagnostic gene. Colocalization analysis revealed that HADH significantly influenced the risk factors associated with BMI and AP. Furthermore, the trend in HADH expression within the external validation dataset aligned with the trend in the experimental data, thus providing a preliminary validation of the experimental findings.The changes in its expression were further validated using external datasets and quantitative real-time polymerase chain reaction (qPCR). CONCLUSION This study systematically identified HADH as a potential lipid metabolism-grounded biomarker for AP in patients with a BMI>30.
Collapse
Affiliation(s)
- Hua Ji
- Department of Hepatobilialy Surgery, General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zheng Tang
- Department of Hepatobilialy Surgery, General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kexin Jiang
- Department of Hepatobilialy Surgery, General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- College of Medicine, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuang Lyu
- Department of Hepatobilialy Surgery, General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- College of Medicine, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yiwen Zhao
- Department of Hepatobilialy Surgery, General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jiajie Feng
- Department of Hepatobilialy Surgery, General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ruiwu Dai
- Department of Hepatobilialy Surgery, General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China.
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- College of Medicine, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Hongyin Liang
- Department of Hepatobilialy Surgery, General Surgery Center, General Hospital of Western Theater Command, Chengdu, 610083, China.
| |
Collapse
|
3
|
Naja K, Anwardeen N, Malki AM, Elrayess MA. Metformin increases 3-hydroxy medium chain fatty acids in patients with type 2 diabetes: a cross-sectional pharmacometabolomic study. Front Endocrinol (Lausanne) 2024; 15:1313597. [PMID: 38370354 PMCID: PMC10869496 DOI: 10.3389/fendo.2024.1313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Metformin is a drug with a long history of providing benefits in diabetes management and beyond. The mechanisms of action of metformin are complex, and continue to be actively debated and investigated. The aim of this study is to identify metabolic signatures associated with metformin treatment, which may explain the pleiotropic mechanisms by which metformin works, and could lead to an improved treatment and expanded use. Methods This is a cross-sectional study, in which clinical and metabolomic data for 146 patients with type 2 diabetes were retrieved from Qatar Biobank. Patients were categorized into: Metformin-treated, treatment naïve, and non-metformin treated. Orthogonal partial least square discriminate analysis and linear models were used to analyze differences in the level of metabolites between the metformin treated group with each of the other two groups. Results Patients on metformin therapy showed, among other metabolites, a significant increase in 3-hydroxyoctanoate and 3-hydroxydecanoate, which may have substantial effects on metabolism. Conclusions This is the first study to report an association between 3-hydroxy medium chain fatty acids with metformin therapy in patients with type 2 diabetes. This opens up new directions towards repurposing metformin by comprehensively understanding the role of these metabolites.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Ahmed M. Malki
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Nutrients, Physical Activity, and Mitochondrial Dysfunction in the Setting of Metabolic Syndrome. Nutrients 2023; 15:nu15051217. [PMID: 36904216 PMCID: PMC10004804 DOI: 10.3390/nu15051217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic risk factors for diabetes, coronary heart disease, non-alcoholic fatty liver disease, and some tumors. It includes insulin resistance, visceral adiposity, hypertension, and dyslipidemia. MetS is primarily linked to lipotoxicity, with ectopic fat deposition from fat storage exhaustion, more than obesity per se. Excessive intake of long-chain saturated fatty acid and sugar closely relates to lipotoxicity and MetS through several pathways, including toll-like receptor 4 activation, peroxisome proliferator-activated receptor-gamma regulation (PPARγ), sphingolipids remodeling, and protein kinase C activation. These mechanisms prompt mitochondrial dysfunction, which plays a key role in disrupting the metabolism of fatty acids and proteins and in developing insulin resistance. By contrast, the intake of monounsaturated, polyunsaturated, and medium-chain saturated (low-dose) fatty acids, as well as plant-based proteins and whey protein, favors an improvement in sphingolipid composition and metabolic profile. Along with dietary modification, regular exercises including aerobic, resistance, or combined training can target sphingolipid metabolism and improve mitochondrial function and MetS components. This review aimed to summarize the main dietary and biochemical aspects related to the physiopathology of MetS and its implications for mitochondrial machinery while discussing the potential role of diet and exercise in counteracting this complex clustering of metabolic dysfunctions.
Collapse
|
5
|
Zhang D, Wang L, Ma S, Ma H, Liu D. Characterization of pig skeletal muscle transcriptomes in response to low temperature. Vet Med Sci 2022; 9:181-190. [PMID: 36480456 PMCID: PMC9857100 DOI: 10.1002/vms3.1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The response of mammals to cold environment is a complex physiological activity, and its underlying mechanism must be analyzed from multiple perspectives. Skeletal muscle is an important thermogenic tissue that maintains body temperature in mammals. We dissected the molecular mechanism of pig skeletal muscle response to a cold environment by performing comparative transcriptome analysis in the Enshi black pig. METHODS Three pigs were subjected to acute cold stress (3 days), three pigs were subjected to cold acclimation (58 days), and three pigs were used as controls. RNA-seq was used to screen the differentially expressed genes (DEGs) of skeletal muscle. RESULTS Using RNA-seq methods, we identified 1241 DEGs within the acute cold stress group and 1886 DEGs within the cold acclimation group. Prolonged cold exposure induced more gene expression changes. A total of 540 key cold-responsive DEGs were found, and their trends were consistent within the acute cold stress group and cold acclimation group. Gene expression pattern analysis showed that there were significant differences between the low-temperature treatment groups and the control group, and there were also differences between individuals after long-term low-temperature treatment. Analysis of DEGs revealed that 134 pathways were significantly enriched in the cold adaptation group, 98 pathways were significantly enriched in the acute cold stress group, and 71 pathways were shared between the two groups. The 71 shared pathways were mainly related to lipid, amino acid, and carbohydrate metabolism; signal transduction; endocrine, immune, and nervous system; cardiovascular disease; infectious diseases caused by bacteria or viruses; and neurodegenerative disease. CONCLUSIONS In conclusion, this study provides insights into the molecular mechanism of porcine skeletal muscle response under low-temperature environment. The data may assist further research on the mechanism of pig response to cold exposure.
Collapse
Affiliation(s)
- DongJie Zhang
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHarbinChina
| | - Liang Wang
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHarbinChina
| | - ShouZheng Ma
- College of Animal Science and TechnologyInstitute of Northeast Agricultural UniversityHarbinChina
| | - Hong Ma
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHarbinChina
| | - Di Liu
- Institute of Animal Husbandry ResearchHeilongjiang Academy of Agricultural SciencesHarbinChina,College of Animal Science and TechnologyInstitute of Northeast Agricultural UniversityHarbinChina
| |
Collapse
|
6
|
Fang H, Li H, Zhang H, Wang S, Xu S, Chang L, Yang Y, Cui R. Short-chain L-3-hydroxyacyl-CoA dehydrogenase: A novel vital oncogene or tumor suppressor gene in cancers. Front Pharmacol 2022; 13:1019312. [PMID: 36313354 PMCID: PMC9614034 DOI: 10.3389/fphar.2022.1019312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 08/22/2023] Open
Abstract
The reprogramming of cellular metabolism is frequently linked to tumorigenesis. Glucose, fatty acids, and amino acids are the specific substrates involved in how an organism maintains metabolic equilibrium. The HADH gene codes for the short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADH), a crucial enzyme in fatty acid oxidation that catalyzes the third phase of fatty acid oxidation in mitochondria. Increasing data suggest that HADH is differentially expressed in various types of malignancies and is linked to cancer development and progression. The significance of HADH expression in tumors and its potential mechanisms of action in the onset and progression of certain cancers are summarized in this article. The possible roles of HADH as a target and/or biomarker for the detection and treatment of various malignancies is also described here.
Collapse
Affiliation(s)
- He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hanyang Li
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Xu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Mazorra-Carrillo JL, De León-Rodríguez A, Huerta-Ocampo JA, Velarde-Salcedo AJ, González de Mejía E, Barba de la Rosa AP. Proteomic analysis of chemically transformed NIH-3T3 cells reveals novel mechanisms of action of amaranth lunasin-like peptide. Food Res Int 2022; 157:111374. [DOI: 10.1016/j.foodres.2022.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
|
8
|
Delpero M, Arends D, Freiberg A, Brockmann GA, Hesse D. QTL-mapping in the obese Berlin Fat Mouse identifies additional candidate genes for obesity and fatty liver disease. Sci Rep 2022; 12:10471. [PMID: 35729251 PMCID: PMC9213485 DOI: 10.1038/s41598-022-14316-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with liver weight, liver triglycerides, and body weight using the obese BFMI sub-line BFMI861-S1. BFMI861-S1 mice are insulin resistant and store ectopic fat in the liver. In generation 10, 58 males and 65 females of the advanced intercross line (AIL) BFMI861-S1xB6N were phenotyped under a standard diet over 20 weeks. QTL analysis was performed after genotyping with the MiniMUGA Genotyping Array. Whole-genome sequencing and gene expression data of the parental lines was used for the prioritization of positional candidate genes. Three QTLs associated with liver weight, body weight, and subcutaneous adipose tissue (scAT) weight were identified. A highly significant QTL on chromosome (Chr) 1 (157–168 Mb) showed an association with liver weight. A QTL for body weight at 20 weeks was found on Chr 3 (34.1–40 Mb) overlapping with a QTL for scAT weight. In a multiple QTL mapping approach, an additional QTL affecting body weight at 16 weeks was identified on Chr 6 (9.5–26.1 Mb). Considering sequence variants and expression differences, Sec16b and Astn1 were prioritized as top positional candidate genes for the liver weight QTL on Chr 1; Met and Ica1 for the body weight QTL on Chr 6. Interestingly, all top candidate genes have previously been linked with metabolic traits. This study shows once more the power of an advanced intercross line for fine mapping. QTL mapping combined with a detailed prioritization approach allowed us to identify additional and plausible candidate genes linked to metabolic traits in the BFMI861-S1xB6N AIL. By reidentifying known candidate genes in a different crossing population the causal link with specific traits is underlined and additional evidence is given for further investigations.
Collapse
Affiliation(s)
- Manuel Delpero
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Danny Arends
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Aimée Freiberg
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Gudrun A Brockmann
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Deike Hesse
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| |
Collapse
|
9
|
Li JV, Ashrafian H, Sarafian M, Homola D, Rushton L, Barker G, Cabrera PM, Lewis MR, Darzi A, Lin E, Gletsu-Miller NA, Atkin SL, Sathyapalan T, Gooderham NJ, Nicholson JK, Marchesi JR, Athanasiou T, Holmes E. Roux-en-Y gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype. MICROBIOME 2021; 9:139. [PMID: 34127058 PMCID: PMC8201742 DOI: 10.1186/s40168-021-01086-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/27/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Bariatric surgery, used to achieve effective weight loss in individuals with severe obesity, modifies the gut microbiota and systemic metabolism in both humans and animal models. The aim of the current study was to understand better the metabolic functions of the altered gut microbiome by conducting deep phenotyping of bariatric surgery patients and bacterial culturing to investigate causality of the metabolic observations. METHODS Three bariatric cohorts (n = 84, n = 14 and n = 9) with patients who had undergone Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG) or laparoscopic gastric banding (LGB), respectively, were enrolled. Metabolic and 16S rRNA bacterial profiles were compared between pre- and post-surgery. Faeces from RYGB patients and bacterial isolates were cultured to experimentally associate the observed metabolic changes in biofluids with the altered gut microbiome. RESULTS Compared to SG and LGB, RYGB induced the greatest weight loss and most profound metabolic and bacterial changes. RYGB patients showed increased aromatic amino acids-based host-bacterial co-metabolism, resulting in increased urinary excretion of 4-hydroxyphenylacetate, phenylacetylglutamine, 4-cresyl sulphate and indoxyl sulphate, and increased faecal excretion of tyramine and phenylacetate. Bacterial degradation of choline was increased as evidenced by altered urinary trimethylamine-N-oxide and dimethylamine excretion and faecal concentrations of dimethylamine. RYGB patients' bacteria had a greater capacity to produce tyramine from tyrosine, phenylalanine to phenylacetate and tryptophan to indole and tryptamine, compared to the microbiota from non-surgery, normal weight individuals. 3-Hydroxydicarboxylic acid metabolism and urinary excretion of primary bile acids, serum BCAAs and dimethyl sulfone were also perturbed following bariatric surgery. CONCLUSION Altered bacterial composition and metabolism contribute to metabolic observations in biofluids of patients following RYGB surgery. The impact of these changes on the functional clinical outcomes requires further investigation. Video abstract.
Collapse
Affiliation(s)
- Jia V Li
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Hutan Ashrafian
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Magali Sarafian
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Daniel Homola
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Laura Rushton
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Grace Barker
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Paula Momo Cabrera
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Matthew R Lewis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Ara Darzi
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Edward Lin
- Division of General and Gastrointestinal Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Nana Adwoa Gletsu-Miller
- Department of Applied Health Science, School of Public Health, Indiana University Bloomington, 1025 E 7th Street, Bloomington, IN, 47405, USA
| | | | - Thozhukat Sathyapalan
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull-York Medical School, Hull, UK
| | - Nigel J Gooderham
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, The Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA, 6150, Australia
| | - Julian R Marchesi
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Thanos Athanasiou
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Elaine Holmes
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK.
- Centre for Computational and Systems Medicine, The Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA, 6150, Australia.
| |
Collapse
|
10
|
Wang L, Li X, Zhang G, Zhao H. Transcriptomic analysis of lead-induced hepatoxicology in female Japanese quails (Coturnix japonica): Implications of triglyceride synthesis, degradation and transport disruption. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109024. [PMID: 33631343 DOI: 10.1016/j.cbpc.2021.109024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Lead (Pb) pollution poses great threats to mammals including human and it is also hazardous to bird life. In this study, RNA sequencing analysis was employed to examine the molecular responses to lead exposure in the liver of a toxicological model species Japanese quails (Coturnix japonica). Female birds were exposed to 0, 50, 500 and 1000 ppm waterborne Pb for 49 days. The results showed that hepatic microstructure was damaged under lead exposure featured by sinusoids dilation and irregularity as well as cell necrosis. Moreover, ultrastructural injury in the liver including mitochondrial swelling and vacuolization as well as nuclear deformation was induced by lead exposure. Lead exposure also caused the decrease of lipid droplets in the liver by oil red O staining. In addition, liver transcriptomic analysis revealed that molecular signaling and functional pathways were disrupted by lead exposure. Meanwhile, the expression of genes involved with hepatic glycerophospholipids metabolism of triglyceride synthesis and lipid transport of triglyceride transfer was significantly down-regulated by lead exposure. Moreover, the up-regulation of genes associated with fatty acid oxidation and the down-regulation of genes related with fatty acid synthesis were caused by lead exposure. The present study implied that lead induced liver malfunction and bird health risks through histopathological damages, molecular signaling disruption, genetic expression alteration and triglyceride metabolism disturbance.
Collapse
Affiliation(s)
- Ling Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119 No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, China
| | - Xuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119 No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, China
| | - Gaixia Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119 No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119 No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
11
|
Whitehead A, Krause FN, Moran A, MacCannell ADV, Scragg JL, McNally BD, Boateng E, Murfitt SA, Virtue S, Wright J, Garnham J, Davies GR, Dodgson J, Schneider JE, Murray AJ, Church C, Vidal-Puig A, Witte KK, Griffin JL, Roberts LD. Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat Commun 2021; 12:1905. [PMID: 33772024 PMCID: PMC7998027 DOI: 10.1038/s41467-021-22272-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Brown and beige adipose tissue are emerging as distinct endocrine organs. These tissues are functionally associated with skeletal muscle, adipose tissue metabolism and systemic energy expenditure, suggesting an interorgan signaling network. Using metabolomics, we identify 3-methyl-2-oxovaleric acid, 5-oxoproline, and β-hydroxyisobutyric acid as small molecule metabokines synthesized in browning adipocytes and secreted via monocarboxylate transporters. 3-methyl-2-oxovaleric acid, 5-oxoproline and β-hydroxyisobutyric acid induce a brown adipocyte-specific phenotype in white adipocytes and mitochondrial oxidative energy metabolism in skeletal myocytes both in vitro and in vivo. 3-methyl-2-oxovaleric acid and 5-oxoproline signal through cAMP-PKA-p38 MAPK and β-hydroxyisobutyric acid via mTOR. In humans, plasma and adipose tissue 3-methyl-2-oxovaleric acid, 5-oxoproline and β-hydroxyisobutyric acid concentrations correlate with markers of adipose browning and inversely associate with body mass index. These metabolites reduce adiposity, increase energy expenditure and improve glucose and insulin homeostasis in mouse models of obesity and diabetes. Our findings identify beige adipose-brown adipose-muscle physiological metabokine crosstalk.
Collapse
Affiliation(s)
| | - Fynn N Krause
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Amy Moran
- School of Medicine, University of Leeds, Leeds, UK
| | | | | | - Ben D McNally
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Steven A Murfitt
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John Wright
- School of Medicine, University of Leeds, Leeds, UK
| | - Jack Garnham
- School of Medicine, University of Leeds, Leeds, UK
| | - Graeme R Davies
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - James Dodgson
- Phenotypic Screening and High Content Imaging, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christopher Church
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
12
|
Binenbaum I, Atamni HAT, Fotakis G, Kontogianni G, Koutsandreas T, Pilalis E, Mott R, Himmelbauer H, Iraqi FA, Chatziioannou AA. Container-aided integrative QTL and RNA-seq analysis of Collaborative Cross mice supports distinct sex-oriented molecular modes of response in obesity. BMC Genomics 2020; 21:761. [PMID: 33143653 PMCID: PMC7640698 DOI: 10.1186/s12864-020-07173-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The Collaborative Cross (CC) mouse population is a valuable resource to study the genetic basis of complex traits, such as obesity. Although the development of obesity is influenced by environmental factors, underlying genetic mechanisms play a crucial role in the response to these factors. The interplay between the genetic background and the gene expression pattern can provide further insight into this response, but we lack robust and easily reproducible workflows to integrate genomic and transcriptomic information in the CC mouse population. RESULTS We established an automated and reproducible integrative workflow to analyse complex traits in the CC mouse genetic reference panel at the genomic and transcriptomic levels. We implemented the analytical workflow to assess the underlying genetic mechanisms of host susceptibility to diet induced obesity and integrated these results with diet induced changes in the hepatic gene expression of susceptible and resistant mice. Hepatic gene expression differs significantly between obese and non-obese mice, with a significant sex effect, where male and female mice exhibit different responses and coping mechanisms. CONCLUSION Integration of the data showed that different genes but similar pathways are involved in the genetic susceptibility and disturbed in diet induced obesity. Genetic mechanisms underlying susceptibility to high-fat diet induced obesity are different in female and male mice. The clear distinction we observed in the systemic response to the high-fat diet challenge and to obesity between male and female mice points to the need for further research into distinct sex-related mechanisms in metabolic disease.
Collapse
Affiliation(s)
- Ilona Binenbaum
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biology, University of Patras, Patras, Greece
| | - Hanifa Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Georgios Fotakis
- Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
- e-NIOS PC, Kallithea, Athens, Greece
| | - Georgia Kontogianni
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodoros Koutsandreas
- e-NIOS PC, Kallithea, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pilalis
- e-NIOS PC, Kallithea, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Richard Mott
- Department of Genetics, University College of London, London, UK
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Life Sciences and Natural Resources, Vienna (BOKU), Vienna, Austria
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Aristotelis A Chatziioannou
- e-NIOS PC, Kallithea, Athens, Greece.
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
13
|
Luscombe VB, Lucy D, Bataille CJR, Russell AJ, Greaves DR. 20 Years an Orphan: Is GPR84 a Plausible Medium-Chain Fatty Acid-Sensing Receptor? DNA Cell Biol 2020; 39:1926-1937. [PMID: 33001759 DOI: 10.1089/dna.2020.5846] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GPR84 is an inflammation-induced receptor highly expressed on immune cells, yet its endogenous ligand is still unknown. This makes any interpretation of its physiological activity in vivo difficult. However, experiments with potent synthetic agonists have highlighted what the receptor can do, namely, enhance proinflammatory signaling and macrophage effector functions such as phagocytosis. Developing drugs to block these effects has attracted interest from the scientific community with the aim of decreasing disease activity in inflammatory disorders or enhancing inflammation resolution. In this review, we critically reassess the widely held belief that the major role of GPR84 is that of being a medium-chain fatty acid (MCFA) receptor. While MCFAs have been shown to activate GPR84, it remains to be demonstrated that they are present in relevant tissues at appropriate concentrations. In contrast to four other "full-time" free fatty acid receptor subtypes, GPR84 is not expressed by enteroendocrine cells and has limited expression in the gastrointestinal tract. Across multiple tissues and cell types, the highest expression levels of GPR84 are observed hours after exposure to an inflammatory stimulus. These factors obscure the relationship between ligand and receptor in the human body and do not support the exclusive physiological pairing of MCFAs with GPR84. To maximize the chances of developing efficacious drugs for inflammatory diseases, we must advance our understanding of GPR84 and what it does in vivo.
Collapse
Affiliation(s)
- Vincent B Luscombe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel Lucy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.,Department of Chemistry and University of Oxford, Oxford, United Kingdom
| | | | - Angela J Russell
- Department of Chemistry and University of Oxford, Oxford, United Kingdom.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Zhao B, Luo C, Zhang M, Xing F, Luo S, Fu S, Sun X. Knockdown of phosphatase and tensin homolog (PTEN) inhibits fatty acid oxidation and reduces very low density lipoprotein assembly and secretion in calf hepatocytes. J Dairy Sci 2020; 103:10728-10741. [PMID: 32952018 DOI: 10.3168/jds.2019-17920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022]
Abstract
Dairy cows with fatty liver exhibit hepatic lipid accumulation and disturbances in fatty acid oxidation and lipid transport. Phosphatase and tensin homolog (PTEN), a lipid phosphatase, regulates intrahepatic fatty acid oxidation and lipid transport in mice. Whether PTEN play a role in fatty acid oxidation and very low density lipoprotein (VLDL) assembly in calf hepatocytes are unknown. Hepatocytes isolated from 3 healthy female Holstein calves (1 d old, 30-40 kg) were infected with empty adenovirus with green fluorescent protein for 48 h (Ad-GFP group) or infected with PTEN knockdown adenovirus for 48 h (Ad-shPTEN group), or cultured in RPMI-1640 without Ad-shPTEN or Ad-GFP (control group). Compared with the Ad-GFP group, PTEN knockdown decreased mRNA and protein abundance and the activity of fatty acid oxidation-related molecules, including acyl-coA synthetase long-chain 1, carnitine palmitoyltransferase 1, carnitine palmitoyltransferase 2, and 3-hydroxy acyl-coA dehydrogenase. Furthermore, PTEN knockdown decreased mRNA and protein abundance of VLDL assembly-related molecules, including apolipoprotein B100, apolipoprotein E, microsomal triglyceride transfer protein, and low density lipoprotein receptor. Importantly, PTEN knockdown promoted triglyceride accumulation in hepatocytes and reduced the VLDL content in culture medium. A subsequent study was conducted on the following 4 groups: cells infected with Ad-GFP for 48 h and then treated with 2% BSA for another 24 h (Ad-GFP + BSA); cells infected with Ad-GFP for 48 h and then treated with 1.2 mM free fatty acids (FFA) and 2% BSA for another 24 h (Ad-GFP + 1.2 mM FFA); cells infected with Ad-shPTEN for 48 h and then treated with 2% BSA for another 24 h (Ad-shPTEN + BSA); cells infected with Ad-shPTEN for 48 h and then treated with 1.2 mM FFA and 2% BSA for another 24 h (Ad-shPTEN + 1.2 mM FFA). Compared with Ad-GFP + BSA, the abundances of PTEN and of fatty acid oxidation- and VLDL assembly-related proteins were lower in the Ad-GFP + 1.2 mM FFA group. Importantly, PTEN knockdown heightened the increase in triglyceride accumulation of hepatocytes and the decrease in VLDL content in culture medium induced by FFA. Overall, these in vitro data indicate that FFA inhibits PTEN expression, leading to triglyceride accumulation and the inhibition of VLDL assembly in calf hepatocytes. These findings suggest that PTEN may be a potential therapeutic target for FFA-induced hepatic steatosis in dairy cows.
Collapse
Affiliation(s)
- Bichen Zhao
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Chunhai Luo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Menglong Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Feifei Xing
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Shengbin Luo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Shixin Fu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China.
| | - Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China.
| |
Collapse
|
15
|
Ji C, Lu Z, Xu L, Li F, Cong M, Shan X, Wu H. Global responses to tris(1-chloro-2-propyl)phosphate (TCPP) in rockfish Sebastes schlegeli using integrated proteomic and metabolomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138307. [PMID: 32272412 DOI: 10.1016/j.scitotenv.2020.138307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 05/22/2023]
Abstract
As alternatives of brominated flame retardants, organophosphate flame retardants (OPFRs) can be detected in multiple marine environmental media. Tris(1-chloro-2-propyl)phosphate (TCPP) was one of the most frequently and abundantly detected OPFRs in the Bohai Sea. Exposure to TCPP has been shown to induce abnormal behavior in zebrafish as well as neurotoxicity in Caenorhabditis elegans. However, there is a lack of mechanism investigations on the toxic effects of TCPP at molecular levels. In this work, proteomics and metabolomics were integrated to analyze the proteome and metabolome responses in rockfish Sebastes schlegeli treated with TCPP (10 and 100 nM) for 15 days. A total of 143 proteins and 8 metabolites were significantly altered in rockfish following TCPP treatments. The responsive proteins and metabolites were predominantly involved in neurotransmission, neurodevelopment, signal transduction, cellular transport, cholesterol metabolism, bile acid synthesis, and detoxification. Furthermore, a hypothesized network of proteins, metabolites, and pathways in rockfish was summarized based on the combination of proteomic and metabolomic results, showing some key molecular events in response to TCPP. Overall, the present study unraveled the molecular responses at protein and metabolite levels, which provided a better understanding of toxicological effects and mechanisms of TCPP in marine teleost.
Collapse
Affiliation(s)
- Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Zhen Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lanlan Xu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Ming Cong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
16
|
Mäkelä AM, Hohtola E, Miinalainen IJ, Autio JA, Schmitz W, Niemi KJ, Hiltunen JK, Autio KJ. Mitochondrial 2,4-dienoyl-CoA reductase (Decr) deficiency and impairment of thermogenesis in mouse brown adipose tissue. Sci Rep 2019; 9:12038. [PMID: 31427678 PMCID: PMC6700156 DOI: 10.1038/s41598-019-48562-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/07/2019] [Indexed: 12/17/2022] Open
Abstract
A large number of studies have demonstrated significance of polyunsaturated fatty acids (PUFAs) for human health. However, many aspects on signals translating PUFA-sensing into body homeostasis have remained enigmatic. To shed light on PUFA physiology, we have generated a mouse line defective in mitochondrial dienoyl-CoA reductase (Decr), which is a key enzyme required for β-oxidation of PUFAs. Previously, we have shown that these mice, whose oxidation of saturated fatty acid is intact but break-down of unsaturated fatty acids is blunted, develop severe hypoglycemia during metabolic stresses and fatal hypothermia upon acute cold challenge. In the current work, indirect calorimetry and thermography suggested that cold intolerance of Decr−/− mice is due to failure in maintaining appropriate heat production at least partly due to failure of brown adipose tissue (BAT) thermogenesis. Magnetic resonance imaging, electron microscopy, mass spectrometry and biochemical analysis showed attenuation in activation of lipolysis despite of functional NE-signaling and inappropriate expression of genes contributing to thermogenesis in iBAT when the Decr−/− mice were exposed to cold. We hypothesize that the failure in turning on BAT thermogenesis occurs due to accumulation of unsaturated long-chain fatty acids or their metabolites in Decr−/− mice BAT suppressing down-stream propagation of NE-signaling.
Collapse
Affiliation(s)
- Anne M Mäkelä
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Esa Hohtola
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Joonas A Autio
- Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | | - Kalle J Niemi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
17
|
Shang C, Sun W, Wang C, Wang X, Zhu H, Wang L, Yang H, Wang X, Gong F, Pan H. Comparative Proteomic Analysis of Visceral Adipose Tissue in Morbidly Obese and Normal Weight Chinese Women. Int J Endocrinol 2019; 2019:2302753. [PMID: 31929791 PMCID: PMC6935805 DOI: 10.1155/2019/2302753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Visceral adipose tissue (VAT) plays a central role in the balance of energy metabolism. The objective of this study was to investigate the differentially expressed proteins in VAT between morbidly obese (BMI >35 kg/m2) and normal weight Chinese women. METHOD Nine morbidly obese women and 8 normal weight women as controls were enrolled. Abdominal VAT was excised and analyzed by label-free one-dimensional liquid chromatography tandem mass spectrometry (1D-LC-MS/MS). Differentially expressed VAT proteins were further analyzed with Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA). Masson's trichrome staining and CD68 immunohistochemical staining of VAT were conducted in all subjects. RESULT A total of 124 differentially expressed proteins were found with a ≥2-fold difference. Forty-one proteins were upregulated, and 83 proteins were downregulated in obese individuals. These altered VAT proteins were involved in the attenuation of the liver X receptor/retinoid X receptor (LXR/RXR) signaling pathway and the activation of the acute-phase response process. Three proteins (ACSL1, HADH, and UCHL1) were validated by western blotting using the same set of VAT samples from 6 morbidly obese and 7 normal weight patients, and the results indicated that the magnitude and direction of the protein changes were in accordance with the proteomic analysis. Masson's trichrome staining and CD68 immunohistochemical staining demonstrated that there was much more collagen fiber deposition and CD68-positive macrophages in the VAT of morbidly obese patients, suggesting extensive fiber deposition and macrophage infiltration. CONCLUSION A number of differentially expressed proteins were identified in VAT between morbidly obese and normal weight Chinese females. These differential proteins could be potential candidates in addressing the role of VAT in the development of obesity.
Collapse
Affiliation(s)
- Chen Shang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chunlin Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Xiangqing Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Xue Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
18
|
Stadion M, Schwerbel K, Graja A, Baumeier C, Rödiger M, Jonas W, Wolfrum C, Staiger H, Fritsche A, Häring HU, Klöting N, Blüher M, Fischer-Posovszky P, Schulz TJ, Joost HG, Vogel H, Schürmann A. Increased Ifi202b/IFI16 expression stimulates adipogenesis in mice and humans. Diabetologia 2018; 61:1167-1179. [PMID: 29478099 PMCID: PMC6448999 DOI: 10.1007/s00125-018-4571-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Obesity results from a constant and complex interplay between environmental stimuli and predisposing genes. Recently, we identified the IFN-activated gene Ifi202b as the most likely gene responsible for the obesity quantitative trait locus Nob3 (New Zealand Obese [NZO] obesity 3). The aim of this study was to evaluate the effects of Ifi202b on body weight and adipose tissue biology, and to clarify the functional role of its human orthologue IFI16. METHODS The impact of Ifi202b and its human orthologue IFI16 on adipogenesis was investigated by modulating their respective expression in murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocytes. Furthermore, transgenic mice overexpressing IFI202b were generated and characterised with respect to metabolic traits. In humans, expression levels of IFI16 in adipose tissue were correlated with several variables of adipocyte function. RESULTS In mice, IFI202b overexpression caused obesity (Δ body weight at the age of 30 weeks: 10.2 ± 1.9 g vs wild-type mice) marked by hypertrophic fat mass expansion, increased expression of Zfp423 (encoding the transcription factor zinc finger protein [ZFP] 423) and white-selective genes (Tcf21, Tle3), and decreased expression of thermogenic genes (e.g. Cidea, Ucp1). Compared with their wild-type littermates, Ifi202b transgenic mice displayed lower body temperature, hepatosteatosis and systemic insulin resistance. Suppression of IFI202b/IFI16 in pre-adipocytes impaired adipocyte differentiation and triacylglycerol storage. Humans with high levels of IFI16 exhibited larger adipocytes, an enhanced inflammatory state and impaired insulin-stimulated glucose uptake in white adipose tissue. CONCLUSIONS/INTERPRETATION Our findings reveal novel functions of Ifi202b and IFI16, demonstrating their role as obesity genes. These genes promote white adipogenesis and fat storage, thereby facilitating the development of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Kristin Schwerbel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Antonia Graja
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Christian Baumeier
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Maria Rödiger
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Harald Staiger
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Nora Klöting
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Tim J Schulz
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany.
| |
Collapse
|
19
|
Weiser A, Giesbertz P, Daniel H, Spanier B. Acylcarnitine Profiles in Plasma and Tissues of Hyperglycemic NZO Mice Correlate with Metabolite Changes of Human Diabetes. J Diabetes Res 2018; 2018:1864865. [PMID: 29854816 PMCID: PMC5944288 DOI: 10.1155/2018/1864865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
The New Zealand obese (NZO) mouse is a polygenic model for obesity and diabetes with obese females and obese, diabetes-prone males, used to study traits of the metabolic syndrome like type 2 diabetes mellitus (T2DM), obesity, and dyslipidaemia. By using LC-MS/MS, we here examine the suitability of this model to mirror tissue-specific changes in acylcarnitine (AC) and amino acid (AA) species preceding T2DM which may reflect patterns investigated in human metabolism. We observed high concentrations of fatty acid-derived ACs in 11 female mice, high abundance of branched-chain amino acid- (BCAA-) derived ACs in 6 male mice, and slight increases in BCAA-derived ACs in the remaining 6 males. Principal component analysis (PCA) including all ACs and AAs confirmed our hypothesis especially in plasma samples by clustering females, males with high BCAA-derived ACs, and males with slight increases in BCAA-derived ACs. Concentrations of insulin, blood glucose, NEFAs, and triacylglycerols (TAGs) further supported the hypothesis of high BCAA-derived ACs being able to mirror the onset of diabetic traits in male individuals. In conclusion, alterations in AC and AA profiles overlap with observations from human studies indicating the suitability of NZO mice to study metabolic changes preceding human T2DM.
Collapse
Affiliation(s)
- Anna Weiser
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | - Pieter Giesbertz
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | - Hannelore Daniel
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | - Britta Spanier
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| |
Collapse
|
20
|
Thul PJ, Tschapalda K, Kolkhof P, Thiam AR, Oberer M, Beller M. Lipid droplet subset targeting of the Drosophila protein CG2254/dmLdsdh1. J Cell Sci 2017; 130:3141-3157. [DOI: 10.1242/jcs.199661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 07/26/2017] [Indexed: 01/02/2023] Open
Abstract
Lipid droplets (LDs) are the principal organelles of lipid storage. They consist of a hydrophobic core of storage lipids, surrounded by a phospholipid monolayer with proteins attached. While some of these proteins are essential to regulate cellular and organismic lipid metabolism, key questions concerning LD protein function, such as their targeting to LDs, are still unanswered. Intriguingly, some proteins are restricted to LD subsets by an as yet unknown mechanism. This finding makes LD targeting even more complex.
Here, we characterize the Drosophila protein CG2254 which targets LD subsets in cultured cells and different larval Drosophila tissues, where the prevalence of LD subsets appears highly dynamic. We find that an amphipathic amino acid stretch mediates CG2254 LD localization. Additionally, we identified a juxtaposed sequence stretch limiting CG2254 localization to LD subsets. This sequence is sufficient to restrict a chimeric protein - consisting of the subset targeting sequence introduced to an otherwise pan LD localized protein sequence - to LD subsets. Based on its subcellular localization and annotated function, we suggest to rename CG2254 to Lipid droplet subset dehydrogenase 1 (Ldsdh1).
Collapse
Affiliation(s)
- Peter J. Thul
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kirsten Tschapalda
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Petra Kolkhof
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Abdou Rachid Thiam
- Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, Universite de Paris Diderot Sorbonne Paris-Cite, Paris, France
| | - Monika Oberer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Austria
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Paredes JF, López-Olmeda JF, Martínez FJ, Sánchez-Vázquez FJ. Daily rhythms of lipid metabolic gene expression in zebra fish liver: Response to light/dark and feeding cycles. Chronobiol Int 2015; 32:1438-48. [PMID: 26595085 DOI: 10.3109/07420528.2015.1104327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite numerous studies about fish nutrition and lipid metabolism, very little is known about the daily rhythm expression of lipogenesis and lipolysis genes. This research aimed to investigate the existence of daily rhythm expressions of the genes involved in lipid metabolism and their synchronization to different light/dark (LD) and feeding cycles in zebra fish liver. For this purpose, three groups of zebra fish were submitted to a 12:12 h LD cycle. A single daily meal was provided to each group at various times: in the middle of the light phase (ML); in the middle of the dark phase (MD); at random times. After 20 days of acclimation to these experimental conditions, liver samples were collected every 4 h in one 24-h cycle. The results revealed that most genes displayed a significant daily rhythm with an acrophase of expression in the dark phase. The acrophase of lipolytic genes (lipoprotein lipase - lpl, peroxisome proliferator-activated receptor - pparα and hydroxyacil CoA dehydrogenase - hadh) was displayed between ZT 02:17 h and ZT 18:31 h. That of lipogenic genes (leptin-a - lepa, peroxisome proliferator-activated receptor - pparγ, liver X receptor - lxr, insulin-like growth factor - igf1, sterol regulatory element-binding protein - srebp and fatty acid synthase - fas) was displayed between ZT 15:25 h and 20:06 h (dark phase). Feeding time barely influenced daily expression rhythms, except for lxr in the MD group, whose acrophase shifted by about 14 h compared with the ML group (ZT 04:31 h versus ZT 18:29 h, respectively). These results evidence a strong synchronization to the LD cycle, but not to feeding time, and most genes showed a nocturnal acrophase. These findings highlight the importance of considering light and feeding time to optimize lipid metabolism and feeding protocols in fish farming.
Collapse
Affiliation(s)
- J F Paredes
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | - J F López-Olmeda
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | - F J Martínez
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | - F J Sánchez-Vázquez
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| |
Collapse
|
22
|
Houten SM, Violante S, Ventura FV, Wanders RJA. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2015; 78:23-44. [PMID: 26474213 DOI: 10.1146/annurev-physiol-021115-105045] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Fatima V Ventura
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.ULisboa, 1649-003 Lisboa, Portugal; .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; .,Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Chung B, Stadion M, Schulz N, Jain D, Scherneck S, Joost HG, Schürmann A. The diabetes gene Zfp69 modulates hepatic insulin sensitivity in mice. Diabetologia 2015; 58:2403-13. [PMID: 26232096 PMCID: PMC4572078 DOI: 10.1007/s00125-015-3703-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Zfp69 was previously identified by positional cloning as a candidate gene for obesity-associated diabetes. C57BL/6J and New Zealand obese (NZO) mice carry a loss-of-function mutation due to the integration of a retrotransposon. On the NZO background, the Zfp69 locus caused severe hyperglycaemia and loss of beta cells. To provide direct evidence for a causal role of Zfp69, we investigated the effects of its overexpression on both a lean [B6-Tg(Zfp69)] and an obese [NZO/B6-Tg(Zfp69)] background. METHODS Zfp69 transgenic mice were generated by integrating the cDNA into the ROSA locus of the C57BL/6 genome and characterised. RESULTS B6-Tg(Zfp69) mice were normoglycaemic, developed hyperinsulinaemia, and exhibited increased expression of G6pc and Pck1 and slightly reduced phospho-Akt levels in the liver. During OGTTs, glucose clearance was normal but insulin levels were significantly higher in the B6-Tg(Zfp69) than in control mice. The liver fat content and plasma triacylglycerol levels were significantly increased in B6-Tg(Zfp69) and NZO/B6-Tg(Zfp69) mice on a high-fat diet compared with controls. Liver transcriptome analysis of B6-Tg(Zfp69) mice revealed a downregulation of genes involved in glucose and lipid metabolism. Specifically, expression of Nampt, Lpin2, Map2k6, Gys2, Bnip3, Fitm2, Slc2a2, Ppargc1α and Insr was significantly decreased in the liver of B6-Tg(Zfp69) mice compared with wild-type animals. However, overexpression of Zfp69 did not induce overt diabetes with hyperglycaemia and beta cell loss. CONCLUSIONS/INTERPRETATION Zfp69 mediates hyperlipidaemia, liver fat accumulation and mild insulin resistance. However, it does not induce type 2 diabetes, suggesting that the diabetogenic effect of the Zfp69 locus requires synergy with other as yet unidentified genes.
Collapse
Affiliation(s)
- Bomee Chung
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nadja Schulz
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Deepak Jain
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich Heine University of Düsseldorf, Universitätsstrasse, 1, D-40225, Duesseldorf, Germany
| | - Stephan Scherneck
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
24
|
Chen Y, Su Z. Reveal genes functionally associated with ACADS by a network study. Gene 2015; 569:294-302. [PMID: 26045367 DOI: 10.1016/j.gene.2015.05.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023]
Abstract
Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network.
Collapse
Affiliation(s)
- Yulong Chen
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Baumeier C, Kaiser D, Heeren J, Scheja L, John C, Weise C, Eravci M, Lagerpusch M, Schulze G, Joost HG, Schwenk RW, Schürmann A. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:566-76. [PMID: 25645620 DOI: 10.1016/j.bbalip.2015.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/08/2015] [Accepted: 01/21/2015] [Indexed: 01/14/2023]
Abstract
Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species.
Collapse
Affiliation(s)
- Christian Baumeier
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany; German Center of Diabetes Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Daniel Kaiser
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany; German Center of Diabetes Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Clara John
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Murat Eravci
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Merit Lagerpusch
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany; German Center of Diabetes Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Gunnar Schulze
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany; German Center of Diabetes Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany; German Center of Diabetes Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Robert Wolfgang Schwenk
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany; German Center of Diabetes Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany; German Center of Diabetes Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
26
|
Weber S, Salabei JK, Möller G, Kremmer E, Bhatnagar A, Adamski J, Barski OA. Aldo-keto Reductase 1B15 (AKR1B15): a mitochondrial human aldo-keto reductase with activity toward steroids and 3-keto-acyl-CoA conjugates. J Biol Chem 2015; 290:6531-45. [PMID: 25577493 DOI: 10.1074/jbc.m114.610121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellular localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17β-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the BeWo and SGBS cell lines, respectively. In contrast, AKR1B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the existence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues.
Collapse
Affiliation(s)
- Susanne Weber
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany
| | - Joshua K Salabei
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Gabriele Möller
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany
| | - Elisabeth Kremmer
- the Institute of Molecular Immunology, German Research Center for Environmental Health, Helmholtz Zentrum Muenchen, 81377 Muenchen, Germany
| | - Aruni Bhatnagar
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Jerzy Adamski
- From the Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, 85764 Neuherberg, Germany, the Lehrstuhl für Experimentelle Genetik, Technische Universitaet Muenchen, 85356 Freising-Weihenstephan, Germany, and the German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Oleg A Barski
- the Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky 40202,
| |
Collapse
|
27
|
Xu Y, Li H, Jin YH, Fan J, Sun F. Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate. PLoS One 2014; 9:e95965. [PMID: 24763278 PMCID: PMC3999109 DOI: 10.1371/journal.pone.0095965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/02/2014] [Indexed: 12/13/2022] Open
Abstract
3-hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35) is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD) that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A) with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60–80) that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects.
Collapse
Affiliation(s)
- Yingzhi Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Li
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, Jilin University, Changchun, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, Jilin University, Changchun, China
| | - Jun Fan
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
- * E-mail: (FS); (JF)
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (FS); (JF)
| |
Collapse
|
28
|
β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 2014; 19:96-108. [PMID: 24411942 PMCID: PMC4017355 DOI: 10.1016/j.cmet.2013.12.003] [Citation(s) in RCA: 466] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/09/2013] [Accepted: 12/10/2013] [Indexed: 02/07/2023]
Abstract
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) regulates metabolic genes in skeletal muscle and contributes to the response of muscle to exercise. Muscle PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α-mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolomic approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipocytes and β-oxidation in hepatocytes both in vitro and in vivo through a PPARα-mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases.
Collapse
|
29
|
Pknox1/Prep1 regulates mitochondrial oxidative phosphorylation components in skeletal muscle. Mol Cell Biol 2013; 34:290-8. [PMID: 24216763 DOI: 10.1128/mcb.01232-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The homeodomain transcription factor Prep1 was previously shown to regulate insulin sensitivity. Our aim was to study the specific role of Prep1 for the regulation of energy metabolism in skeletal muscle. Muscle-specific ablation of Prep1 resulted in increased expression of respiratory chain subunits. This finding was consistent with an increase in mitochondrial enzyme activity without affecting mitochondrial volume fraction as assessed by electron microscopy. Metabolic phenotyping revealed no differences in daily energy expenditure or body composition. However, during treadmill exercise challenge, Prep1 ablation resulted in a higher maximal oxidative capacity and better endurance. Elevated PGC-1α expression was identified as a cause for increased mitochondrial capacity in Prep1 ablated mice. Prep1 stabilizes p160 Mybbp1a, a known inhibitor of PGC-1α activity. Thereby, p160 protein levels were significantly lower in the muscle of Prep1 ablated mice. By a chromatin immunoprecipitation-sequencing (ChIP-seq) approach, PREP1 binding sites in genes encoding mitochondrial components (e.g., Ndufs2) were identified that might be responsible for elevated proteins involved in oxidative phosphorylation (OXPHOS) in the muscle of Prep1 null mutants. These results suggest that Prep1 exhibits additional direct effects on regulation of mitochondrial proteins. We therefore conclude that Prep1 is a regulator of oxidative phosphorylation components via direct and indirect mechanisms.
Collapse
|
30
|
Hesse D, Radloff K, Jaschke A, Lagerpusch M, Chung B, Tailleux A, Staels B, Schürmann A. Hepatic trans-Golgi action coordinated by the GTPase ARFRP1 is crucial for lipoprotein lipidation and assembly. J Lipid Res 2013; 55:41-52. [PMID: 24186947 DOI: 10.1194/jlr.m040089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The liver is a major organ in whole body lipid metabolism and malfunctioning can lead to various diseases including dyslipidemia, fatty liver disease, and type 2 diabetes. Triglycerides and cholesteryl esters are packed in the liver as very low density lipoproteins (VLDLs). Generation of these lipoproteins is initiated in the endoplasmic reticulum and further maturation likely occurs in the Golgi. ADP-ribosylation factor-related protein 1 (ARFRP1) is a small trans-Golgi-associated guanosine triphosphatase (GTPase) that regulates protein sorting and is required for chylomicron lipidation and assembly in the intestine. Here we show that the hepatocyte-specific deletion of Arfrp1 (Arfrp1(liv-/-)) results in impaired VLDL lipidation leading to reduced plasma triglyceride levels in the fasted state as well as after inhibition of lipoprotein lipase activity by Triton WR-1339. In addition, the concentration of ApoC3 that comprises 40% of protein mass of secreted VLDLs is markedly reduced in the plasma of Arfrp1(liv-/-) mice but accumulates in the liver accompanied by elevated triglycerides. Fractionation of Arfrp1(liv-/-) liver homogenates reveals more ApoB48 and a lower concentration of triglycerides in the Golgi compartments than in the corresponding fractions from control livers. In conclusion, ARFRP1 and the Golgi apparatus play an important role in lipoprotein maturation in the liver by influencing lipidation and assembly of proteins to the lipid particles.
Collapse
Affiliation(s)
- Deike Hesse
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Minor role of mitochondrial respiration for fatty-acid induced insulin secretion. Int J Mol Sci 2013; 14:18989-98. [PMID: 24065099 PMCID: PMC3794817 DOI: 10.3390/ijms140918989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 12/30/2022] Open
Abstract
An appropriate insulin secretion by pancreatic beta-cells is necessary to maintain glucose homeostasis. A rise in plasma glucose leads to increased metabolism and an elevated cytoplasmic ATP/ADP ratio that finally triggers insulin granule exocytosis. In addition to this triggering pathway, one or more amplifying pathways-activated by amino acids or fatty acid-enhance secretion by promoting insulin granule recruitment to, and priming at, the plasma membrane. The aim of this study was to clarify the impact of the mitochondrial respiratory activity on fatty acid-induced insulin secretion that was assessed by an extracellular flux analyzer. Treatment of isolated mouse islets with glucose (20 mM) increased insulin secretion 18-fold and correlated with ATP-synthesizing respiration. Furthermore, oxygen consumption rate (OCR) significantly increased by 62% in response to glucose, whereas the addition of palmitate resulted only in a minor increase of OCR at both 2.8 mM (11%) and 20 mM glucose (21%). The addition of palmitate showed a pronounced increase of coupling efficiency (CE) at 2.8 mM glucose but no further insulin secretion. However, treatment with palmitate at 20 mM glucose increased insulin secretion about 32-fold accompanied by a small increase in CE. Thus, fatty acid induced respiration has a minor impact on insulin secretion. Our data clearly demonstrate that fatty acids in contrast to glucose play a minor role for respiration-mediated insulin secretion. In the presence of high glucose, fatty acids contribute partially to amplifying pathways of insulin secretion by further increasing mitochondrial activity in the islets of Langerhans.
Collapse
|
32
|
Xu Y, Sun F. Purification, crystallization and preliminary crystallographic analysis of 3-hydroxyacyl-CoA dehydrogenase from Caenorhabditis elegans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:515-9. [PMID: 23695566 DOI: 10.1107/s1744309113007045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/13/2013] [Indexed: 11/10/2022]
Abstract
3-Hydroxyacyl-CoA dehydrogenase (HAD; EC 1.1.1.35) is the enzyme that catalyzes the third step in fatty-acid β-oxidation, oxidizing the hydroxyl group of 3-hydroxyacyl-CoA to a keto group. The 3-hydroxyacyl-CoA dehydrogenase from Caenorhabditis elegans (cHAD) was cloned, overexpressed in Escherichia coli and purified to homogeneity for crystallography. Initial crystals were obtained by the hanging-drop vapour-diffusion method. Optimization of the precipitant concentration and the pH yielded two types of well diffracting crystals with parallelepiped and cuboid shapes, respectively. Complete diffraction data sets were collected and processed from both crystal types. Preliminary crystallographic analysis indicated that the parallelepiped-shaped crystal belonged to space group P1, while the cuboid-shaped crystal belonged to space group P212121. Analyses of computed Matthews coefficient and self-rotation functions suggested that there are two cHAD molecules in one asymmetric unit in both crystals, forming identical dimers but packing in distinct manners.
Collapse
Affiliation(s)
- Yingzhi Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing 100101, PR China
| | | |
Collapse
|
33
|
Kluge R, Scherneck S, Schürmann A, Joost HG. Pathophysiology and genetics of obesity and diabetes in the New Zealand obese mouse: a model of the human metabolic syndrome. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:59-73. [PMID: 22893401 DOI: 10.1007/978-1-62703-068-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The New Zealand Obese (NZO) mouse is one of the most thoroughly investigated polygenic models for the human metabolic syndrome and type 2 diabetes. It presents the main characteristics of the disease complex, including early-onset obesity, insulin resistance, dyslipidemia, and hypertension. As a consequence of this syndrome, a combination of lipotoxicity and glucotoxicity produces beta-cell failure and apoptosis resulting in hypoinsulinemia and diabetic hyperglycemia. With NZO as a breeding partner, several adipogenic and diabetogenic gene variants have been identified by hypothesis-free positional cloning (Tbc1d1, Zfp69) or by combining genetic screens and candidate gene approaches (Pctp, Abcg1, Nmur2, Lepr). This chapter summarizes the present knowledge of the NZO strain and describes its pathophysiology as well as the known underlying genetic defects.
Collapse
Affiliation(s)
- Reinhart Kluge
- Max-Rubner-Laboratory, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.
| | | | | | | |
Collapse
|