1
|
Mortimer T, Smith JG, Muñoz-Cánoves P, Benitah SA. Circadian clock communication during homeostasis and ageing. Nat Rev Mol Cell Biol 2025; 26:314-331. [PMID: 39753699 DOI: 10.1038/s41580-024-00802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 03/28/2025]
Abstract
Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs. Numerous inputs for a specific tissue are produced by the activity of circadian clocks of other tissues or cell types, generating a form of crosstalk known as clock communication. In mammals, the central clock in the hypothalamus integrates signals from external light-dark cycles to align peripheral clocks elsewhere in the body. This regulation is complemented by a tissue-specific milieu of external, systemic and niche inputs that modulate and cooperate with the cellular circadian clock machinery of a tissue to tailor its functional output. These mechanisms of clock communication decay during ageing, and growing evidence suggests that this decline might drive ageing-related morbidities. Dietary, behavioural and pharmacological interventions may offer the possibility to overcome these changes and in turn improve healthspan.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Jacob G Smith
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Bettadapura SS, Todd WD, McGinnis GR, Bruns DR. Circadian biology of cardiac aging. J Mol Cell Cardiol 2025; 199:95-103. [PMID: 39753393 DOI: 10.1016/j.yjmcc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 02/03/2025]
Abstract
The age of the U.S. population is increasing alongside a growing burden of age-related cardiovascular disease. Circadian rhythms are critical for human health and are disrupted with aging and cardiovascular disease. The goal of the present review is to summarize how cardiac circadian rhythms change with age and how this might contribute to the increasing burden of age-associated heart disease. Further, we will review what is known about interventions to slow aging and whether they impact cardiac clock function, as well as whether time-of-day or chronotherapy may improve cardiac function with age. Although much remains to be understood about the circadian biology of cardiac aging, we propose that altered circadian clock output should be considered a hallmark of aging and that efforts to fix the clock are warranted for healthy cardiac aging.
Collapse
Affiliation(s)
| | - William D Todd
- Zoology & Physiology, University of Wyoming, Laramie, WY, USA; Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Graham R McGinnis
- Kinesiology & Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
| | - Danielle R Bruns
- Kinesiology & Health, University of Wyoming, Laramie, WY, USA; Zoology & Physiology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
3
|
Hsieh CY, Tsai PW, Tomioka Y, Matsumoto Y, Akiyama Y, Wang CC, Tayo LL, Lee CJ. Chronopharmacology of diuresis via metabolic profiling and key biomarker discovery of the traditional Chinese prescription Ji-Ming-San using tandem mass spectrometry in rat models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155260. [PMID: 38176264 DOI: 10.1016/j.phymed.2023.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Ji-Ming-Shan (JMS) is a traditional prescription used for patients with rheumatism, tendons swelling, relief of foot pain, athlete's foot, diuresis, gout. Although many studies have investigated the active compounds in each herb, the functional mechanism behind its therapeutic effect remains unclear. STUDY DESIGN Metabolic cages for sample collection. The serum components obtained from the experimental animals were analyzed using LC-MS/MS. Furthermore, cross-analysis using the software MetaboAnalyst and Venn diagrams were used to investigate chronopharmacology of JMS in the animal models. PURPOSE The aim of this study is to analyze the diuretic effects of JMS and to explore their chronopharmacology involved in organ regulation through four-quarter periods from serum samples of rat models. METHODS Metabolic cages were used for collecting the urine samples and PocketChem UA PU-4010, Fuji DRI-CHEM 800 were used to examine the urine biochemical parameters. The serum components were identified through ultra-performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) with a new developed method. Cross analysis, Venn diagram, MetaboAnalyst were used to investigate the key biomarker and major metabolism route with the oral administration of the drug. RESULT JMS significantly changed the 6 h urine volume with no observed kidney toxicity. Urine pH value ranges from 7.0 to 7.5. The chronopharmacology of JMS diuresis activity were 0-6 and 6-12 groups. UPLC-Q-TOF analyses identified 243 metabolites which were determined in positive mode and negative mode respectively. With cross analysis in the Venn diagram, one key biomarker naringenin-7-O-glucoside has been identified. Major metabolic pathways such as 1: Glycerophospholipid metabolism, 2: Primary bile acid biosynthesis, 3: Sphingolipid metabolism, 4: Riboflavin metabolism, 5: Linoleic acid metabolism, 6: Butanoate metabolism. CONCLUSION JMS significantly changed the urine output of animals in the 0-6 and 6-12 groups. No change in urine pH was observed and also kidney toxicity. A new UPLC-Q-TOF method was developed for the detection of the metabolites of JMS after oral administration. The cross analysis with Venn diagram and identified the key biomarker of JMS namely naringenin-7-O-glucoside. The results showed that six major pathways are involved in the gastrointestinal system and the liver. This study demonstrated the capability of JMS prescription in the regulation of diuresis and identified a key biomarker that is responsible for its therapeutic effect.
Collapse
Affiliation(s)
- Cheng-Yang Hsieh
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Postal address: Teaching & research building, 250 Wu-Hsing Street, Taipei 110, Taiwan; Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Ching-Chiung Wang
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Postal address: Teaching & research building, 250 Wu-Hsing Street, Taipei 110, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Intramuros, 1002 Metro Manila, Manila, Philippines; Department of Biology, School of Medicine and Health Sciences Mapua University, Makati, Philippines
| | - Chia-Jung Lee
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Postal address: Teaching & research building, 250 Wu-Hsing Street, Taipei 110, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
4
|
Saiz N, Velasco C, de Pedro N, Soengas JL, Isorna E. Insulin Controls Clock Gene Expression in the Liver of Goldfish Probably via Pi3k/Akt Pathway. Int J Mol Sci 2023; 24:11897. [PMID: 37569272 PMCID: PMC10418410 DOI: 10.3390/ijms241511897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The liver circadian clock plays a pivotal role in driving metabolic rhythms, being primarily entrained by the feeding schedule, although the underlying mechanisms remain elusive. This study aimed to investigate the potential role of insulin as an intake signal mediating liver entrainment in fish. To achieve this, the expression of clock genes, which form the molecular basis of endogenous oscillators, was analyzed in goldfish liver explants treated with insulin. The presence of insulin directly increased the abundance of per1a and per2 transcripts in the liver. The dependency of protein translation for such insulin effects was evaluated using cycloheximide, which revealed that intermediate protein translation is seemingly unnecessary for the observed insulin actions. Furthermore, the putative interaction between insulin and glucocorticoid signaling in the liver was examined, with the results suggesting that both hormones exert their effects by independent mechanisms. Finally, to investigate the specific pathways involved in the insulin effects, inhibitors targeting PI3K/AKT and MEK/ERK were employed. Notably, inhibition of PI3K/AKT pathway prevented the induction of per genes by insulin, supporting its involvement in this process. Together, these findings suggest a role of insulin in fish as a key element of the multifactorial system that entrains the liver clock to the feeding schedule.
Collapse
Affiliation(s)
- Nuria Saiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (N.d.P.)
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain; (C.V.); (J.L.S.)
| | - Cristina Velasco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain; (C.V.); (J.L.S.)
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (N.d.P.)
| | - José Luis Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain; (C.V.); (J.L.S.)
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (N.d.P.)
| |
Collapse
|
5
|
Chihara I, Negoro H, Kono J, Nagumo Y, Tsuchiya H, Kojo K, Shiga M, Tanaka K, Kandori S, Mathis BJ, Nishiyama H. Glucocorticoids coordinate the bladder peripheral clock and diurnal micturition pattern in mice. Commun Biol 2023; 6:81. [PMID: 36681730 PMCID: PMC9867708 DOI: 10.1038/s42003-023-04464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Peripheral clocks function to regulate each organ and are synchronized though various molecular and behavioral signals. However, signals that entrain the bladder clock remain elusive. Here, we show that glucocorticoids are a key cue for the bladder clock in vitro and in vivo. A pBmal1-dLuc human urothelial cell-line showed significant shifts in gene expression after cortisol treatment. In vivo, rhythmic bladder clock gene expression was unchanged by bilateral adrenalectomy but shifted 4 h forward by corticosterone administration at the inactive phase. Moreover, the bladder clock shifted 8-12 h in mice that underwent both bilateral adrenalectomy and corticosterone administration at the inactive phase. These mice showed decreases in the diurnal rhythm of volume voided per micturition, while maintaining diurnal activity rhythms. These results indicate that the diurnal rhythm of glucocorticoid signaling is a zeitgeber that overcomes other bladder clock entrainment factors and coordinates the diurnal rhythm of volume voided per micturition.
Collapse
Affiliation(s)
- Ichiro Chihara
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Jin Kono
- Department of Urology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruki Tsuchiya
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kosuke Kojo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ken Tanaka
- Department of Urology, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Costello HM, Johnston JG, Juffre A, Crislip GR, Gumz ML. Circadian clocks of the kidney: function, mechanism, and regulation. Physiol Rev 2022; 102:1669-1701. [PMID: 35575250 PMCID: PMC9273266 DOI: 10.1152/physrev.00045.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
An intrinsic cellular circadian clock is located in nearly every cell of the body. The peripheral circadian clocks within the cells of the kidney contribute to the regulation of a variety of renal processes. In this review, we summarize what is currently known regarding the function, mechanism, and regulation of kidney clocks. Additionally, the effect of extrarenal physiological processes, such as endocrine and neuronal signals, on kidney function is also reviewed. Circadian rhythms in renal function are an integral part of kidney physiology, underscoring the importance of considering time of day as a key biological variable. The field of circadian renal physiology is of tremendous relevance, but with limited physiological and mechanistic information on the kidney clocks this is an area in need of extensive investigation.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Madeleine Ince L. Introduction to Biological Rhythms: A Brief History of Chronobiology and its Relevance to Parasite Immunology. Parasite Immunol 2022; 44:e12905. [PMID: 35075647 DOI: 10.1111/pim.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
Almost every living organism on Earth is exposed to a fluctuating environment e.g., light:dark cycles, food availability, seasonal photoperiods. Most species have therefore evolved internal timing mechanisms allowing them to anticipate these rhythmic environmental changes, obtaining a survival advantage. Circadian (24 h) rhythms, in particular, regulate multiple aspects of physiology, including sleep/wake activity, feeding rhythms, and immune function. Recent studies have identified circadian rhythms in symptoms of parasite infections, rhythms in parasite schizogony, and evidence that certain parasites can manipulate host rhythms. Furthermore, efficacy of anti-parasite medications can also be modulated by timing of drug administration. Understanding the interactions between host rhythms, parasite rhythms, and disease severity is crucial to fully understand how to combat infections and reduce pathology. The aim of this review is, therefore, to provide an introduction to the field of biological rhythms, give a brief history of chronobiology research, and discuss the relevance of biological rhythms to parasite immunology.
Collapse
Affiliation(s)
- Louise Madeleine Ince
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, TX, USA
| |
Collapse
|
8
|
Ansermet C, Centeno G, Bignon Y, Ortiz D, Pradervand S, Garcia A, Menin L, Gachon F, Yoshihara HA, Firsov D. Dysfunction of the circadian clock in the kidney tubule leads to enhanced kidney gluconeogenesis and exacerbated hyperglycemia in diabetes. Kidney Int 2021; 101:563-573. [PMID: 34838539 DOI: 10.1016/j.kint.2021.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
The circadian clock is a ubiquitous molecular time-keeping mechanism which synchronizes cellular, tissue, and systemic biological functions with 24-hour environmental cycles. Local circadian clocks drive cell type- and tissue-specific rhythms and their dysregulation has been implicated in pathogenesis and/or progression of a broad spectrum of diseases. However, the pathophysiological role of intrinsic circadian clocks in the kidney of diabetics remains unknown. To address this question, we induced type I diabetes with streptozotocin in mice devoid of the circadian transcriptional regulator BMAL1 in podocytes (cKOp mice) or in the kidney tubule (cKOt mice). There was no association between dysfunction of the circadian clock and the development of diabetic nephropathy in cKOp and cKOt mice with diabetes. However, cKOt mice with diabetes exhibited exacerbated hyperglycemia, increased fractional excretion of glucose in the urine, enhanced polyuria, and a more pronounced kidney hypertrophy compared to streptozotocin-treated control mice. mRNA and protein expression analyses revealed substantial enhancement of the gluconeogenic pathway in kidneys of cKOt mice with diabetes as compared to diabetic control mice. Transcriptomic analysis along with functional analysis of cKOt mice with diabetes identified changes in multiple mechanisms directly or indirectly affecting the gluconeogenic pathway. Thus, we demonstrate that dysfunction of the intrinsic kidney tubule circadian clock can aggravate diabetic hyperglycemia via enhancement of gluconeogenesis in the kidney proximal tubule and further highlight the importance of circadian behavior in patients with diabetes.
Collapse
Affiliation(s)
- Camille Ansermet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gabriel Centeno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Daniel Ortiz
- Mass Spectrometry Service, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | - Andy Garcia
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Laure Menin
- Mass Spectrometry Service, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Hikari Ai Yoshihara
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Dmitri Firsov
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366 DOI: 10.3389/fnetp.2021.732243] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 08/01/2023]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
|
10
|
A physiological glucocorticoid rhythm is an important regulator of brown adipose tissue function. Mol Metab 2021; 47:101179. [PMID: 33548499 PMCID: PMC7907824 DOI: 10.1016/j.molmet.2021.101179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Objective Brown adipose tissue (BAT) displays a strong circadian rhythm in metabolic activity, but it is unclear how this rhythm is regulated. As circulating levels of corticosterone coincide with the rhythm of triglyceride-derived fatty acid (FA) uptake by BAT, we investigated whether corticosterone regulates BAT circadian rhythm. Methods Corticosterone levels were flattened by implanting mice with subcutaneous corticosterone-releasing pellets, resulting in constant circulating corticosterone levels. Results Flattened corticosterone rhythm caused a complete loss of circadian rhythm in triglyceride-derived fatty acid uptake by BAT. This effect was independent of glucocorticoid receptor expression in (brown) adipocytes and was not caused by deregulation of clock gene expression or overexposure to glucocorticoids, but rather seemed mediated by reduced sympathetic innervation of BAT. In a mouse model of hyperlipidemia and metabolic syndrome, long-term experimental flattening of corticosterone − and thus rhythm in BAT function − resulted in adiposity. Conclusions This study highlights that a physiological rhythm in glucocorticoids is an important regulator of BAT function and essential for the maintenance of metabolic health. Flattening of corticosterone rhythm blunts circadian activity of brown adipose tissue. Disturbed corticosterone rhythm − rather than overexposure− is responsible for blunted brown adipose tissue activity. The metabolic effect of flattened corticosterone levels is independent of adipocyte glucocorticoid receptor expression. Long-term flattening of corticosterone levels results in increased adiposity in a female mouse model for metabolic syndrome.
Collapse
|
11
|
Ivy JR, Bailey MA. Nondipping Blood Pressure: Predictive or Reactive Failure of Renal Sodium Handling? Physiology (Bethesda) 2021; 36:21-34. [PMID: 33325814 DOI: 10.1152/physiol.00024.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood pressure follows a daily rhythm, dipping during nocturnal sleep in humans. Attenuation of this dip (nondipping) is associated with increased risk of cardiovascular disease. Renal control of sodium homeostasis is essential for long-term blood pressure control. Sodium reabsorption and excretion have rhythms that rely on predictive/circadian as well as reactive adaptations. We explore how these rhythms might contribute to blood pressure rhythm in health and disease.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Minami Y, Yoshikawa T, Nagano M, Koinuma S, Morimoto T, Fujioka A, Furukawa K, Ikegami K, Tatemizo A, Egawa K, Tamaru T, Taniguchi T, Shigeyoshi Y. Transgenic rats expressing dominant negative BMAL1 showed circadian clock amplitude reduction and rapid recovery from jet lag. Eur J Neurosci 2020; 53:1783-1793. [PMID: 33351992 DOI: 10.1111/ejn.15085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022]
Abstract
The circadian rhythms are endogenous rhythms of about 24 h, and are driven by the circadian clock. The clock centre locates in the suprachiasmatic nucleus. Light signals from the retina shift the circadian rhythm in the suprachiasmatic nucleus, but there is a robust part of the suprachiasmatic nucleus that causes jet lag after an abrupt shift of the environmental lighting condition. To examine the effect of attenuated circadian rhythm on the duration of jet lag, we established a transgenic rat expressing BMAL1 dominant negative form under control by mouse Prnp-based transcriptional regulation cassette [BMAL1 DN (+)]. The transgenic rats became active earlier than controls, just after light offset. Compared to control rats, BMAL1 DN (+) rats showed smaller circadian rhythm amplitudes in both behavioural and Per2 promoter driven luciferase activity rhythms. A light pulse during the night resulted in a larger phase shift of behavioural rhythm. Furthermore, at an abrupt shift of the light-dark cycle, BMAL1 DN (+) rat showed faster entrainment to the new light-dark cycle compared to controls. The circadian rhythm has been regarded as a limit cycle phenomenon, and our results support the hypothesis that modification of the amplitude of the circadian limit cycle leads to alteration in the length of the phase shift.
Collapse
Affiliation(s)
- Yoichi Minami
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Tomoko Yoshikawa
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Tadamitsu Morimoto
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Atsuko Fujioka
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Keiichi Furukawa
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Keisuke Ikegami
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Atsuhiro Tatemizo
- Central Research Facilities, Faculty of Medicine Center for Animal Experiment, Kindai University Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Kentaro Egawa
- Central Research Facilities, Faculty of Medicine Center for Animal Experiment, Kindai University Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Teruya Tamaru
- Department of Physiology and Advanced Research Center for Medical Science, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Taizo Taniguchi
- Research Institute for Human Health Science, Konan University, Kobe, Hyogo, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| |
Collapse
|
13
|
Spiga F, Zhao Z, Lightman SL. Prolonged treatment with the synthetic glucocorticoid methylprednisolone affects adrenal steroidogenic function and response to inflammatory stress in the rat. Brain Behav Immun 2020; 87:703-714. [PMID: 32156515 PMCID: PMC7327516 DOI: 10.1016/j.bbi.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Synthetic glucocorticoids are widely prescribed for the treatment of numerous inflammatory and autoimmune diseases and they can also affect the way the adrenal gland produces endogenous glucocorticoids. Indeed, patients undergoing synthetic glucocorticoid treatment can develop adrenal insufficiency, a condition characterised by reduced responsiveness of the adrenal to ACTH stimulation or stressors (e.g. surgical or inflammatory stress). To better elucidate the long-term effect of synthetic glucocorticoids treatment and withdrawal on adrenal function, we have investigated the long-term effects of prolonged treatment with methylprednisolone on HPA axis dynamics and on the adrenal steroidogenic pathway, both in basal conditions and in response to an inflammatory stress (lipopolysaccharide, LPS). We have found that 5-days treatment with methylprednisolone suppresses basal ACTH and corticosterone secretion, as well as corticosterone secretion in response to a high dose of ACTH, and down-regulates key genes in the adrenal steroidogenic pathway, including StAR, MRAP, CYP11a1 and CYP11b1. These effects were paralleled by changes in the adrenal expression of transcription factors regulating steroidogenic gene expression, as well as changes in the expression of adrenal clock genes. Importantly, 5 days after withdrawal of the treatment, ACTH levels are restored, yet basal levels of corticosterone, as well as most of the key steroidogenic genes and their regulators, remain down regulated. We also show that, although 5-days treatment with methylprednisolone reduces the corticosterone response to LPS, an increase in intra-adrenal pro-inflammatory cytokine gene expression was observed. Our data suggests that the steroidogenic pathway is directly affected by synthetic glucocorticoid treatment in the long-term, presumably via a mechanism involving activation of the glucocorticoid receptor. Furthermore, our data suggests a pro-inflammatory effect of synthetic glucocorticoids treatment in the adrenal gland.
Collapse
Affiliation(s)
- Francesca Spiga
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | |
Collapse
|
14
|
Kemler D, Wolff CA, Esser KA. Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock. J Physiol 2020; 598:3631-3644. [PMID: 32537739 PMCID: PMC7479806 DOI: 10.1113/jp279779] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Key points Disruptions in circadian rhythms across an organism are associated with negative health outcomes, such as cardiometabolic and neurodegenerative diseases. Exercise has been proposed as a time cue for the circadian clock in rodents and humans. In this study, we assessed the effect of a single bout of endurance exercise on the skeletal muscle clock in vivo and a bout of muscle contractions in vitro. Timing of exercise or contractions influences the directional response of the muscle clock phase in vivo and in vitro. Our findings demonstrate that muscle contractions, as a component of exercise, can directly modulate the expression of muscle clock components in a time‐of‐day dependent manner.
Abstract Exercise has been proposed to be a zeitgeber for the muscle circadian clock mechanism. However, this is not well defined and it is unknown if exercise timing induces directional shifts of the muscle clock. Our purpose herein was to assess the effect of one bout of treadmill exercise on skeletal muscle clock phase changes. We subjected PERIOD2::LUCIFERASE mice (n = 30F) to one 60 min treadmill exercise bout at three times of day. Exercise at ZT5, 5 h after lights on, induced a phase advance (100.2 ± 25.8 min; P = 0.0002), whereas exercise at ZT11, 1 h before lights off, induced a phase delay (62.1 ± 21.1 min; P = 0.0003). Exercise at ZT17, middle of the dark phase, did not alter the muscle clock phase. Exercise induces diverse systemic changes so we developed an in vitro model system to examine the effects of contractile activity on muscle clock phase. Contractions applied at peak or trough Bmal1 expression induced significant phase delays (applied at peak: 27.2 ± 10.2 min; P = 0.0017; applied at trough: 64.6 ± 6.5 min, P < 0.0001). Contractions applied during the transition from peak to trough Bmal1 expression induced a phase advance (49.8 ± 23.1 min; P = 0.0051). Lastly, contractions at different times of day resulted in differential changes of core clock gene expression, demonstrating an exercise and clock interaction, providing insight into potential mechanisms of exercise‐induced phase shifts. These data demonstrate that muscle contractions, as part of exercise, are sufficient to shift the muscle circadian clock phase, likely through changes in core clock gene expression. Additionally, our findings that exercise induces directional muscle clock phase changes confirms that exercise is a bona fide environmental time cue for skeletal muscle. Disruptions in circadian rhythms across an organism are associated with negative health outcomes, such as cardiometabolic and neurodegenerative diseases. Exercise has been proposed as a time cue for the circadian clock in rodents and humans. In this study, we assessed the effect of a single bout of endurance exercise on the skeletal muscle clock in vivo and a bout of muscle contractions in vitro. Timing of exercise or contractions influences the directional response of the muscle clock phase in vivo and in vitro. Our findings demonstrate that muscle contractions, as a component of exercise, can directly modulate the expression of muscle clock components in a time‐of‐day dependent manner.
Collapse
Affiliation(s)
- Denise Kemler
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Christopher A Wolff
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| |
Collapse
|
15
|
Ikegami K, Shigeyoshi Y, Masubuchi S. Circadian Regulation of IOP Rhythm by Dual Pathways of Glucocorticoids and the Sympathetic Nervous System. Invest Ophthalmol Vis Sci 2020; 61:26. [PMID: 32182332 PMCID: PMC7401506 DOI: 10.1167/iovs.61.3.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/09/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose Elevated IOP can cause the development of glaucoma. The circadian rhythm of IOP depends on the dynamics of the aqueous humor and is synchronized with the circadian rhythm pacemaker, that is, the suprachiasmatic nucleus. The suprachiasmatic nucleus resets peripheral clocks via sympathetic nerves or adrenal glucocorticoids. However, the detailed mechanisms underlying IOP rhythmicity remain unclear. The purpose of this study was to verify this regulatory pathway. Methods Adrenalectomy and/or superior cervical ganglionectomy were performed in C57BL/6J mice. Their IOP rhythms were measured under light/dark cycle and constant dark conditions. Ocular administration of corticosterone or norepinephrine was also performed. Localization of adrenergic receptors, glucocorticoid receptors, and clock proteins Bmal1 and Per1 were analyzed using immunohistochemistry. Period2::luciferase rhythms in the cultured iris/ciliary bodies of adrenalectomized and/or superior cervical ganglionectomized mice were monitored to evaluate the effect of the procedures on the local clock. The IOP rhythm of retina and ciliary epithelium-specific Bmal1 knockout mice were measured to determine the significance of the local clock. Results Adrenalectomy and superior cervical ganglionectomy disrupted IOP rhythms and the circadian clock in the iris/ciliary body cultures. Instillation of corticosterone and norepinephrine restored the IOP rhythm. β2-Adrenergic receptors, glucocorticoid receptors, and clock proteins were strongly expressed within the nonpigmented epithelia of the ciliary body. However, tissue-specific Bmal1 knock-out mice maintained their IOP rhythm. Conclusions These findings suggest direct driving of the IOP rhythm by the suprachiasmatic nucleus, via the dual corticosterone and norepinephrine pathway, but not the ciliary clock, which may be useful for chronotherapy of glaucoma.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka,Japan
| | - Satoru Masubuchi
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
16
|
Bering T, Hertz H, Rath MF. Rhythmic Release of Corticosterone Induces Circadian Clock Gene Expression in the Cerebellum. Neuroendocrinology 2020; 110:604-615. [PMID: 31557761 DOI: 10.1159/000503720] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022]
Abstract
Neurons of the cerebellar cortex contain a circadian oscillator, with circadian expression of clock genes being controlled by the master clock of the suprachiasmatic nucleus (SCN). However, the signaling pathway connecting the SCN to the cerebellum is unknown. Glucocorticoids exhibit a prominent SCN-dependent circadian rhythm, and high levels of the glucocorticoid receptor have been reported in the cerebellar cortex; we therefore hypothesized that glucocorticoids may control the rhythmic expression of clock genes in the cerebellar cortex. We here applied a novel methodology by combining the electrolytic lesion of the SCN with implantation of a micropump programmed to release corticosterone in a circadian manner mimicking the endogenous hormone profile. By use of this approach, we were able to restore the corticosterone rhythm in SCN-lesioned male rats. Clock gene expression in the cerebellum was abolished in rats with a lesioned SCN, but exogenous corticosterone restored the daily rhythm in clock gene expression in the cerebellar cortex, as revealed by quantitative real-time PCR and radiochemical in situ hybridization for the detection of the core clock genes Per1, Per2, and Arntl. On the contrary, exogenous hormone did not restore circadian rhythms in body temperature and running activity. RNAscope in situ hybridization further revealed that the glucocorticoid receptor colocalizes with clock gene products in cells of the cerebellar cortex, suggesting that corticosterone exerts its actions by binding directly to receptors in neurons of the cerebellum. However, rhythmic clock gene expression in the cerebellum was also detectable in adrenalectomized rats, indicating that additional control mechanisms exist. These data show that the cerebellar circadian oscillator is influenced by SCN-dependent rhythmic release of corticosterone.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hertz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,
| |
Collapse
|
17
|
Ivy JR, Jones NK, Costello HM, Mansley MK, Peltz TS, Flatman PW, Bailey MA. Glucocorticoid receptor activation stimulates the sodium-chloride cotransporter and influences the diurnal rhythm of its phosphorylation. Am J Physiol Renal Physiol 2019; 317:F1536-F1548. [PMID: 31588796 PMCID: PMC6962506 DOI: 10.1152/ajprenal.00372.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sodium-chloride cotransporter (NCC) in the distal convoluted tubule contributes importantly to sodium balance and blood pressure (BP) regulation. NCC phosphorylation determines transport activity and has a diurnal rhythm influenced by glucocorticoids. Disturbing this rhythm induces “nondipping” BP, an abnormality that increases cardiovascular risk. The receptor through which glucocorticoids regulate NCC is not known. In this study, we found that acute administration of corticosterone to male C57BL6 mice doubled NCC phosphorylation without affecting total NCC abundance in both adrenalectomized and adrenal-intact mice. Corticosterone also increased the whole kidney expression of canonical clock genes: period circadian protein homolog 1 (Per1), Per2, cryptochrome 1, and aryl hydrocarbon receptor nuclear translocator-like protein 1. In adrenal-intact mice, chronic blockade of glucocorticoid receptor (GR) with RU486 did not change total NCC but prevented corticosterone-induced NCC phosphorylation and activation of clock genes. Blockade of mineralocorticoid receptor (MR) with spironolactone reduced the total pool of NCC but did not affect stimulation by corticosterone. The diurnal rhythm of NCC phosphorylation, measured at 6-h intervals, was blunted by chronic GR blockade, and a similar dampening of diurnal variation was seen in GR heterozygous null mice. These effects on NCC phosphorylation did not reflect altered rhythmicity of plasma corticosterone or serum and glucocorticoid-induced kinase 1 activity. Both mineralocorticoids and glucocorticoids emerge as regulators of NCC, acting via distinct receptor pathways. MR activation provides maintenance of the NCC protein pool; GR activation dynamically regulates NCC phosphorylation and establishes the diurnal rhythm of NCC activity. This study has implications for circadian BP homeostasis, particularly in individuals with abnormal glucocorticoid signaling as is found in chronic stress and corticosteroid therapy.
Collapse
Affiliation(s)
- Jessica Ruth Ivy
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Natalie K Jones
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Hannah M Costello
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Morag K Mansley
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Theresa S Peltz
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Peter W Flatman
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| |
Collapse
|
18
|
Canonica J, Frateschi S, Boscardin E, Ebering A, Sergi C, Jäger Y, Peyrollaz T, Mérillat AM, Maillard M, Klusonova P, Odermatt A, Koesters R, Debonneville A, Staub O, Verouti SN, Hummler E. Lack of Renal Tubular Glucocorticoid Receptor Decreases the Thiazide-Sensitive Na +/Cl - Cotransporter NCC and Transiently Affects Sodium Handling. Front Physiol 2019; 10:989. [PMID: 31474871 PMCID: PMC6702950 DOI: 10.3389/fphys.2019.00989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic glucocorticoid infusion impairs NCC activity and induces a non-dipping profile in mice, suggesting that glucocorticoids are essential for daily blood pressure variations. In this paper, we studied mice lacking the renal tubular glucocorticoid receptor (GR) in adulthood (GR knockouts, Nr3c1Pax8/LC1). Upon standard salt diet, Nr3c1Pax8/LC1 mice grow normally, but show reduced NCC activity despite normal plasma aldosterone levels. Following diet switch to low sodium, Nr3c1Pax8/LC1 mice exhibit a transient but significant reduction in the activity of NCC and expression of NHE3 and NKCC2 accompanied by significant increased Spak activity. This is followed by transiently increased urinary sodium excretion and higher plasma aldosterone concentrations. Plasma corticosterone levels and 11βHSD2 mRNA expression and activity in the whole kidney remain unchanged. High salt diet does not affect whole body Na+ and/or K+ balance and NCC activity is not reduced, but leads to a significant increase in diastolic blood pressure dipping in Nr3c1Pax8/LC1 mice. When high sodium treatment is followed by 48 h of darkness, NCC abundance is reduced in knockout mice although activity is not different. Our data show that upon Na+ restriction renal tubular GR-deficiency transiently affects Na+ handling and transport pathways. Overall, upon standard, low Na+ and high Na+ diet exposure Na+ and K+ balance is maintained as evidenced by normal plasma and urinary Na+ and K+ and aldosterone concentrations.
Collapse
Affiliation(s)
- Jérémie Canonica
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Anna Ebering
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Chloé Sergi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Yannick Jäger
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Thibaud Peyrollaz
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Anne-Marie Mérillat
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Marc Maillard
- Department of Nephrology Service, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Petra Klusonova
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Robert Koesters
- Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Anne Debonneville
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Sophia N Verouti
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| |
Collapse
|
19
|
Yasuda S, Iwami S, Tamura K, Ikeda Y, Kamagata M, Sasaki H, Haraguchi A, Miyamatsu M, Hanashi S, Takato Y, Shibata S. Phase resetting of circadian peripheral clocks using human and rodent diets in mouse models of type 2 diabetes and chronic kidney disease. Chronobiol Int 2019; 36:851-869. [PMID: 30990101 DOI: 10.1080/07420528.2019.1594245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression rhythms of clock genes, such as Per1, Per2, Bmal1, and Rev-erb α, in mouse peripheral clocks, are entrained by a scheduled feeding paradigm. In terms of food composition, a carbohydrate-containing diet is reported to cause strong entrainment through insulin secretion. However, it is unknown whether human diets entrain peripheral circadian clocks. In this study, we used freeze-dried diets for type 2 diabetes (DB) and chronic kidney disease (CKD), as well as low-carbohydrate diets. After 24 h of fasting, PER2::LUC knock-in mice were given access to food for 2 days during inactive periods, and bioluminescence rhythm was then measured using an in vivo imaging system. AIN-93M, the control mouse diet with a protein:fat:carbohydrate (PFC) ratio of 14.7:9.5:75.8, caused a significant phase advance (7.3 h) in the liver clock compared with that in 24 h fasted mice, whereas human diets caused significant but smaller phase advances (4.7-6.2 h). Compared with healthy and high fat/sucrose-induced DB mice, adenine-induced CKD mice showed attenuation of a phase-advance with a normal diet. There were no significant differences in phase-advance values between human diets (normal, DB, and CKD). In addition, a normal-carbohydrate diet (PFC ratio of 20.3:23.3:56.4) and a low-carbohydrate diet (PFC ratio of 36.4:42.9:20.7) caused similar phase advances in peripheral clocks. The present results strongly suggest that scheduled feeding with human diets can cause phase advances in the peripheral clocks of not only healthy, but also DB and CKD mice. This discovery provides support to the food-induced entrainment of peripheral clocks in human clinical trials.
Collapse
Affiliation(s)
- Shinnosuke Yasuda
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Shiho Iwami
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Konomi Tamura
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Yuko Ikeda
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Mayo Kamagata
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Hiroyuki Sasaki
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan.,b National Institute of Advanced Industrial Science and Technology , AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) , Tokyo , Japan
| | - Atsushi Haraguchi
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Masako Miyamatsu
- c SHIDAX Research Institute , SHIDAX Corporation , Tokyo , Japan
| | - Shizuka Hanashi
- c SHIDAX Research Institute , SHIDAX Corporation , Tokyo , Japan
| | - Yoshiyuki Takato
- c SHIDAX Research Institute , SHIDAX Corporation , Tokyo , Japan
| | - Shigenobu Shibata
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| |
Collapse
|
20
|
Ince LM, Zhang Z, Beesley S, Vonslow RM, Saer BR, Matthews LC, Begley N, Gibbs JE, Ray DW, Loudon ASI. Circadian variation in pulmonary inflammatory responses is independent of rhythmic glucocorticoid signaling in airway epithelial cells. FASEB J 2018; 33:126-139. [PMID: 29965797 PMCID: PMC6355062 DOI: 10.1096/fj.201800026rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The circadian clock is a critical regulator of immune function. We recently highlighted a role for the circadian clock in a mouse model of pulmonary inflammation. The epithelial clock protein Bmal1 was required to regulate neutrophil recruitment in response to inflammatory challenge. Bmal1 regulated glucocorticoid receptor (GR) recruitment to the neutrophil chemokine, CXC chemokine ligand 5 (CXCL5), providing a candidate mechanism. We now show that clock control of pulmonary neutrophilia persists without rhythmic glucocorticoid availability. Epithelial GR-null mice had elevated expression of proinflammatory chemokines in the lung under homeostatic conditions. However, deletion of GR in the bronchial epithelium blocked rhythmic CXCL5 production, identifying GR as required to confer circadian control to CXCL5. Surprisingly, rhythmic pulmonary neutrophilia persisted, despite nonrhythmic CXCL5 responses, indicating additional circadian control mechanisms. Deletion of GR in myeloid cells alone did not prevent circadian variation in pulmonary neutrophilia and showed reduced neutrophilic inflammation in response to dexamethasone treatment. These new data show GR is required to confer circadian control to some inflammatory chemokines, but that this alone is insufficient to prevent circadian control of neutrophilic inflammation in response to inhaled LPS, with additional control mechanisms arising in the myeloid cell lineage.—Ince, L. M., Zhang, Z., Beesley, S., Vonslow, R. M., Saer, B. R., Matthews, L. C., Begley, N., Gibbs, J. E., Ray, D. W., Loudon, A. S. I. Circadian variation in pulmonary inflammatory responses is independent of rhythmic glucocorticoid signaling in airway epithelial cells.
Collapse
Affiliation(s)
- Louise M Ince
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Zhenguang Zhang
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Stephen Beesley
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ryan M Vonslow
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ben R Saer
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Laura C Matthews
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicola Begley
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Julie E Gibbs
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - David W Ray
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew S I Loudon
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Son GH, Cha HK, Chung S, Kim K. Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks. J Endocr Soc 2018; 2:444-459. [PMID: 29713692 PMCID: PMC5915959 DOI: 10.1210/js.2018-00021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic-pituitary-adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Hyo Kyeong Cha
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Sooyoung Chung
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea.,Korea Brain Research Institute, Daegu, Korea
| |
Collapse
|
22
|
Spencer RL, Chun LE, Hartsock MJ, Woodruff ER. Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Front Neuroendocrinol 2018; 49:52-71. [PMID: 29288075 DOI: 10.1016/j.yfrne.2017.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
Abstract
Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation.
Collapse
Affiliation(s)
- Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
23
|
Ikeda Y, Kamagata M, Hirao M, Yasuda S, Iwami S, Sasaki H, Tsubosaka M, Hattori Y, Todoh A, Tamura K, Shiga K, Ohtsu T, Shibata S. Glucagon and/or IGF-1 Production Regulates Resetting of the Liver Circadian Clock in Response to a Protein or Amino Acid-only Diet. EBioMedicine 2018; 28:210-224. [PMID: 29396301 PMCID: PMC5835556 DOI: 10.1016/j.ebiom.2018.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
The circadian system controls the behavior and multiple physiological functions. In mammals, the suprachiasmatic nucleus (SCN) acts as the master pacemaker and regulates the circadian clocks of peripheral tissues. The SCN receives information regarding the light-dark cycle and is thus synchronized to the external 24-hour environment. In contrast, peripheral clocks, such as the liver clock, receive information from the SCN and other factors; in particular, food intake which leads to insulin secretion induces strong entrainment of the liver clock. On the other hand, the liver clock of insulin-depleted mice treated with streptozotocin (STZ) has been shown to be entrained by scheduled feeding, suggesting that insulin is not necessary for entrainment of the liver clock by feeding. In this study, we aimed to elucidate additional mechanism on entraining liver clock by feeding a protein-only diet and/or amino-acid administration which does not increase insulin levels. We demonstrated that protein-only diet and cysteine administration elicit entrainment of the liver clock via glucagon secretion and/or insulin-like growth factors (IGF-1) production. Our findings suggest that glucagon and/or IGF-1 production are additional key factors in food-induced entrainment. Dietary protein or cysteine increase serum glucagon and hepatic IGF-1 levels, and entrain liver circadian rhythm. Increasing IGF-1 levels is an additional entrainment factor of liver circadian rhythm. Hepatic IGF-1 production is found to be a key factor in the entrainment of liver circadian rhythm in STZ-treated mice.
Disruption of the circadian rhythm leads to multiple disorders; thus the maintenance of circadian oscillation is necessary for maintaining normalized physiological functions. Postprandial insulin secretion is known as an entraining factor of peripheral circadian rhythm; however, this pathway is not appropriate for diabetes patients in whom insulin signaling is disrupted. Here we report that both dietary protein and cysteine alone entrain liver circadian rhythm by increasing glucagon and/or IGF-1 levels independently of insulin. Findings indicate an additional entrainment factor that can be applied to chronotherapy by controlling food content or by supplementation in peoples with diabetes, circadian rhythm disorders.
Collapse
Affiliation(s)
- Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mizuho Hirao
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shinnosuke Yasuda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shiho Iwami
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miku Tsubosaka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuta Hattori
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ai Todoh
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Konomi Tamura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kazuto Shiga
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Teiji Ohtsu
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
24
|
CLOCKΔ19 mutation modifies the manner of synchrony among oscillation neurons in the suprachiasmatic nucleus. Sci Rep 2018; 8:854. [PMID: 29339832 PMCID: PMC5770461 DOI: 10.1038/s41598-018-19224-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023] Open
Abstract
In mammals, the principal circadian oscillator exists in the hypothalamic suprachiasmatic nucleus (SCN). In the SCN, CLOCK works as an essential component of molecular circadian oscillation, and ClockΔ19 mutant mice show unique characteristics of circadian rhythms such as extended free running periods, amplitude attenuation, and high-magnitude phase-resetting responses. Here we investigated what modifications occur in the spatiotemporal organization of clock gene expression in the SCN of ClockΔ19 mutants. The cultured SCN, sampled from neonatal homozygous ClockΔ19 mice on an ICR strain comprising PERIOD2::LUCIFERASE, demonstrated that the Clock gene mutation not only extends the circadian period, but also affects the spatial phase and period distribution of circadian oscillations in the SCN. In addition, disruption of the synchronization among neurons markedly attenuated the amplitude of the circadian rhythm of individual oscillating neurons in the mutant SCN. Further, with numerical simulations based on the present studies, the findings suggested that, in the SCN of the ClockΔ19 mutant mice, stable oscillation was preserved by the interaction among oscillating neurons, and that the orderly phase and period distribution that makes a phase wave are dependent on the functionality of CLOCK.
Collapse
|
25
|
Wu T, Fu Z. Time-dependent glucocorticoid administration differently affects peripheral circadian rhythm in rats. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1122-1128. [PMID: 29121225 DOI: 10.1093/abbs/gmx115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Indexed: 01/09/2023] Open
Abstract
There is a growing recognition that glucocorticoid (GC) acts as an internal timing signal for peripheral circadian oscillators. However, the transcription process of GC-related clock gene in the peripheral tissues is not fully understood. The present study was designed to explore the potential role of clock genes in the GC-induced peripheral circadian gene expression in vivo. Real-time RT-PCR analysis indicated that the transcript levels of Per1 and Dec1 were rapidly up-regulated within 0.5 and 1 h in the heart and kidney respectively after stimulation with dexamethasone (Dex). These results suggest that Per1 and Dec1 serve as the primary and secondary responsers respectively in initiating the GC-induced peripheral circadian gene expression. By comparing the effects of the different GC administration schedules on the circadian rhythm of clock genes in peripheral tissues in rats, we found that the circadian phases of Bmal1 and Per1 were shifted more in the ZT0 (endogenous valley time) Dex stimulation group than in the ZT12 (endogenous peak time) Dex stimulation group in heart and kidney under the normal LD cycle. Under the jet lag condition, the circadian phases of Bmal1 and Per1 were also shifted more in the ZT0 Dex stimulation group than in the ZT12 Dex stimulation group. Therefore, the GC stimulation in the endogenous valley time caused circadian disorder in the normal LD cycle, but it might benefit the circadian resetting of peripheral clocks under the LD reversal condition.
Collapse
Affiliation(s)
- Tao Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
Kamagata M, Ikeda Y, Sasaki H, Hattori Y, Yasuda S, Iwami S, Tsubosaka M, Ishikawa R, Todoh A, Tamura K, Tahara Y, Shibata S. Potent synchronization of peripheral circadian clocks by glucocorticoid injections in PER2::LUC-Clock/Clock mice. Chronobiol Int 2017; 34:1067-1082. [DOI: 10.1080/07420528.2017.1338716] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yuta Hattori
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinnosuke Yasuda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shiho Iwami
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Miku Tsubosaka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Ryosuke Ishikawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Ai Todoh
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Konomi Tamura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
27
|
Nio Y, Hotta N, Maruyama M, Hamagami K, Nagi T, Funata M, Sakamoto J, Nakakariya M, Amano N, Okawa T, Arikawa Y, Sasaki S, Okuda S, Kasai S, Habata Y, Nagisa Y. A Selective Bombesin Receptor Subtype 3 Agonist Promotes Weight Loss in Male Diet-Induced-Obese Rats With Circadian Rhythm Change. Endocrinology 2017; 158:1298-1313. [PMID: 28324017 DOI: 10.1210/en.2016-1825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Bombesin receptor subtype 3 (BRS-3) is an orphan G protein-coupled receptor. Based on the obese phenotype of male BRS-3-deficient mice, BRS-3 has been considered an attractive target for obesity treatment. Here, we developed a selective BRS-3 agonist (compound-A) and evaluated its antiobesity effects. Compound-A showed anorectic effects and enhanced energy expenditure in diet-induced-obese (DIO)-F344 rats. Moreover, repeated oral administration of compound-A for 7 days resulted in a significant body weight reduction in DIO-F344 rats. We also evaluated compound-A for cardiovascular side effects using telemeterized Sprague-Dawley (SD) rats. Oral administration of compound-A resulted in transient blood pressure increases in SD rats. To investigate the underlying mechanisms of BRS-3 agonist effects, we focused on the suprachiasmatic nucleus (SCN), the main control center of circadian rhythms in the hypothalamus, also regulating sympathetic nervous system. Compound-A significantly increased the messenger RNA expression of Brs-3, c-fos, and circadian rhythm genes in SCN of DIO-F344 rats. Because SCN also controls the hypothalamic-pituitary-adrenal (HPA) axis, we evaluated the relationship between BRS-3 and the HPA axis. Oral administration of compound-A caused a significant increase of plasma corticosterone levels in DIO-F344 rats. On this basis, energy expenditure enhancement by compound-A may be due to a circadian rhythm change in central and peripheral tissues, enhancement of peripheral lipid metabolism, and stimulation of the sympathetic nervous system. Furthermore, the blood pressure increase by compound-A could be associated with sympathetic nervous system stimulation via SCN and elevation of plasma corticosterone levels through activation of the HPA axis.
Collapse
Affiliation(s)
- Yasunori Nio
- Extra Value Generation & General Medicine Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Natsu Hotta
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Maruyama
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Kenichi Hamagami
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimi Nagi
- Central Nervous System Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Funata
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Junichi Sakamoto
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Nobuyuki Amano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Okawa
- Central Nervous System Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuyoshi Arikawa
- Central Nervous System Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinobu Sasaki
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoki Okuda
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Shizuo Kasai
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Yugo Habata
- Foods & Nutrients, Yamanashi Gakuin Junior College, Kofu, Yamanashi 400-8575, Japan
| | - Yasutaka Nagisa
- CVM Marketing Japan Pharma Business Unit, Takeda Pharmaceutical Company Ltd, Chuo-ku, Tokyo 103-8686, Japan
| |
Collapse
|
28
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
29
|
Aoyama S, Shibata S. The Role of Circadian Rhythms in Muscular and Osseous Physiology and Their Regulation by Nutrition and Exercise. Front Neurosci 2017; 11:63. [PMID: 28261043 PMCID: PMC5306200 DOI: 10.3389/fnins.2017.00063] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
The mammalian circadian clock regulates the day and night cycles of various physiological functions. The circadian clock system consists of a central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks in peripheral tissues. According to the results of circadian transcriptomic studies in several tissues, the majority of rhythmic genes are expressed in a tissue-specific manner and are influenced by tissue-specific circadian rhythms. Here we review the diurnal variations of musculoskeletal functions and discuss the impact of the circadian clock on homeostasis in skeletal muscle and bone. Peripheral clocks are controlled by not only photic stimulation from the central clock in the SCN but also by external cues, such as feeding and exercise. In this review, we discuss the effects of feeding and exercise on the circadian clock and diurnal variation of musculoskeletal functions. We also discuss the therapeutic potential of chrono-nutrition and chrono-exercise on circadian disturbances and the failure of homeostasis in skeletal muscle and bone.
Collapse
Affiliation(s)
- Shinya Aoyama
- Organization for University Research Initiatives, Waseda UniversityTokyo, Japan; Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda UniversityTokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University Tokyo, Japan
| |
Collapse
|
30
|
Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocr Rev 2017; 38:3-45. [PMID: 27749086 PMCID: PMC5563520 DOI: 10.1210/er.2015-1080] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Adrenal glucocorticoids are major modulators of multiple functions, including energy metabolism, stress responses, immunity, and cognition. The endogenous secretion of glucocorticoids is normally characterized by a prominent and robust circadian (around 24 hours) oscillation, with a daily peak around the time of the habitual sleep-wake transition and minimal levels in the evening and early part of the night. It has long been recognized that this 24-hour rhythm partly reflects the activity of a master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus. In the past decade, secondary circadian clocks based on the same molecular machinery as the central master pacemaker were found in other brain areas as well as in most peripheral tissues, including the adrenal glands. Evidence is rapidly accumulating to indicate that misalignment between central and peripheral clocks has a host of adverse effects. The robust rhythm in circulating glucocorticoid levels has been recognized as a major internal synchronizer of the circadian system. The present review examines the scientific foundation of these novel advances and their implications for health and disease prevention and treatment.
Collapse
Affiliation(s)
- Henrik Oster
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Etienne Challet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Volker Ott
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Emanuela Arvat
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - E Ronald de Kloet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Derk-Jan Dijk
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Stafford Lightman
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Alexandros Vgontzas
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Eve Van Cauter
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
31
|
Sánchez-Bretaño A, Blanco AM, Alonso-Gómez ÁL, Delgado MJ, Kah O, Isorna E. Ghrelin induces clock gene expression in the liver of goldfish in vitro via protein kinase C and protein kinase A pathways. ACTA ACUST UNITED AC 2017; 220:1295-1306. [PMID: 28126833 DOI: 10.1242/jeb.144253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/23/2017] [Indexed: 01/02/2023]
Abstract
The liver is the most important link between the circadian system and metabolism. As a food-entrainable oscillator, the hepatic clock needs to be entrained by food-related signals. The objective of the present study was to investigate the possible role of ghrelin (an orexigenic peptide mainly synthesized in the gastrointestinal tract) as an endogenous synchronizer of the liver oscillator in teleosts. To achieve this aim, we first examined the presence of ghrelin receptors in the liver of goldfish. Then, the ghrelin regulation of clock gene expression in the goldfish liver was studied. Finally, the possible involvement of the phospholipase C/protein kinase C (PLC/PKC) and adenylate cyclase/protein kinase A (AC/PKA) intracellular signalling pathways was investigated. Ghrelin receptor transcripts, ghs-r1a, are present in the majority of goldfish hepatic cells. Ghrelin induced the mRNA expression of the positive (gbmal1a, gclock1a) and negative (gper genes) elements of the main loop of the molecular clock machinery, as well as grev-erbα (auxiliary loop) in cultured liver. These effects were blocked, at least in part, by a ghrelin antagonist. Incubation of liver with a PLC inhibitor (U73122), a PKC activator (phorbol 12-myristate 13-acetate) and a PKC inhibitor (chelerythrine chloride) demonstrated that the PLC/PKC pathway mediates such ghrelin actions. Experiments with an AC activator (forskolin) and a PKA inhibitor (H89) showed that grev-erbα regulation could be due to activation of PKA. Taken together, the present results show for the first time in vertebrates a direct action of ghrelin on hepatic clock genes and support a role for this hormone as a temporal messenger in the entrainment of liver circadian functions.
Collapse
Affiliation(s)
- Aída Sánchez-Bretaño
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| | - Ayelén M Blanco
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| | - Ángel L Alonso-Gómez
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| | - María J Delgado
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| | - Olivier Kah
- Neuroendocrine Effects of Endocrine Disruptors, Inserm (Research Institute for Health, Environment and Occupation, IRSET, INSERM U1085), SFR Biosit Université de Rennes 1, 35000 Rennes, France
| | - Esther Isorna
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| |
Collapse
|
32
|
Potter GDM, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr Rev 2016; 37:584-608. [PMID: 27763782 PMCID: PMC5142605 DOI: 10.1210/er.2016-1083] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important.
Collapse
Affiliation(s)
- Gregory D M Potter
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Debra J Skene
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Josephine Arendt
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Janet E Cade
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter J Grant
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Laura J Hardie
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
33
|
l-Ornithine affects peripheral clock gene expression in mice. Sci Rep 2016; 6:34665. [PMID: 27703199 PMCID: PMC5050418 DOI: 10.1038/srep34665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/15/2016] [Indexed: 01/12/2023] Open
Abstract
The peripheral circadian clock is entrained by factors in the external environment such as scheduled feeding, exercise, and mental and physical stresses. In addition, recent studies in mice demonstrated that some food components have the potential to control the peripheral circadian clock during scheduled feeding, although information about these components remains limited. l-Ornithine is a type of non-protein amino acid that is present in foods and has been reported to have various physiological functions. In human trials, for example, l-ornithine intake improved a subjective index of sleep quality. Here we demonstrate, using an in vivo monitoring system, that repeated oral administration of l-ornithine at an early inactive period in mice induced a phase advance in the rhythm of PER2 expression. By contrast, l-ornithine administration to mouse embryonic fibroblasts did not affect the expression of PER2, indicating that l-ornithine indirectly alters the phase of PER2. l-Ornithine also increased plasma levels of insulin, glucose and glucagon-like peptide-1 alongside mPer2 expression, suggesting that it exerts its effects probably via insulin secretion. Collectively, these findings demonstrate that l-ornithine affects peripheral clock gene expression and may expand the possibilities of L-ornithine as a health food.
Collapse
|
34
|
Chi-Castañeda D, Ortega A. Clock Genes in Glia Cells: A Rhythmic History. ASN Neuro 2016; 8:8/5/1759091416670766. [PMID: 27666286 PMCID: PMC5037500 DOI: 10.1177/1759091416670766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México Soluciones para un México Verde, S.A de C.V., Santa Fé Ciudad de México, México
| | - Arturo Ortega
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
35
|
López-Olmeda JF. Nonphotic entrainment in fish. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:133-143. [PMID: 27642096 DOI: 10.1016/j.cbpa.2016.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/27/2022]
Abstract
Organisms that live on the Earth are subjected to environmental variables that display cyclic variations, such as light, temperature and tides. Since these cyclic changes in the environment are constant and predictable, they have affected biological evolution through selecting the occurrence of biological rhythms in the physiology of all living organisms, from prokaryotes to mammals. Biological clocks confer organisms an adaptive advantage as they can synchronize their behavioral and physiological processes to occur at a given moment of time when effectiveness and success would be greater and/or the cost and risk for organisms would be lower. Among environmental synchronizers, light has been mostly widely studied to date. However, other environmental signals play an important role in biological rhythms, especially in aquatic animals like fish. This review focuses on current knowledge about the role of nonphotic synchronizers (temperature, food and tidal cycles) on biological rhythms in fish, and on the entrainment of the fish circadian system to these synchronizers.
Collapse
Affiliation(s)
- Jose F López-Olmeda
- Department of Animal Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
36
|
Košir R, Prosenc Zmrzljak U, Korenčič A, Juvan P, Ačimovič J, Rozman D. Mouse genotypes drive the liver and adrenal gland clocks. Sci Rep 2016; 6:31955. [PMID: 27535584 PMCID: PMC4989183 DOI: 10.1038/srep31955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms regulate a plethora of physiological processes. Perturbations of the rhythm can result in pathologies which are frequently studied in inbred mouse strains. We show that the genotype of mouse lines defines the circadian gene expression patterns. Expression of majority of core clock and output metabolic genes are phase delayed in the C56BL/6J line compared to 129S2 in the adrenal glands and the liver. Circadian amplitudes are generally higher in the 129S2 line. Experiments in dark - dark (DD) and light - dark conditions (LD), exome sequencing and data mining proposed that mouse lines differ in single nucleotide variants in the binding regions of clock related transcription factors in open chromatin regions. A possible mechanisms of differential circadian expression could be the entrainment and transmission of the light signal to peripheral organs. This is supported by the genotype effect in adrenal glands that is largest under LD, and by the high number of single nucleotide variants in the Receptor, Kinase and G-protein coupled receptor Panther molecular function categories. Different phenotypes of the two mouse lines and changed amino acid sequence of the Period 2 protein possibly contribute further to the observed differences in circadian gene expression.
Collapse
Affiliation(s)
- Rok Košir
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska cesta 4, Ljubljana, Slovenia
| | - Uršula Prosenc Zmrzljak
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska cesta 4, Ljubljana, Slovenia
| | - Anja Korenčič
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska cesta 4, Ljubljana, Slovenia
| | - Peter Juvan
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska cesta 4, Ljubljana, Slovenia
| | - Jure Ačimovič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska cesta 4, Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska cesta 4, Ljubljana, Slovenia.,Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska cesta 4, Ljubljana, Slovenia
| |
Collapse
|
37
|
Yurtsever T, Schilling TM, Kölsch M, Turner JD, Meyer J, Schächinger H, Schote AB. The acute and temporary modulation of PERIOD genes by hydrocortisone in healthy subjects. Chronobiol Int 2016; 33:1222-1234. [DOI: 10.1080/07420528.2016.1211668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Türkan Yurtsever
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Thomas M. Schilling
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Monika Kölsch
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Jonathan D. Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Grand-Duchy of Luxembourg
| | - Jobst Meyer
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Hartmut Schächinger
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Andrea B. Schote
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| |
Collapse
|
38
|
Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization. Neurobiol Aging 2016; 47:102-112. [PMID: 27568094 DOI: 10.1016/j.neurobiolaging.2016.07.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/28/2023]
Abstract
Aged animals exhibit diminished circadian rhythms, and both aging and circadian disruption sensitize neuroinflammatory responses. Microglia-the innate immune cell of the central nervous system-possess endogenous timekeeping mechanisms that regulate immune responses. Here, we explored whether aging is associated with disrupted diurnal rhythms in microglia and neuroinflammatory processes. First, hippocampal microglia isolated from young rats (4 months F344XBN) rhythmically expressed circadian clock genes, whereas microglia isolated from the hippocampus of aged rats (25 months) had aberrant Per1 and Per2 rhythms. Unstimulated microglia from young rats exhibited robust rhythms of TNFα and IL-1β mRNA expression, whereas those from aged rats had flattened and tonically elevated cytokine expression. Similarly, microglial activation markers were diurnally regulated in the hippocampus of young but not aged rats and diurnal differences in responsiveness to both ex vivo and in vivo inflammatory challenges were abolished in aged rats. Corticosterone is an entraining signal for extra-suprachiasmatic nucleus circadian rhythms. Here, corticosterone stimulation elicited similar Per1 induction in aged and young microglia. Overall, these results indicate that aging dysregulates circadian regulation of neuroinflammatory functions.
Collapse
|
39
|
Beesley S, Noguchi T, Welsh DK. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue. PLoS One 2016; 11:e0159618. [PMID: 27459195 PMCID: PMC4961434 DOI: 10.1371/journal.pone.0159618] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+.
Collapse
Affiliation(s)
- Stephen Beesley
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Takako Noguchi
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - David K. Welsh
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| |
Collapse
|
40
|
Comparison of In Vivo Gene Expression Profiling of RPE/Choroid following Intravitreal Injection of Dexamethasone and Triamcinolone Acetonide. J Ophthalmol 2016; 2016:9856736. [PMID: 27429799 PMCID: PMC4939337 DOI: 10.1155/2016/9856736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose. To identify retinal pigment epithelium (RPE)/choroid genes and their relevant expression pathways affected by intravitreal injections of dexamethasone and triamcinolone acetonide in mice at clinically relevant time points for patient care. Methods. Differential gene expression of over 34,000 well-characterized mouse genes in the RPE/choroid of 6-week-old C57BL/6J mice was analyzed after intravitreal steroid injections at 1 week and 1 month postinjection, using Affymetrix Mouse Genome 430 2.0 microarrays. The data were analyzed using GeneSpring GX 12.5 and Ingenuity Pathway Analysis (IPA) microarray analysis software for biologically relevant changes. Results. Both triamcinolone and dexamethasone caused differential activation of genes involved in “Circadian Rhythm Signaling” pathway at both time points tested. Triamcinolone (TAA) uniquely induced significant changes in gene expression in “Calcium Signaling” (1 week) and “Glutamate Receptor Signaling” pathways (1 month). In contrast, dexamethasone (Dex) affected the “GABA Receptor Signaling” (1 week) and “Serotonin Receptor Signaling” (1 month) pathways. Understanding how intraocular steroids affect the gene expression of RPE/choroid is clinically relevant. Conclusions. This in vivo study has elucidated several genes and pathways that are potentially altering the circadian rhythms and several other neurotransmitter pathways in RPE/choroid during intravitreal steroid injections, which likely has consequences in the dysregulation of RPE function and neurodegeneration of the retina.
Collapse
|
41
|
Sasaki H, Hattori Y, Ikeda Y, Kamagata M, Iwami S, Yasuda S, Tahara Y, Shibata S. Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice. Sci Rep 2016; 6:27607. [PMID: 27271267 PMCID: PMC4897787 DOI: 10.1038/srep27607] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuta Hattori
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shiho Iwami
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinnosuke Yasuda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
42
|
Sasaki H, Hattori Y, Ikeda Y, Kamagata M, Iwami S, Yasuda S, Shibata S. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice. Chronobiol Int 2016; 33:849-62. [DOI: 10.3109/07420528.2016.1171775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yuta Hattori
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shiho Iwami
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinnosuke Yasuda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
43
|
Van Dycke KCG, Rodenburg W, van Oostrom CTM, van Kerkhof LWM, Pennings JLA, Roenneberg T, van Steeg H, van der Horst GTJ. Chronically Alternating Light Cycles Increase Breast Cancer Risk in Mice. Curr Biol 2016. [PMID: 26196479 DOI: 10.1016/j.cub.2015.06.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although epidemiological studies in shift workers and flight attendants have associated chronic circadian rhythm disturbance (CRD) with increased breast cancer risk, causal evidence for this association is lacking. Several scenarios have been proposed to contribute to the shift work-cancer connection: (1) internal desynchronization, (2) light at night (resulting in melatonin suppression), (3) sleep disruption, (4) lifestyle disturbances, and (5) decreased vitamin D levels due to lack of sunlight. The confounders inherent in human field studies are less problematic in animal studies, which are therefore a good approach to assess the causal relation between circadian disturbance and cancer. However, the experimental conditions of many of these animal studies were far from the reality of human shift workers. For example, some involved xenografts (addressing tumor growth rather than cancer initiation and/or progression), chemically induced tumor models, or continuous bright light exposure, which can lead to suppression of circadian rhythmicity. Here, we have exposed breast cancer-prone p53(R270H/+)WAPCre conditional mutant mice (in a FVB genetic background) to chronic CRD by subjecting them to a weekly alternating light-dark (LD) cycle throughout their life. Animals exposed to the weekly LD inversions showed a decrease in tumor suppression. In addition, these animals showed an increase in body weight. Importantly, this study provides the first experimental proof that CRD increases breast cancer development. Finally, our data suggest internal desynchronization and sleep disturbance as mechanisms linking shift work with cancer development and obesity.
Collapse
Affiliation(s)
- Kirsten C G Van Dycke
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands; Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Wendy Rodenburg
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands
| | - Conny T M van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands
| | - Linda W M van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands
| | - Till Roenneberg
- Institute for Medical Psychology, Ludwig-Maximilian University, Munich 80336, Germany
| | - Harry van Steeg
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands.
| | - Gijsbertus T J van der Horst
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam 3000 CA, the Netherlands.
| |
Collapse
|
44
|
Woodruff ER, Chun LE, Hinds LR, Spencer RL. Diurnal Corticosterone Presence and Phase Modulate Clock Gene Expression in the Male Rat Prefrontal Cortex. Endocrinology 2016; 157:1522-34. [PMID: 26901093 PMCID: PMC4816727 DOI: 10.1210/en.2015-1884] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation.
Collapse
Affiliation(s)
- Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Laura R Hinds
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
45
|
Soták M, Bryndová J, Ergang P, Vagnerová K, Kvapilová P, Vodička M, Pácha J, Sumová A. Peripheral circadian clocks are diversely affected by adrenalectomy. Chronobiol Int 2016; 33:520-9. [PMID: 27031999 DOI: 10.3109/07420528.2016.1161643] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucocorticoids are considered to synchronize the rhythmicity of clock genes in peripheral tissues; however, the role of circadian variations of endogenous glucocorticoids is not well defined. In the present study, we examined whether peripheral circadian clocks were impaired by adrenalectomy. To achieve this, we tested the circadian rhythmicity of core clock genes (Bmal1, Per1-3, Cry1, RevErbα, Rora), clock-output genes (Dbp, E4bp4) and a glucocorticoid- and clock-controlled gene (Gilz) in liver, jejunum, kidney cortex, splenocytes and visceral adipose tissue (VAT). Adrenalectomy did not affect the phase of clock gene rhythms but distinctly modulated clock gene mRNA levels, and this effect was partially tissue-dependent. Adrenalectomy had a significant inhibitory effect on the level of Per1 mRNA in VAT, liver and jejunum, but not in kidney and splenocytes. Similarly, adrenalectomy down-regulated mRNA levels of Per2 in splenocytes and VAT, Per3 in jejunum, RevErbα in VAT and Dbp in VAT, kidney and splenocytes, whereas the mRNA amounts of Per1 and Per2 in kidney and Per3 in VAT and splenocytes were up-regulated. On the other hand, adrenalectomy had minimal effects on Rora and E4bp4 mRNAs. Adrenalectomy also resulted in decreased level of Gilz mRNA but did not alter the phase of its diurnal rhythm. Collectively, these findings suggest that adrenalectomy alters the mRNA levels of core clock genes and clock-output genes in peripheral organs and may cause tissue-specific modulations of their circadian profiles, which are reflected in changes of the amplitudes but not phases. Thus, the circulating corticosteroids are necessary for maintaining the high-amplitude rhythmicity of the peripheral clocks in a tissue-specific manner.
Collapse
Affiliation(s)
- M Soták
- a Department of Epithelial Physiology
| | | | - P Ergang
- a Department of Epithelial Physiology
| | | | | | - M Vodička
- a Department of Epithelial Physiology
| | - J Pácha
- a Department of Epithelial Physiology
| | - A Sumová
- b Department of Neurohumoral Regulations , Institute of Physiology, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
46
|
Ivy JR, Oosthuyzen W, Peltz TS, Howarth AR, Hunter RW, Dhaun N, Al-Dujaili EAS, Webb DJ, Dear JW, Flatman PW, Bailey MA. Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter. Hypertension 2016; 67:1029-37. [PMID: 26953322 PMCID: PMC4905621 DOI: 10.1161/hypertensionaha.115.06977] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/08/2016] [Indexed: 12/04/2022]
Abstract
Supplemental Digital Content is available in the text. Blood pressure (BP) normally dips during sleep, and nondipping increases cardiovascular risk. Hydrochlorothiazide restores the dipping BP profile in nondipping patients, suggesting that the NaCl cotransporter, NCC, is an important determinant of daily BP variation. NCC activity in cells is regulated by the circadian transcription factor per1. In vivo, circadian genes are entrained via the hypothalamic–pituitary–adrenal axis. Here, we test whether abnormalities in the day:night variation of circulating glucocorticoid influence NCC activity and BP control. C57BL6/J mice were culled at the peak (1:00 AM) and trough (1:00 PM) of BP. We found no day:night variation in NCC mRNA or protein but NCC phosphorylation on threonine53 (pNCC), required for NCC activation, was higher when mice were awake, as was excretion of NCC in urinary exosomes. Peak NCC activity correlated with peak expression of per2 and bmal1 (clock genes) and sgk1 and tsc22d3 (glucocorticoid-responsive kinases). Adrenalectomy reduced NCC abundance and blunted the daily variation in pNCC levels without affecting variation in clock gene transcription. Chronic corticosterone infusion increased bmal1, per1, sgk1, and tsc22d3 expression during the inactive phase. Inactive phase pNCC was also elevated by corticosterone, and a nondipping BP profile was induced. Hydrochlorothiazide restored rhythmicity of BP in corticosterone-treated mice without affecting BP in controls. Glucocorticoids influence the day:night variation in NCC activity via kinases that control phosphorylation. Abnormal glucocorticoid rhythms impair NCC and induce nondipping. Night-time dosing of thiazides may be particularly beneficial in patients with modest glucocorticoid excess.
Collapse
Affiliation(s)
- Jessica R Ivy
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Wilna Oosthuyzen
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Theresa S Peltz
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Amelia R Howarth
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Robert W Hunter
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Neeraj Dhaun
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Emad A S Al-Dujaili
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - David J Webb
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - James W Dear
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Peter W Flatman
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.)
| | - Matthew A Bailey
- From the The British Heart Foundation Centre for Cardiovascular Science (J.R.I., W.O., T.S.P., A.R.H., R.W.H., N.D., D.J.W., J.W.D., M.A.B.) and The Centre for Integrative Physiology (P.W.F.), The University of Edinburgh, Edinburgh, United Kingdom; and Dietetics, Nutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, United Kingdom (E.A.S.A.-D.).
| |
Collapse
|
47
|
Su Y, Cailotto C, Foppen E, Jansen R, Zhang Z, Buijs R, Fliers E, Kalsbeek A. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver. Mol Cell Endocrinol 2016; 422:125-131. [PMID: 26704081 DOI: 10.1016/j.mce.2015.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 11/24/2022]
Abstract
The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN.
Collapse
Affiliation(s)
- Yan Su
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Cathy Cailotto
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Remi Jansen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Zhi Zhang
- Department of Endocrinology and Metabolism, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ruud Buijs
- Departamento de Biologia Celulary Fisiologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Distrito Federal, Mexico
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands; Department of Endocrinology and Metabolism, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Gil-Lozano M, Wu WK, Martchenko A, Brubaker PL. High-Fat Diet and Palmitate Alter the Rhythmic Secretion of Glucagon-Like Peptide-1 by the Rodent L-cell. Endocrinology 2016; 157:586-99. [PMID: 26646204 DOI: 10.1210/en.2015-1732] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1), by the intestinal L-cell is rhythmically regulated by an independent molecular clock. However, the impact of factors known to affect the activity of similar cell-autonomous clocks, such as circulating glucocorticoids and high-fat feeding, on GLP-1 secretory patterns remains to be elucidated. Herein the role of the endogenous corticosterone rhythm on the pattern of GLP-1 and insulin nutrient-induced responses was examined in corticosterone pellet-implanted rats. Moreover, the impact of nutrient excess on the time-dependent secretion of both hormones was assessed in rats fed a high-fat, high-sucrose diet. Finally, the effects of the saturated fatty acid, palmitate, on the L-cell molecular clock and GLP-1 secretion were investigated in vitro using murine GLUTag L-cells. Diurnal variations in GLP-1 and insulin nutrient-induced responses were maintained in animals lacking an endogenous corticosterone rhythm, suggesting that glucocorticoids are not the predominant entrainment factor for L-cell rhythmic activity. In addition to hyperglycemia, hyperinsulinemia, insulin resistance, and disorganization of feeding behavior, high-fat high-sucrose-fed rats showed a total abrogation of the diurnal variation in GLP-1 and insulin nutrient-induced responses, with comparable levels of both hormones at the normal peak (5:00 pm) and trough (5:00 am) of their daily pattern. Finally, palmitate incubation induced profound derangements in the rhythmic expression of circadian oscillators in GLUTag L-cells and severely impaired the secretory activity of these cells. Collectively our findings demonstrate that obesogenic diets disrupt the rhythmic activity of the L-cell, partially through a direct effect of specific nutritional components.
Collapse
Affiliation(s)
- Manuel Gil-Lozano
- Departments of Physiology (M.G.-L., W.K.W., A.M., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - W Kelly Wu
- Departments of Physiology (M.G.-L., W.K.W., A.M., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Alexandre Martchenko
- Departments of Physiology (M.G.-L., W.K.W., A.M., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Patricia L Brubaker
- Departments of Physiology (M.G.-L., W.K.W., A.M., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
49
|
Namvar S, Gyte A, Denn M, Leighton B, Piggins HD. Dietary fat and corticosterone levels are contributing factors to meal anticipation. Am J Physiol Regul Integr Comp Physiol 2016; 310:R711-23. [PMID: 26818054 PMCID: PMC4867411 DOI: 10.1152/ajpregu.00308.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022]
Abstract
Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content.
Collapse
Affiliation(s)
- Sara Namvar
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Amy Gyte
- AstraZeneca Research and Development, Mereside, Alderley Park, Macclesfield, United Kingdom
| | - Mark Denn
- AstraZeneca Research and Development, Mereside, Alderley Park, Macclesfield, United Kingdom
| | - Brendan Leighton
- AstraZeneca Research and Development, Mereside, Alderley Park, Macclesfield, United Kingdom
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| |
Collapse
|
50
|
Su Y, Foppen E, Zhang Z, Fliers E, Kalsbeek A. Effects of 6-meals-a-day feeding and 6-meals-a-day feeding combined with adrenalectomy on daily gene expression rhythms in rat epididymal white adipose tissue. Genes Cells 2015; 21:6-24. [DOI: 10.1111/gtc.12315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Yan Su
- Hypothalamic Integration Mechanisms; Netherlands Institute for Neuroscience; Meibergdreef 47 1105 BA Amsterdam The Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism; Academic Medical Center (AMC); University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Zhi Zhang
- Department of Endocrinology and Metabolism; Academic Medical Center (AMC); University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism; Academic Medical Center (AMC); University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms; Netherlands Institute for Neuroscience; Meibergdreef 47 1105 BA Amsterdam The Netherlands
- Department of Endocrinology and Metabolism; Academic Medical Center (AMC); University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| |
Collapse
|