1
|
Qiu Y, Gan M, Wang X, Liao T, Chen Q, Lei Y, Chen L, Wang J, Zhao Y, Niu L, Wang Y, Zhang S, Zhu L, Shen L. The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: A review. Int J Biol Macromol 2023; 253:127042. [PMID: 37742894 DOI: 10.1016/j.ijbiomac.2023.127042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Excessive expansion of adipocytes can have unhealthy consequences as excess free fatty acids enter other tissues and cause ectopic fat deposition by resynthesizing triglycerides. This lipid accumulation in various tissues is harmful and can increase the risk of related metabolic diseases such as type II diabetes, cardiovascular disease, and insulin resistance. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that play a key role in energy metabolism as fatty acid metabolism sensors, and peroxisome proliferator-activated receptor γ (PPARγ) is the main subtype responsible for fat cell differentiation and adipogenesis. In this paper, we introduce the main structure and function of PPARγ and its regulatory role in the process of lipogenesis in the liver, kidney, skeletal muscle, and pancreas. This information can serve as a reference for further understanding the regulatory mechanisms and measures of the PPAR family in the process of ectopic fat deposition.
Collapse
Affiliation(s)
- Yanhao Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyu Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuyang Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Zhang X, Zhu B, Lin P, Liu X, Gao J, Yin D, Zeng J, Liao B, Kang Z. Niacin exacerbates β cell lipotoxicity in diet-induced obesity mice through upregulation of GPR109A and PPARγ2: Inhibition by incretin drugs. Front Endocrinol (Lausanne) 2022; 13:1057905. [PMID: 36568082 PMCID: PMC9768175 DOI: 10.3389/fendo.2022.1057905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
The widely used lipid-lowering drug niacin was reported to increase blood glucose in diabetes. How does niacin regulate β Cell function in diabetic patients remains unclear. This study aimed to investigate the effect of niacin on β cell lipotoxicity in vitro and in vivo. Niacin treatment sensitized the palmitate-induced cytotoxicity and apoptosis in INS-1 cells. In addition, palmitate significantly increased the niacin receptor GPR109A and PPARγ2 levels, which could be further boosted by niacin co-treatment, creating a vicious cycle. In contrast, knocking down of GPR109A could reverse both PPARγ2 expression and niacin toxicity in the INS-1 cells. Interestingly, we found that GLP-1 receptor agonist exendin-4 showed similar inhibitive effects on the GPR109A/PPARγ2 axis and was able to reverse niacin induced lipotoxicity in INS-1 cells. In diet-induced obesity (DIO) mouse model, niacin treatment resulted in elevated blood glucose, impaired glucose tolerance and insulin secretion, accompanied by the change of islets morphology and the decrease of β cell mass. The combination of niacin and DPP-4 inhibitor sitagliptin can improve glucose tolerance, insulin secretion and islet morphology and β cell mass, even better than sitagliptin alone. Our results show that niacin increased β cell lipotoxicity partially through upregulation of GPR109A and PPARγ2, which can be alleviated by incretin drugs. We provide a new mechanism of niacin toxicity, and suggest that the combination of niacin and incretin may have better blood glucose and lipid control effect in clinical practice.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Pharmacy, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Baoyi Zhu
- Department of Urology, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Peibin Lin
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaoping Liu
- Department of Pharmacy, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jianwen Zeng
- Department of Urology, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
- *Correspondence: Zhanfang Kang, ; Jianwen Zeng, ; Baojian Liao,
| | - Baojian Liao
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Zhanfang Kang, ; Jianwen Zeng, ; Baojian Liao,
| | - Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
- *Correspondence: Zhanfang Kang, ; Jianwen Zeng, ; Baojian Liao,
| |
Collapse
|
3
|
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol 2017; 48:52-108. [PMID: 28816105 DOI: 10.1080/10408444.2017.1351420] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiazolidinedione (TZD) drugs used in the treatment of type 2 diabetes mellitus (T2DM) have proven effective in improving insulin sensitivity, hyperglycemia, and lipid metabolism. Though well tolerated by some patients, their mechanism of action as ligands of peroxisome proliferator-activated receptors (PPARs) results in the activation of several pathways in addition to those responsible for glycemic control and lipid homeostasis. These pathways, which include those related to inflammation, bone formation, and cell proliferation, may lead to adverse health outcomes. As treatment with TZDs has been associated with adverse hepatic, cardiovascular, osteological, and carcinogenic events in some studies, the role of TZDs in the treatment of T2DM continues to be debated. At the same time, new therapeutic roles for TZDs are being investigated, with new forms and isoforms currently in the pre-clinical phase for use in the prevention and treatment of some cancers, inflammatory diseases, and other conditions. The aims of this review are to provide an overview of the mechanism(s) of action of TZDs, a review of their safety for use in the treatment of T2DM, and a perspective on their current and future therapeutic roles.
Collapse
Affiliation(s)
- Melissa A Davidson
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada
| | - Donald R Mattison
- b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada
| | - Laurent Azoulay
- d Center for Clinical Epidemiology , Lady Davis Research Institute, Jewish General Hospital , Montreal , Canada.,e Department of Oncology , McGill University , Montreal , Canada
| | - Daniel Krewski
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada.,f Faculty of Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
4
|
Transcriptional regulation analysis of FAM3A gene and its effect on adipocyte differentiation. Gene 2016; 595:92-98. [DOI: 10.1016/j.gene.2016.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/04/2016] [Accepted: 09/24/2016] [Indexed: 11/17/2022]
|
5
|
Bowen A, Kos K, Whatmore J, Richardson S, Welters HJ. Wnt4 antagonises Wnt3a mediated increases in growth and glucose stimulated insulin secretion in the pancreatic beta-cell line, INS-1. Biochem Biophys Res Commun 2016; 479:793-799. [PMID: 27687546 DOI: 10.1016/j.bbrc.2016.09.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022]
Abstract
The Wnt signalling pathway in beta-cells has been linked to the development of type 2 diabetes. Investigating the impact of a non-canonical Wnt ligand, Wnt4, on beta-cell function we found that in INS-1 cells, Wnt4 was able to completely block Wnt3a stimulated cell growth and insulin secretion. However, despite high levels of Wnt4 protein being detected in INS-1 cells, reducing the expression of Wnt4 had no impact on cell growth or Wnt3a signalling. As such, the role of the endogenously expressed Wnt4 in beta-cells is unclear, but the data showing that Wnt4 can act as a negative regulator of canonical Wnt signalling in beta-cells suggests that this pathway could be a potential target for modulating beta-cell function.
Collapse
Affiliation(s)
- A Bowen
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - K Kos
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - J Whatmore
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, St Luke's Campus, Heavitree Road, Exeter EX1 2LU, UK
| | - S Richardson
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - H J Welters
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK.
| |
Collapse
|
6
|
Is the Mouse a Good Model of Human PPARγ-Related Metabolic Diseases? Int J Mol Sci 2016; 17:ijms17081236. [PMID: 27483259 PMCID: PMC5000634 DOI: 10.3390/ijms17081236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
With the increasing number of patients affected with metabolic diseases such as type 2 diabetes, obesity, atherosclerosis and insulin resistance, academic researchers and pharmaceutical companies are eager to better understand metabolic syndrome and develop new drugs for its treatment. Many studies have focused on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), which plays a crucial role in adipogenesis and lipid metabolism. These studies have been able to connect this transcription factor to several human metabolic diseases. Due to obvious limitations concerning experimentation in humans, animal models—mainly mouse models—have been generated to investigate the role of PPARγ in different tissues. This review focuses on the metabolic features of human and mouse PPARγ-related diseases and the utility of the mouse as a model.
Collapse
|
7
|
Shi YC, Loh K, Bensellam M, Lee K, Zhai L, Lau J, Cantley J, Luzuriaga J, Laybutt DR, Herzog H. Pancreatic PYY Is Critical in the Control of Insulin Secretion and Glucose Homeostasis in Female Mice. Endocrinology 2015; 156:3122-36. [PMID: 26125465 DOI: 10.1210/en.2015-1168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin secretion is tightly controlled through coordinated actions of a number of systemic and local factors. Peptide YY (PYY) is expressed in α-cells of the islet, but its role in control of islet function such as insulin release is not clear. In this study, we generated a transgenic mouse model (Pyy(tg/+)/Rip-Cre) overexpressing the Pyy gene under the control of the rat insulin 2 gene promoter and assessed the impact of islet-released PYY on β-cell function, insulin release, and glucose homeostasis in mice. Our results show that up-regulation of PYY in islet β-cells leads to an increase in serum insulin levels as well as improved glucose tolerance. Interestingly, PYY-overproducing mice show increased lean mass and reduced fat mass with no significant changes in food intake or body weight. Energy expenditure is also increased accompanied by increased respiratory exchange ratio. Mechanistically, the enhanced insulin levels and improved glucose tolerance are primarily due to increased β-cell mass and secretion. This is associated with alterations in the expression of genes important for β-cell proliferation and function as well as the maintenance of the β-cell phenotype. Taken together, these data demonstrate that pancreatic islet-derived PYY plays an important role in controlling glucose homeostasis through the modulation of β-cell mass and function.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Kim Loh
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Mohammed Bensellam
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Kailun Lee
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Lei Zhai
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Jackie Lau
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - James Cantley
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Jude Luzuriaga
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - D Ross Laybutt
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Herbert Herzog
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| |
Collapse
|
8
|
Opposing roles for mammary epithelial-specific PPARγ signaling and activation during breast tumour progression. Mol Cancer 2015; 14:85. [PMID: 25889730 PMCID: PMC4422298 DOI: 10.1186/s12943-015-0347-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/18/2015] [Indexed: 11/29/2022] Open
Abstract
Background Among women worldwide, breast cancer is the most commonly diagnosed cancer, and the second leading cause of cancer-related deaths. Improved understanding of breast tumourigenesis may facilitate the development of more effective therapies. Peroxisome proliferator-activated receptor (PPAR)γ is a transcription factor that regulates genes involved in insulin sensitivity and adipogenesis. Previously, we showed, using 7,12-dimethylbenz [a] anthracene (DMBA)-treated haploinsufficient PPARγ mice, that PPARγ suppresses breast tumour progression; however, the PPARγ expressing cell types and mechanisms involved remain to be clarified. Here, the role of PPARγ expression and activation in mammary epithelial cells (MG) with respect to DMBA-mediated breast tumourigenesis was investigated. Methods PPARγ MG knockout (PPARγ-MG KO) mice and their congenic, wild-type controls (PPARγ-WT) were treated once a week for six weeks by oral gavage with 1 mg DMBA dissolved in corn oil and maintained on a normal chow diet. At week 7, mice were randomly divided into those maintained on a normal chow diet (DMBA Only; PPARγ-WT: n = 25 and PPARγ-MG KO: n = 39) or those receiving a diet supplemented with the PPARγ ligand, rosiglitazone (ROSI, 4 mg/kg/day) (DMBA + ROSI; PPARγ-WT: n = 34 and PPARγ-MG KO: n = 17) for the duration of the 25-week study. Results Compared to DMBA Only-treated PPARγ-WTs, both breast tumour susceptibility and serum levels of proinflammatory and chemotactic cytokines, namely IL-4, eotaxin, GM-CSF, IFN-γ, and MIP-1α, were decreased among PPARγ-MG KOs. Cotreatment with ROSI significantly reduced breast tumour progression among PPARγ-WTs, correlating with increased BRCA1 and decreased VEGF and COX-2 protein expression levels in breast tumours; whereas, surprisingly DMBA + ROSI-treated PPARγ-MG KOs showed increased breast tumourigenesis, correlating with activation of COX-2. Conclusion These novel data suggest MG-specific PPARγ expression and signaling is critical during breast tumourigenesis, and may serve as a strong candidate predictive biomarker for response of breast cancer patients to the use of therapeutic strategies that include PPARγ ligands. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0347-8) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Cai Y, Lydic TA, Turkette T, Reid GE, Olson LK. Impact of alogliptin and pioglitazone on lipid metabolism in islets of prediabetic and diabetic Zucker Diabetic Fatty rats. Biochem Pharmacol 2015; 95:46-57. [PMID: 25801003 DOI: 10.1016/j.bcp.2015.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Abstract
Prolonged exposure of pancreatic beta (β) cells to elevated glucose and free fatty acids (FFA) as occurs in type 2 diabetes results in loss of β cell function and survival. In Zucker Diabetic Fatty (ZDF) rats, β cell failure is associated with increased triacylglyceride (TAG) synthesis and disruption of the glycerolipid/FFA (GL/FFA) cycle, a critical arm of glucose-stimulated insulin secretion (GSIS). The aim of this study was to determine the impact of activation of PPARγ and increased incretin action via dipeptidyl-peptidase inhibition using pioglitazone and/or alogliptin, respectively, on islet lipid metabolism in prediabetic and diabetic ZDF rats. Transition of control prediabetic ZDF rats to diabetes was associated with reduced plasma insulin levels, reduced islet insulin content and GSIS, reduced stearoyl-CoA desaturase 2 (SCD 2) expression, and increased islet TAG, diacylglyceride (DAG) and ceramides species containing saturated FA. Treatment of prediabetic ZDF rats with a combination of pioglitazone and alogliptin, but not individually, prevented the transition to diabetes and was associated with marked lowering of islet TAG and DAG levels. Pioglitazone and alogliptin, however, did not restore SCD2 expression, the degree of FA saturation in TAG, DAG or ceramides, islet insulin content, or lower ceramide levels. These findings are consistent with activation of PPARγ and increased incretin action working in concert to restore GL/FFA cycle in β cells of ZDF rats. Restoration of the GL/FFA cycle without correcting islet FA desaturation, production of islet ceramides, and/or insulin sensitivity, however, may place these islets at risk for β cell failure.
Collapse
Affiliation(s)
- Ying Cai
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Todd A Lydic
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Thomas Turkette
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA.
| | - L Karl Olson
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Hogh KLN, Craig MN, Uy CE, Nygren H, Asadi A, Speck M, Fraser JD, Rudecki AP, Baker RK, Orešič M, Gray SL. Overexpression of PPARγ specifically in pancreatic β-cells exacerbates obesity-induced glucose intolerance, reduces β-cell mass, and alters islet lipid metabolism in male mice. Endocrinology 2014; 155:3843-52. [PMID: 25051434 DOI: 10.1210/en.2014-1076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The contribution of peroxisomal proliferator-activated receptor (PPAR)-γ agonism in pancreatic β-cells to the antidiabetic actions of thiazolidinediones has not been clearly elucidated. Genetic models of pancreatic β-cell PPARγ ablation have revealed a potential role for PPARγ in β-cell expansion in obesity but a limited role in normal β-cell physiology. Here we overexpressed PPARγ1 or PPARγ2 specifically in pancreatic β-cells of mice subjected to high-fat feeding using an associated adenovirus (β-PPARγ1-HFD and β-PPARγ2-HFD mice). We show β-cell-specific PPARγ1 or PPARγ2 overexpression in diet-induced obese mice exacerbated obesity-induced glucose intolerance with decreased β-cell mass, increased islet cell apoptosis, and decreased plasma insulin compared with obese control mice (β-eGFP-HFD mice). Analysis of islet lipid composition in β-PPARγ2-HFD mice revealed no significant changes in islet triglyceride content and an increase in only one of eight ceramide species measured. Interestingly β-PPARγ2-HFD islets had significantly lower levels of lysophosphatidylcholines, lipid species shown to enhance insulin secretion in β-cells. Gene expression profiling revealed increased expression of uncoupling protein 2 and genes involved in fatty acid transport and β-oxidation. In summary, transgenic overexpression of PPARγ in β-cells in diet-induced obesity negatively impacts whole-animal carbohydrate metabolism associated with altered islet lipid content, increased expression of β-oxidative genes, and reduced β-cell mass.
Collapse
Affiliation(s)
- K-Lynn N Hogh
- Northern Medical Program (K.N.H., M.N.C., C.E.U., J.D.F., A.P.R., S.L.G.), University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9; Department of Cellular and Physiological Sciences and Faculty of Medicine (A.A., R.K.B.), University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; VTT Technical Research Centre of Finland (H.N., M.O.), Espoo FI-02044, Finland; Steno Diabetes Center A/S (H.N., M.O.), Gentofte, Denmark; and Child and Family Research Institute (M.S.), Vancouver, British Columbia, Canada V6T 1Z1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Saben J, Thakali KM, Lindsey FE, Zhong Y, Badger TM, Andres A, Shankar K. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions. Exp Biol Med (Maywood) 2014; 239:1340-51. [PMID: 24951473 DOI: 10.1177/1535370214539225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic differentiation. Additionally, functional characterization of UCMSCs as adipocytes has not been described. We tested the potential of three well-established adipogenic cocktails containing IBMX, dexamethasone, and insulin (MDI) plus indomethacin (MDI-I) or rosiglitazone (MDI-R) to stimulate adipocyte differentiation in UCMSCs. MDI, MDI-I, and MDI-R treatment significantly increased peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT-enhancer binding protein alpha (C/EBPα) mRNA and induced lipid droplet formation. However, MDI-I had the greatest impact on mRNA expression of PPARγ, C/EBPα, FABP4, GPD1, PLIN1, PLIN2, and ADIPOQ and lipid accumulation, whereas MDI showed the least. Interestingly, there were no treatment group differences in the amount of PPARγ protein. However, MDI-I treated cells had significantly more C/EBPα protein compared to MDI or MDI-R, suggesting that indomethacin-dependent increased C/EBPα may contribute to the adipogenesis-inducing potency of MDI-I. Additionally, bone morphogenetic protein 4 (BMP4) treatment of UCMSCs did not enhance responsiveness to MDI-induced differentiation. Finally to characterize adipocyte function, differentiated UCMSCs were stimulated with insulin and downstream signaling was assessed. Differentiated UCMSCs were responsive to insulin at two weeks but showed decreased sensitivity by five weeks following differentiation, suggesting that long-term differentiation may induce insulin resistance. Together, these data indicate that UCMSCs undergo adipogenesis when differentiated in MDI, MDI-I, and MDI-R, however the presence of indomethacin greatly enhances their adipogenic potential beyond that of rosiglitazone. Furthermore, our results suggest that insulin signaling pathways of differentiated UCMSCs are functionally similar to adipocytes.
Collapse
Affiliation(s)
- Jessica Saben
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Keshari M Thakali
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Forrest E Lindsey
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Ying Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Thomas M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
12
|
Deng R, Nie A, Jian F, Liu Y, Tang H, Zhang J, Zhang Y, Shao L, Li F, Zhou L, Wang X, Ning G. Acute exposure of beta-cells to troglitazone decreases insulin hypersecretion via activating AMPK. Biochim Biophys Acta Gen Subj 2014; 1840:577-85. [DOI: 10.1016/j.bbagen.2013.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 10/05/2013] [Accepted: 10/13/2013] [Indexed: 11/16/2022]
|
13
|
Gupta D, Leahy AA, Monga N, Peshavaria M, Jetton TL, Leahy JL. Peroxisome proliferator-activated receptor γ (PPARγ) and its target genes are downstream effectors of FoxO1 protein in islet β-cells: mechanism of β-cell compensation and failure. J Biol Chem 2013; 288:25440-25449. [PMID: 23788637 DOI: 10.1074/jbc.m113.486852] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The molecular mechanisms and signaling pathways that drive islet β-cell compensation and failure are not fully resolved. We have used in vitro and in vivo systems to show that FoxO1, an integrator of metabolic stimuli, inhibits PPARγ expression in β-cells, thus transcription of its target genes (Pdx1, glucose-dependent insulinotropic polypeptide (GIP) receptor, and pyruvate carboxylase) that are important regulators of β-cell function, survival, and compensation. FoxO1 inhibition of target gene transcription is normally relieved when upstream activation induces its translocation from the nucleus to the cytoplasm. Attesting to the central importance of this pathway, islet expression of PPARγ and its target genes was enhanced in nondiabetic insulin-resistant rats and markedly reduced with diabetes induction. Insight into the impaired PPARγ signaling with hyperglycemia was obtained with confocal microscopy of pancreas sections that showed an intense nuclear FoxO1 immunostaining pattern in the β-cells of diabetic rats in contrast to the nuclear and cytoplasmic FoxO1 in nondiabetic rats. These findings suggest a FoxO1/PPARγ-mediated network acting as a core component of β-cell adaptation to metabolic stress, with failure of this response from impaired FoxO1 activation causing or exacerbating diabetes.
Collapse
Affiliation(s)
- Dhananjay Gupta
- From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Averi A Leahy
- From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Navjot Monga
- From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Mina Peshavaria
- From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Thomas L Jetton
- From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jack L Leahy
- From the Division of Endocrinology, Diabetes, and Metabolism and the Department of Medicine, University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|
14
|
FAM3A is a target gene of peroxisome proliferator-activated receptor gamma. Biochim Biophys Acta Gen Subj 2013; 1830:4160-70. [PMID: 23562554 DOI: 10.1016/j.bbagen.2013.03.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/05/2013] [Accepted: 03/27/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND To date, the biological function of FAM3A, the first member of FAM3 gene family, remains unknown. We aimed to investigate whether the expression of FAM3A in liver cells is regulated by peroxisome proliferator-activated receptors (PPARs). METHODS AND RESULTS The transcriptional activity of human and mouse FAM3A gene promoters was determined by luciferase reporter assay system. PPARγ agonist rosiglitazone induced FAM3A expression in primary cultured mouse hepatocytes and human HepG2 cells. PPARγ antagonism blocked rosiglitazone-induced FAM3A expression, whereas PPARγ overexpression stimulated FAM3A expression in HepG2 cells. In contrast, PPARα agonist fenofibrate or PPARβ agonist GW0742 failed to affect FAM3A expression in HepG2 cells. The transcriptional activities of human and mouse FAM3A promoters were markedly stimulated by PPARγ activation, but not by PPARα and PPARβ activation. Chromatin immunoprecipitation (ChIP) assay revealed a direct binding of PPARγ to the putative peroxisome proliferator response element (PPRE) located at -1258/-1246 in the human FAM3A promoter. Site-directed mutagenesis of this PPRE-like motif abolished PPARγ's stimulatory effect on the transcriptional activity of human FAM3A promoter. In vivo, oral rosiglitazone treatment upregulated FAM3A expression in the livers of C57BL/6 mice and db/db mice. Moreover, upregulation of FAM3A by PPARγ activation was correlated with increased level of phosphorylated Akt (pAkt) in liver cells. CONCLUSIONS FAM3A as a novel target gene of PPARγ. Upregulation of FAM3A by PPARγ activation is correlated with increased pAkt level in liver cells. GENERAL SIGNIFICANCE Upregulation of FAM3A might contribute to PPARγ's metabolic effects in the liver.
Collapse
|