1
|
Tsinopoulou VR, Bacopoulou F, Fidani S, Christoforidis A. Genetic determinants of age at menarche: does the LIN28B gene play a role? A narrative review. Hormones (Athens) 2025; 24:167-177. [PMID: 39227549 DOI: 10.1007/s42000-024-00594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Menarche, the first menstrual period marking the onset of female reproduction, is a milestone of female puberty. The timing of menarche determines the timing of later phases of pubertal maturation in girls and has major implications for health later in life, including behavioral and psychosocial disorders during adolescence and fertility problems and increased risk for certain diseases in adulthood. Over the last few decades, a continuous decline in age at menarche has been noted, with environmental factors contributing to this change in the timing of menarche. However, a genetic component of age at menarche and pubertal onset has been strongly suggested by studies in families and twins wherein up to approximately 80% of the variance in puberty onset can be explained by heritability. Gene association studies have revealed several genetic loci involved in age at menarche, among which LIN28B has emerged as a key regulator of female growth and puberty. LIN28B, a human homolog of Lin28 of C. elegans, is a known RNA-binding protein that regulates let-7 microRNA biogenesis. Genome-wide association studies have identified the association of polymorphisms in the LIN28B gene with age at menarche in several population cohorts worldwide. In this paper, we review the genetic factors contributing to age of menarche, with particular focus on the identified polymorphisms in LIN28B gene.
Collapse
Affiliation(s)
- Vasiliki Rengina Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, Stilponos Kyriakidi 1, Thessaloniki, 54636, Greece.
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Styliani Fidani
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, Stilponos Kyriakidi 1, Thessaloniki, 54636, Greece
- Laboratory of Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Christoforidis
- 1st Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ippokratio General Hospital, Thessaloniki, Greece
| |
Collapse
|
2
|
Jeong HR, Hwang IT. The role of MicroRNAs as fine-tuners in the onset of puberty: a comprehensive review. Ann Pediatr Endocrinol Metab 2024; 29:211-219. [PMID: 39231482 PMCID: PMC11374517 DOI: 10.6065/apem.2346238.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 09/06/2024] Open
Abstract
MicroRNA (miRNA) are small, noncoding RNA molecules that play pivotal roles in gene expression, various biological processes, and development of disease. MiRNAs exhibit distinct expression patterns depending on time points and tissues, indicating their relevance to the development, differentiation, and somatic growth of organisms. MiRNAs are also involved in puberty onset and fertility. Although puberty is a universal stage in the life cycles of most organisms, the precise mechanisms initiating this process remain elusive. Genetic, hormonal, nutritional, environmental, and epigenetic factors are presumed contributors. The intricate regulation of puberty during growth also suggests that miRNAs are involved. This study aims to provide insight into the understanding of miRNAs roles in the initiation of puberty by reviewing the existing research.
Collapse
Affiliation(s)
- Hwal Rim Jeong
- Department of Pediatrics, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Il Tae Hwang
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Yang L, Liao J, Huang H, Lee TL, Qi H. Stage-specific regulation of undifferentiated spermatogonia by AKT1S1-mediated AKT-mTORC1 signaling during mouse spermatogenesis. Dev Biol 2024; 509:11-27. [PMID: 38311163 DOI: 10.1016/j.ydbio.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Undifferentiated spermatogonia are composed of a heterogeneous cell population including spermatogonial stem cells (SSCs). Molecular mechanisms underlying the regulation of various spermatogonial cohorts during their self-renewal and differentiation are largely unclear. Here we show that AKT1S1, an AKT substrate and inhibitor of mTORC1, regulates the homeostasis of undifferentiated spermatogonia. Although deletion of Akt1s1 in mouse appears not grossly affecting steady-state spermatogenesis and male mice are fertile, the subset of differentiation-primed OCT4+ spermatogonia decreased significantly, whereas self-renewing GFRα1+ and proliferating PLZF+ spermatogonia were sustained. Both neonatal prospermatogonia and the first wave spermatogenesis were greatly reduced in Akt1s1-/- mice. Further analyses suggest that OCT4+ spermatogonia in Akt1s1-/- mice possess altered PI3K/AKT-mTORC1 signaling, gene expression and carbohydrate metabolism, leading to their functionally compromised developmental potential. Collectively, these results revealed an important role of AKT1S1 in mediating the stage-specific signals that regulate the self-renewal and differentiation of spermatogonia during mouse spermatogenesis.
Collapse
Affiliation(s)
- Lele Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinyue Liao
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hongying Huang
- The Experimental Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tin Lap Lee
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Huayu Qi
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
4
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Maklad A, Sedeeq M, Chan KM, Gueven N, Azimi I. Exploring Lin28 proteins: Unravelling structure and functions with emphasis on nervous system malignancies. Life Sci 2023; 335:122275. [PMID: 37984514 DOI: 10.1016/j.lfs.2023.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cancer and stem cells share many characteristics related to self-renewal and differentiation. Both cell types express the same critical proteins that govern cellular stemness, which provide cancer cells with the growth and survival benefits of stem cells. LIN28 is an example of one such protein. LIN28 includes two main isoforms, LIN28A and LIN28B, with diverse physiological functions from tissue development to control of pluripotency. In addition to their physiological roles, LIN28A and LIN28B affect the progression of several cancers by regulating multiple cancer hallmarks. Altered expression levels of LIN28A and LIN28B have been proposed as diagnostic and/or prognostic markers for various malignancies. This review discusses the structure and modes of action of the different LIN28 proteins and examines their roles in regulating cancer hallmarks with a focus on malignancies of the nervous system. This review also highlights some gaps in the field that require further exploration to assess the potential of targeting LIN28 proteins for controlling cancer.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Kai Man Chan
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia; Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton 3168, Victoria, Australia.
| |
Collapse
|
6
|
Xiao S, Zhang W, Li J, Manley NR. Lin28 regulates thymic growth and involution and correlates with MHCII expression in thymic epithelial cells. Front Immunol 2023; 14:1261081. [PMID: 37868985 PMCID: PMC10588642 DOI: 10.3389/fimmu.2023.1261081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
Thymic epithelial cells (TECs) are essential for T cell development in the thymus, yet the mechanisms governing their differentiation are not well understood. Lin28, known for its roles in embryonic development, stem cell pluripotency, and regulating cell proliferation and differentiation, is expressed in endodermal epithelial cells during embryogenesis and persists in adult epithelia, implying postnatal functions. However, the detailed expression and function of Lin28 in TECs remain unknown. In this study, we examined the expression patterns of Lin28 and its target Let-7g in fetal and postnatal TECs and discovered opposing expression patterns during postnatal thymic growth, which correlated with FOXN1 and MHCII expression. Specifically, Lin28b showed high expression in MHCIIhi TECs, whereas Let-7g was expressed in MHCIIlo TECs. Deletion of Lin28a and Lin28b specifically in TECs resulted in reduced MHCII expression and overall TEC numbers. Conversely, overexpression of Lin28a increased total TEC and thymocyte numbers by promoting the proliferation of MHCIIlo TECs. Additionally, our data strongly suggest that Lin28 and Let-7g expression is reliant on FOXN1 to some extent. These findings suggest a critical role for Lin28 in regulating the development and differentiation of TECs by modulating MHCII expression and TEC proliferation throughout thymic ontogeny and involution. Our study provides insights into the mechanisms underlying TEC differentiation and highlights the significance of Lin28 in orchestrating these processes.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, University of Georgia, Athens, GA, United States
| | | | | | | |
Collapse
|
7
|
Pereira SA, Oliveira FCB, Naulé L, Royer C, Neves FAR, Abreu AP, Carroll RS, Kaiser UB, Coelho MS, Lofrano-Porto A. Mouse Testicular Mkrn3 Expression Is Primarily Interstitial, Increases Peripubertally, and Is Responsive to LH/hCG. Endocrinology 2023; 164:bqad123. [PMID: 37585624 PMCID: PMC10449413 DOI: 10.1210/endocr/bqad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Studies in humans and mice support a role for Makorin RING finger protein 3 (MKRN3) as an inhibitor of gonadotropin-releasing hormone (GnRH) secretion prepubertally, and its loss of function is the most common genetic cause of central precocious puberty in humans. Studies have shown that the gonads can synthesize neuropeptides and express MKRN3/Mkrn3 mRNA. Therefore, we aimed to investigate the spatiotemporal expression pattern of Mkrn3 in gonads during sexual development, and its potential regulation in the functional testicular compartments by gonadotropins. Mkrn3 mRNA was detected in testes and ovaries of wild-type mice at all ages evaluated, with a sexually dimorphic expression pattern between male and female gonads. Mkrn3 expression was highest peripubertally in the testes, whereas it was lower peripubertally than prepubertally in the ovaries. Mkrn3 is expressed primarily in the interstitial compartment of the testes but was also detected at low levels in the seminiferous tubules. In vitro studies demonstrated that Mkrn3 mRNA levels increased in human chorionic gonadotropin (hCG)-treated Leydig cell primary cultures. Acute administration of a GnRH agonist in adult mice increased Mkrn3 expression in testes, whereas inhibition of the hypothalamic-pituitary-gonadal axis by chronic administration of GnRH agonist had the opposite effect. Finally, we found that hCG increased Mkrn3 mRNA levels in a dose-dependent manner. Taken together, our developmental expression analyses, in vitro and in vivo studies show that Mkrn3 is expressed in the testes, predominantly in the interstitial compartment, and that Mkrn3 expression increases after puberty and is responsive to luteinizing hormone/hCG stimulation.
Collapse
Affiliation(s)
- Sidney A Pereira
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fernanda C B Oliveira
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carine Royer
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Francisco A R Neves
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michella S Coelho
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Liu R, Peng Y, Du W, Wu Y, Zhang W, Hu C, Liu M, Liu X, Wu J, Sun J, Zhao X. BMI1 fine-tunes gene repression and activation to safeguard undifferentiated spermatogonia fate. Front Cell Dev Biol 2023; 11:1146849. [PMID: 37169021 PMCID: PMC10164956 DOI: 10.3389/fcell.2023.1146849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Spermatogenesis is sustained by the homeostasis of self-renewal and differentiation of undifferentiated spermatogonia throughout life, which is regulated by transcriptional and posttranscriptional mechanisms. B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), one of spermatogonial stem cell markers, is a member of Polycomb repressive complex 1 (PRC1) and important to spermatogenesis. However, the mechanistic underpinnings of how BMI1 regulates spermatogonia fate remain elusive. Methods: We knocked down BMI1 by siRNA to investigate the role of BMI1 in undifferentiated spermatogonia. Differentially expressed genes were identified by RNA-seq and used for KEGG pathway analysis. We performed ChIP-seq analysis in wild type and BMI1 knockdown cells to explore the underlying molecular mechanisms exerted by BMI1. BMI1-associated alterations in repressive histone modifications were detected via Western blotting and ChIP-seq. Furthermore, we performed mass spectrometry and Co-immunoprecipitation assays to investigate BMI1 co-factors. Finally, we demonstrated the genomic regions occupied by both BMI1 and its co-factor. Results: BMI1 is required for undifferentiated spermatogonia maintenance by both repressing and activating target genes. BMI1 preserves PI3K-Akt signaling pathway for spermatogonia proliferation. Decrease of BMI1 affects the deposition of repressive histone modifications H2AK119ub1 and H3K27me3. BMI also positively regulates H3K27ac deposited genes which are associated with proliferation. Moreover, we demonstrate that BMI1 interacts with Sal-like 4 (SALL4), the transcription factor critical for spermatogonia function, to co-regulate gene expression. Discussion: Overall, our study reveals that BMI1 safeguards undifferentiated spermatogonia fate through multi-functional roles in regulating gene expression programs of undifferentiated spermatogonia.
Collapse
Affiliation(s)
- Ruiqi Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yonglin Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfei Du
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Zhang
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Congxia Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- Department of Integrative Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| |
Collapse
|
9
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
10
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Morgan M, Kumar L, Li Y, Baptissart M. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci 2021; 78:8049-8071. [PMID: 34748024 DOI: 10.1007/s00018-021-04012-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023]
Abstract
Multiple RNA pathways are required to produce functional sperm. Here, we review RNA post-transcriptional regulation during spermatogenesis with particular emphasis on the role of 3' end modifications. From early studies in the 1970s, it became clear that spermiogenesis transcripts could be stored for days only to be translated at advanced stages of spermatid differentiation. The transition between the translationally repressed and active states was observed to correlate with the shortening of the transcripts' poly(A) tail, establishing a link between RNA 3' end metabolism and male germ cell differentiation. Since then, numerous RNA metabolic pathways have been implicated not only in the progression through spermatogenesis, but also in the maintenance of genomic integrity. Recent studies have characterized the elusive 3' biogenesis of Piwi-interacting RNAs (piRNAs), identified a critical role for messenger RNA (mRNA) 3' uridylation in meiotic progression, established the mechanisms that destabilize transcripts with long 3' untranslated regions (3'UTRs) in post-mitotic cells, and defined the physiological relevance of RNA exonucleases and deadenylases in male germ cells. In this review, we discuss RNA processing in the male germline in the light of the most recent findings. A brief recollection of different RNA-processing events will aid future studies exploring post-transcriptional regulation in spermatogenesis.
Collapse
Affiliation(s)
- Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA.
| | - Lokesh Kumar
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| |
Collapse
|
12
|
Vazquez MJ, Daza-Dueñas S, Tena-Sempere M. Emerging Roles of Epigenetics in the Control of Reproductive Function: Focus on Central Neuroendocrine Mechanisms. J Endocr Soc 2021; 5:bvab152. [PMID: 34703958 PMCID: PMC8533971 DOI: 10.1210/jendso/bvab152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Reproduction is an essential function for perpetuation of the species. As such, it is controlled by sophisticated regulatory mechanisms that allow a perfect match between environmental conditions and internal cues to ensure adequate pubertal maturation and achievement of reproductive capacity. Besides classical genetic regulatory events, mounting evidence has documented that different epigenetic mechanisms operate at different levels of the reproductive axis to finely tune the development and function of this complex neuroendocrine system along the lifespan. In this mini-review, we summarize recent evidence on the role of epigenetics in the control of reproduction, with special focus on the modulation of the central components of this axis. Particular attention will be paid to the epigenetic control of puberty and Kiss1 neurons because major developments have taken place in this domain recently. In addition, the putative role of central epigenetic mechanisms in mediating the influence of nutritional and environmental cues on reproductive function will be discussed.
Collapse
Affiliation(s)
- Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.,Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
13
|
Torres-Fernández LA, Emich J, Port Y, Mitschka S, Wöste M, Schneider S, Fietz D, Oud MS, Di Persio S, Neuhaus N, Kliesch S, Hölzel M, Schorle H, Friedrich C, Tüttelmann F, Kolanus W. TRIM71 Deficiency Causes Germ Cell Loss During Mouse Embryogenesis and Is Associated With Human Male Infertility. Front Cell Dev Biol 2021; 9:658966. [PMID: 34055789 PMCID: PMC8155544 DOI: 10.3389/fcell.2021.658966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Mutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling germ cell development. The RNA-binding protein and E3 ubiquitin ligase TRIM71 is essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of germ cells in the seminiferous tubules. Infertility in male Trim71 cKO mice originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, TCam-2 cells, a human GCT-derived seminoma cell line which was used as an in vitro model for PGCs, showed proliferation defects upon TRIM71 knockdown. Additionally, in vitro growth competition assays, as well as proliferation assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells showed that TRIM71 also promotes proliferation in this malignant GCT-derived non-seminoma cell line. Importantly, the PGC-specific markers BLIMP1 and NANOS3 were consistently downregulated in Trim71 KO PGCLCs, TRIM71 knockdown TCam-2 cells and TRIM71 mutant NCCIT cells. These data collectively support a role for TRIM71 in PGC development. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with an SCO phenotype. Altogether, our work reveals for the first time an association of TRIM71 deficiency with human male infertility, and uncovers further developmental roles for TRIM71 in the germline during mouse embryogenesis.
Collapse
Affiliation(s)
| | - Jana Emich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Yasmine Port
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Sibylle Mitschka
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Simon Schneider
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Gießen, Gießen, Germany
- Hessian Centre of Reproductive Medicine (HZRM), Justus Liebig University Gießen, Gießen, Germany
| | - Manon S. Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Takahashi T, Kawaji H, Murakawa Y, Hayashizaki Y, Murakami T, Yabushita Y, Homma Y, Kumamoto T, Matsuyama R, Endo I. Significance of HMGA2 expression as independent poor prognostic marker in perihilar and distal cholangiocarcinoma resected with curative intent. Eur J Surg Oncol 2020; 47:394-400. [PMID: 32878723 DOI: 10.1016/j.ejso.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/13/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma requires invasive surgery and is associated with poor prognosis; thus, a prognostic biomarker is highly needed. Extrahepatic cholangiocarcinoma is sub-classified into two types based on their location, namely perihilar and distal. Perihilar cholangiocarcinoma requires lobectomy as curative surgical resection, whereas the distal requires pancreatoduodenectomy. HMGA2 overexpression is reported to correlate with progression, aggressiveness, dissemination and poor prognosis in several types of cancers. Although its association with extrahepatic cholangiocarcinoma has been reported, none of the previous studies assessed its significance in each subtype. METHODS We assessed the expression of HMGA2 protein in surgical specimens after curative intent surgery in 80 patients including 41 with perihilar cholangiocarcinoma and 39 with distal cholangiocarcinoma by immunohistochemistry. We then examined its association with clinicopathological findings and patient survival outcomes. RESULTS We found that HMGA2 was expressed in 51% (21 of 41) of perihilar cholangiocarcinoma and 41% (16 of 39) of distal cholangiocarcinoma samples. In perihilar cholangiocarcinoma, we found significant correlations between expression and vascular invasion and perineural invasion. In distal cholangiocarcinoma, we found that protein levels correlated with tumor grade. Univariate and multivariate analyses demonstrated that HMGA2 expression was an independent poor prognostic factor for patients with both subtypes of disease. CONCLUSIONS Our results revealed that HMGA2 expression as an independent prognostic marker for both perihilar and distal cholangiocarcinoma that were resected with curative intent.
Collapse
Affiliation(s)
- Tomoaki Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Yasuhiro Murakawa
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan; RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; RIKEN-HMC Clinical Omics Unit, RIKEN Baton Zone Program, Yokohama, Japan
| | | | - Takashi Murakami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasuhiro Yabushita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yuki Homma
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takafumi Kumamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
15
|
Cao G, Gao Z, Jiang Y, Chu M. Lin28 gene and mammalian puberty. Mol Reprod Dev 2020; 87:525-533. [PMID: 32363678 DOI: 10.1002/mrd.23347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/21/2020] [Indexed: 11/10/2022]
Abstract
Lin28a and Lin28b, homologs of the Caenorhabditis elegans Lin28 gene, play important roles in cell pluripotency, reprogramming, and tumorigenicity. Recently, genome-wide association and transgenic studies showed that Lin28a and/or Lin28b gene were involved in the onset of mammalian puberty, the stage representing the attainment of reproduction capacity; however, the detailed mechanism of these genes in mammalian puberty remains largely unknown. The present paper reviews the research progress on the roles of Lin28a/b genes in the onset of mammalian puberty by analyzing the results coming from gene expression patterns, mutations, and transgenic studies, and put forward possible pathways for further studies on their roles in animal reproduction.
Collapse
Affiliation(s)
- Guiling Cao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,College of Agriculture, Liaocheng University, Liaocheng, China
| | - Zeyang Gao
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Yunliang Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Mingxing Chu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Singh P, Patel RK, Palmer N, Grenier JK, Paduch D, Kaldis P, Grimson A, Schimenti JC. CDK2 kinase activity is a regulator of male germ cell fate. Development 2019; 146:dev180273. [PMID: 31582414 PMCID: PMC6857589 DOI: 10.1242/dev.180273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022]
Abstract
The ability of men to remain fertile throughout their lives depends upon establishment of a spermatogonial stem cell (SSC) pool from gonocyte progenitors, and thereafter balancing SSC renewal versus terminal differentiation. Here, we report that precise regulation of the cell cycle is crucial for this balance. Whereas cyclin-dependent kinase 2 (Cdk2) is not necessary for mouse viability or gametogenesis stages prior to meiotic prophase I, mice bearing a deregulated allele (Cdk2Y15S ) are severely deficient in spermatogonial differentiation. This allele disrupts an inhibitory phosphorylation site (Tyr15) for the kinase WEE1. Remarkably, Cdk2Y15S/Y15S mice possess abnormal clusters of mitotically active SSC-like cells, but these are eventually removed by apoptosis after failing to differentiate properly. Analyses of lineage markers, germ cell proliferation over time, and single cell RNA-seq data revealed delayed and defective differentiation of gonocytes into SSCs. Biochemical and genetic data demonstrated that Cdk2Y15S is a gain-of-function allele causing elevated kinase activity, which underlies these differentiation defects. Our results demonstrate that precise regulation of CDK2 kinase activity in male germ cell development is crucial for the gonocyte-to-spermatogonia transition and long-term spermatogenic homeostasis.
Collapse
Affiliation(s)
- Priti Singh
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Ravi K Patel
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA
| | - Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673
- Department of Biochemistry, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jennifer K Grenier
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Darius Paduch
- Cornell University, Weill Cornell Medicine, Department of Urology, New York, NY 10065, USA
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673
- Department of Biochemistry, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Andrew Grimson
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Hara-Yokoyama M, Kurihara H, Ichinose S, Matsuda H, Ichinose S, Kurosawa M, Tada N, Iwahara C, Terasawa K, Podyma-Inoue KA, Furukawa K, Iwabuchi K. KIF11 as a Potential Marker of Spermatogenesis Within Mouse Seminiferous Tubule Cross-sections. J Histochem Cytochem 2019; 67:813-824. [PMID: 31424977 DOI: 10.1369/0022155419871027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The arrangement of immature germ cells changes regularly and periodically along the axis of the seminiferous tubule, and is used to describe the progression of spermatogenesis. This description is based primarily on the changes in the acrosome and the nuclear morphology of haploid spermatids. However, such criteria cannot be applied under pathological conditions with arrested spermatid differentiation. In such settings, the changes associated with the differentiation of premeiotic germ cells must be analyzed. Here, we found that the unique bipolar motor protein, KIF11 (kinesin-5/Eg5), which functions in spindle formation during mitosis and meiosis in oocytes and early embryos, is expressed in premeiotic germ cells (spermatogonia and spermatocytes). Thus, we aimed to investigate whether KIF11 could be used to describe the progression of incomplete spermatogenesis. Interestingly, KIF11 expression was barely observed in haploid spermatids and Sertoli cells. The KIF11 staining allowed us to evaluate the progression of meiotic processes, by providing the time axis of spindle formation in both normal and spermatogenesis-arrested mutant mice. Accordingly, KIF11 has the potential to serve as an excellent marker to describe spermatogenesis, even in the absence of spermatid development.
Collapse
Affiliation(s)
- Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences,Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetake Kurihara
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of Health Science, Aino University, Osaka, Japan
| | - Shozo Ichinose
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Hironori Matsuda
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Shizuko Ichinose
- Plastic Reconstructive & Regenerative Surgery, Nippon Medical School, Tokyo, Japan
| | - Masaru Kurosawa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Norihiro Tada
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Iwahara
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Biomedical Sciences, Chubu University, Aichi, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
18
|
Leinonen JT, Chen YC, Tukiainen T, Panula P, Widén E. Transient modification of lin28b expression - Permanent effects on zebrafish growth. Mol Cell Endocrinol 2019; 479:61-70. [PMID: 30196135 DOI: 10.1016/j.mce.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/09/2018] [Accepted: 09/01/2018] [Indexed: 11/24/2022]
Abstract
Recent genome-wide association studies and mouse models have identified LIN28B as a gene affecting several pubertal timing-related traits and vertebrate growth. However, the exact biological mechanisms underlying the associations remain unknown. We have explored the mechanisms linking LIN28B with growth regulation by combining human gene expression data with functional models. Specifically, we show that 1) pubertal timing-associated genetic variation correlates with LIN28B expression in the pituitary and hypothalamus, 2) downregulating lin28b in zebrafish embryos associates with aberrant development of kiss2-neurons, and 3) increasing lin28b expression transiently by synthetic mRNA injections during embryogenesis results in sustained enhancement of zebrafish growth. Unexpectedly, the mRNA injections resulted in advanced sexual maturation of female fish, suggesting that lin28b may influence pubertal timing through multiple developmental mechanisms. Overall, these results provide novel insight into LIN28B function in vertebrate growth regulation, emphasizing the importance of the gene and related genetic pathways for embryonic and juvenile development.
Collapse
Affiliation(s)
- Jaakko T Leinonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), Helsinki, 00014, Finland
| | - Yu-Chia Chen
- Department of Anatomy and Neuroscience Center, University of Helsinki, P.O. Box 63, (Haartmaninkatu 8), Helsinki, 00014, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), Helsinki, 00014, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, P.O. Box 63, (Haartmaninkatu 8), Helsinki, 00014, Finland
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), Helsinki, 00014, Finland.
| |
Collapse
|
19
|
Xing F, Zhang C, Kong Z. Cloning and expression of lin-28 homolog B gene in the onset of puberty in Duolang sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:23-30. [PMID: 30381750 PMCID: PMC6325404 DOI: 10.5713/ajas.18.0276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/14/2018] [Indexed: 11/27/2022]
Abstract
Objective Recent studies have demonstrated that lin-28 homolog B (LIN28B)/miRNA let-7 (let-7) plays a role in the regulation of pubertal onset in mammals. However, the role of LIN28B/let-7 in the onset of ovine puberty remains unknown. We cloned the Duolang sheep Lin28B cDNA sequence, detected the expression change of LIN28B, let-7a and let-7g in hypothalamus, pituitary and ovary tissues at three different pubertal stages. Methods The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of LIN28B gene from Duolang sheep and the bioinformatics methods were applied to analyze the amino acid sequence of LIN28B protein. The mRNA expression levels of the LIN28B gene at different pubertal stages were examined by real time RT-PCR. Results LIN28B cDNA of Duolang sheep was cloned, and two transcripts were obtained. The amino acid sequence of transcript 1 shares 99.60%, 98.78%, and 94.80% identity with those of goat, wild yak and pig, respectively. Strong LIN28B mRNA expression was detected in the hypothalamus, pituitary, ovary, oviduct and uterus, while moderate expression was found in the liver, kidney, spleen and heart, weak expression was observed in the heart. No expression was found in the lungs. Quantitative real-time PCR (QPCR) and western-blot analysis revealed that the LIN28B was highly expressed in the hypothalamus and ovary at prepuberty stages, and this expression significantly decreased from the prepuberty to puberty stages (p<0.05). Markedly increased levels of mRNA expression were detected in the pituitary from prepuberty to puberty (p<0.05) and then significantly decreased from puberty to postpuberty (p<0.05). The expression levels of let-7a and let-7g showed no significant changes among different pubertal stages (p>0.05). Conclusion These results provided a foundation for determining the functions of LIN28B/let-7 and their role in the onset of sheep puberty.
Collapse
Affiliation(s)
- Feng Xing
- College of Animal Science, Tarim University, Alar, XinJiang 843300, China.,Key laboratory of Tarim, Animal Husbandry Science and Technology, XinJiang Production & Construction Corps, Alar, Xinjiang 843300, China
| | - Chaoyang Zhang
- College of Animal Science, Tarim University, Alar, XinJiang 843300, China.,Key laboratory of Tarim, Animal Husbandry Science and Technology, XinJiang Production & Construction Corps, Alar, Xinjiang 843300, China
| | - Zhengquan Kong
- College of Animal Science, Tarim University, Alar, XinJiang 843300, China.,Key laboratory of Tarim, Animal Husbandry Science and Technology, XinJiang Production & Construction Corps, Alar, Xinjiang 843300, China
| |
Collapse
|
20
|
Avendaño MS, Vazquez MJ, Tena-Sempere M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update 2018; 23:737-763. [PMID: 28961976 DOI: 10.1093/humupd/dmx025] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puberty is a complex developmental event, controlled by sophisticated regulatory networks that integrate peripheral and internal cues and impinge at the brain centers driving the reproductive axis. The tempo of puberty is genetically determined but is also sensitive to numerous modifiers, from metabolic and sex steroid signals to environmental factors. Recent epidemiological evidence suggests that the onset of puberty is advancing in humans, through as yet unknown mechanisms. In fact, while much knowledge has been gleaned recently on the mechanisms responsible for the control of mammalian puberty, fundamental questions regarding the intimate molecular and neuroendocrine pathways responsible for the precise timing of puberty and its deviations remain unsolved. OBJECTIVE AND RATIONALE By combining data from suitable model species and humans, we aim to provide a comprehensive summary of our current understanding of the neuroendocrine mechanisms governing puberty, with particular focus on its central regulatory pathways, underlying molecular basis and mechanisms for metabolic control. SEARCH METHODS A comprehensive MEDLINE search of articles published mostly from 2003 to 2017 has been carried out. Data from cellular and animal models (including our own results) as well as clinical studies focusing on the pathophysiology of puberty in mammals were considered and cross-referenced with terms related with central neuroendocrine mechanisms, metabolic control and epigenetic/miRNA regulation. OUTCOMES Studies conducted during the last decade have revealed the essential role of novel central neuroendocrine pathways in the control of puberty, with a prominent role of kisspeptins in the precise regulation of the pubertal activation of GnRH neurosecretory activity. In addition, different transmitters, including neurokinin-B (NKB) and, possibly, melanocortins, have been shown to interplay with kisspeptins in tuning puberty onset. Alike, recent studies have documented the role of epigenetic mechanisms, involving mainly modulation of repressors that target kisspeptins and NKB pathways, as well as microRNAs and the related binding protein, Lin28B, in the central control of puberty. These novel pathways provide the molecular and neuroendocrine basis for the modulation of puberty by different endogenous and environmental cues, including nutritional and metabolic factors, such as leptin, ghrelin and insulin, which are known to play an important role in pubertal timing. WIDER IMPLICATIONS Despite recent advancements, our understanding of the basis of mammalian puberty remains incomplete. Complete elucidation of the novel neuropeptidergic and molecular mechanisms summarized in this review will not only expand our knowledge of the intimate mechanisms responsible for puberty onset in humans, but might also provide new tools and targets for better prevention and management of pubertal deviations in the clinical setting.
Collapse
Affiliation(s)
- M S Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
21
|
Dong N, Liu Y, Zhang T, Zhao L, Tian J, Ruan J. Different expression patterns of Lin28 and Lin28b in mouse molar development. Arch Oral Biol 2017; 82:280-285. [DOI: 10.1016/j.archoralbio.2017.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 01/16/2023]
|
22
|
Shima Y, Morohashi KI. Leydig progenitor cells in fetal testis. Mol Cell Endocrinol 2017; 445:55-64. [PMID: 27940302 DOI: 10.1016/j.mce.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells play pivotal roles in masculinization of organisms by producing androgens. At least two distinct Leydig cell populations sequentially emerge in the mammalian testis. Leydig cells in the fetal testis (fetal Leydig cells) appear just after initial sex differentiation and induce masculinization of male fetuses. Although there has been a debate on the fate of fetal Leydig cells in the postnatal testis, it has been generally believed that fetal Leydig cells regress and are completely replaced by another Leydig cell population, adult Leydig cells. Recent studies revealed that gene expression patterns are different between fetal and adult Leydig cells and that the androgens produced in fetal Leydig cells are different from those in adult Leydig cells in mice. Although these results suggested that fetal and adult Leydig cells have distinct origins, several recent studies of mouse models support the hypothesis that fetal and adult Leydig cells arise from a common progenitor pool. In this review, we first provide an overview of previous knowledge, mainly from mouse studies, focusing on the cellular origins of fetal Leydig cells and the regulatory mechanisms underlying fetal Leydig cell differentiation. In addition, we will briefly discuss the functional differences of fetal Leydig cells between human and rodents. We will also discuss recent studies with mouse models that give clues for understanding how the progenitor cells in the fetal testis are subsequently destined to become fetal or adult Leydig cells.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
23
|
Men Y, Fan Y, Shen Y, Lu, L, Kallen AN. The Steroidogenic Acute Regulatory Protein (StAR) Is Regulated by the H19/let-7 Axis. Endocrinology 2017; 158:402-409. [PMID: 27813675 PMCID: PMC5413078 DOI: 10.1210/en.2016-1340] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/31/2016] [Indexed: 02/05/2023]
Abstract
The steroidogenic acute regulatory protein (StAR) governs the rate-limiting step in steroidogenesis, and its expression varies depending on the needs of the specific tissue. Tight control of steroid production is essential for multiple processes involved in reproduction, including follicular development, ovulation, and endometrial synchronization. Recently, there has been a growing interest in the role of noncoding RNAs in the regulation of reproduction. Here we demonstrate that StAR is a novel target of the microRNA let-7, which itself is regulated by the long noncoding RNA (lncRNA) H19. Using human and murine cell lines, we show that overexpression of H19 stimulates StAR expression by antagonizing let-7, which inhibits StAR at the post-transcriptional level. Our results uncover a novel mechanism underlying the regulation of StAR expression and represent the first example of lncRNA-mediated control of the rate-limiting step of steroidogenesis. This work thus adds to the body of literature describing the multiple roles in oncogenesis, cellular growth, glucose metabolism, and now regulation of steroidogenesis, of this complex lncRNA.
Collapse
Affiliation(s)
- Yi Men
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
- Department of Head and Neck Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanhong Fan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, P. R. China; and
| | - Yuanyuan Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lingeng Lu,
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut 06510
| | - Amanda N. Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
24
|
Corre C, Shinoda G, Zhu H, Cousminer DL, Crossman C, Bellissimo C, Goldenberg A, Daley GQ, Palmert MR. Sex-specific regulation of weight and puberty by the Lin28/let-7 axis. J Endocrinol 2016; 228:179-91. [PMID: 26698568 PMCID: PMC4772724 DOI: 10.1530/joe-15-0360] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
Growth and pubertal timing differ in boys and girls. Variants in/near LIN28B associate with age at menarche (AAM) in genome-wide association studies and some AAM-related variants associate with growth in a sex-specific manner. Sex-specific growth patterns in response to Lin28b perturbation have been detected in mice, and overexpression of Lin28a has been shown to alter pubertal timing in female mice. To investigate further how Lin28a and Lin28b affect growth and puberty in both males and females, we evaluated Lin28b loss-of-function (LOF) mice and Lin28a gain-of-function (GOF) mice. Because both Lin28a and Lin28b can act via the conserved microRNA let-7, we also examined let-7 GOF mice. As reported previously, Lin28b LOF led to lighter body weights only in male mice while Lin28a GOF yielded heavier mice of both sexes. Let-7 GOF mice weighed less than controls, and males were more affected than females. Timing of puberty was assessed by vaginal opening (VO) and preputial separation (PS). Male Lin28b LOF and male let-7 GOF, but not female, mice displayed alteration of pubertal timing, with later PS than controls. In contrast, both male and female Lin28a GOF mice displayed late onset of puberty. Together, these data point toward a complex system of regulation by Lin28a, Lin28b, and let-7, in which Lin28b and let-7 can impact both puberty and growth in a sex-specific manner, raising the possibility that this pathway may contribute to differential regulation of male and female growth and puberty in humans.
Collapse
Affiliation(s)
- Christina Corre
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Gen Shinoda
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Hao Zhu
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Diana L Cousminer
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Christine Crossman
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Christian Bellissimo
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Anna Goldenberg
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - George Q Daley
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| | - Mark R Palmert
- Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada Division of EndocrinologyThe Hospital for Sick Children, 555 University Avenue, Toronto ON, M5G 1X8, CanadaDivision of Hematology/OncologyBoston Children's Hospital, Boston, Massachusetts, USADepartments of Pediatrics and Internal MedicineChildren's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USAInstitute for Molecular MedicineFinland (FIMM), University of Helsinki, Helsinki, FinlandGenetics and Genome Biology ProgramThe Hospital for Sick Children, Toronto, Ontario, CanadaDepartment of Computer ScienceUniversity of Toronto, Toronto, Ontario, CanadaDepartments of Paediatrics and PhysiologyThe University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Wang H, Zhao Q, Deng K, Guo X, Xia J. Lin28: an emerging important oncogene connecting several aspects of cancer. Tumour Biol 2016; 37:2841-8. [PMID: 26762415 DOI: 10.1007/s13277-015-4759-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
Abstract
RNA-binding protein Lin28 was originally found as a heterochronic gene which played a significant role in the development of Caenorhabditis elegans. The tumor suppressor let-7 is a downstream target of Lin28, which has a wide variety of target genes which are involved in many aspects of cellular activities. By inhibition of let-7 and directly binding the target RNAs, Lin28 plays an important role in different biological and pathological processes including differentiation, metabolism, proliferation, pluripotency, and tumorigenesis. Overexpression of Lin28 has been reported in several kinds of cancers and is correlated with poor outcomes. It has been shown that Lin28 could affect the progression of cancers in several ways, such as promoting proliferation, increasing glucose metabolism, and inducing epithelial-mesenchymal transition (EMT) and cancer stem cells. Decrease of Lin28 expression or reactivation of let-7 in cancer cells could induce a reverse effect, indicating their therapeutic values in developing novel strategies for cancer treatment. Here, we will overview the regulatory mechanisms and functions of Lin28 in cancers.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Qin Zhao
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Kaiyuan Deng
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Xiaoqiang Guo
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
26
|
Lee SI, Jeon MH, Kim JS, Jeon IS, Byun SJ. The gga-let-7 family post-transcriptionally regulates TGFBR1 and LIN28B during the differentiation process in early chick development. Mol Reprod Dev 2015; 82:967-75. [PMID: 26297836 DOI: 10.1002/mrd.22575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/21/2015] [Indexed: 11/12/2022]
Abstract
Early chick embryogenesis is governed by a complex mechanism involving transcriptional and post-transcriptional regulation, although how post-transcriptional processes influence the balance between pluripotency and differentiation during early chick development have not been previously investigated. Here, we characterized the microRNA (miRNA) signature associated with differentiation in the chick embryo, and found that as expression of the gga-let-7 family increases through early development, expression of their direct targets, TGFBR1 and LIN28B, decreases; indeed, gga-let-7a-5p and gga-let-7b miRNAs directly bind to TGFBR1 and LIN28B transcripts. Our data further indicate that TGFBR1 and LIN28B maintain pluripotency by regulating POUV, NANOG, and CRIPTO. Therefore, gga-let-7 miRNAs act as post-transcriptional regulators of differentiation in blastodermal cells by repressing the expression of the TGFBR1 and LIN28B, which intrinsically controls blastodermal cell differentiation in early chick development.
Collapse
Affiliation(s)
- Sang In Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea.,Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, Republic of Korea
| | - Mi-Hyang Jeon
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jeom Sun Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Ik-Soo Jeon
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
27
|
Testicular expression of the Lin28/let-7 system: Hormonal regulation and changes during postnatal maturation and after manipulations of puberty. Sci Rep 2015; 5:15683. [PMID: 26494358 PMCID: PMC4616161 DOI: 10.1038/srep15683] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/29/2015] [Indexed: 01/17/2023] Open
Abstract
The Lin28/let-7 system, which includes the RNA-binding proteins, Lin28a/Lin28b, and let-7 miRNAs, has emerged as putative regulator of puberty and male gametogenesis; yet, its expression pattern and regulation in postnatal testis remain ill defined. We report herein expression profiles of Lin28 and let-7 members, and related mir-145 and mir-132, in rat testis during postnatal maturation and in models of altered puberty and hormonal deregulation. Neonatal expression of Lin28a and Lin28b was low and rose markedly during the infantile period; yet, expression patterns diverged thereafter, with persistently elevated levels only for Lin28b, which peaked at puberty. Let-7a, let-7b, mir-132 and mir-145 showed profiles opposite to Lin28b. In fact, let-7b and mir-145 were abundant in pachytene spermatocytes, but absent in elongating spermatids, where high expression of Lin28b was previously reported. Perturbation of puberty by neonatal estrogenization reverted the Lin28/let-7 expression ratio; expression changes were also detected in other models of delayed puberty, due to early photoperiod or nutritional manipulations. In addition, hypophysectomy or growth hormone (GH) deficiency revealed regulation of this system by gonadotropins and GH. Our data document the expression profiles of the Lin28/let-7 system in rat testis along postnatal/pubertal maturation, and their perturbation in models of pubertal and hormonal manipulation.
Collapse
|
28
|
Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, Peano C, D'Atri I, Gitton Y, Etzion T, Gothilf Y, Gays D, Santoro MM, Merlo GR. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 2015; 68:103-19. [PMID: 25937343 PMCID: PMC4604252 DOI: 10.1016/j.mcn.2015.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023] Open
Abstract
During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5−/− olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5–Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome. Dlx5 controls the expressions of miR9 and miR-200, which target the Foxg1 mRNA miR-9 and -200 are needed for olfactory neurons differentiation and axon extension miR-9 and -200 are required for the genesis and position of GnRH neurons. Altered expression of miR-9 and -200 might contribute to the Kallmann disease.
Collapse
Affiliation(s)
- Giulia Garaffo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniele Conte
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paolo Provero
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniela Tomaiuolo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Zheng Luo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Patrizia Pinciroli
- Doctorate School in Molecular Medicine, Dept. Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Italy
| | - Clelia Peano
- Inst. of Biomedical Technology, National Research Council, ITB-CNR Segrate (MI) Italy
| | - Ilaria D'Atri
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Yorick Gitton
- UMR7221 CNRS/MNHN - Evolution des régulations endocriniennes - Paris, France
| | - Talya Etzion
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Yoav Gothilf
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Dafne Gays
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Massimo M Santoro
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy; Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Giorgio R Merlo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
29
|
Manku G, Culty M. Mammalian gonocyte and spermatogonia differentiation: recent advances and remaining challenges. Reproduction 2015; 149:R139-57. [DOI: 10.1530/rep-14-0431] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The production of spermatozoa relies on a pool of spermatogonial stem cells (SSCs), formed in infancy from the differentiation of their precursor cells, the gonocytes. Throughout adult life, SSCs will either self-renew or differentiate, in order to maintain a stem cell reserve while providing cells to the spermatogenic cycle. By contrast, gonocytes represent a transient and finite phase of development leading to the formation of SSCs or spermatogonia of the first spermatogenic wave. Gonocyte development involves phases of quiescence, cell proliferation, migration, and differentiation. Spermatogonia, on the other hand, remain located at the basement membrane of the seminiferous tubules throughout their successive phases of proliferation and differentiation. Apoptosis is an integral part of both developmental phases, allowing for the removal of defective cells and the maintenance of proper germ–Sertoli cell ratios. While gonocytes and spermatogonia mitosis are regulated by distinct factors, they both undergo differentiation in response to retinoic acid. In contrast to postpubertal spermatogenesis, the early steps of germ cell development have only recently attracted attention, unveiling genes and pathways regulating SSC self-renewal and proliferation. Yet, less is known on the mechanisms regulating differentiation. The processes leading from gonocytes to spermatogonia have been seldom investigated. While the formation of abnormal gonocytes or SSCs could lead to infertility, defective gonocyte differentiation might be at the origin of testicular germ cell tumors. Thus, it is important to better understand the molecular mechanisms regulating these processes. This review summarizes and compares the present knowledge on the mechanisms regulating mammalian gonocyte and spermatogonial differentiation.
Collapse
|
30
|
Chakraborty P, Buaas FW, Sharma M, Snyder E, de Rooij DG, Braun RE. LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 2015; 32:860-73. [PMID: 24715688 DOI: 10.1002/stem.1584] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
One of the hallmarks of highly proliferative adult tissues is the presence of a stem cell population that produces progenitor cells bound for differentiation. Progenitor cells undergo multiple transit amplifying (TA) divisions before initiating terminal differentiation. In the adult male germline, daughter cells arising from the spermatogonial stem cells undergo multiple rounds of TA divisions to produce undifferentiated clones of interconnected 2, 4, 8, and 16 cells, collectively termed A(undifferentiated) (A(undiff)) spermatogonia, before entering a stereotypic differentiation cascade. Although the number of TA divisions markedly affects the tissue output both at steady state and during regeneration, mechanisms regulating the expansion of the TA cell population are poorly understood in mammals. Here, we show that mice with a conditional deletion of Lin28a in the adult male germline, display impaired clonal expansion of the progenitor TA A(undiff) spermatogonia. The in vivo proliferative activity of Au(ndiff) spermatogonial cells as indicated by BrdU incorporation during S-phase was reduced in the absence of LIN28A. Thus, contrary to the role of LIN28A as a key determinant of cell fate signals in multiple stem cell lineages, in the adult male germline it functions as an intrinsic regulator of proliferation in the population of A(undiff) TA spermatogonia. In addition, neither precocious differentiation nor diminished capacity for self-renewal potential as assessed by transplantation was observed, suggesting that neither LIN28A itself nor the pool of Aal progenitor cells substantially contribute to the functional stem cell compartment.
Collapse
|
31
|
Westernströer B, Terwort N, Ehmcke J, Wistuba J, Schlatt S, Neuhaus N. Profiling of Cxcl12 receptors, Cxcr4 and Cxcr7 in murine testis development and a spermatogenic depletion model indicates a role for Cxcr7 in controlling Cxcl12 activity. PLoS One 2014; 9:e112598. [PMID: 25460567 PMCID: PMC4251904 DOI: 10.1371/journal.pone.0112598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023] Open
Abstract
In mice the chemokine Cxcl12 and its receptor Cxcr4 participate in maintenance of the spermatogonial population during postnatal development. More complexity arises since Cxcl12 also binds to the non-classical/atypical chemokine receptor Cxcr7. We explored the expression pattern of Cxcl12, Cxcr4 and Cxcr7 during postnatal development in mouse testes and investigated the response of Cxcl12, Cxcr4, Cxcr7 and SSC-niche associated factors to busulfan-induced germ cell depletion and subsequent recovery by RNA expression analysis and localization of the proteins. In neonatal testes transcript levels of Cxcl12, Cxcr4 and Cxcr7 were relatively low and protein expression of Cxcr7 was restricted to gonocytes and spermatogonia. During development, RNA expression of Cxcl12 remained stable but that of Cxcr4 and Cxcr7 increased. Cxcr7 was expressed in germ cells located at the basement membrane of the seminiferous tubules. In adult testes, transcript levels of Cxcl12 were highest while the localization of Cxcr7 did not change. Following germ cell depletion, a significantly increased expression of Cxcl12 and a decreased expression of Cxcr7 were observed. Germ cells repopulating the seminiferous tubules were immunopositive for Cxcr7. We conclude that Cxcr7 expression to be restricted to premeiotic germ cells throughout postnatal testicular development and during testicular recovery. Hence, the spermatogonial population may not only be simply controlled by interaction of Cxcl12 with Cxcr4 but may also involve Cxcr7 as an important player.
Collapse
Affiliation(s)
- Birgit Westernströer
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Muenster, Muenster, Germany
| | - Nicole Terwort
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Muenster, Muenster, Germany
| | - Jens Ehmcke
- Central Animal Facility of the Medical Faculty, University Muenster, Muenster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Muenster, Muenster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Muenster, Muenster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Muenster, Muenster, Germany
| |
Collapse
|
32
|
Murphy SJ, Lusardi TA, Phillips JI, Saugstad JA. Sex differences in microRNA expression during development in rat cortex. Neurochem Int 2014; 77:24-32. [PMID: 24969725 PMCID: PMC4177314 DOI: 10.1016/j.neuint.2014.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/15/2022]
Abstract
There are important sex differences in the risk and outcome of conditions and diseases between males and females. For example, stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage following an ischemic event compared to females. Studies suggest that the difference in male and female susceptibility to ischemia may be triggered by innate variations in gene regulation and protein expression between the sexes that are independent of post-natal exposure to sex hormones. We have shown that there are differences in microRNA (miRNA) expression in adult male and female brain following focal cerebral ischemia in mouse cortex. Herein we examine a role for differential expression of miRNAs during development in male and female rat cortex as potential effectors of the phenotype that leads to sex differences to ischemia. Expression studies in male and female cortices isolated from postnatal day 0 (P0), postnatal day 7 (P7), and adult rats using TaqMan Low Density miRNA arrays and NanoString nCounter analysis revealed differential miRNA levels between males and females at each developmental stage. We focused on the miR-200 family of miRNAs that showed higher levels in females at P0, but higher levels in males at P7 that persisted into adulthood, and validated the expression of miR-200a, miR-200b, and miR-429 by individual qRT-PCR as these are clustered on chromosome 5 and may be transcriptionally co-regulated. Prediction analysis of the miR-200 miRNAs revealed that genes within the Gonadotropin releasing hormone receptor pathway are the most heavily targeted. These studies support that developmental changes in miRNA expression may influence phenotypes in adult brain that underlie sexually dimorphic responses to disease, including ischemia.
Collapse
Affiliation(s)
- Stephanie J Murphy
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Theresa A Lusardi
- Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Jay I Phillips
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Julie A Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
33
|
Borrego-Diaz E, Powers BC, Azizov V, Lovell S, Reyes R, Chapman B, Tawfik O, McGregor D, Diaz FJ, Wang X, Veldhuizen PV. A potential regulatory loop between Lin28B:miR‑212 in androgen-independent prostate cancer. Int J Oncol 2014; 45:2421-9. [PMID: 25201220 PMCID: PMC4215582 DOI: 10.3892/ijo.2014.2647] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/11/2014] [Indexed: 12/20/2022] Open
Abstract
Lin28 is a family of RNA binding proteins and microRNA regulators. Two members of this family have been identified: Lin28A and Lin28B, which are encoded by genes localized in different chromosomes but share a high degree of sequence identity. The role of Lin28B in androgen-independent prostate cancer (AIPC) is not well understood. Lin28B is expressed in all grades of prostatic carcinomas and prostate cancer cell lines, but not in normal prostate tissue. In this study we found that Lin28B co-localized in the nucleus and cytoplasm of the DU145 AIPC. The expression of Lin28B protein positively correlated with the expression of the c-Myc protein in the prostate cancer cell lines and silencing of Lin28B also correlated with a lower expression of the c-Myc protein, but not with the downregulation of c-Myc messenger RNA (mRNA) in the DU145 AIPC cells. We hypothesized that Lin28B regulates the expression of c-Myc protein by altering intermediate c-Myc suppressors. Therefore, a microRNA profile of DU145 cells was performed after Lin28B siRNA silencing. Nineteen microRNAs were upregulated and eleven microRNAs were downregulated. The most upregulated microRNAs were miR-212 and miR-2278. Prior reports have found that miR-212 is suppressed in prostate cancer. We then ran TargetScan software to find potential target mRNAs of miR-212 and miR-2278, and it predicted Lin28B mRNA as a potential target of miR-212, but not miR-2278. TargetScan also predicted that c-Myc mRNA is not a potential target of miR-212 or miR-2278. These observations suggest that Lin28B:miR-212 may work as a regulatory loop in androgen-independent prostate cancer. Furthermore, we report a predictive 2-fold symmetric model generated by the superposition of the Lin28A structure onto the I-TASSER model of Lin28B. This structural model of Lin28B suggests that it shows unique microRNA binding characteristics. Thus, if Lin28B were to bind miRNAs in a manner similar to Lin28A, conformational changes would be necessary to prevent steric clashes in the C-terminal and linker regions between the CSD and ZNF domains.
Collapse
Affiliation(s)
- Emma Borrego-Diaz
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas Medical Center, Westwood, KS 66205, USA
| | - Benjamin C Powers
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas Medical Center, Westwood, KS 66205, USA
| | - Vugar Azizov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas Medical Center, Westwood, KS 66205, USA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Main Campus, Lawrence, KS 66047, USA
| | - Ruben Reyes
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas Medical Center, Westwood, KS 66205, USA
| | - Bradley Chapman
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas Medical Center, Westwood, KS 66205, USA
| | - Ossama Tawfik
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Douglas McGregor
- Veterans Administration Medical Center, Kansas City, MO 64128, USA
| | | | - Xinkun Wang
- Genomic Facility, University of Kansas, Main Campus, Lawrence, KS 66047, USA
| | - Peter Van Veldhuizen
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas Medical Center, Westwood, KS 66205, USA
| |
Collapse
|
34
|
Abstract
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
Collapse
Affiliation(s)
| | - Igor Babiak
- Faculty of Aquaculture and Biosciences, University of Nordland, Bodø, Norway
| |
Collapse
|
35
|
Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril 2014; 101:1552-62. [PMID: 24882619 DOI: 10.1016/j.fertnstert.2014.04.025] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/26/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
Abstract
In mammals, male gametes are produced inside the testis by spermatogenesis, which has three phases: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and haploid differentiation of spermatids. The genome of male germ cells is actively transcribed to produce phase-specific gene expression patterns. Male germ cells have a complex transcriptome. In addition to protein-coding messenger RNAs, many noncoding RNAs, including microRNAs (miRNAs), are produced. The miRNAs are important regulators of gene expression. They function mainly post-transcriptionally to control the stability or translation of their target messenger RNAs. The miRNAs are expressed in a cell-specific manner during spermatogenesis to participate in the control of each step of male germ cell differentiation. Genetically modified mouse models have demonstrated the importance of miRNA pathways for normal spermatogenesis, and functional studies have been designed to dissect the roles of specific miRNAs in distinct cell types. Clinical studies have exploited the well-defined expression profiles of miRNAs, and human spermatozoal or seminal plasma miRNAs have been explored as potential biomarkers for male factor infertility. This review article discusses the current findings that support the central role of miRNAs in the regulation of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
36
|
Kasimanickam VR, Kasimanickam RK, Dernell WS. Dysregulated microRNA clusters in response to retinoic acid and CYP26B1 inhibitor induced testicular function in dogs. PLoS One 2014; 9:e99433. [PMID: 24911586 PMCID: PMC4049822 DOI: 10.1371/journal.pone.0099433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
Spermatogenesis is a multistep synchronized process. Diploid spermatogonia differentiate into haploid spermatozoa following mitosis, meiosis and spermiogenesis. Division and differentiation of male germ cells is achieved through the sequential expression of several genes. Numerous mRNAs in the differentiating germ cells undergo post-transcriptional and translational regulation. MiRNAs are powerful negative regulators of mRNA transcription, stability, and translation and recognize their mRNA targets through base-pairing. Retinoic acid (RA) signaling is essential for spermatogenesis and testicular function. Testicular RA level is critical for RA signal transduction. This study investigated the miRNAs modulation in an RA- induced testicular environment following the administration of all-trans RA (2 µM) and CYP26B1- inhibitor (1 µM) compared to control. Eighty four canine mature miRNAs were analyzed and their expression signatures were distinguished using real-time PCR based array technology. Of the miRNAs analyzed, miRNA families such as miR-200 (cfa-miR-200a, cfa-miR-200b and cfa-miR-200c), Mirlet-7 (cfa-let-7a, cfa-let-7b, cfa-let-7c, cfa-let-7g and cfa-let-7f), miR-125 (cfa-miR-125a and cfa-miR-125b), miR-146 (cfa-miR-146a and cfa-miR-146b), miR-34 (cfa-miR-34a, cfa-miR-34b and cfa-miR-34c), miR-23 (cfa-miR-23a and cfa-miR-23b), cfa-miR-184, cfa-miR-214 and cfa-miR-141 were significantly up-regulated with testicular RA intervention via administration of CYP26B1 inhibitor and all-trans-RA and species of miRNA such as cfa-miR-19a, cfa-miR-29b, cfa-miR-29c, cfa-miR-101 and cfa-miR-137 were significantly down-regulated. This study explored information regarding chromosome distribution, human orthologous sequences and the interaction of target genes of miRNA families significantly distinguished in this study using prediction algorithms. This study importantly identified dysregulated miRNA species resulting from RA-induced spermatogenesis. The present contribution serves as a useful resource for further elucidation of the regulatory role of individual miRNA in RA synchronized canine spermatogenesis.
Collapse
Affiliation(s)
- Vanmathy R. Kasimanickam
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - Ramanathan K. Kasimanickam
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - William S. Dernell
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
37
|
Upstream and downstream mechanisms for the promoting effects of IGF-1 on differentiation of spermatogonia to primary spermatocytes. Life Sci 2014; 101:49-55. [DOI: 10.1016/j.lfs.2014.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 02/02/2023]
|
38
|
Werler S, Demond H, Damm OS, Ehmcke J, Middendorff R, Gromoll J, Wistuba J. Germ cell loss is associated with fading Lin28a expression in a mouse model for Klinefelter's syndrome. Reproduction 2014; 147:253-64. [DOI: 10.1530/rep-13-0608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Klinefelter's syndrome is a male sex-chromosomal disorder (47,XXY), causing hypogonadism, cognitive and metabolic deficits. The majority of patients are infertile due to complete germ cell loss after puberty. As the depletion occurs during development, the possibilities to study the underlying causes in humans are limited. In this study, we used the 41,XXY* mouse model to characterise the germ line postnatally. We examined marker expression of testicular cells focusing on the spermatogonial stem cells (SSCs) and found that the number of germ cells was approximately reduced fivefold at day 1pp in the 41,XXY* mice, indicating the loss to start prenatally. Concurrently, immunohistochemical SSC markers LIN28A and PGP9.5 also showed decreased expression on day 1pp in the 41,XXY* mice (48.5 and 38.9% of all germ cells were positive), which dropped to 7.8 and 7.3% on 3dpp, and were no longer detectable on days 5 and 10pp respectively. The differences in PCNA-positive proliferating cells in XY* and XXY* mice dramatically increased towards day 10pp. The mRNA expression of the germ cell markers Lin28a (Lin28), Pou5f1 (Oct4), Utf1, Ddx4 (Vasa), Dazl, and Fapb1 (Sycp3) was reduced and the Lin28a regulating miRNAs were deregulated in the 41,XXY* mice. We suggest a model for the course of germ cell loss starting during the intrauterine period. Neonatally, SSC marker expression by the already lowered number of spermatogonia is reduced and continues fading during the first postnatal week, indicating the surviving cells of the SSC population to be disturbed in their stem cell characteristics. Subsequently, the entire germ line is then generally lost when entering meiosis.
Collapse
|
39
|
The Lin28/Let-7 system in early human embryonic tissue and ectopic pregnancy. PLoS One 2014; 9:e87698. [PMID: 24498170 PMCID: PMC3909210 DOI: 10.1371/journal.pone.0087698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/24/2013] [Indexed: 12/21/2022] Open
Abstract
Our objective was to determine the expression of the elements of the Lin28/Let-7 system, and related microRNAs (miRNAs), in early stages of human placentation and ectopic pregnancy, as a means to assess the potential role of this molecular hub in the pathogenesis of ectopic gestation. Seventeen patients suffering from tubal ectopic pregnancy (cases) and forty-three women with normal on-going gestation that desired voluntary termination of pregnancy (VTOP; controls) were recruited for the study. Embryonic tissues were subjected to RNA extraction and quantitative PCR analyses for LIN28B, Let-7a, miR-132, miR-145 and mir-323-3p were performed. Our results demonstrate that the expression of LIN28B mRNA was barely detectable in embryonic tissue from early stages of gestation and sharply increased thereafter to plateau between gestational weeks 7–9. In contrast, expression levels of Let-7, mir-132 and mir-145 were high in embryonic tissue from early gestations (≤6-weeks) and abruptly declined thereafter, especially for Let-7. Opposite trends were detected for mir-323-3p. Embryonic expression of LIN28B mRNA was higher in early stages (≤6-weeks) of ectopic pregnancy than in normal gestation. In contrast, Let-7a expression was significantly lower in early ectopic pregnancies, while miR-132 and miR-145 levels were not altered. Expression of mir-323-3p was also suppressed in ectopic embryonic tissue. We are the first to document reciprocal changes in the expression profiles of the gene encoding the RNA-binding protein, LIN28B, and the related miRNAs, Let-7a, mir-132 and mir-145, in early stages of human placentation. This finding suggests the potential involvement of LIN28B/Let-7 (de)regulated pathways in the pathophysiology of ectopic pregnancy in humans.
Collapse
|
40
|
León K, Gallay N, Poupon A, Reiter E, Dalbies-Tran R, Crepieux P. Integrating microRNAs into the complexity of gonadotropin signaling networks. Front Cell Dev Biol 2013; 1:3. [PMID: 25364708 PMCID: PMC4206998 DOI: 10.3389/fcell.2013.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a master endocrine regulator of mammalian reproductive functions. Hence, it is used to stimulate folliculogenesis in assisted reproductive technologies (ART), both in women and in breeding animals. However, the side effects that hormone administration induces in some instances jeopardize the success of ART. Similarly, the luteinizing hormone (LH) is also of paramount importance in the reproductive function because it regulates steroidogenesis and the LH surge is a pre-requisite to ovulation. Gaining knowledge as extensive as possible on gonadotropin-induced biological responses could certainly lead to precise selection of their effects in vivo by the use of selective agonists at the hormone receptors. Hence, over the years, numerous groups have contributed to decipher the cellular events induced by FSH and LH in their gonadal target cells. Although little is known on the effect of gonadotropins on microRNA expression so far, recent data have highlighted that a microRNA regulatory network is likely to superimpose on the signaling protein network. No doubt that this will dramatically alter our current understanding of the gonadotropin-induced signaling networks. This is the topic of this review to present this additional level of complexity within the gonadotropin signaling network, in the context of recent findings on the microRNA machinery in the gonad.
Collapse
Affiliation(s)
- Kelly León
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Nathalie Gallay
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Anne Poupon
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Eric Reiter
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Rozenn Dalbies-Tran
- BINGO Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Pascale Crepieux
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| |
Collapse
|
41
|
Mayr F, Heinemann U. Mechanisms of Lin28-mediated miRNA and mRNA regulation--a structural and functional perspective. Int J Mol Sci 2013; 14:16532-53. [PMID: 23939427 PMCID: PMC3759924 DOI: 10.3390/ijms140816532] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 12/14/2022] Open
Abstract
Lin28 is an essential RNA-binding protein that is ubiquitously expressed in embryonic stem cells. Its physiological function has been linked to the regulation of differentiation, development, and oncogenesis as well as glucose metabolism. Lin28 mediates these pleiotropic functions by inhibiting let-7 miRNA biogenesis and by modulating the translation of target mRNAs. Both activities strongly depend on Lin28’s RNA-binding domains (RBDs), an N-terminal cold-shock domain (CSD) and a C-terminal Zn-knuckle domain (ZKD). Recent biochemical and structural studies revealed the mechanisms of how Lin28 controls let-7 biogenesis. Lin28 binds to the terminal loop of pri- and pre-let-7 miRNA and represses their processing by Drosha and Dicer. Several biochemical and structural studies showed that the specificity of this interaction is mainly mediated by the ZKD with a conserved GGAGA or GGAGA-like motif. Further RNA crosslinking and immunoprecipitation coupled to high-throughput sequencing (CLIP-seq) studies confirmed this binding motif and uncovered a large number of new mRNA binding sites. Here we review exciting recent progress in our understanding of how Lin28 binds structurally diverse RNAs and fulfills its pleiotropic functions.
Collapse
Affiliation(s)
- Florian Mayr
- Crystallography, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, Berlin 13125, Germany; E-Mail:
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, Berlin 14195, Germany
| | - Udo Heinemann
- Crystallography, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, Berlin 13125, Germany; E-Mail:
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, Berlin 14195, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-30-9406-3420; Fax: +49-30-9406-2548
| |
Collapse
|
42
|
|