1
|
Galifi CA, Dikdan RJ, Kantak D, Bulatowicz JJ, Maingrette K, Gunderson SI, Wood TL. Identifying antisense oligonucleotides for targeted inhibition of insulin receptor isoform A. Front Oncol 2025; 15:1563985. [PMID: 40303997 PMCID: PMC12038057 DOI: 10.3389/fonc.2025.1563985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction The insulin receptor (IR) is alternatively spliced into two isoforms, IR-A and IR-B. IR-B is primarily associated with metabolic signaling, whereas IR-A is highly expressed during embryogenesis. IR-A specifically has been associated with several aggressive cancers; however, selective targeting of IR-A has proven difficult due to its homology with IR-B. Methods We generated several antisense oligonucleotides (ASOs) that target the exon 10-12 splice junction site present in IR-A, but not IR-B, mRNA. To test the efficacy of the ASOs, we performed lipofectamine transfections of MDA-MB-231 breast cancer, 22Rv1 prostate carcinoma, and Hs822.T Ewing sarcoma cell lines. We also incubated the MDA-MB-231 cell line with the ASOs in the absence of lipofectamine to determine if they are taken into cells unassisted. Results One ASO variant selectively reduced IR-A mRNA levels with minimal impact on IR-B mRNA and significantly reduced total IR protein. The IR-A ASO successfully induced selective IR-A knockdown in MDA-MB-231 breast cancer cells, which was maintained after a one-week incubation with the ASO. The ASO selectively reduced IR-A mRNA when administered to cells in high doses without the use of a vehicle (i.e. gymnotic delivery). The ASO was also effective at reducing IR-A mRNA in Hs822.T Ewing Sarcoma and 22Rv1 prostate carcinoma cells. Discussion We have developed an ASO that targets IR-A with minimal off-target knockdown of IR-B. We hypothesize that the IR-A ASO will be a useful research tool and may have therapeutic value by inhibiting the oncogenic functions of IR-A in cancer cells.
Collapse
Affiliation(s)
- Christopher A. Galifi
- Department of Pharmacology, Physiology, & Neuroscience, Center for Cell Signaling and Cancer Institute of New Jersey, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Ryan J. Dikdan
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Divyangi Kantak
- Department of Pharmacology, Physiology, & Neuroscience, Center for Cell Signaling and Cancer Institute of New Jersey, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Joseph J. Bulatowicz
- Department of Pharmacology, Physiology, & Neuroscience, Center for Cell Signaling and Cancer Institute of New Jersey, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Krystopher Maingrette
- Department of Pharmacology, Physiology, & Neuroscience, Center for Cell Signaling and Cancer Institute of New Jersey, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Samuel I. Gunderson
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, United States
| | - Teresa L. Wood
- Department of Pharmacology, Physiology, & Neuroscience, Center for Cell Signaling and Cancer Institute of New Jersey, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| |
Collapse
|
2
|
Aroca-Esteban J, Souza-Neto FV, Aguilar-Latorre C, Tribaldo-Torralbo A, González-López P, Ruiz-Simón R, Álvarez-Villareal M, Ballesteros S, de Ceniga MV, Landete P, González-Rodríguez Á, Martín-Ventura JL, de Las Heras N, Escribano Ó, Gómez-Hernández A. Potential protective role of let-7d-5p in atherosclerosis progression reducing the inflammatory pathway regulated by NF-κB and vascular smooth muscle cells proliferation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167327. [PMID: 38945455 DOI: 10.1016/j.bbadis.2024.167327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.
Collapse
Affiliation(s)
- Javier Aroca-Esteban
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Francisco V Souza-Neto
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carlota Aguilar-Latorre
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Alba Tribaldo-Torralbo
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rubén Ruiz-Simón
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Marta Álvarez-Villareal
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital of Galdakao-Usansolo, Galdakao, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Pedro Landete
- Departmento de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Faculty of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - José L Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid and CIBERCV, Madrid, Spain
| | - Natalia de Las Heras
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
3
|
González-López P, Ares-Carral C, López-Pastor AR, Infante-Menéndez J, González Illaness T, Vega de Ceniga M, Esparza L, Beneit N, Martín-Ventura JL, Escribano Ó, Gómez-Hernández A. Implication of miR-155-5p and miR-143-3p in the Vascular Insulin Resistance and Instability of Human and Experimental Atherosclerotic Plaque. Int J Mol Sci 2022; 23:ijms231810253. [PMID: 36142173 PMCID: PMC9499612 DOI: 10.3390/ijms231810253] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Cardiovascular diseases (CVDs) are the main cause of death in developed countries, being atherosclerosis, a recurring process underlying their apparition. MicroRNAs (miRNAs) modulate the expression of their targets and have emerged as key players in CVDs; (2) Methods: 18 miRNAs were selected (Pubmed and GEO database) for their possible role in promoting atherosclerosis and were analysed by RT-qPCR in the aorta from apolipoprotein E-deficient (ApoE−/−) mice. Afterwards, the altered miRNAs in the aorta from 18 weeks-ApoE−/− mice were studied in human aortic and carotid samples; (3) Results: miR-155-5p was overexpressed and miR-143-3p was downregulated in mouse and human atherosclerotic lesions. In addition, a significant decrease in protein kinase B (AKT), target of miR-155-5p, and an increase in insulin-like growth factor type II receptor (IGF-IIR), target of miR-143-3p, were noted in aortic roots from ApoE−/− mice and in carotid plaques from patients with advanced carotid atherosclerosis (ACA). Finally, the overexpression of miR-155-5p reduced AKT levels and its phosphorylation in vascular smooth muscle cells, while miR-143-3p overexpression decreased IGF-IIR reducing apoptosis in vascular cells; (4) Conclusions: Our results suggest that miR-155-5p and miR-143-3p may be implicated in insulin resistance and plaque instability by the modulation of their targets AKT and IGF-IIR, contributing to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Carla Ares-Carral
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Andrea R. López-Pastor
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Infante-Menéndez
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Tamara González Illaness
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, 48960 Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Leticia Esparza
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, 48960 Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Nuria Beneit
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Luis Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (Ó.E.); (A.G.-H.); Tel.: +34-91-3941853 (Ó.E. & A.G.-H.)
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (Ó.E.); (A.G.-H.); Tel.: +34-91-3941853 (Ó.E. & A.G.-H.)
| |
Collapse
|
4
|
López-Pastor AR, Infante-Menéndez J, González-Illanes T, González-López P, González-Rodríguez Á, García-Monzón C, Vega de Céniga M, Esparza L, Gómez-Hernández A, Escribano Ó. Concerted regulation of non-alcoholic fatty liver disease progression by microRNAs in apolipoprotein E-deficient mice. Dis Model Mech 2021; 14:273592. [PMID: 34850865 PMCID: PMC8713993 DOI: 10.1242/dmm.049173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is constantly increasing, and altered expression of microRNAs (miRNAs) fosters the development and progression of many pathologies, including NAFLD. Therefore, we explored the role of new miRNAs involved in the molecular mechanisms that trigger NAFLD progression and evaluated them as biomarkers for diagnosis. As a NAFLD model, we used apolipoprotein E-deficient mice administered a high-fat diet for 8 or 18 weeks. We demonstrated that insulin resistance and decreased lipogenesis and autophagy observed after 18 weeks on the diet are related to a concerted regulation carried out by miR-26b-5p, miR-34a-5p, miR-149-5p and miR-375-3p. We also propose circulating let-7d-5p and miR-146b-5p as potential biomarkers of early stages of NAFLD. Finally, we confirmed that circulating miR-34a-5p and miR-375-3p are elevated in the late stages of NAFLD and that miR-27b-3p and miR-122-5p are increased with disease progression. Our results reveal a synergistic regulation of key processes in NAFLD development and progression by miRNAs. Further investigation is needed to unravel the roles of these miRNAs for developing new strategies for NAFLD treatment. This article has an associated First Person interview with the joint first authors of the paper. Summary:Apoe−/− mice administered a high-fat diet represent a model of non-alcoholic fatty liver disease, revealing the synergistic regulation of key processes in disease progression by miRNAs and indicating some miRNAs as biomarkers for diagnosis.
Collapse
Affiliation(s)
- Andrea R López-Pastor
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Infante-Menéndez
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Tamara González-Illanes
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paula González-López
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Águeda González-Rodríguez
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain.,CIBER of Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain.,CIBER of Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Melina Vega de Céniga
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Galdakao, 48960 Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, 48903 Bizkaia, Spain
| | - Leticia Esparza
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Galdakao, 48960 Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, 48903 Bizkaia, Spain
| | - Almudena Gómez-Hernández
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Óscar Escribano
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Sekulovski N, Whorton AE, Shi M, Hayashi K, MacLean JA. Insulin signaling is an essential regulator of endometrial proliferation and implantation in mice. FASEB J 2021; 35:e21440. [PMID: 33749878 DOI: 10.1096/fj.202002448r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for the development of preovulatory follicles and progression through the antral stage. Using a conditional knockout model that escapes this blockage, we recently described the role of insulin signaling in granulosa cells during the periovulatory window in mice lacking Insr and Igf1r driven by Pgr-Cre. These mice were infertile, exhibiting defects in ovulation, luteinization, steroidogenesis, and early embryo development. Herein, we demonstrate that while these mice exhibit normal uterine receptivity, uterine cell proliferation and decidualization are compromised resulting in complete absence of embryo implantation in uteri lacking both receptors. While the histological organization of double knockout mice appeared normal, the thickness of their endometrium was significantly reduced. This was supported by the reduced proliferation of both epithelial and stromal cells during the preimplantation stages of pregnancy. Expression and localization of the main drivers of uterine proliferation, ESR1 and PGR, was normal in knockouts, suggesting that insulin signaling acts downstream of these two receptors. While AKT/PI3K signaling was unaffected by insulin receptor ablation, activation of p44/42 MAPK was significantly reduced in both single and double knockout uteri at 3.5 dpc. Overall, we conclude that both INSR and IGF1R are necessary for optimal endometrial proliferation and implantation.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Kasprzak A, Adamek A. Insulin-Like Growth Factor 2 (IGF2) Signaling in Colorectal Cancer-From Basic Research to Potential Clinical Applications. Int J Mol Sci 2019; 20:ijms20194915. [PMID: 31623387 PMCID: PMC6801528 DOI: 10.3390/ijms20194915] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in men and women worldwide as well as is the leading cause of death in the western world. Almost a third of the patients has or will develop liver metastases. While genetic as well as epigenetic mechanisms are important in CRC pathogenesis, the basis of the most cases of cancer is unknown. High spatial and inter-patient variability of the molecular alterations qualifies this cancer in the group of highly heterogeneous tumors, which makes it harder to elucidate the mechanisms underlying CRC progression. Determination of highly sensitive and specific early diagnosis markers and understanding the cellular and molecular mechanism(s) of cancer progression are still a challenge of the current era in oncology of solid tumors. One of the accepted risk factors for CRC development is overexpression of insulin-like growth factor 2 (IGF2), a 7.5-kDa peptide produced by liver and many other tissues. IGF2 is the first gene discovered to be parentally imprinted. Loss of imprinting (LOI) or aberrant imprinting of IGF2 could lead to IGF2 overexpression, increased cell proliferation, and CRC development. IGF2 as a mitogen is associated with increased risk of developing colorectal neoplasia. Higher serum IGF2 concentration as well as its tissue overexpression in CRC compared to control are associated with metastasis. IGF2 protein was one of the three candidates for a selective marker of CRC progression and staging. Recent research indicates dysregulation of different micro- and long non-coding RNAs (miRNAs and lncRNAs, respectively) embedded within the IGF2 gene in CRC carcinogenesis, with some of them indicated as potential diagnostic and prognostic CRC biomarkers. This review systematises the knowledge on the role of genetic and epigenetic instabilities of IGF2 gene, free (active form of IGF2) and IGF-binding protein (IGFBP) bound (inactive form), paracrine/autocrine secretion of IGF2, as well as mechanisms of inducing dysplasia in vitro and tumorigenicity in vivo. We have tried to answer which molecular changes of the IGF2 gene and its regulatory mechanisms have the most significance in initiation, progression (including liver metastasis), prognosis, and potential anti-IGF2 therapy in CRC patients.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznan, Poland.
| |
Collapse
|
7
|
de Las Heras N, Klett-Mingo M, Ballesteros S, Martín-Fernández B, Escribano Ó, Blanco-Rivero J, Balfagón G, Hribal ML, Benito M, Lahera V, Gómez-Hernández A. Chronic Exercise Improves Mitochondrial Function and Insulin Sensitivity in Brown Adipose Tissue. Front Physiol 2018; 9:1122. [PMID: 30174613 PMCID: PMC6107710 DOI: 10.3389/fphys.2018.01122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present work was to study the consequences of chronic exercise training on factors involved in the regulation of mitochondrial remodeling and biogenesis, as well as the ability to produce energy and improve insulin sensitivity and glucose uptake in rat brown adipose tissue (BAT). Male Wistar rats were divided into two groups: (1) control group (C; n = 10) and (2) exercise-trained rats (ET; n = 10) for 8 weeks on a motor treadmill (five times per week for 50 min). Exercise training reduced body weight, plasma insulin, and oxidized LDL concentrations. Protein expression of ATP-independent metalloprotease (OMA1), short optic atrophy 1 (S-OPA1), and dynamin-related protein 1 (DRP1) in BAT increased in trained rats, and long optic atrophy 1 (L-OPA1) and mitofusin 1 (MFN1) expression decreased. BAT expression of nuclear respiratory factor type 1 (NRF1) and mitochondrial transcription factor A (TFAM), the main factors involved in mitochondrial biogenesis, was higher in trained rats compared to controls. Exercise training increased protein expression of sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and AMP-activated protein kinase (pAMPK/AMPK ratio) in BAT. In addition, training increased carnitine palmitoyltransferase II (CPT II), mitochondrial F1 ATP synthase α-chain, mitochondrial malate dehydrogenase 2 (mMDH) and uncoupling protein (UCP) 1,2,3 expression in BAT. Moreover, exercise increased insulin receptor (IR) ratio (IRA/IRB ratio), IRA-insulin-like growth factor 1 receptor (IGF-1R) hybrids and p42/44 activation, and decreased IGF-1R expression and IR substrate 1 (p-IRS-1) (S307) indicating higher insulin sensitivity and favoring glucose uptake in BAT in response to chronic exercise training. In summary, the present study indicates that chronic exercise is able to improve the energetic profile of BAT in terms of increased mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- Natalia de Las Heras
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Mercedes Klett-Mingo
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Óscar Escribano
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Gloria Balfagón
- Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Marta L Hribal
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Manuel Benito
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain
| | - Vicente Lahera
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain
| |
Collapse
|
8
|
Singh MK, Das BK, Choudhary S, Gupta D, Patil UK. Diabetes and hepatocellular carcinoma: A pathophysiological link and pharmacological management. Biomed Pharmacother 2018; 106:991-1002. [PMID: 30119271 DOI: 10.1016/j.biopha.2018.06.095] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 02/07/2023] Open
Abstract
Both diabetes mellitus (DM) and cancer are multifarious, dissimilar, and long-lasting, fatal diseases with a remarkable influence on health worldwide. DM is not only related to cardiovascular diseases, neuropathy, nephropathy, and retinopathy, but also related to a number of liver diseases such as nonalcoholic fatty liver disease, steatohepatitis, and liver cirrhosis. Recently, it is hypothesized that DM has a greater risk for many forms of cancer, such as breast, colorectal, endometrial, pancreatic, gallbladder, renal, and liver cancer including hepatocellular carcinoma (HCC). Both DM and cancer have many common risk factors, but the association between these two is poorly stated. Several epidemiologic studies have revealed the association between pathogenic and prognostic characteristics of DM and a higher incidence of HCC, thus representing DM as an independent risk factor for HCC development. The etiological and pathophysiological relationship between DM and HCC has been presented in this review by linking hyperglycemia, hyperinsulinemia, insulin resistance, and activation of insulin-like growth factor signaling pathways and pharmacological management of HCC associated with DM.
Collapse
Affiliation(s)
- Mandeep Kumar Singh
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| | - Bhrigu Kumar Das
- Department of Pharmacology, K.L.E.U's College of Pharmacy, Hubballi, Karnataka, India
| | - Sandeep Choudhary
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi, India.
| | - Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| |
Collapse
|
9
|
Beneit N, Martín-Ventura JL, Rubio-Longás C, Escribano Ó, García-Gómez G, Fernández S, Sesti G, Hribal ML, Egido J, Gómez-Hernández A, Benito M. Potential role of insulin receptor isoforms and IGF receptors in plaque instability of human and experimental atherosclerosis. Cardiovasc Diabetol 2018; 17:31. [PMID: 29463262 PMCID: PMC5819698 DOI: 10.1186/s12933-018-0675-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. We previously demonstrated that overexpression of insulin receptor isoform A (IRA) and insulin-like growth factor-I receptor (IGF-IR) confers a proliferative and migratory advantage to vascular smooth muscle cells (VSMCs) promoting plaque growth in early stages of atherosclerosis. However, the role of insulin receptor (IR) isoforms, IGF-IR or insulin-like growth factor-II receptor (IGF-IIR) in VSMCs apoptosis during advanced atherosclerosis remains unclear. METHODS We evaluated IR isoforms expression in human carotid atherosclerotic plaques by consecutive immunoprecipitations of insulin receptor isoform B (IRB) and IRA. Western blot analysis was performed to measure IGF-IR, IGF-IIR, and α-smooth muscle actin (α-SMA) expression in human plaques. The expression of those proteins, as well as the presence of apoptotic cells, was analyzed by immunohistochemistry in experimental atherosclerosis using BATIRKO; ApoE-/- mice, a model showing more aggravated vascular damage than ApoE-/- mice. Finally, apoptosis of VSMCs bearing IR (IRLoxP+/+ VSMCs), or not (IR-/- VSMCs), expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs), was assessed by Western blot against cleaved caspase 3. RESULTS We observed a significant decrease of IRA/IRB ratio in human complicated plaques as compared to non-complicated regions. Moreover, complicated plaques showed a reduced IGF-IR expression, an increased IGF-IIR expression, and lower levels of α-SMA indicating a loss of VSMCs. In experimental atherosclerosis, we found a significant decrease of IRA with an increased IRB expression in aorta from 24-week-old BATIRKO; ApoE-/- mice. Furthermore, atherosclerotic plaques from BATIRKO; ApoE-/- mice had less VSMCs content and higher number of apoptotic cells. In vitro experiments showed that IGF-IR inhibition by picropodophyllin induced apoptosis in VSMCs. Apoptosis induced by thapsigargin was lower in IR-/- VSMCs expressing higher IGF-IR levels as compared to IRLoxP+/+ VSMCs. Finally, IRB VSMCs are more prone to thapsigargin-induced apoptosis than IRA or IRLoxP+/+ VSMCs. CONCLUSIONS In advanced human atherosclerosis, a reduction of IRA/IRB ratio, decreased IGF-IR expression, or increased IGF-IIR may contribute to VSMCs apoptosis, promoting plaque instability and increasing the risk of plaque rupture and its clinical consequences.
Collapse
Affiliation(s)
- Nuria Beneit
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - José Luis Martín-Ventura
- Vascular Research Lab, IIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain.,CIBER of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Carlota Rubio-Longás
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Gema García-Gómez
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Silvia Fernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Jesús Egido
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Vascular Research Lab, IIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain.,CIBER of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Almudena Gómez-Hernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain. .,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain. .,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
10
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
11
|
Silva L, Subiabre M, Araos J, Sáez T, Salsoso R, Pardo F, Leiva A, San Martín R, Toledo F, Sobrevia L. Insulin/adenosine axis linked signalling. Mol Aspects Med 2017; 55:45-61. [DOI: 10.1016/j.mam.2016.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
|
12
|
Pan F, Hong LQ. Insulin promotes proliferation and migration of breast cancer cells through the extracellular regulated kinase pathway. Asian Pac J Cancer Prev 2017; 15:6349-52. [PMID: 25124623 DOI: 10.7314/apjcp.2014.15.15.6349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The present study was undertaken to determine the roles of insulin in the growth of transplanted breast cancer in nude mice, and the proliferation and migration of MCF-7 human breast cancer cells and assess its influence on downstream signaling pathways. In a xenograft mouse model with injection of MCF-7 human breast cancer cells, tumor size was measured every other day. The insulin level and insulin receptor (IR) were increased in the breast cancer patient tissues. Insulin injected subcutaneously around the tumor site in mice caused increase in the size and weight of tumor masses, and promoted proliferation and migration of MCF-7 cells. The effects of insulin on the increase in the proliferation and migration of MCF-7 human breast cancer cells were abolished by pretreatment with the extracellular regulated kinase (ERK) inhibitor PD98059. Insulin increased the phosphorylation of ERK in the MCF-7 cells. These results indicate that insulin promotes the growth of breast cancer in nude mice, and increases the proliferation and migration of MCF-7 human breast cancer cells via the ERK pathway.
Collapse
Affiliation(s)
- Feng Pan
- Department of Laboratory Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China E-mail :
| | | |
Collapse
|
13
|
Escribano O, Beneit N, Rubio-Longás C, López-Pastor AR, Gómez-Hernández A. The Role of Insulin Receptor Isoforms in Diabetes and Its Metabolic and Vascular Complications. J Diabetes Res 2017; 2017:1403206. [PMID: 29201918 PMCID: PMC5671728 DOI: 10.1155/2017/1403206] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The insulin receptor (IR) presents by alternative splicing two isoforms: IRA and IRB. The differential physiological and pathological role of both isoforms is not completely known, and it is determinant the different binding affinity for insulin-like growth factor. IRB is more abundant in adult tissues and it exerts mainly the metabolic actions of insulin, whereas IRA is mainly expressed in fetal and prenatal period and exerts mitogenic actions. However, the change in the expression profile of both IR isoforms and its dysregulation are associated with the development of different pathologies, such as cancer, insulin resistance, diabetes, obesity, and atherosclerosis. In some of them, there is a significant increase of IRA/IRB ratio conferring a proliferative and migratory advantage to different cell types and favouring IGF-II actions with a sustained detriment in the metabolic effects of insulin. This review discussed specifically the role of IR isoforms as well as IGF-IR in diabetes and its associated complications as obesity and atherosclerosis. Future research with new IR modulators might be considered as possible targets to improve the treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
- O. Escribano
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - N. Beneit
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - C. Rubio-Longás
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - A. R. López-Pastor
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - A. Gómez-Hernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| |
Collapse
|
14
|
Beneit N, Fernández-García CE, Martín-Ventura JL, Perdomo L, Escribano Ó, Michel JB, García-Gómez G, Fernández S, Díaz-Castroverde S, Egido J, Gómez-Hernández A, Benito M. Expression of insulin receptor (IR) A and B isoforms, IGF-IR, and IR/IGF-IR hybrid receptors in vascular smooth muscle cells and their role in cell migration in atherosclerosis. Cardiovasc Diabetol 2016; 15:161. [PMID: 27905925 PMCID: PMC5134076 DOI: 10.1186/s12933-016-0477-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
Background Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is a major contributor to the development of atherosclerotic process. In a previous work, we demonstrated that the insulin receptor isoform A (IRA) and its association with the insulin-like growth factor-I receptor (IGF-IR) confer a proliferative advantage to VSMCs. However, the role of IR and IGF-IR in VSMC migration remains poorly understood. Methods Wound healing assays were performed in VSMCs bearing IR (IRLoxP+/+ VSMCs), or not (IR−/− VSMCs), expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs). To study the role of IR isoforms and IGF-IR in experimental atherosclerosis, we used ApoE−/− mice at 8, 12, 18 and 24 weeks of age. Finally, we analyzed the mRNA expression of total IR, IRB isoform, IGF-IR and IGFs by qRT-PCR in the medial layer of human aortas. Results IGF-I strongly induced migration of the four cell lines through IGF-IR. In contrast, insulin and IGF-II only caused a significant increase of IRA VSMC migration which might be favored by the formation of IRA/IGF-IR receptors. Additionally, a specific IGF-IR inhibitor, picropodophyllin, completely abolished insulin- and IGF-II-induced migration in IRB, but not in IRA VSMCs. A significant increase of IRA and IGF-IR, and VSMC migration were observed in fibrous plaques from 24-week-old ApoE−/− mice. Finally, we observed a marked increase of IGF-IR, IGF-I and IGF-II in media from fatty streaks as compared with both healthy aortas and fibrolipidic lesions, favoring the ability of medial VSMCs to migrate into the intima. Conclusions Our data suggest that overexpression of IGF-IR or IRA isoform, as homodimers or as part of IRA/IGF-IR hybrid receptors, confers a stronger migratory capability to VSMCs as might occur in early stages of atherosclerotic process. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0477-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- N Beneit
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - C E Fernández-García
- Vascular Research Lab, IIS-Fundación Jiménez Diaz-Autonoma University, Madrid, Spain
| | - J L Martín-Ventura
- Vascular Research Lab, IIS-Fundación Jiménez Diaz-Autonoma University, Madrid, Spain
| | - L Perdomo
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Ó Escribano
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - J B Michel
- Inserm, U698, Universite Paris 7, CHU X-Bichat, Paris, France
| | - G García-Gómez
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - S Fernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - S Díaz-Castroverde
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - J Egido
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain.,Vascular Research Lab, IIS-Fundación Jiménez Diaz-Autonoma University, Madrid, Spain
| | - A Gómez-Hernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain. .,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain. .,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain.
| | - M Benito
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| |
Collapse
|
15
|
Wang YC, Hu YW, Sha YH, Gao JJ, Ma X, Li SF, Zhao JY, Qiu YR, Lu JB, Huang C, Zhao JJ, Zheng L, Wang Q. Ox-LDL Upregulates IL-6 Expression by Enhancing NF-κB in an IGF2-Dependent Manner in THP-1 Macrophages. Inflammation 2016; 38:2116-23. [PMID: 26063187 DOI: 10.1007/s10753-015-0194-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Interleukin 6 (IL-6) is a pro-inflammatory cytokine that is well established as a vital factor in determining the risk of coronary heart disease and pathogenesis of atherosclerosis. Moreover, accumulating evidences have shown that oxidized low-density lipoprotein (ox-LDL) can promote IL-6 expression in macrophages. Nevertheless, the underlying mechanism of how ox-LDL upregulates IL-6 expression remains largely unexplained. We found that the expression of insulin-like growth factor 2 (IGF2), nuclear factor kappa B (NF-κB), and IL-6 was upregulated at both the messenger RNA (mRNA) and protein levels in a dose-dependent manner when treated with 0, 25, 50, or 100 μg/mL of ox-LDL for 48 h in THP-1 macrophages. Moreover, overexpression of IGF2 significantly upregulated NF-κB and IL-6 expressions in THP-1 macrophages. However, the upregulation of NF-κB and IL-6 expressions induced by ox-LDL were significantly abolished by IGF2 small interfering RNA (siRNA) in THP-1 macrophages. Further studies indicated the upregulation of IL-6 induced by ox-LDL could be abolished when treated with NF-κB siRNA in THP-1 macrophages. Ox-LDL might upregulate IL-6 in the cell and its secretion via enhancing NF-κB in an IGF2-dependent manner in THP-1 macrophages.
Collapse
Affiliation(s)
- Yan-Chao Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yan-Hua Sha
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ji-Juan Gao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xin Ma
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Yi Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing-Bo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuan Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing-Jing Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
16
|
Flannery CA, Saleh FL, Choe GH, Selen DJ, Kodaman PH, Kliman HJ, Wood TL, Taylor HS. Differential Expression of IR-A, IR-B and IGF-1R in Endometrial Physiology and Distinct Signature in Adenocarcinoma. J Clin Endocrinol Metab 2016; 101:2883-91. [PMID: 27088794 PMCID: PMC4929835 DOI: 10.1210/jc.2016-1795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/13/2016] [Indexed: 01/07/2023]
Abstract
CONTEXT Type 2 diabetes and obesity are risk factors for endometrial hyperplasia and cancer, suggesting that hyperinsulinemia contributes to pathogenesis. Insulin action through insulin receptor (IR) splice variants IR-A and IR-B regulates cellular mitogenesis and metabolism, respectively. OBJECTIVE We hypothesized that IR-A and IR-B are differentially regulated in normal endometrium, according to mitogenic and metabolic requirements through the menstrual cycle, as well as in endometrial hyperplasia and cancer. DESIGN IR-A, IR-B, and IGF-1 receptor (IGF-1R) mRNA was quantified in endometrium, endometrial epithelial and stromal cells, and in vitro after hormone stimulation. SETTING Academic center. PATIENTS Endometrium was collected from women with regular cycles (n = 71), complex hyperplasia (n = 5), or endometrioid adenocarcinoma (n = 11). INTERVENTION(S) In vitro sex-steroid treatment. MAIN OUTCOME MEASURE(S) IR-A and IR-B expression Results: IR-A increased dramatically during the early proliferative phase, 20-fold more than IR-B. In early secretory phase, IR-B and IGF-1R expression increased, reaching maximal expression, whereas IR-A decreased. In adenocarcinoma, IR-B and IGF-1R expression was 5- to 6-fold higher than normal endometrium, whereas IR-A expression was similar to IR-B. Receptor expression was unrelated to body mass index. CONCLUSION IR-A was elevated during the normal proliferative phase, and in endometrial hyperplasia and adenocarcinoma. The dramatic early rise of IR-A in normal endometrium indicates IR-A is the predominant isoform responsible for initial estrogen-independent endometrial proliferation as well as that of cancer. IR-B is elevated during the normal secretory phase when glucose uptake and glycogen synthesis support embryo development. Differing from other cancers, IR-B expression equals mitogenic IR-A in endometrial adenocarcinoma. Differential IR isoform expression suggests a distinct role for each in endometrial physiology and cancer.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- Cells, Cultured
- Endometrial Hyperplasia/genetics
- Endometrial Hyperplasia/metabolism
- Endometrial Hyperplasia/pathology
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Endometrium/metabolism
- Endometrium/physiology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Menstrual Cycle/genetics
- Menstrual Cycle/metabolism
- Middle Aged
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Clare A Flannery
- Obstetrics, Gynecology, and Reproductive Sciences (C.A.F., F.L.S., G.H.C., D.J.S., P.H.K., H.J.K., H.S.T.), Yale School of Medicine, New Haven, Connecticut 06520; Internal Medicine (C.A.F.), Yale School of Medicine, New Haven, Connecticut 06520; and Pharmacology, Physiology and Neuroscience and Cancer Center (T.L.W.), NJ Medical School, Rutgers University, Newark, New Jersey 07101
| | - Farrah L Saleh
- Obstetrics, Gynecology, and Reproductive Sciences (C.A.F., F.L.S., G.H.C., D.J.S., P.H.K., H.J.K., H.S.T.), Yale School of Medicine, New Haven, Connecticut 06520; Internal Medicine (C.A.F.), Yale School of Medicine, New Haven, Connecticut 06520; and Pharmacology, Physiology and Neuroscience and Cancer Center (T.L.W.), NJ Medical School, Rutgers University, Newark, New Jersey 07101
| | - Gina H Choe
- Obstetrics, Gynecology, and Reproductive Sciences (C.A.F., F.L.S., G.H.C., D.J.S., P.H.K., H.J.K., H.S.T.), Yale School of Medicine, New Haven, Connecticut 06520; Internal Medicine (C.A.F.), Yale School of Medicine, New Haven, Connecticut 06520; and Pharmacology, Physiology and Neuroscience and Cancer Center (T.L.W.), NJ Medical School, Rutgers University, Newark, New Jersey 07101
| | - Daryl J Selen
- Obstetrics, Gynecology, and Reproductive Sciences (C.A.F., F.L.S., G.H.C., D.J.S., P.H.K., H.J.K., H.S.T.), Yale School of Medicine, New Haven, Connecticut 06520; Internal Medicine (C.A.F.), Yale School of Medicine, New Haven, Connecticut 06520; and Pharmacology, Physiology and Neuroscience and Cancer Center (T.L.W.), NJ Medical School, Rutgers University, Newark, New Jersey 07101
| | - Pinar H Kodaman
- Obstetrics, Gynecology, and Reproductive Sciences (C.A.F., F.L.S., G.H.C., D.J.S., P.H.K., H.J.K., H.S.T.), Yale School of Medicine, New Haven, Connecticut 06520; Internal Medicine (C.A.F.), Yale School of Medicine, New Haven, Connecticut 06520; and Pharmacology, Physiology and Neuroscience and Cancer Center (T.L.W.), NJ Medical School, Rutgers University, Newark, New Jersey 07101
| | - Harvey J Kliman
- Obstetrics, Gynecology, and Reproductive Sciences (C.A.F., F.L.S., G.H.C., D.J.S., P.H.K., H.J.K., H.S.T.), Yale School of Medicine, New Haven, Connecticut 06520; Internal Medicine (C.A.F.), Yale School of Medicine, New Haven, Connecticut 06520; and Pharmacology, Physiology and Neuroscience and Cancer Center (T.L.W.), NJ Medical School, Rutgers University, Newark, New Jersey 07101
| | - Teresa L Wood
- Obstetrics, Gynecology, and Reproductive Sciences (C.A.F., F.L.S., G.H.C., D.J.S., P.H.K., H.J.K., H.S.T.), Yale School of Medicine, New Haven, Connecticut 06520; Internal Medicine (C.A.F.), Yale School of Medicine, New Haven, Connecticut 06520; and Pharmacology, Physiology and Neuroscience and Cancer Center (T.L.W.), NJ Medical School, Rutgers University, Newark, New Jersey 07101
| | - Hugh S Taylor
- Obstetrics, Gynecology, and Reproductive Sciences (C.A.F., F.L.S., G.H.C., D.J.S., P.H.K., H.J.K., H.S.T.), Yale School of Medicine, New Haven, Connecticut 06520; Internal Medicine (C.A.F.), Yale School of Medicine, New Haven, Connecticut 06520; and Pharmacology, Physiology and Neuroscience and Cancer Center (T.L.W.), NJ Medical School, Rutgers University, Newark, New Jersey 07101
| |
Collapse
|
17
|
Westermeier F, Sáez T, Arroyo P, Toledo F, Gutiérrez J, Sanhueza C, Pardo F, Leiva A, Sobrevia L. Insulin receptor isoforms: an integrated view focused on gestational diabetes mellitus. Diabetes Metab Res Rev 2016; 32:350-65. [PMID: 26431063 DOI: 10.1002/dmrr.2729] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/14/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
The human insulin receptor (IR) exists in two isoforms that differ by the absence (IR-A) or the presence (IR-B) of a 12-amino acid segment encoded by exon 11. Both isoforms are functionally distinct regarding their binding affinities and intracellular signalling. However, the underlying mechanisms related to their cellular functions in several tissues are only partially understood. In this review, we summarize the current knowledge in this field regarding the alternative splicing of IR isoform, tissue-specific distribution and signalling both in physiology and disease, with an emphasis on the human placenta in gestational diabetes mellitus (GDM). Furthermore, we discuss the clinical relevance of IR isoforms highlighted by findings that show altered insulin signalling due to differential IR-A and IR-B expression in human placental endothelium in GDM pregnancies. Future research and clinical studies focused on the role of IR isoform signalling might provide novel therapeutic targets for treating GDM to improve the adverse maternal and neonatal outcomes.
Collapse
Affiliation(s)
- F Westermeier
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Centre for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Faculty of Science, Universidad San Sebastián, Santiago, Chile
| | - T Sáez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- University Medical Centre Groningen (UMCG), Faculty of Medicine, University of Groningen, Groningen, The Netherlands
| | - P Arroyo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - J Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - C Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Queensland, Australia
| |
Collapse
|
18
|
Perdomo L, Beneit N, Otero YF, Escribano Ó, Díaz-Castroverde S, Gómez-Hernández A, Benito M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol 2015; 14:75. [PMID: 26055507 PMCID: PMC4475625 DOI: 10.1186/s12933-015-0237-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several translational studies have identified the differential role between saturated and unsaturated fatty acids at cardiovascular level. However, the molecular mechanisms that support the protective role of oleate in cardiovascular cells are poorly known. For these reasons, we studied the protective role of oleate in the insulin resistance and in the atherosclerotic process at cellular level such as in cardiomyocytes (CMs), vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). METHODS The effect of oleate in the cardiovascular insulin resistance, vascular dysfunction, inflammation, proliferation and apoptosis of VSMCs were analyzed by Western blot, qRT-PCR, BrdU incorporation and cell cycle analysis. RESULTS Palmitate induced insulin resistance. However, oleate not only did not induce cardiovascular insulin resistance but also had a protective effect against insulin resistance induced by palmitate or TNFα. One mechanism involved might be the prevention by oleate of JNK-1/2 or NF-κB activation in response to TNF-α or palmitate. Oleate reduced MCP-1 and ICAM-1 and increased eNOS expression induced by proinflammatory cytokines in ECs. Furthermore, oleate impaired the proliferation induced by TNF-α, angiotensin II or palmitate and the apoptosis induced by TNF-α or thapsigargin in VSMCs. CONCLUSIONS Our data suggest a differential role between oleate and palmitate and support the concept of the cardioprotector role of oleate as the main lipid component of virgin olive oil. Thus, oleate protects against cardiovascular insulin resistance, improves endothelial dysfunction in response to proinflammatory signals and finally, reduces proliferation and apoptosis in VSMCs that may contribute to an ameliorated atherosclerotic process and plaque stability.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Apoptosis/drug effects
- Atherosclerosis/metabolism
- Blotting, Western
- Cell Line
- Cell Proliferation/drug effects
- Chemokine CCL2/drug effects
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Inflammation
- Insulin Resistance
- Intercellular Adhesion Molecule-1/drug effects
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/metabolism
- MAP Kinase Signaling System/drug effects
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/drug effects
- NF-kappa B/drug effects
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type III/drug effects
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oleic Acid/pharmacology
- Palmitates/pharmacology
- Palmitic Acid/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Necrosis Factor-alpha/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Liliana Perdomo
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Nuria Beneit
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Yolanda F Otero
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Sabela Díaz-Castroverde
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Almudena Gómez-Hernández
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| |
Collapse
|
19
|
Qi L, Zhi J, Zhang T, Cao X, Sun L, Xu Y, Li X. Inhibition of microRNA-25 by tumor necrosis factor α is critical in the modulation of vascular smooth muscle cell proliferation. Mol Med Rep 2015; 11:4353-8. [PMID: 25672882 DOI: 10.3892/mmr.2015.3329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis and coronary heart disease are characterized by a hyperplastic neointima and inflammation involving cytokines, such as tumor necrosis factor‑α (TNF‑α). TNF‑α is pleiotropic and mediates inflammation and proliferation in various cell types, such as vascular smooth muscle cells (VSMCs). The molecular mechanism for the pleiotropic effects of TNF‑α has not previously been fully elucidated. The current study identified that the expression of microRNA‑25 (miR‑25), a small noncoding RNA, was reduced in response to TNF‑α signaling in VSMCs. Restored miR‑25 expression inhibited cell proliferation and Ki‑67 expression. The present study indicated that cyclin‑dependent kinase 6 (CDK6) was the direct target gene of miR‑25 using mRNA and protein expression analysis, and luciferase assays. It was also observed that restored CDK6 expression in the miR‑25 mimic‑treated VSMCs partly reduced miR‑25‑mediated VSMC proliferation. In conclusion, miR‑25 is suggested to be important in TNF‑α‑induced abnormal proliferation of VSMCs.
Collapse
Affiliation(s)
- Lichun Qi
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jixin Zhi
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tong Zhang
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xue Cao
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lixiu Sun
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuanyuan Xu
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xueqi Li
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
20
|
Lewitt MS, Dent MS, Hall K. The Insulin-Like Growth Factor System in Obesity, Insulin Resistance and Type 2 Diabetes Mellitus. J Clin Med 2014; 3:1561-74. [PMID: 26237614 PMCID: PMC4470198 DOI: 10.3390/jcm3041561] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor (IGF) system, acting in concert with other hormone axes, is important in normal metabolism. In obesity, the hyperinsulinaemia that accompanies peripheral insulin resistance leads to reduced growth hormone (GH) secretion, while total IGF-I levels are relatively unchanged due to increased hepatic GH sensitivity. IGF-binding protein (IGFBP)-1 levels are suppressed in relation to the increase in insulin levels in obesity and low levels predict the development of type 2 diabetes several years later. Visceral adiposity and hepatic steatosis, along with a chronic inflammation, contribute to the IGF system phenotype in individuals with metabolic syndrome and type 2 diabetes mellitus, including changes in the normal inverse relationship between IGFBP-1 and insulin, with IGFBP-1 concentrations that are inappropriately normal or elevated. The IGF system is implicated in the vascular and other complications of these disorders and is therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health Nursing & Midwifery, the University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mairi S Dent
- School of Health Nursing & Midwifery, the University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Kerstin Hall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE171 76, Sweden.
| |
Collapse
|
21
|
Yan XD, Shi Y, Qian Q, Li JY, Chen X, Dong ZZ, Yao DF. Short hairpin RNA-mediated silencing of insulin-like growth factor-Ⅰ receptor inhibits proliferation of hepatoma cells. Shijie Huaren Xiaohua Zazhi 2014; 22:3396-3402. [DOI: 10.11569/wcjd.v22.i23.3396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of short hairpin RNA (shRNA)-mediated silencing of insulin-like growth factor-Ⅰ receptor (IGF-ⅠR) gene transcription on cell proliferation, cell cycle progression, apoptosis and sensitivity to targeted therapy and chemotherapy in hepatocellular carcinoma (HCC) cell lines PLC/PRF/5 and Bel-7404.
METHODS: Pairs of IGF-ⅠR shRNAs were designed and synthesized based on the IGF-ⅠR sequence, and inserted into the pGPU6/GFP/Neo vector to screen the most effective one. IGF-ⅠR expression was then down-regulated with the shRNA to observe its inhibitory effect on hepatoma cell proliferation.
RESULTS: After screening, the IGF-ⅠR-shRNA4 was found to be the most efficient one for interfering IGF-ⅠR gene transcription among the 4 pairs of successfully constructed plasmids, with a transfection efficiency of 71% in PLC/PRF/5 cells and 90% in Bel-7404 cells. The expression of IGF-ⅠR mRNA was down-regulated by 59.6% ± 2.8% in PLC/PRF/5 cells and 54.9% ± 2.6% in Bel-7404 cells. After the cells was transfected with shRNA4 for 72 h, the reduced rate of cell proliferation was 61.47% ± 1.70% in Bel-7404 cells (t = 5.493, P < 0.005) and 63.87 ± 3.90% (t = 19.244, P < 0.001) in PLC/PRF/5 cells. Meanwhile, the cell cycle was arrested in the G1 phase, and the expression of Cyclin D1 was significantly down-regulated with increasing cell apoptosis. Besides, the combination of shRNA4 with sorafenib or oxaliplatin showed higher inhibitory effects on cell survival than shRNA4 alone.
CONCLUSION: Silencing IGF-ⅠR gene transcription can inhibit hepatoma cell proliferation, induce apoptosis and enhance the sensitivity to targeted therapy and chemotherapy. IGF-ⅠR may be a potential target gene for HCC gene therapy.
Collapse
|
22
|
Gómez-Hernández A, Perdomo L, de las Heras N, Beneit N, Escribano O, Otero YF, Guillén C, Díaz-Castroverde S, Gozalbo-López B, Cachofeiro V, Lahera V, Benito M. Antagonistic effect of TNF-alpha and insulin on uncoupling protein 2 (UCP-2) expression and vascular damage. Cardiovasc Diabetol 2014; 13:108. [PMID: 25077985 PMCID: PMC4149264 DOI: 10.1186/s12933-014-0108-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/27/2014] [Indexed: 12/11/2022] Open
Abstract
Background It has been reported that increased expression of UCP-2 in the vasculature may prevent the development of atherosclerosis in patients with increased production of reactive oxygen species, as in the diabetes, obesity or hypertension. Thus, a greater understanding in the modulation of UCP-2 could improve the atherosclerotic process. However, the effect of TNF-α or insulin modulating UCP-2 in the vascular wall is completely unknown. In this context, we propose to study new molecular mechanisms that help to explain whether the moderate hyperinsulinemia or lowering TNF-α levels might have a protective role against vascular damage mediated by UCP-2 expression levels. Methods We analyzed the effect of insulin or oleic acid in presence or not of TNF-α on UCP-2 expression in murine endothelial and vascular smooth muscle cells. At this step, we wondered if some mechanisms studied in vitro could be of any relevance in vivo. We used the following experimental models: ApoE−/− mice under Western type diet for 2, 6, 12 or 18 weeks, BATIRKO mice under high-fat diet for 16 weeks and 52-week-old BATIRKO mice with o without anti-TNF-α antibody pre-treatment. Results Firstly, we found that TNF-α pre-treatment reduced UCP-2 expression induced by insulin in vascular cells. Secondly, we observed a progressive reduction of UCP-2 levels together with an increase of lipid depots and lesion area in aorta from ApoE−/− mice. In vivo, we also observed that moderate hyperinsulinemic obese BATIRKO mice have lower TNF-α and ROS levels and increased UCP-2 expression levels within the aorta, lower lipid accumulation, vascular dysfunction and macrovascular damage. We also observed that the anti-TNF-α antibody pre-treatment impaired the loss of UCP-2 expression within the aorta and relieved vascular damage observed in 52-week-old BATIRKO mice. Finally, we observed that the pretreatment with iNOS inhibitor prevented UCP-2 reduction induced by TNF-α in vascular cells. Moreover, iNOS levels are augmented in aorta from mice with lower UCP-2 levels and higher TNF-α levels. Conclusions Our data suggest that moderate hyperinsulinemia in response to insulin resistance or lowering of TNF-α levels within the aorta attenuates vascular damage, this protective effect being mediated by UCP-2 expression levels through iNOS. Electronic supplementary material The online version of this article (doi:10.1186/s12933-014-0108-9) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Sun Y, Chen D, Cao L, Zhang R, Zhou J, Chen H, Li Y, Li M, Cao J, Wang Z. MiR-490-3p modulates the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPP-A. Cardiovasc Res 2013; 100:272-9. [DOI: 10.1093/cvr/cvt172] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|