1
|
Dzubanova M, Benova A, Ferencakova M, Coupeau R, Tencerova M. Nutrition and Bone Marrow Adiposity in Relation to Bone Health. Physiol Res 2024; 73:S107-S138. [PMID: 38752771 PMCID: PMC11412336 DOI: 10.33549/physiolres.935293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/29/2024] [Indexed: 09/04/2024] Open
Abstract
Bone remodeling is energetically demanding process. Energy coming from nutrients present in the diet contributes to function of different cell type including osteoblasts, osteocytes and osteoclasts in bone marrow participating in bone homeostasis. With aging, obesity and osteoporosis the function of key building blocks, bone marrow stromal cells (BMSCs), changes towards higher accumulation of bone marrow adipose tissue (BMAT) and decreased bone mass, which is affected by diet and sex dimorphism. Men and women have unique nutritional needs based on physiological and hormonal changes across the life span. However, the exact molecular mechanisms behind these pathophysiological conditions in bone are not well-known. In this review, we focus on bone and BMAT physiology in men and women and how this approach has been taken by animal studies. Furthermore, we discuss the different diet interventions and impact on bone and BMAT in respect to sex differences. We also discuss the future perspective on precision nutrition with a consideration of sex-based differences which could bring better understanding of the diet intervention in bone health and weight management.
Collapse
Affiliation(s)
- M Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
2
|
Park CJ, Minabe S, Hess RA, Lin PCP, Zhou S, Bashir ST, Barakat R, Gal A, Ko CJ. Single neonatal estrogen implant sterilizes female animals by decreasing hypothalamic KISS1 expression. Sci Rep 2023; 13:9627. [PMID: 37316510 DOI: 10.1038/s41598-023-36727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Reproductive sterilization by surgical gonadectomy is strongly advocated to help manage animal populations, especially domesticated pets, and to prevent reproductive behaviors and diseases. This study explored the use of a single-injection method to induce sterility in female animals as an alternative to surgical ovariohysterectomy. The idea was based on our recent finding that repetitive daily injection of estrogen into neonatal rats disrupted hypothalamic expression of Kisspeptin (KISS1), the neuropeptide that triggers and regulates pulsatile secretion of GnRH. Neonatal female rats were dosed with estradiol benzoate (EB) either by daily injections for 11 days or by subcutaneous implantation of an EB-containing silicone capsule designed to release EB over 2-3 weeks. Rats treated by either method did not exhibit estrous cyclicity, were anovulatory, and became infertile. The EB-treated rats had fewer hypothalamic Kisspeptin neurons, but the GnRH-LH axis remained responsive to Kisspeptin stimulation. Because it would be desirable to use a biodegradable carrier that is also easier to handle, an injectable EB carrier was developed from PLGA microspheres to provide pharmacokinetics comparable to the EB-containing silicone capsule. A single neonatal injection of EB-microspheres at an equivalent dosage resulted in sterility in the female rat. In neonatal female Beagle dogs, implantation of an EB-containing silicone capsule also reduced ovarian follicle development and significantly inhibited KISS1 expression in the hypothalamus. None of the treatments produced any concerning health effects, other than infertility. Therefore, further development of this technology for sterilization in domestic female animals, such as dogs and cats is worthy of investigation.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Shiori Minabe
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | | | - Shah Tauseef Bashir
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
- Epivara, Inc, Champaign, IL, 61820, USA.
| |
Collapse
|
3
|
Kawamoto TS, Viana JHM, Pontelo TP, Franco MM, de Faria OAC, Fidelis AAG, Vargas LN, Figueiredo RA. Dynamics of the Reproductive Changes and Acquisition of Oocyte Competence in Nelore (Bos taurus indicus) Calves during the Early and Intermediate Prepubertal Periods. Animals (Basel) 2022; 12:ani12162137. [PMID: 36009727 PMCID: PMC9405107 DOI: 10.3390/ani12162137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to characterize the reproductive physiology, oocyte competence, and chromatin compaction in Nelore calves in the early-prepubertal period (EPP) and the intermediate-prepubertal period (IPP). Calves aged 2-5 (EPP) and 8-11 months old (IPP) were assigned to Trial 1 (morpho-physiological-endocrine evaluations, n = 8) or Trial 2 (oocyte donors, n = 8) vs. the respective control groups of cows (n = 8, each). All morphological endpoints, except the antral follicle count, increased from the EPP to the IPP. The EPP LH-FSH plasma concentrations were similar to cows, whereas LH was lower and FSH was higher in the IPP than in cows. . Cows produced more Grade I (12.9% vs. 4.1% and 1.7%) and fewer Grade III COC (30.1% vs. 44.5% and 49.0%) than the EPP and IPP calves, respectively. The IPP calves' oocyte diameter was similar to those from cows but greater than those from EPP females (124.8 ± 8.5 and 126.0 ± 7.5 μm vs. 121.3 ± 7.5 μm, respectively). The expression of the chromatin compaction-related gene HDAC3 was downregulated in calves. The proportion of the blastocyst rate to the controls was lower in EPP than in IPP calves (43.7% vs. 78.7%, respectively). Progressive oocyte competence was found during the prepubertal period, which can help to decide whether to recover oocytes from calves.
Collapse
Affiliation(s)
- Taynan Stonoga Kawamoto
- Department of Veterinary, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil
| | | | | | - Maurício Machaim Franco
- Animal Reproduction Laboratory, Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil
| | | | | | - Luna Nascimento Vargas
- Department of Biology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil
| | - Ricardo Alamino Figueiredo
- Animal Reproduction Laboratory, Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil
- Correspondence: ; Tel.: +55-61-3448-4961
| |
Collapse
|
4
|
Estrada-Meza J, Videlo J, Bron C, Saint-Béat C, Silva M, Duboeuf F, Peyruchaud O, Rajas F, Mithieux G, Gautier-Stein A. Tamoxifen Treatment in the Neonatal Period Affects Glucose Homeostasis in Adult Mice in a Sex-Dependent Manner. Endocrinology 2021; 162:6277101. [PMID: 33999998 DOI: 10.1210/endocr/bqab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/11/2022]
Abstract
Tamoxifen is a selective estrogen receptor modulator used to activate the CREERT2 recombinase, allowing tissue-specific and temporal control of the somatic mutagenesis to generate transgenic mice. Studies integrating development and metabolism require a genetic modification induced by a neonatal tamoxifen administration. Here, we investigate the effects of a neonatal tamoxifen administration on energy homeostasis in adult male and female C57BL/6J mice. C57BL/6J male and female mouse pups received a single injection of tamoxifen 1 day after birth (NTT) and were fed a high-fat/high-sucrose diet at 6 weeks of age. We measured weight, body composition, glucose and insulin tolerance, basal metabolism, and tibia length and weight in adult mice. The neonatal tamoxifen administration exerted long-term, sex-dependent effects on energy homeostasis. NTT female mice became overweight and developed impaired glucose control in comparison to vehicle-treated littermates. NTT females exhibited 60% increased fat mass, increased food intake, decreased physical activity and energy expenditure, impaired glucose and insulin tolerance, and fasting hyperglycemia and hyperinsulinemia. In contrast, NTT male mice exhibited a modest amelioration of glucose and insulin tolerance and long-term decreased lean mass linked to decreased bone weight. These results suggest that the neonatal tamoxifen administration exerted a marked and sex-dependent influence on adult energy homeostasis and bone weight and must therefore be used with caution for the development of transgenic mouse models regarding studies on energy homeostasis and bone biology.
Collapse
Affiliation(s)
- Judith Estrada-Meza
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Jasmine Videlo
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Clara Bron
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Cécile Saint-Béat
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Marine Silva
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - François Duboeuf
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1033, Lyon, France
| | - Olivier Peyruchaud
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1033, Lyon, France
| | - Fabienne Rajas
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Gilles Mithieux
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | | |
Collapse
|
5
|
Noirrit-Esclassan E, Valera MC, Tremollieres F, Arnal JF, Lenfant F, Fontaine C, Vinel A. Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications. Int J Mol Sci 2021; 22:ijms22041568. [PMID: 33557249 PMCID: PMC7913980 DOI: 10.3390/ijms22041568] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a multi-skilled tissue, protecting major organs, regulating calcium phosphate balance and producing hormones. Its development during childhood determines height and stature as well as resistance against fracture in advanced age. Estrogens are key regulators of bone turnover in both females and males. These hormones play a major role in longitudinal and width growth throughout puberty as well as in the regulation of bone turnover. In women, estrogen deficiency is one of the major causes of postmenopausal osteoporosis. In this review, we will summarize the main clinical and experimental studies reporting the effects of estrogens not only in females but also in males, during different life stages. Effects of estrogens on bone involve either Estrogen Receptor (ER)α or ERβ depending on the type of bone (femur, vertebrae, tibia, mandible), the compartment (trabecular or cortical), cell types involved (osteoclasts, osteoblasts and osteocytes) and sex. Finally, we will discuss new ongoing strategies to increase the benefit/risk ratio of the hormonal treatment of menopause.
Collapse
Affiliation(s)
- Emmanuelle Noirrit-Esclassan
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Department of Pediatric Dentistry, Faculty of Dental Surgery, University of Toulouse III, F-31000 Toulouse, France
| | - Marie-Cécile Valera
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Department of Pediatric Dentistry, Faculty of Dental Surgery, University of Toulouse III, F-31000 Toulouse, France
| | - Florence Tremollieres
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Menopause and Metabolic Bone Disease Center, Hôpital Paule de Viguier, University Hospital of Toulouse, F-31000 Toulouse, France
| | - Jean-Francois Arnal
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
| | - Françoise Lenfant
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
| | - Coralie Fontaine
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
| | - Alexia Vinel
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Department of Periodontology, Faculty of Dental Surgery, University of Toulouse III, F-31000 Toulouse, France
- Correspondence: ; Tel.: +33-5-61-77-36-10
| |
Collapse
|
6
|
Seiffe A, Ramirez MF, Barrios CD, Albarrán MM, Depino AM. Early estradiol exposure masculinizes disease-relevant behaviors in female mice. Eur J Neurosci 2021; 53:2483-2499. [PMID: 33497491 DOI: 10.1111/ejn.15130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Most psychiatric disorders show a sex bias in incidence, symptomatology, and/or response to treatment. Males are more susceptible to neurodevelopmental disorders including autism spectrum disorder and attention-deficit activity disorder, while women are more prone to major depressive disorder and anxiety disorders after puberty. A striking difference between males and females in humans and other mammals is that males undergo a process of brain masculinization due to the early exposure to gonadal hormones. In rodents, this developmental organization of the brain is essential for adult males to express the appropriate sexual behaviors in the presence of a receptive female. Our goal was to determine whether this process of brain masculinization influences behaviors relevant to psychiatric disorders. To this aim, we studied sex differences and the effect of neonatal 17β-estradiol benzoate treatment of female mice on different disease-relevant behaviors. Our analysis includes postnatal behavior, juvenile play, and adult tests for sociability, repetitive behaviors, anxiety, and depression. Our results show that the sex differences observed in exploration, repetitive behaviors, and depression-related behaviors are largely reduced when females are neonatally treated with 17β-estradiol benzoate. These results suggest a role of neonatal sex steroids in the development of disease-relevant behaviors and provide evidence supporting a role for perinatal exposure to estrogens and androgens on the development and manifestation of psychiatric disorders.
Collapse
Affiliation(s)
- Araceli Seiffe
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Federico Ramirez
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Darío Barrios
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Milagros Albarrán
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Jensen KH, Riis KR, Abrahamsen B, Händel MN. Nutrients, Diet, and Other Factors in Prenatal Life and Bone Health in Young Adults: A Systematic Review of Longitudinal Studies. Nutrients 2020; 12:E2866. [PMID: 32961712 PMCID: PMC7551661 DOI: 10.3390/nu12092866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Optimizing skeletal health in early life has potential effects on bone health later in childhood and in adulthood. We aimed to evaluate the existing evidence that maternal exposures during pregnancy have an impact on the subsequent bone health among offspring in young adults aged between 16 and 30 years. The protocol is registered in the International Prospective Register of Systematic Reviews (PROSPERO) (ID: CRD42019126890). The search was conducted up to 2 April 2019. We included seven observational prospective cohort studies that examined the association between maternal dietary factors, vitamin D concentration, age, preeclampsia, and smoking with any bone indices among offspring. The results indicated that high concentrations of maternal vitamin D; low fat intake; and high intakes of calcium, phosphorus, and magnesium may increase the bone mineral density in offspring at age 16. Evidence also suggests that the offspring of younger mothers may have a higher peak bone mass. It remains inconclusive whether there is an influence of preeclampsia or maternal smoking on bone health among young adults. Our assessment of internal validity warrants a cautious interpretation of these results, as all of the included studies were judged to have serious risks of bias. High-quality studies assessing whether prenatal prognostic factors are associated with bone health in young adults are needed.
Collapse
Affiliation(s)
- Karina H. Jensen
- Department of Medicine, Slagelse Hospital, 4200 Slagelse, Denmark;
| | - Kamilla R. Riis
- Department of Endocrinology and Metabolism, Odense University Hospital, 5000 Odense C, Denmark;
| | - Bo Abrahamsen
- Department of Medicine, Holbæk Hospital, 4300 Holbæk, Denmark;
- Institute of Clinical Research, OPEN-Odense Patient Data Explorative Network, University of Southern Denmark, 5000 Odense, Denmark
| | - Mina N. Händel
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, 2000 Frederiksberg, Denmark
| |
Collapse
|
8
|
Köllner MG, Bleck K. Exploratory Evidence of Sex-Dimorphic Associations of the Ulna-to-Fibula Ratio, a Potential Marker of Pubertal Sex Steroid Exposure, with the Implicit Need for Power. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2020. [DOI: 10.1007/s40750-020-00130-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Objectives
We propose a novel marker of pubertal organizing hormone effects on the brain, long bone length, and assess its relationships to implicit motives, especially the implicit need for power (nPower).
Methods
In a partly exploratory approach, we tested 126 participants (after exclusions; 53 men, 73 women), in a cross-sectional design using the Picture-Story Exercise (nPower, activity inhibition), standard anthropometric measurements (BMI, height), and calipers to assess bone length of the ulna and fibula.
Results
Results indicated that a sex-dimorphic (d = 0.55) Ulna-to-Fibula Ratio (UFR), which is independent of body height, best captures the variance in our data. While we did not find bivariate relationships between long bone length and nPower, a sex-dimorphic interaction of nPower and activity inhibition on UFR-asymmetry (UFRr-l; right versus left UFR) emerged. High UFRr-l scores were related to the inhibited power motive (high nPower, high activity inhibition) in men, while for women the pattern was (non-significantly) reversed. In addition, UFR was predicted by a sex-dimorphic effect of nPower, with low UFR scores being associated with a higher nPower in men and a tendency for high UFR scores being related to lower nPower in women.
Conclusions
We discuss our results regarding UFR’s potential as a sex-dimorphic marker of the organizing effects of pubertal steroid hormones on the motivational brain beyond hand and face parameters routinely used in current research. Finally, we examine how our findings fit recent results obtained for the relationship between 2D:4D digit ratio or facial width-to-height ratio and nPower.
Collapse
|
9
|
Chin KY, Pang KL. Skeletal Effects of Early-Life Exposure to Soy Isoflavones-A Review of Evidence From Rodent Models. Front Pediatr 2020; 8:563. [PMID: 33072660 PMCID: PMC7533582 DOI: 10.3389/fped.2020.00563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Isoflavones are dietary phytoestrogens commonly found in soy-based products. The widespread presence of isoflavones in soy infant formula and breast milk may have long-lasting effects on the development of sex hormone-sensitive organs like the skeleton. Animal early-life programming models are suitable for testing the skeletal effects of pre- and neonatal exposure of soy isoflavones. This review aims to collate the impacts of early-life exposure of soy isoflavones as evidenced in animal models. The isoflavones previously studied include daidzein, genistein, or a combination of both. They were administered to rodent pups during the first few days postnatal, but prolonged exposure had also been studied. The skeletal effects were observed when the animals reached sexual maturity or after castration to induce bone loss. In general, neonatal exposure to soy isoflavones exerted beneficial effects on the skeletal system of female rodents, but the effects on male rodents seem to depend on the time of exposure and require further examinations. It might also protect the animals against bone loss due to ovariectomy at adulthood but not upon orchidectomy. The potential benefits of isoflavones on the skeletal system should be interpreted together with its non-skeletal effects in the assessment of its safety and impacts.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji-Med X Clinical Stem Cell Research Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Santen RJ, Simpson E. History of Estrogen: Its Purification, Structure, Synthesis, Biologic Actions, and Clinical Implications. Endocrinology 2019; 160:605-625. [PMID: 30566601 DOI: 10.1210/en.2018-00529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
This mini-review summarizes key points from the Clark Sawin Memorial Lecture on the History of Estrogen delivered at Endo 2018 and focuses on the rationales and motivation leading to various discoveries and their clinical applications. During the classical period of antiquity, incisive clinical observations uncovered important findings; however, extensive anatomical dissections to solidify proof were generally lacking. Initiation of the experimental approach followed later, influenced by Claude Bernard's treatise "An Introduction to the Study of Experimental Medicine." With this approach, investigators began to explore the function of the ovaries and their "internal secretions" and, after intensive investigations for several years, purified various estrogens. Clinical therapies for hot flashes, osteoporosis, and dysmenorrhea were quickly developed and, later, methods of hormonal contraception. Sophisticated biochemical methods revealed the mechanisms of estrogen synthesis through the enzyme aromatase and, after discovery of the estrogen receptors, their specific biologic actions. Molecular techniques facilitated understanding of the specific transcriptional and translational events requiring estrogen. This body of knowledge led to methods to prevent and treat hormone-dependent neoplasms as well as a variety of other estrogen-related conditions. More recently, the role of estrogen in men was uncovered by prismatic examples of estrogen deficiency in male patients and by knockout of the estrogen receptor and aromatase in animals. As studies became more extensive, the effects of estrogen on nearly every organ were described. We conclude that the history of estrogen illustrates the role of intellectual reasoning, motivation, and serendipity in advancing knowledge about this important sex steroid.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Evan Simpson
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Csaba G. Bone Manifestation of Faulty Perinatal Hormonal Imprinting: A Review. Curr Pediatr Rev 2019; 15:4-9. [PMID: 30474530 DOI: 10.2174/1573396315666181126110110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 10/03/2018] [Accepted: 11/14/2018] [Indexed: 01/27/2023]
Abstract
Hormonal imprinting takes place at the first encounter between the developing receptor and its target hormone and the encounter determines the receptor's binding capacity for life. In the critical period of development, when the window for imprinting is open, the receptor can be misdirected by related hormones, synthetic hormones, and industrial or communal endocrine disruptors which cause faulty hormonal imprinting with life-long consequences. Considering these facts, the hormonal imprinting is a functional teratogen provoking alterations in the perinatal (early postnatal) period. One single encounter with a low dose of the imprinter in the critical developmental period is enough for the formation of faulty imprinting, which is manifested later, in adult age. This has been justified in the immune system, in sexuality, in animal behavior and brain neurotransmitters etc. by animal experiments and human observations. This review points to the faulty hormonal imprinting in the case of bones (skeleton), by single or repeated treatments. The imprinting is an epigenetic alteration which is inherited to the progeny generations. From clinical aspect, the faulty imprinting can have a role in the pathological development of the bones as well, as in the risk of osteoporotic fractures, etc.
Collapse
Affiliation(s)
- G Csaba
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Xin F, Smith LM, Susiarjo M, Bartolomei MS, Jepsen KJ. Endocrine-disrupting chemicals, epigenetics, and skeletal system dysfunction: exploration of links using bisphenol A as a model system. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy002. [PMID: 29732168 PMCID: PMC5920333 DOI: 10.1093/eep/dvy002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Early life exposures to endocrine-disrupting chemicals (EDCs) have been associated with physiological changes of endocrine-sensitive tissues throughout postnatal life. Although hormones play a critical role in skeletal growth and maintenance, the effects of prenatal EDC exposure on adult bone health are not well understood. Moreover, studies assessing skeletal changes across multiple generations are limited. In this article, we present previously unpublished data demonstrating dose-, sex-, and generation-specific changes in bone morphology and function in adult mice developmentally exposed to the model estrogenic EDC bisphenol A (BPA) at doses of 10 μg (lower dose) or 10 mg per kg bw/d (upper dose) throughout gestation and lactation. We show that F1 generation adult males, but not females, developmentally exposed to bisphenol A exhibit dose-dependent reductions in outer bone size resulting in compromised bone stiffness and strength. These structural alterations and weaker bone phenotypes in the F1 generation did not persist in the F2 generation. Instead, F2 generation males exhibited greater bone strength. The underlying mechanisms driving the EDC-induced physiological changes remain to be determined. We discuss potential molecular changes that could contribute to the EDC-induced skeletal effects, with an emphasis on epigenetic dysregulation. Furthermore, we assess the necessity of intact sex steroid receptors to mediate these effects. Expanding future assessments of EDC-induced effects to the skeleton may provide much needed insight into one of the many health effects of these chemicals and aid in regulatory decision making regarding exposure of vulnerable populations to these chemicals.
Collapse
Affiliation(s)
- Frances Xin
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren M Smith
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY14642, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Chen JR, Lazarenko OP, Blackburn ML, Shankar K. Dietary factors during early life program bone formation in female rats. FASEB J 2016; 31:376-387. [PMID: 27733448 DOI: 10.1096/fj.201600703r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023]
Abstract
Nutritional status during intrauterine and early postnatal life impacts the risk of chronic diseases; however, evidence for an association between early-life dietary factors and bone health in adults is limited. Soy protein isolate (SPI) may be one such dietary factor that promotes bone accretion during early life with persistent effects into adulthood. In the present study, we fed postnatal day (PND) 24 weanling female rats an SPI diet for 30 d [short-term SPI (ST-SPI)], and on PND 55, we switched SPI diet to control Cas diet until age 6 mo. Rats then underwent either ovariectomy (OVX) or sham surgery and thereafter either continued to be fed an SPI diet or control diet for 1 or 3 wk. We showed significantly increased bone mass in 30-d SPI-fed young rats compared with controls. OVX-induced bone loss was associated with increased osteoblastic cell senescence. On the one hand, both long-term SPI (continuous SPI diet throughout life) and ST-SPI diet only in early life protected against 1 wk post-OVX-associated bone loss. On the other hand, long-term SPI diet diminished the loss of total, trabecular, and cortical bone mineral density, whereas ST-SPI diet only reduced cortical bone mineral density loss 3 wk post-OVX. Persistent and protective effects of SPI diets on OVX-induced bone loss were associated with down-regulation of the caveolin-1/p53-mediated senescence pathway in bone. We recapitulated these results in cell cultures. Reprogramming of cellular senescence signaling by SPI-associated isoflavones in osteoblastic cells may explain the persistent effects of SPI on bone. These results suggest that OVX-induced bone loss, in part, is a result of increased osteoblastic cell senescence, and that ST-SPI diet early in life has modest but persistent programming effects on bone formation to prevent OVX-induced bone loss in adult female rats.-Chen, J.-R., Lazarenko, O. P., Blackburn, M. L., Shankar, K. Dietary factors during early life program bone formation in female rats.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; and .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Oxana P Lazarenko
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; and.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; and.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; and.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
14
|
Flöter VL, Galateanu G, Fürst RW, Seidlová-Wuttke D, Wuttke W, Möstl E, Hildebrandt TB, Ulbrich SE. Sex-specific effects of low-dose gestational estradiol-17β exposure on bone development in porcine offspring. Toxicology 2016; 366-367:60-7. [DOI: 10.1016/j.tox.2016.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|
15
|
Ouattara A, Cooke D, Gopalakrishnan R, Huang TH, Ables GP. Methionine restriction alters bone morphology and affects osteoblast differentiation. Bone Rep 2016; 5:33-42. [PMID: 28326345 PMCID: PMC4926829 DOI: 10.1016/j.bonr.2016.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 12/22/2022] Open
Abstract
Methionine restriction (MR) extends the lifespan of a wide variety of species, including rodents, drosophila, nematodes, and yeasts. MR has also been demonstrated to affect the overall growth of mice and rats. The objective of this study was to evaluate the effect of MR on bone structure in young and aged male and female C57BL/6J mice. This study indicated that MR affected the growth rates of males and young females, but not aged females. MR reduced volumetric bone mass density (vBMD) and bone mineral content (BMC), while bone microarchitecture parameters were decreased in males and young females, but not in aged females compared to control-fed (CF) mice. However, when adjusted for bodyweight, the effect of MR in reducing vBMD, BMC and microarchitecture measurements was either attenuated or reversed suggesting that the smaller bones in MR mice is appropriate for its body size. In addition, CF and MR mice had similar intrinsic strength properties as measured by nanoindentation. Plasma biomarkers suggested that the low bone mass in MR mice could be due to increased collagen degradation, which may be influenced by leptin, IGF-1, adiponectin and FGF21 hormone levels. Mouse preosteoblast cell line cultured under low sulfur amino acid growth media attenuated gene expression levels of Col1al, Runx2, Bglap, Alpl and Spp1 suggesting delayed collagen formation and bone differentiation. Collectively, our studies revealed that MR altered bone morphology which could be mediated by delays in osteoblast differentiation. MR affected the growth rates of males and young females, but not aged females. CF and MR mice had similar intrinsic strength properties. Low methionine media attenuated bone differentiation genes in MC3T3-E1 preosteoblast cells. The lower bone mass in MR mice is appropriate for its smaller body size.
Collapse
Key Words
- Aged mice
- BMC, bone mineral content
- BS, bone surface
- BV, bone volume
- CF, control-fed
- CTX-1, C-terminal telopeptide of type 1 collagen
- Conn.Dn., connectivity density
- FGF21, fibroblast growth factor-21
- HFD, high-fat diet
- HHCy, hyperhomocysteinemia
- IDI, indentation depth increase
- IGF-1, insulin-like growth factor-1
- Imax, maximal MOI
- Imin, minimal MOI
- LPD, low protein diet
- MC3T3-E1 subclone 4
- MOI, moment of inertia
- MR, methionine restriction
- Methionine restriction
- Micro-computed tomography
- Nanoindentation
- OC, osteocalcin
- OPG, osteoprotegerin
- P1NP, N-terminal propeptide of type 1 procollagen
- RANKL, receptor activator for nuclear factor κB ligand
- SMI, structure model index
- TV, total volume
- Tb.N, trabecular number
- Tb.Sp, trabecular separation
- Tb.Th, trabecular thickness
- pMOI, polar MOI
- vBMD, volumetric bone mass density
- μCT, micro-computed tomography
Collapse
Affiliation(s)
- Amadou Ouattara
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY 10516, USA
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY 10516, USA
| | - Raj Gopalakrishnan
- School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tsang-hai Huang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Gene P. Ables
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY 10516, USA
- Corresponding author at: Orentreich Foundation for the Advancement of Science, Inc., 855 Route 301, Cold Spring, NY 10516, USA.Orentreich Foundation for the Advancement of Science, Inc.855 Route 301Cold SpringNY10516USA
| |
Collapse
|