1
|
Tanizaki Y, Zhang H, Shi YB. Complementary and additive functions of TRα and TRβ during intestinal remodeling as revealed by ChIP-Seq analysis on wild type and TR knockout animals. Gen Comp Endocrinol 2025; 360:114645. [PMID: 39592082 DOI: 10.1016/j.ygcen.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Intestinal structure is drastically changed from fetal to adult form during postembryonic development, a period around birth in mammals. This process is regulated by thyroid hormone (T3) via its receptors, T3 receptor (TR) α and TRβ during anuran metamorphosis. Here, we used intestinal remodeling during Xenopus tropicalis metamorphosis, which serves as a model for human postembryonic development, to identify TR-bound genes and determine the relative contribution to target gene binding by TRα and TRβ. We first examined the localization of TRα and TRβ mRNA during metamorphosis in Xenopus tropicalis and found that TRα was broadly expressed in the intestinal tissues from premetamorphosis to the end of metamorphosis, while TRβ was expressed at low levels during premetamorphosis but was upregulated at the climax of metamorphosis when intestinal stem cells are formed and proliferate. Interestingly, both TR genes were co-expressed in different cell types, including stem cells. Chromatin immunoprecipitation (ChIP)-seq analyses of the intestine from wild type, TRα- or TRβ-knockout premetamorphic tadpoles treated with or without T3 for 18 h identified many TR-bound genes and revealed the effects of individual TR knockout on the binding of target genes by TR. We found that individual TR knockout reduced both the number of TR-bound genes and the extent of TR binding to target genes with TRα knockout had a much more dramatic effect than TRβ knockout. On the other hand, the TR-bound genes were largely common among the three genotypes. These findings suggest that both TRα and TRβ contribute to target binding with TRα having a bigger contribution in premetamorphic intestine.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, NICHD, NIH, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Wang S, Fu L, Wang B, Cai Y, Jiang J, Shi YB. Thyroid hormone receptor- and stage-dependent transcriptome changes affect the initial period of Xenopus tropicalis tail regeneration. BMC Genomics 2024; 25:1260. [PMID: 39736516 DOI: 10.1186/s12864-024-11175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Thyroid hormone (T3) has an inhibitory effect on tissue/organ regeneration. It is still elusive how T3 regulates this process. It is well established that the developmental effects of T3 are primarily mediated through transcriptional regulation by thyroid hormone receptors (TRs). Here we have taken advantage of mutant tadpoles lacking both TRα and TRβ (TRDKO), the only receptor genes in vertebrates, for RNA-seq analyses to investigate the transcriptome changes underlying the initiation of tail regeneration, i.e., wound healing and blastema formation, because this crucial initial step determines the extent of the functional regeneration in the later phase of tissue regrowth. RESULTS We discovered that GO (gene ontology) terms related to inflammatory response, metabolic process, cell apoptosis, and epithelial cell migration were highly enriched among commonly regulated genes during wound healing at either stage 56 or 61 or with either wild type (WT) or TRDKO tadpoles, consistent with the morphological changes associated with wound healing occurring in both regenerative (WT stage 56, TRDKO stage 56, TRDKO stage 61) and nonregenerative (WT stage 61) animals. Interestingly, ECM-receptor interaction and cytokine-cytokine receptor interaction, which are essential for blastema formation and regeneration, were significantly enriched among regulated genes in the 3 regenerative groups but not the non-regenerative group at the blastema formation period. In addition, the regulated genes specific to the nonregenerative group were highly enriched with genes involved in cellular senescence. Finally, T3 treatment at stage 56, while not inducing any measurable tail resorption, inhibited tail regeneration in the wild type but not TRDKO tadpoles. CONCLUSIONS Our study suggests that TR-mediated, T3-induced gene regulation changed the permissive environment during the initial period of regeneration and affected the subsequent patterning/outgrowth period of the regeneration process. Specifically, T3 signaling via TRs inhibits the expression of ECM-related genes while promoting the expression of inflammation-related genes during the blastema formation period. Interestingly, our findings indicate that amputation-induced changes in DNA replication-related pathways can occur during this nonregenerative period. Further studies, particularly on the regenerative microenvironment that may depend on ECM-receptor interaction and cytokine-cytokine receptor interaction, should provide important insights on the regulation of regenerative capacity during vertebrate development.
Collapse
Affiliation(s)
- Shouhong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Liezhen Fu
- Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanmei Cai
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yun-Bo Shi
- Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Batel A, Stilgenbauer M, Spyridonov IM, Weltje L. Assessing plasmatic transport inhibitors of thyroid hormone in mammals in the Xenopus Eleutheroembryonic Thyroid Assay (XETA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63360-63373. [PMID: 39485658 DOI: 10.1007/s11356-024-35418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The Xenopus Eleutheroembryonic Thyroid Assay (XETA, OECD TG 248) was established as an alternative to the Amphibian Metamorphosis Assay (AMA, OECD TG 231) for the analysis of (anti-)thyroid activity of chemicals. The XETA is a New Approach Method (NAM) since the embryonic life stages used in the assay are not yet feeding independently, which renders the assay to be considered a non-animal test under many national laws. Physiologically, the used embryos are not fully developed yet, and thus there are limitations to the XETA for detecting certain mechanisms along the hypothalamic-pituitary-thyroid (HPT) axis. However, the plasmatic transport inhibition of thyroid hormone should physiologically be detectable in the XETA but has not yet been sufficiently investigated. Here, we tested three substances that are known, amongst others, to inhibit thyroid hormone transport by competitive binding to transthyretin in mammalian studies, namely pentachlorophenol (PCP), tetrabromo bisphenol A (TBBPA), and mefenamic acid. Following the test guideline, X. laevis eleutheroembryos of Nieuwkoop-Faber stage 45 were exposed for 72 h at 21 °C in 6-well plates to different concentrations of the test substances. For PCP and TBBPA, the XETA showed a decrease in fluorescence intensity, which would be expected for thyroid hormone transport inhibition amongst other, similar modes of action, while for the lower potency substance mefenamic acid, a trend was visible, but no statistically significant inhibition was detected. Overall, the results indicate that in the XETA, the plasmatic transport inhibition of thyroid hormone should be detectable alongside other inhibitory modes of action on the HPT axis.
Collapse
Affiliation(s)
- Annika Batel
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany.
| | - Melissa Stilgenbauer
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany
| | - Inka Marie Spyridonov
- BASF Services Europe GmbH - Global Ecotoxicology, Naglerstraße 4, 10245, Berlin, Germany
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany
- Division of Plant Pathology and Plant Protection, Georg-August-University Göttingen, Grisebachstraße 6, 37077, Göttingen, Germany
| |
Collapse
|
4
|
Louis E, Fu L, Shi YB, Sachs LM. Functions and Mechanism of Thyroid Hormone Receptor Action During Amphibian Development. Endocrinology 2024; 165:bqae137. [PMID: 39397558 PMCID: PMC11497603 DOI: 10.1210/endocr/bqae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Thyroid hormones and their receptors (TRs) play critical roles during vertebrate development. One of the most dramatic developmental processes regulated by thyroid hormones is frog metamorphosis, which mimics the postembryonic (perinatal) period in mammals. Here, we review some of the findings on the developmental functions of thyroid hormones and TRs as well as their associated mechanisms of action obtained from this model system. More than 2 decades ago, a dual function model was proposed for TR in anuran development. During larval development, unliganded receptors recruit corepressors to repress thyroid hormone response genes to prevent premature metamorphic changes. Subsequently, when thyroid hormone levels rise, liganded receptors recruit coactivators to activate thyroid hormone response genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model and have shown that it is applicable to mammalian development as well as to understanding the diverse effects of thyroid hormones in normal physiology and diseases caused by thyroid hormone signaling dysfunction.
Collapse
Affiliation(s)
- Emeric Louis
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, 75231 Paris, France
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Laurent M Sachs
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, 75231 Paris, France
| |
Collapse
|
5
|
Coperchini F, Greco A, Rotondi M. Changing the structure of PFOA and PFOS: a chemical industry strategy or a solution to avoid thyroid-disrupting effects? J Endocrinol Invest 2024; 47:1863-1879. [PMID: 38522066 PMCID: PMC11266260 DOI: 10.1007/s40618-024-02339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The family of perfluoroalkyl and polyfluoroalkyl substances (PFAS) raised concern for their proven bioaccumulation and persistence in the environment and animals as well as for their hazardous health effects. As a result, new congeners of PFAS have rapidly replaced the so-called "old long-chain PFAS" (mainly PFOA and PFOS), currently out-of-law and banned by most countries. These compounds derive from the original structure of "old long-chain PFAS", by cutting or making little conformational changes to their structure, thus obtaining new molecules with similar industrial applications. The new congeners were designed to obtain "safer" compounds. Indeed, old-long-chain PFAS were reported to exert thyroid disruptive effects in vitro, and in vivo in animals and humans. However, shreds of evidence accumulated so far indicate that the "restyling" of the old PFAS leads to the production of compounds, not only functionally similar to the previous ones but also potentially not free of adverse health effects and bioaccumulation. Studies aimed at characterizing the effects of new-PFAS congeners on thyroid function indicate that some of these new-PFAS congeners showed similar effects. PURPOSE The present review is aimed at providing an overview of recent data regarding the effects of novel PFAS alternatives on thyroid function. RESULTS AND CONCLUSIONS An extensive review of current legislation and of the shreds of evidence obtained from in vitro and in vivo studies evaluating the effects of the exposure to novel PFOA and PFOS alternatives, as well as of PFAS mixture on thyroid function will be provided.
Collapse
Affiliation(s)
- F Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - A Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - M Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Shi YB, Fu L, Tanizaki Y. Intestinal remodeling during Xenopus metamorphosis as a model for studying thyroid hormone signaling and adult organogenesis. Mol Cell Endocrinol 2024; 586:112193. [PMID: 38401883 PMCID: PMC10999354 DOI: 10.1016/j.mce.2024.112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Fu L, Wang S, Liu L, Shibata Y, Okada M, Luu N, Shi YB. Simplifying Genotyping of Mutants from Genome Editing with a Parallel qPCR-Based iGenotype Index. Cells 2024; 13:247. [PMID: 38334640 PMCID: PMC10854663 DOI: 10.3390/cells13030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Targeted genome editing is a powerful tool in reverse genetic studies of gene function in many aspects of biological and pathological processes. The CRISPR/Cas system or engineered endonucleases such as ZFNs and TALENs are the most widely used genome editing tools that are introduced into cells or fertilized eggs to generate double-strand DNA breaks within the targeted region, triggering cellular DNA repair through either homologous recombination or non-homologous end joining (NHEJ). DNA repair through the NHEJ mechanism is usually error-prone, leading to point mutations or indels (insertions and deletions) within the targeted region. Some of the mutations in embryos are germline transmissible, thus providing an effective way to generate model organisms with targeted gene mutations. However, point mutations and short indels are difficult to be effectively genotyped, often requiring time-consuming and costly DNA sequencing to obtain reliable results. Here, we developed a parallel qPCR assay in combination with an iGenotype index to allow simple and reliable genotyping. The genotype-associated iGenotype indexes converged to three simple genotype-specific constant values (1, 0, -1) regardless of allele-specific primers used in the parallel qPCR assays or gene mutations at wide ranges of PCR template concentrations, thus resulting in clear genotype-specific cutoffs, established through statistical analysis, for genotype identification. While we established such a genotyping assay in the Xenopus tropicalis model, the approach should be applicable to genotyping of any organism or cells and can be potentially used for large-scale, automated genotyping.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
| | - Shouhong Wang
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lusha Liu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
- Department of Biology, Nippon Medical School, Tokyo 180-0023, Japan
| | - Morihiro Okada
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
| | - Nga Luu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
| |
Collapse
|
8
|
Tanizaki Y, Shibata Y, Na W, Shi YB. Cell cycle activation in thyroid hormone-induced apoptosis and stem cell development during Xenopus intestinal metamorphosis. Front Endocrinol (Lausanne) 2023; 14:1184013. [PMID: 37265708 PMCID: PMC10230048 DOI: 10.3389/fendo.2023.1184013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Amphibian metamorphosis resembles mammalian postembryonic development, a period around birth when many organs mature into their adult forms and when plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for amphibian metamorphosis. This and its independence from maternal influence make metamorphosis of amphibians, particularly anurans such as pseudo-tetraploid Xenopus laevis and its highly related diploid species Xenopus tropicalis, an excellent model to investigate how T3 regulates adult organ development. Studies on intestinal remodeling, a process that involves degeneration of larval epithelium via apoptosis and de novo formation of adult stem cells followed by their proliferation and differentiation to form the adult epithelium, have revealed important molecular insights on T3 regulation of cell fate during development. Here, we review some evidence suggesting that T3-induced activation of cell cycle program is important for T3-induced larval epithelial cell death and de novo formation of adult intestinal stem cells.
Collapse
|
9
|
Zhao L, Teng M, Zhao X, Li Y, Sun J, Zhao W, Ruan Y, Leung KMY, Wu F. Insight into the binding model of per- and polyfluoroalkyl substances to proteins and membranes. ENVIRONMENT INTERNATIONAL 2023; 175:107951. [PMID: 37126916 DOI: 10.1016/j.envint.2023.107951] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Legacy per- and polyfluoroalkyl substances (PFASs) have elicited much concern because of their ubiquitous distribution in the environment and the potential hazards they pose to wildlife and human health. Although an increasing number of effective PFAS alternatives are available in the market, these alternatives bring new challenges. This paper comprehensively reviews how PFASs bind to transport proteins (e.g., serum albumin, liver fatty acid transport proteins and organic acid transporters), nuclear receptors (e.g., peroxisome proliferator activated receptors, thyroid hormone receptors and reproductive hormone receptors) and membranes (e.g., cell membrane and mitochondrial membrane). Briefly, the hydrophobic fluorinated carbon chains of PFASs occupy the binding cavities of the target proteins, and the acid groups of PFASs form hydrogen bonds with amino acid residues. Various structural features of PFAS alternatives such as chlorine atom substitution, oxygen atom insertion and a branched structure, introduce variations in their chain length and hydrophobicity, which potentially change the affinity of PFAS alternatives for endogenous proteins. The toxic effects and mechanisms of action of legacy PFASs can be demonstrated and compared with their alternatives using binding models. In future studies, in vitro experiments and in silico quantitative structure-activity relationship modeling should be better integrated to allow more reliable toxicity predictions for both legacy and alternative PFASs.
Collapse
Affiliation(s)
- Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yunxia Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
10
|
Wang S, Shibata Y, Tanizaki Y, Zhang H, Yan W, Fu L, Shi YB. Comparative Analysis of Transcriptome Profiles Reveals Distinct and Organ-Dependent Genomic and Nongenomic Actions of Thyroid Hormone in Xenopus tropicalis Tadpoles. Thyroid 2023; 33:511-522. [PMID: 36503276 PMCID: PMC10122239 DOI: 10.1089/thy.2022.0469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Thyroid hormone (triiodothyronine [T3]) is essential for development and organ metabolism in all vertebrates. T3 has both genomic and nongenomic effects on target cells. While much has been learnt on its genomic effects via T3 receptors (TRs) in vertebrate development, mostly through TR-knockout and TR-knockin studies, little is known about the effects of T3 on gene expression in animals in the absence of TR. We have been studying Xenopus metamorphosis as a model for mammalian postembryonic development, a period around birth when plasma T3 level peaks and many organs/tissues mature into their adult forms. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals. This offers an opportunity to compare the effects of T3 on global gene expression in tadpole tissues in the presence or absence of TR. Methods: We analyzed the effects of T3 on gene expression in tadpole tail and intestine by using RNA-seq analysis on wild-type and TRDKO tadpoles with or without T3 treatment. Results: We observed that removing TRs reduced the number of genes regulated by T3 in both organs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that T3 affected distinct biological processes and pathways in wild-type and TRDKO tadpoles. Many GO terms and KEGG pathways that were enriched among genes regulated in wild-type tissues are likely involved in mediating the effects of T3 on metamorphosis, for example, those related to development, stem cells, apoptosis, and cell cycle/cell proliferation. However, such GO terms and pathways were not enriched among T3-regulated genes in TRDKO tadpoles. Instead, in TRDKO tadpoles, GO terms and pathways related to "metabolism" and "immune response" were highly enriched among T3-regulated genes. We further observed strong divergence in the TR-independent nongenomic effects of T3 in the intestine and tail. Conclusions: Our data suggest that T3 has distinct and organ-dependent effects on gene expression in developing tadpoles. The TR-mediated effects are consistent with the metamorphic changes, in agreement with the fact that TR is necessary and sufficient to mediate the effects of T3 on metamorphosis. T3 appears to have a major effect on metabolism and immune response via TR-independent nongenomic processes.
Collapse
Affiliation(s)
- Shouhong Wang
- Section on Molecular Morphogenesis; National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis; National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis; National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core; Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Wei Yan
- National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis; National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis; National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
11
|
Shi YB, Tanizaki Y, Wang S, Fu L. Essential and subtype-dependent function of thyroid hormone receptors during Xenopus metamorphosis. VITAMINS AND HORMONES 2023; 123:503-523. [PMID: 37717996 PMCID: PMC11285022 DOI: 10.1016/bs.vh.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Thyroid hormone (T3) plays critical roles in organ metabolism and development in vertebrates. Anuran metamorphosis is perhaps the most dramatic and best studied developmental process controlled by T3. Many changes in different organs/tissues during anuran metamorphosis resemble the maturation/remodeling of the corresponding organs/tissues during mammalian postembryonic development. The plasma T3 level peaks during both anuran metamorphosis and mammalian postembryonic development. T3 exerts its developmental function through transcriptional regulation via T3 receptors (TRs). Studies on the metamorphosis of two highly related anurans, pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, have led to a dual function model for TRs during development. This has been supported by strong molecular and genetic evidence. Here we review some of the evidence with a focus on more recent gene knockout studies in Xenopus tropicalis. These studies have not only supported the model but also revealed novel and TR subtype-specific roles during Xenopus development, particularly a critical role of TRα in controlling developmental timing and rate.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Tanizaki Y, Bao L, Shi YB. Steroid-receptor coactivator complexes in thyroid hormone-regulation of Xenopus metamorphosis. VITAMINS AND HORMONES 2023; 123:483-502. [PMID: 37717995 PMCID: PMC11274430 DOI: 10.1016/bs.vh.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Anuran metamorphosis is perhaps the most drastic developmental change regulated by thyroid hormone (T3) in vertebrate. It mimics the postembryonic development in mammals when many organs/tissues mature into adult forms and plasma T3 level peaks. T3 functions by regulating target gene transcription through T3 receptors (TRs), which can recruit corepressor or coactivator complexes to target genes in the absence or presence of T3, respectively. By using molecular and genetic approaches, we and others have investigated the role of corepressor or coactivator complexes in TR function during the development of two highly related anuran species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis. Here we will review some of these studies that demonstrate a critical role of coactivator complexes, particularly those containing steroid receptor coactivator (SRC) 3, in regulating metamorphic rate and ensuring the completion of metamorphosis.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
13
|
Hasebe T, Fujimoto K, Ishizuya-Oka A. Stem cell development involves divergent thyroid hormone receptor subtype expression and epigenetic modifications in the amphibian intestine during metamorphosis. VITAMINS AND HORMONES 2023; 122:1-22. [PMID: 36863790 DOI: 10.1016/bs.vh.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the amphibian intestine during metamorphosis, most of the larval epithelial cells undergo apoptosis, while a small number of the epithelial cells dedifferentiate into stem cells (SCs). The SCs actively proliferate and then newly generate the adult epithelium analogous to the mammalian counterpart, which is continuously renewed from the SCs throughout adulthood. This larval-to-adult intestinal remodeling can be experimentally induced by thyroid hormone (TH) through interacting with the surrounding connective tissue that develops as the stem cell niche. Thus, the amphibian intestine provides us a valuable opportunity to study how the SCs and their niche are formed during development. To clarify the TH-induced and evolutionally conserved mechanism of SC development at the molecular level, numerous TH response genes have been identified in the Xenopus laevis intestine over the last three decades and extensively analyzed for their expression and function by using wild-type and transgenic Xenopus tadpoles. Interestingly, accumulating evidence indicates that thyroid hormone receptor (TR) epigenetically regulates the expression of TH response genes involved in the remodeling. In this review, we highlight recent progress in the understanding of SC development, focusing on epigenetic gene regulation by TH/TR signaling in the X. laevis intestine. We here propose that two subtypes of TRs, TRα and TRβ, play distinct roles in the intestinal SC development via different histone modifications in different cell types.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Tokyo, Japan.
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
14
|
Shi YB, Tanizaki Y, Wang S, Fu L. Essential and subtype-dependent function of thyroid hormone receptors during Xenopus metamorphosis. VITAMINS AND HORMONES 2023. [DOI: 10.1016/bs.vh.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Morthorst JE, Holbech H, De Crozé N, Matthiessen P, LeBlanc GA. Thyroid-like hormone signaling in invertebrates and its potential role in initial screening of thyroid hormone system disrupting chemicals. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:63-82. [PMID: 35581168 PMCID: PMC10083991 DOI: 10.1002/ieam.4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 05/07/2023]
Abstract
This review examines the presence and evolution of thyroid-like systems in selected aquatic invertebrates to determine the potential use of these organisms in screens for vertebrate thyroid hormone axis disrupting chemicals (THADCs). Such a screen might support the phasing out of some vertebrate testing. Although arthropods including crustaceans do not contain a functional thyroid signaling system, elements of such a system exist in the aquatic phyla mollusks, echinoderms, tunicates, and cephalochordates. These phyla can synthesize thyroid hormone, which has been demonstrated in some groups to induce the nuclear thyroid hormone receptor (THR). Thyroid hormone may act in these phyla through interaction with a membrane integrin receptor. Thyroid hormone regulates inter alia metamorphosis but, unlike in vertebrates, this does not occur via receptor activation by the ligands triiodothyronine (T3) and thyroxine (T4). Instead, the unliganded nuclear receptor itself controls metamorphosis in mollusks, echinoderms, and tunicates, whereas the T3 derivative tri-iodothyroacetic acid (TRIAC) acts as a THR ligand in cephalochordates. In view of this, it may be possible to develop an invertebrate-based screen that is sensitive to vertebrate THADCs that interfere with thyroid hormone synthesis or metabolism along with interaction with membrane receptors. The review makes some recommendations for the need to develop an appropriate test method. Integr Environ Assess Manag 2023;19:63-82. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Henrik Holbech
- Department of BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Noémie De Crozé
- Laboratoire Recherche Environnementale, L'ORÉAL Recherche & InnovationAulnay‐sous‐BoisFrance
| | | | - Gerald A. LeBlanc
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
16
|
Tanizaki Y, Zhang H, Shibata Y, Shi YB. Organ-specific effects on target binding due to knockout of thyroid hormone receptor α during Xenopus metamorphosis. Dev Growth Differ 2023; 65:23-28. [PMID: 36397722 DOI: 10.1111/dgd.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (T3) is essential for normal development and metabolism, especially during postembryonic development, a period around birth in mammals when plasma T3 levels reach their peak. T3 functions through two T3 receptors, TRα and TRβ. However, little is known about the tissue-specific functions of TRs during postembryonic development because of maternal influence and difficulty in manipulation of mammalian models. We have studied Xenopus tropicalis metamorphosis as a model for human postembryonic development. By using TRα knockout (Xtr·thratmshi ) tadpoles, we have previously shown that TRα is important for T3-dependent intestinal remodeling and hindlimb development but not tail resorption during metamorphosis. Here, we have identified genes bound by TR in premetamorphic wild-type and Xtr·thratmshi tails with or without T3 treatment by using chromatin immunoprecipitation-sequencing and compared them with those in the intestine and hindlimb. Compared to other organs, the tail has much fewer genes bound by TR or affected by TRα knockout. Bioinformatic analyses revealed that among the genes bound by TR in wild-type but not Xtr·thratmshi organs, fewer gene ontology (GO) terms or biological pathways related to metamorphosis were enriched in the tail compared to those in the intestine and hindlimb. This difference likely underlies the drastic effects of TRα knockout on the metamorphosis of the intestine and hindlimb but not the tail. Thus, TRα has tissue-specific roles in regulating T3-dependent anuran metamorphosis by directly targeting the pathways and GO terms important for metamorphosis.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
17
|
Fu L, Liu R, Ma V, Shi YB. Upregulation of proto-oncogene ski by thyroid hormone in the intestine and tail during Xenopus metamorphosis. Gen Comp Endocrinol 2022; 328:114102. [PMID: 35944650 PMCID: PMC9530006 DOI: 10.1016/j.ygcen.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Thyroid hormone (T3) is important for adult organ function and vertebrate development, particularly during the postembryonic period when many organs develop/mature into their adult forms. Amphibian metamorphosis is totally dependent on T3 and can be easily manipulated, thus offering a unique opportunity for studying how T3 controls postembryonic development in vertebrates. Numerous early studies have demonstrated that T3 affects frog metamorphosis through T3 receptor (TR)-mediated regulation of T3 response genes, where TR forms a heterodimer with RXR (9-cis retinoic acid receptor) and binds to T3 response elements (TREs) in T3 response genes to regulate their expression. We have previously identified many candidate direct T3 response genes in Xenopus tropicalis tadpole intestine. Among them is the proto-oncogene Ski, which encodes a nuclear protein with complex function in regulating cell fate. We show here that Ski is upregulated in the intestine and tail of premetamorphic tadpoles upon T3 treatment and its expression peaks at stage 62, the climax of metamorphosis. We have further discovered a putative TRE in the first exon that can bind to TR/RXR in vitro and mediate T3 regulation of the promoter in vivo. These data demonstrate that Ski is activated by T3 through TR binding to a TRE in the first exon during Xenopus tropicalis metamorphosis, implicating a role of Ski in regulating cell fate during metamorphosis.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Liu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Vincent Ma
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Thyroid and Corticosteroid Signaling in Amphibian Metamorphosis. Cells 2022; 11:cells11101595. [PMID: 35626631 PMCID: PMC9139329 DOI: 10.3390/cells11101595] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/25/2023] Open
Abstract
In multicellular organisms, development is based in part on the integration of communication systems. Two neuroendocrine axes, the hypothalamic–pituitary–thyroid and the hypothalamic–pituitary–adrenal/interrenal axes, are central players in orchestrating body morphogenesis. In all vertebrates, the hypothalamic–pituitary–thyroid axis controls thyroid hormone production and release, whereas the hypothalamic–pituitary–adrenal/interrenal axis regulates the production and release of corticosteroids. One of the most salient effects of thyroid hormones and corticosteroids in post-embryonic developmental processes is their critical role in metamorphosis in anuran amphibians. Metamorphosis involves modifications to the morphological and biochemical characteristics of all larval tissues to enable the transition from one life stage to the next life stage that coincides with an ecological niche switch. This transition in amphibians is an example of a widespread phenomenon among vertebrates, where thyroid hormones and corticosteroids coordinate a post-embryonic developmental transition. The review addresses the functions and interactions of thyroid hormone and corticosteroid signaling in amphibian development (metamorphosis) as well as the developmental roles of these two pathways in vertebrate evolution.
Collapse
|
19
|
Tanizaki Y, Zhang H, Shibata Y, Shi YB. Thyroid hormone receptor α controls larval intestinal epithelial cell death by regulating the CDK1 pathway. Commun Biol 2022; 5:112. [PMID: 35132135 PMCID: PMC8821549 DOI: 10.1038/s42003-022-03061-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (T3) regulates adult intestine development through T3 receptors (TRs). It is difficult to study TR function during postembryonic intestinal maturation in mammals due to maternal influence. We chose intestinal remodeling during Xenopus tropicalis metamorphosis as a model to study TR function in adult organ development. By using ChIP (chromatin immunoprecipitation)-Seq, we identified over 3000 TR-bound genes in the intestine of premetamorphic wild type or TRα (the major TR expressed during premetamorphosis)-knockout tadpoles. Surprisingly, cell cycle-related GO (gene ontology) terms and biological pathways were highly enriched among TR target genes even though the first major event during intestinal metamorphosis is larval epithelial cell death, and TRα knockout drastically reduced this enrichment. More importantly, treatment of tadpoles with cell cycle inhibitors blocked T3-induced intestinal remodeling, especially larval epithelial cell death, suggesting that TRα-dependent activation of cell cycle is important for T3-induced apoptosis during intestinal remodeling. Tanizaki et al use ChIP-Seq to identify over 3000 Thyroid hormone (T3) receptor (TR)-bound genes in the intestine of premetamorphic wild type Xenopus tropicalis tadpoles and in TRα-knockouts. They show that treatment of tadpoles with cell cycle inhibitors blocked T3-induced intestinal remodeling, suggesting that TRα-dependent activation of the cell cycle is important for T3-induced apoptosis during intestinal remodelling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
20
|
Gutierrez-Villagomez JM, Patey G, To TA, Lefebvre-Raine M, Lara-Jacobo LR, Comte J, Klein B, Langlois VS. Frogs Respond to Commercial Formulations of the Biopesticide Bacillus thuringiensis var . israelensis, Especially Their Intestine Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12504-12516. [PMID: 34460233 DOI: 10.1021/acs.est.1c02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is generally believed that Bacillus thuringiensis var. israelensis (Bti) biopesticides are harmless to non-target organisms; however, new research shows controversial results. We exposed acutely and chronicallyLithobates sylvaticusandAnaxyrus americanus tadpoles until metamorphic climax to VectoBac 200G (granules) and VectoBac 1200L (aqueous suspension) at 300-20,000 ITU/L covering field-relevant concentrations and higher. The data show that the exposure parameters tested did not affect significantly the survival, total length, total weight, hepatosomatic index, gonadosomatic index, the expression of genes of interest (i.e., related to xenobiotic exposure, oxidative stress, and metamorphosis), and the intestine tissue layer detachment ofL. sylvaticusandA. americanus in a concentration-response pattern. In contrast, VectoBac 200G significantly increased the median time to metamorphosis ofL. sylvaticus tadpoles by up to 3.5 days and decreased the median by up to 1 day inA. americanus. VectoBac 1200L significantly increased the median time to metamorphosis ofL. sylvaticusandA. americanustadpoles by up to 4.5 days. Also, the exposure to VectoBac 200G and 1200L altered the intestine bacterial community composition inA. americanus at application rates recommended by the manufacturer, which led to an increase in the relative abundance of Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. Changes in the intestine microbiota might impact the fitness of individuals, including the susceptibility to parasitic infections. Our results indicate that the effect of Bti commercial products is limited; however, we recommend that Bti-spraying activities in amphibian-rich ecosystems should be kept minimal until there is more conclusive research to assess if the changes in the time to metamorphosis and microbiota can lead to negative outcomes in amphibian populations and, eventually, the functioning of ecosystems.
Collapse
Affiliation(s)
| | - Géraldine Patey
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Tuan Anh To
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Molly Lefebvre-Raine
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Linda Ramona Lara-Jacobo
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Bert Klein
- Service des territoires fauniques et des habitats, Ministère des Forêts, de la Faune et des Parcs (MFFP), Quebec City, Quebec G1S 4X4, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| |
Collapse
|
21
|
Abstract
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Yun-Bo Shi, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 6A82, MSC 4480, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Shi YB, Shibata Y, Tanizaki Y, Fu L. The development of adult intestinal stem cells: Insights from studies on thyroid hormone-dependent anuran metamorphosis. VITAMINS AND HORMONES 2021; 116:269-293. [PMID: 33752821 DOI: 10.1016/bs.vh.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertebrates organ development often takes place in two phases: initial formation and subsequent maturation into the adult form. This is exemplified by the intestine. In mouse, the intestine at birth has villus, where most differentiated epithelial cells are located, but lacks any crypts, where adult intestinal stem cells reside. The crypt is formed during the first 3 weeks after birth when plasma thyroid hormone (T3) levels are high. Similarly, in anurans, the intestine undergoes drastic remodeling into the adult form during metamorphosis in a process completely dependent on T3. Studies on Xenopus metamorphosis have revealed important clues on the formation of the adult intestine during metamorphosis. Here we will review our current understanding on how T3 induces the degeneration of larval epithelium and de novo formation of adult intestinal stem cells. We will also discuss the mechanistic conservations in intestinal development between anurans and mammals.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
23
|
Shibata Y, Tanizaki Y, Zhang H, Lee H, Dasso M, Shi YB. Thyroid Hormone Receptor Is Essential for Larval Epithelial Apoptosis and Adult Epithelial Stem Cell Development but Not Adult Intestinal Morphogenesis during Xenopus tropicalis Metamorphosis. Cells 2021; 10:cells10030536. [PMID: 33802526 PMCID: PMC8000126 DOI: 10.3390/cells10030536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Vertebrate postembryonic development is regulated by thyroid hormone (T3). Of particular interest is anuran metamorphosis, which offers several unique advantages for studying the role of T3 and its two nuclear receptor genes, TRα and TRβ, during postembryonic development. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals and reported that TR is essential for the completion of metamorphosis. Furthermore, TRDKO tadpoles are stalled at the climax of metamorphosis before eventual death. Here we show that TRDKO intestine lacked larval epithelial cell death and adult stem cell formation/proliferation during natural metamorphosis. Interestingly, TRDKO tadpole intestine had premature formation of adult-like epithelial folds and muscle development. In addition, T3 treatment of premetamorphic TRDKO tadpoles failed to induce any metamorphic changes in the intestine. Furthermore, RNA-seq analysis revealed that TRDKO altered the expression of many genes in biological pathways such as Wnt signaling and the cell cycle that likely underlay the inhibition of larval epithelial cell death and adult stem cell development caused by removing both TR genes. Our data suggest that liganded TR is required for larval epithelial cell degeneration and adult stem cell formation, whereas unliganded TR prevents precocious adult tissue morphogenesis such as smooth-muscle development and epithelial folding.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Hangnoh Lee
- Section on Cell Cycle Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (H.L.); (M.D.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (H.L.); (M.D.)
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
- Correspondence: ; Tel.: +1-301-402-1004; Fax: +1-301-402-1323
| |
Collapse
|
24
|
Tanizaki Y, Shibata Y, Zhang H, Shi YB. Analysis of Thyroid Hormone Receptor α-Knockout Tadpoles Reveals That the Activation of Cell Cycle Program Is Involved in Thyroid Hormone-Induced Larval Epithelial Cell Death and Adult Intestinal Stem Cell Development During Xenopus tropicalis Metamorphosis. Thyroid 2021; 31:128-142. [PMID: 32515287 PMCID: PMC7840310 DOI: 10.1089/thy.2020.0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: There are two highly conserved thyroid hormone (triiodothyronine [T3]) receptor (TR) genes, TRα and TRβ, in all vertebrates, and the expression of TRα but not TRβ is activated earlier than T3 synthesis during development. In human, high levels of T3 are present during the several months around birth, and T3 deficiency during this period causes severe developmental abnormalities including skeletal and intestinal defects. It is, however, difficult to study this period in mammals as the embryos and neonates depend on maternal supply of nutrients for survival. However, Xenopus tropicalis undergoes a T3-dependent metamorphosis, which drastically changes essentially every organ in a tadpole. Of interest is intestinal remodeling, which involves near complete degeneration of the larval epithelium through apoptosis. Concurrently, adult intestinal stem cells are formed de novo and subsequently give rise to the self-renewing adult epithelial system, resembling intestinal maturation around birth in mammals. We have previously demonstrated that T3 signaling is essential for the formation of adult intestinal stem cells during metamorphosis. Methods: We studied the function of endogenous TRα in the tadpole intestine by using knockout animals and RNA-seq analysis. Results: We observed that removing endogenous TRα caused defects in intestinal remodeling, including drastically reduced larval epithelial cell death and adult intestinal stem cell proliferation. Using RNA-seq on intestinal RNA from premetamorphic wild-type and TRα-knockout tadpoles treated with or without T3 for one day, before any detectable T3-induced cell death and stem cell formation in the tadpole intestine, we identified more than 1500 genes, which were regulated by T3 treatment of the wild-type but not TRα-knockout tadpoles. Gene Ontology and biological pathway analyses revealed that surprisingly, these TRα-regulated genes were highly enriched with cell cycle-related genes, in addition to genes related to stem cells and apoptosis. Conclusions: Our findings suggest that TRα-mediated T3 activation of the cell cycle program is involved in larval epithelial cell death and adult epithelial stem cell development during intestinal remodeling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 49 Room 6A82, Bethesda, MD 20814, USA
| |
Collapse
|
25
|
Na W, Fu L, Luu N, Shi YB. Thyroid hormone directly activates mitochondrial fission process 1 (Mtfp1) gene transcription during adult intestinal stem cell development and proliferation in Xenopus tropicalis. Gen Comp Endocrinol 2020; 299:113590. [PMID: 32827515 DOI: 10.1016/j.ygcen.2020.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (T3) regulates vertebrate development via T3 receptors (TRs). T3 level peaks during postembryonic development, a period around birth in mammals or metamorphosis in anurans. Anuran metamorphosis offers many advantages for studying T3 and TR function in vivo largely because of its total dependent on T3 and the dramatic changes affecting essentially all organs/tissues that can be easily manipulated. Earlier studies have shown that TRs are both necessary and sufficient for mediating the metamorphic effects of T3. Many candidate TR target genes have been identified during Xenopus tropicalis intestinal metamorphosis, a process that involves apoptotic degeneration of most of the larval epithelial cells and de novo development of adult epithelial stem cells. Among these putative TR target genes is mitochondrial fission process 1 (Mtfp1), a nuclear-encoded mitochondrial gene. Here, we report that Mtfp1gene expression peaks in the intestine during both natural and T3-induced metamorphosis when adult epithelial stem cell development and proliferation take place. Furthermore, we show that Mtfp1 contains a T3-response element within the first intron that is bound by TR to mediate T3-induced local histone H3K79 methylation and RNA polymerase recruitment in the intestine during metamorphosis. Additionally, we demonstrate that the Mtfp1 promoter can be activated by T3 in a reconstituted frog oocyte system in vivo and that this activation is dependent on the intronic TRE. These findings suggest that T3 activates Mtfp1 gene directly via the intronic TRE and that Mtfp1 in turn facilitate adult intestinal stem cell development/proliferation by affecting mitochondrial fission process.
Collapse
Affiliation(s)
- Wonho Na
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Shewade LH, Schoephoerster JA, Patmann MD, Kulkarni SS, Buchholz DR. Corticosterone Is Essential for Survival Through Frog Metamorphosis. Endocrinology 2020; 161:5938994. [PMID: 33099610 DOI: 10.1210/endocr/bqaa193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Thyroid hormone (TH) is required for frog metamorphosis, and corticosterone (CORT) increases TH signaling to accelerate metamorphic progression. However, a requirement for CORT in metamorphosis has been difficult to assess prior to the recent development of gene-editing technologies. We addressed this long-standing question using transcription activator-like effector nuclease (TALEN) gene disruption to knock out proopiomelanocortin (pomc) and disrupt CORT production in Xenopus tropicalis. As expected, mutant tadpoles had a reduced peak of plasma CORT at metamorphosis with correspondingly reduced expression of the CORT-response gene Usher syndrome type-1G (ush1g). Mutants had reduced rates of growth and development and exhibited lower expression levels of 2 TH response genes, Krüppel-like factor 9 (klf9) and TH receptor β (thrb). In response to exogenous TH, mutants had reduced TH response gene induction and slower morphological change. Importantly, death invariably occurred during tail resorption, unless rescued by exogenous CORT and, remarkably, by exogenous TH. The ability of exogenous TH by itself to overcome death in pomc mutants indicates that the CORT-dependent increase in TH signaling may ensure functional organ transformation required for survival through metamorphosis and/or may shorten the nonfeeding metamorphic transition to avoid lethal inanition.
Collapse
Affiliation(s)
- Leena H Shewade
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | | | - Matthew D Patmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
27
|
Zlatow AL, Wilson SS, Bouley DM, Tetens-Woodring J, Buchholz DR, Green SL. Axial Skeletal Malformations in Genetically Modified Xenopus laevis and Xenopus tropicalis. Comp Med 2020; 70:532-541. [PMID: 33203505 PMCID: PMC7754201 DOI: 10.30802/aalas-cm-20-000069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal malformations in captive-bred, adult Xenopus spp., have not previously been reported. Here we describe 10 sexually mature, genetically modified laboratory frogs (6 Xenopus laevis and 4 Xenopus tropicalis) with axial skeletal abnormalities. The young adult frogs were described by veterinary staff as presenting with "hunchbacks," but were otherwise considered to be in good health. All affected frogs were genetically engineered using various techniques: transcription activator-like effector nucleases (TALEN) editing using thyroid hormone receptor α TALEN mRNA, restriction enzyme-mediated integration methods involving insertion of the inducible transgene pCAR/TRDN, or via I-SceI meganuclease transgenesis using either pDRTREdpTR-HS4 or pDPCrtTA-TREG-HS4 plasmid sequences. Radiographic findings (6 frogs) and gross necropsy (10 frogs) revealed vertebral column malformations and sacroiliac deformities that resulted in moderate to severe kyphosis and kyphoscoliosis. These findings were confirmed and additional skeletal abnormalities were identified using computed tomography to create a 3D reconstruction of 4 frogs. Additional findings visible on the 3D reconstructions included incomplete vertebral segmentation, malformed transverse processes, and a short and/or curved urostyle. Histopathologic findings included misshapen intervertebral joints with nonconforming articular surfaces, narrowed joint cavities, flattened or irregularly-formed articular cartilage, irregular maturation lines and nonpolarized chondrocytes, excess fibrocartilage, and evidence of irregular bone resorption and growth. While the specific etiology of the vertebral skeletal abnormalities remains unclear, possibilities include: 1) egg/oocyte physical manipulation (dejellying, microinjection, fertilization, etc.), 2) induction and expression of the transgenes, 3) inactivation (knockout) of existing genes by insertional mutagenesis, or 4) a combination of the above. Furthermore, the possibility of undetected changes in the macro or microenvironment, or a feature of the genetic background of the affected frogs cannot be ruled out.
Collapse
Affiliation(s)
- Anne L Zlatow
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Sabrina S Wilson
- Diagnostic Imaging Service, William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Sherril L Green
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California;,
| |
Collapse
|
28
|
Raj S, Kyono Y, Sifuentes CJ, Arellanes-Licea EDC, Subramani A, Denver RJ. Thyroid Hormone Induces DNA Demethylation in Xenopus Tadpole Brain. Endocrinology 2020; 161:bqaa155. [PMID: 32865566 PMCID: PMC7947600 DOI: 10.1210/endocr/bqaa155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022]
Abstract
Thyroid hormone (T3) plays pivotal roles in vertebrate development, acting via nuclear T3 receptors (TRs) that regulate gene transcription by promoting post-translational modifications to histones. Methylation of cytosine residues in deoxyribonucleic acid (DNA) also modulates gene transcription, and our recent finding of predominant DNA demethylation in the brain of Xenopus tadpoles at metamorphosis, a T3-dependent developmental process, caused us to hypothesize that T3 induces these changes in vivo. Treatment of premetamorphic tadpoles with T3 for 24 or 48 hours increased immunoreactivity in several brain regions for the DNA demethylation intermediates 5-hydroxymethylcytosine (5-hmC) and 5-carboxylcytosine, and the methylcytosine dioxygenase ten-eleven translocation 3 (TET3). Thyroid hormone treatment induced locus-specific DNA demethylation in proximity to known T3 response elements within the DNA methyltransferase 3a and Krüppel-like factor 9 genes, analyzed by 5-hmC immunoprecipitation and methylation sensitive restriction enzyme digest. Chromatin-immunoprecipitation (ChIP) assay showed that T3 induced TET3 recruitment to these loci. Furthermore, the messenger ribonucleic acid for several genes encoding DNA demethylation enzymes were induced by T3 in a time-dependent manner in tadpole brain. A TR ChIP-sequencing experiment identified putative TR binding sites at several of these genes, and we provide multiple lines of evidence to support that tet2 contains a bona fide T3 response element. Our findings show that T3 can promote DNA demethylation in developing tadpole brain, in part by promoting TET3 recruitment to discrete genomic regions, and by inducing genes that encode DNA demethylation enzymes.
Collapse
Affiliation(s)
- Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yasuhiro Kyono
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Christopher J Sifuentes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Direct activation of tRNA methyltransferase-like 1 (Mettl1) gene by thyroid hormone receptor implicates a role in adult intestinal stem cell development and proliferation during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:60. [PMID: 32391142 PMCID: PMC7197180 DOI: 10.1186/s13578-020-00423-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Thyroid hormone (T3) plays an important role in vertebrate development. Compared to the postembryonic development of uterus-enclosed mammalian embryos, T3-dependent amphibian metamorphosis is advantageous for studying the function of T3 and T3 receptors (TRs) during vertebrate development. The effects of T3 on the metamorphosis of anurans such as Xenopus tropicalis is known to be mediated by TRs. Many putative TR target genes have been identified previously. Among them is the tRNA methyltransferase Mettl1. Results We studied the regulation of Mettl1 gene by T3 during intestinal metamorphosis, a process involves near complete degeneration of the larval epithelial cells via apoptosis and de novo formation of adult epithelial stem cells and their subsequent proliferation and differentiation. We observed that Mettl1 was activated by T3 in the intestine during both natural and T3-induced metamorphosis and that its mRNA level peaks at the climax of intestinal remodeling. We further showed that Mettl1 promoter could be activated by liganded TR via a T3 response element upstream of the transcription start site in vivo. More importantly, we found that TR binding to the TRE region correlated with the increase in the level of H3K79 methylation, a transcription activation histone mark, and the recruitment of RNA polymerase II by T3 during metamorphosis. Conclusions Our findings suggest that Mettl1 is activated by liganded TR directly at the transcriptional level via the TRE in the promoter region in the intestine during metamorphosis. Mettl1 in turn regulate target tRNAs to affect translation, thus facilitating stem cell formation and/or proliferation during intestinal remodeling.
Collapse
|
30
|
Shibata Y, Tanizaki Y, Shi YB. Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:46. [PMID: 32231780 PMCID: PMC7099810 DOI: 10.1186/s13578-020-00411-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid hormone (T3) is critical for development in all vertebrates. The mechanism underlying T3 effect has been difficult to study due to the uterus-enclosed nature of mammalian embryos. Anuran metamorphosis, which is dependent on T3 but independent of maternal influence, is an excellent model to study the roles of T3 and its receptors (TRs) during vertebrate development. We and others have reported various effects of TR knockout (TRα and TRβ) during Xenopus tropicalis development. However, these studies were largely focused on external morphology. Results We have generated TRβ knockout animals containing an out-frame-mutation of 5 base deletion by using the CRISPR/Cas9 system and observed that TRβ knockout does not affect premetamorphic tadpole development. We have found that the basal expression of direct T3-inducible genes is increased but their upregulation by T3 is reduced in the intestine of premetamorphic homozygous TRβ knockout animals, accompanied by reduced target binding by TR. More importantly, we have observed reduced adult stem cell proliferation and larval epithelial apoptosis in the intestine during T3-induced metamorphosis. Conclusions Our data suggest that TRβ plays a critical role in intestinal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
31
|
Nakajima K, Tanizaki Y, Luu N, Zhang H, Shi YB. Comprehensive RNA-Seq analysis of notochord-enriched genes induced during Xenopus tropicalis tail resorption. Gen Comp Endocrinol 2020; 287:113349. [PMID: 31794731 PMCID: PMC6956247 DOI: 10.1016/j.ygcen.2019.113349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
Anuran metamorphosis is perhaps the most dramatic developmental process regulated by thyroid hormone (TH). One of the unique processes that occur during metamorphosis is the complete resorption of the tail, including the notochord. Interestingly, recent gene knockout studies have shown that of the two known vertebrate TH receptors, TRα and TRβ, TRβ appears to be critical for notochord regression during tail resorption in Xenopus tropicalis. To determine the mechanisms underlying notochord regression, we carried out a comprehensive gene expression analysis in the notochord during metamorphosis by using RNA-Seq analyses of whole tail at stage 60 before any noticeable tail length reduction, whole tail at stage 63 when the tail length is reduced by about one half, and the rest of the tail at stage 63 after removing the notochord. This allowed us to identify many notochord-enriched, metamorphosis-induced genes at stage 63. Future studies on these genes should help to determine if they are regulated by TRβ and play any roles in notochord regression.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739 8526, Japan.
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hongen Zhang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yun Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
32
|
Shibata Y, Wen L, Okada M, Shi YB. Organ-Specific Requirements for Thyroid Hormone Receptor Ensure Temporal Coordination of Tissue-Specific Transformations and Completion of Xenopus Metamorphosis. Thyroid 2020; 30:300-313. [PMID: 31854240 PMCID: PMC7047119 DOI: 10.1089/thy.2019.0366] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Thyroid hormone (triiodothyronine [T3]) is essential for the development throughout vertebrates. Anuran metamorphosis mimics mammalian postembryonic development, a period around birth when plasma T3 level peaks and many organs/tissues mature into their adult forms. Compared with the uterus-enclosed mammalian embryos, tadpoles can be easily manipulated to study the roles of T3 and T3 receptors (TRs) in tissue remodeling and adult organ development. We and others have previously knocked out TRα or TRβ in the diploid anuran Xenopus tropicalis and reported distinct effects of the two receptor knockouts on metamorphosis. However, animals lacking either TRα or TRβ can complete metamorphosis and develop into reproductive adults. Methods: We have generated TRα and TRβ double knockout animals and carried out molecular and morphological analyses to determine if TR is required for Xenopus development. Results: We found that the TR double knockout tadpoles do not respond to T3, supporting the view that there are no other TR genes in X. tropicalis and that TR is essential for mediating the effects of T3 in vivo. Surprisingly, the double knockout tadpoles are able to initiate metamorphosis and accomplish many metamorphic changes, such as limb development. However, all double knockout tadpoles stall and eventually die at stage 61, the climax of metamorphosis, before tail resorption takes place. Analyses of the knockout tadpoles at stage 61 revealed various developmental abnormalities, including precocious ossification and extra vertebrae. Conclusions: Our data indicate that TRs are not required for the initiation of metamorphosis but is essential for the completion of metamorphosis. Furthermore, the differential effects of TR knockout on different organs/tissues suggest tissue-specific roles for TR to control temporal coordination and progression of metamorphosis in various organs.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Luan Wen
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Morihiro Okada
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
33
|
Li YF, Cheng YL, Chen K, Cheng ZY, Zhu X, C R Cardoso J, Liang X, Zhu YT, Power DM, Yang JL. Thyroid hormone receptor: A new player in epinephrine-induced larval metamorphosis of the hard-shelled mussel. Gen Comp Endocrinol 2020; 287:113347. [PMID: 31794730 DOI: 10.1016/j.ygcen.2019.113347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 01/31/2023]
Abstract
Many marine invertebrate larvae undergo a dramatic morphological and physiological transition from a planktonic larva to a benthic juvenile. The mechanisms of this metamorphosis in bivalves are mainly unknown. The recent identification in bivalves of a thyroid hormone receptor (TR) gene raises the possibility that as occurs in vertebrate metamorphosis, TRs regulate this developmental process. An evolutionary study of TR receptors revealed they are ubiquitous in the molluscs. Knock-down of the TR gene in pediveliger larvae of the hard-shelled mussel, Mytilus coruscus (Mc), using electroporation of siRNA significantly (p < 0.01) reduced TR gene expression. TR gene knock-down decreased pediveliger larval metamorphosis by 54% and was associated with a significant (p < 0.01) reduction in viability compared to control larvae. The TR in the hard-shelled mussel appears to be an essential regulatory factor for the successful epinephrine-induced metamorphosis of the pediveliger larvae to post-larvae. It is hypothesised that the knock-down of TR by siRNA transfection affects the "competence" of pediveliger larvae for the metamorphic transition by reducing their ability to respond to the inducer. The involvement of TR in the epinephrine-induced metamorphosis of a mollusc, the hard-shelled mussel, suggests the role of TR in this process probably emerged early during evolution.
Collapse
Affiliation(s)
- Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Lan Cheng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ke Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhi-Yang Cheng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - You-Ting Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Comparative Endocrinology and Integrative Biology, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
34
|
Fu L, Li C, Na W, Shi YB. Thyroid hormone activates Xenopus MBD3 gene via an intronic TRE in vivo. Front Biosci (Landmark Ed) 2020; 25:437-451. [PMID: 31585895 DOI: 10.2741/4812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thyroid hormone (T3) is important for adult organ function and vertebrate development. Amphibian metamorphosis is totally dependent on T3 and can be easily manipulated, thus offering a unique opportunity for studying how T3 controls vertebrate development. T3 controls frog metamorphosis through T3 receptor (TR)-mediated regulation of T3 response genes. To identify direct T3 response genes, we previously carried out a ChIP (chromatin immunoprecipitation)-on-chip analysis with a polyclonal anti-TR antibody on the tadpole intestine and identified many putative TR target genes. Among them is the methyl-CpG binding domain protein 3 (MBD3) gene, which has been implicated to play a role in epigenetic regulation of cellular processes as a subunit of the Mi-2/NuRD (Nucleosome Remodeling Deacetylase) complex. We show here that MBD3 is upregulated in the intestine and tail by T3 and its expression peaks at stage 62, the climax of metamorphosis. We further show that a putative TRE within the first intron of the MBD3 gene binds to TR/RXR in vitro and in vivo, and mediates T3 regulation of the MBD3 promoter in vivo.
Collapse
Affiliation(s)
- Liezhen Fu
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA
| | - Christin Li
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA
| | - Wonho Na
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA
| | - Yun-Bo Shi
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA,
| |
Collapse
|
35
|
Yang H, Liu R, Liang Z, Zheng R, Yang Y, Chai L, Wang H. Chronic effects of lead on metamorphosis, development of thyroid gland, and skeletal ossification in Bufo gargarizans. CHEMOSPHERE 2019; 236:124251. [PMID: 31310984 DOI: 10.1016/j.chemosphere.2019.06.221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
We examined the Pb2+ exposure on tadpoles of Bufo gargarizans from Gosner stage 26-42. Mortality, growth and development, time to metamorphosis, size, and skeletal ossification at metamorphic climax of Bufo gargarizans were examined. Also, histological characteristics of thyroid glands in tadpoles at Gosner stage 33, 38, and 42 as well as transcript levels of thyroid hormone-related genes in the hind-limb, tail, and liver of tadpoles at metamorphic climax were examined. Pb2+ exposure induced mortality in a concentration-dependent manner in Bufo gargarizans larvae. The significant increase in growth and development, percent metamorphosis, size at metamorphic climax, and skeletal ossification were observed at 50 μg Pb2+ L-1; however, exposure to 1000 μg Pb2+ L-1 resulted in the opposite effects in tadpoles. In addition, histological alterations of thyroid gland, such as follicular cell hyperplasia and colloid depletion could be found in 50-1000 μg Pb2+ L-1 treatments. Furthermore, Pb2+ exposure at 1000 μg L-1 resulted in significantly decreased transcript levels of Dio2, TRα and TRβ, and increased transcript levels of Dio3. In contrast, 50 μg Pb2+ L-1 significantly upregulated the mRNA levels of Dio2, TRα, and TRβ, but it reduced the Dio3 expression. These results suggested that Pb2+ might disrupt TH homeostasis in tadpoles by histological alterations of thyroid gland and disturb the transcript levels of Dio2, Dio3, TRα, and TRβ, leading to altered growth and development, as well as percent metamorphosis and skeletal ossification. Further studies are needed to elucidate the underlying mechanisms of low-dose stimulation and high-dose inhibition effects.
Collapse
Affiliation(s)
- Hongyu Yang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Rong Liu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhijia Liang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yijie Yang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
36
|
Mourouzis I, Lavecchia AM, Xinaris C. Thyroid Hormone Signalling: From the Dawn of Life to the Bedside. J Mol Evol 2019; 88:88-103. [PMID: 31451837 DOI: 10.1007/s00239-019-09908-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
Thyroid hormone (TH) signalling is a key modulator of fundamental biological processes that has been evolutionarily conserved in both vertebrate and invertebrate species. TH may have initially emerged as a nutrient signal to convey environmental information to organisms to induce morpho-anatomical changes that could maximise the exploitation of environmental resources, and eventually integrated into the machinery of gene regulation and energy production to become a key regulator of development and metabolism. As such, TH signalling is particularly sensitive to environmental stimuli, and its alterations result in fundamental changes in homeostasis and physiology. Stressful stimuli of various origins lead to changes in the TH-TH receptor (TR) axis in different adult mammalian organs that are associated with phenotypical changes in terminally differentiated cells, the reactivation of foetal development programmes, structural remodelling and pathological growth. Here, we discuss the evolution of TH signalling, review evolutionarily conserved functions of THs in essential biological processes, such as metamorphosis and perinatal development, and analyse the role of TH signalling in the phenotypical and morphological changes that occur after injury, repair and regeneration in adult mammalian organs. Finally, we examine the potential of TH treatment as a therapeutic strategy for improving organ structure and functions following injury.
Collapse
Affiliation(s)
- Iordanis Mourouzis
- Department of Pharmacology, University of Athens, 75 Mikras Asias Ave., Goudi, 11527, Athens, Greece
| | - Angelo Michele Lavecchia
- Laboratory of Organ Regeneration, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126, Bergamo, Italy
| | - Christodoulos Xinaris
- Laboratory of Organ Regeneration, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126, Bergamo, Italy. .,University of Nicosia Medical School, 93 Agiou Nikolaou Street, Engomi, 2408, Nicosia, Cyprus.
| |
Collapse
|
37
|
Gundermann DG, Martínez J, De Kervor G, González-Pinto K, Larraín J, Faunes F. Overexpression of Lin28a delays Xenopus metamorphosis and down-regulates albumin independently of its translational regulation domain. Dev Dyn 2019; 248:969-978. [PMID: 31397023 DOI: 10.1002/dvdy.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Lin28 regulates stem cell biology and developmental timing. At the molecular level Lin28 inhibits the biogenesis of the micro RNA let-7 and directly controls the transcription and translation of several genes. In Xenopus, Lin28 overexpression delays metamorphosis and affects the expression of genes of the thyroid hormone (TH) axis. The TH carrier albumin, synthesized by the liver, is down-regulated in limbs and tail after Lin28 overexpression. The molecular mechanisms underlying the interaction between Lin28, let-7, and the hypothalamus-pituitary-thyroid gland (HPT) axis are unknown. RESULTS We found that precursor and mature forms of let-7 increase during Xenopus metamorphosis. In the liver, lin28b is down-regulated and albumin is up-regulated during metamorphosis. Overexpression of a truncated form of Lin28a (Lin28aΔC), which has been shown not to interact with RNA helicase A to regulate translation, delays metamorphosis, indicating that the translational regulation domain is not required to inhibit the HPT axis. Importantly, both full length Lin28a and Lin28aΔC block the increase of albumin mRNA in the liver independently of changes in TH signaling. CONCLUSIONS These results suggest that Lin28 delays metamorphosis through regulation of let-7 and that the decrease of the TH carrier albumin is one of the early changes after Lin28 overexpression.
Collapse
Affiliation(s)
- Daniel G Gundermann
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Jimena Martínez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Viña del Mar, Chile
| | - Genevieve De Kervor
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Viña del Mar, Chile
| | - Karina González-Pinto
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Fernando Faunes
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
38
|
Wen L, He C, Sifuentes CJ, Denver RJ. Thyroid Hormone Receptor Alpha Is Required for Thyroid Hormone-Dependent Neural Cell Proliferation During Tadpole Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:396. [PMID: 31316462 PMCID: PMC6610206 DOI: 10.3389/fendo.2019.00396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormone (T3) plays several key roles in development of the nervous system in vertebrates, controlling diverse processes such as neurogenesis, cell migration, apoptosis, differentiation, and maturation. In anuran amphibians, the hormone exerts its actions on the tadpole brain during metamorphosis, a developmental period dependent on T3. Thyroid hormone regulates gene transcription by binding to two nuclear receptors, TRα and TRβ. Our previous findings using pharmacological and other approaches supported that TRα plays a pivotal role in mediating T3 actions on neural cell proliferation in Xenopus tadpole brain. Here we used Xenopus tropicalis (X. tropicalis) tadpoles with an inactivating mutation in the gene that encodes TRα to investigate roles for TRα in mitosis and gene regulation in tadpole brain. Gross morphological analysis showed that mutant tadpoles had proportionally smaller brains, corrected for body size, compared with wildtype, both during prometamorphosis and at the completion of metamorphosis. This was reflected in a large reduction in phosphorylated histone 3 (pH3; a mitosis marker) immunoreactive (ir) nuclei in prometamorphic tadpole brain, when T3-dependent cell proliferation is maximal. Treatment of wild type premetamorphic tadpoles with T3 for 48 h induced gross morphological changes in the brain, and strongly increased pH3-ir, but had no effect in mutant tadpoles. Thyroid hormone induction of the direct TR target genes thrb, klf9, and thibz was dysregulated in mutant tadpoles. Analysis of gene expression by RNA sequencing in the brain of premetamorphic tadpoles treated with or without T3 for 16 h showed that the TRα accounts for 95% of the gene regulation responses to T3.
Collapse
Affiliation(s)
| | | | | | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
39
|
Nakajima K, Tazawa I, Shi YB. A unique role of thyroid hormone receptor β in regulating notochord resorption during Xenopus metamorphosis. Gen Comp Endocrinol 2019; 277:66-72. [PMID: 30851299 PMCID: PMC6535367 DOI: 10.1016/j.ygcen.2019.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Tail resorption during anuran metamorphosis is perhaps the most dramatic tissue transformation that occurs during vertebrate development. Earlier studies in highly related anuran species Xenopus laevis and Xenopus tropicalis have shown that thyroid hormone (T3) receptor (TR) plays a necessary and sufficient role to mediate the causative effect of T3 on metamorphosis. Of the two known TR genes in vertebrates, TRα is highly expressed during both premetamorphosis and metamorphosis while TRβ expression is low in premetamorphic tadpoles but highly upregulated as a direct target gene of T3 during metamorphosis, suggesting potentially different functions during metamorphosis. Indeed, gene knockout studies have shown that knocking out TRα and TRβ has different effects on tadpole development. In particularly, homozygous TRβ knockout tadpoles become tailed frogs well after sibling wild type ones complete metamorphosis. Most noticeably, in TRβ-knockout tadpoles, an apparently normal notochord is present when the notochord in wild-type and TRα-knockout tadpoles disappears. Here, we have investigated how tail notochord resorption is regulated by TR. We show that TRβ is selectively very highly expressed in the notochord compared to TRα. We have also discovered differential regulation of several matrix metalloproteinases (MMPs), which are known to be upregulated by T3 and implicated to play a role in tissue resorption by degrading the extracellular matrix (ECM). In particular, MMP9-TH and MMP13 are extremely highly expressed in the notochord compared to the rest of the tail. In situ hybridization analyses show that these MMPs are expressed in the outer sheath cells and/or the connective tissue sheath surrounding the notochord. Our findings suggest that high levels of TRβ expression in the notochord specifically upregulate these MMPs, which in turn degrades the ECM, leading to the collapse of the notochord and its subsequent resorption during metamorphosis.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan; Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Ichiro Tazawa
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
40
|
Fu L, Yin J, Shi YB. Involvement of epigenetic modifications in thyroid hormone-dependent formation of adult intestinal stem cells during amphibian metamorphosis. Gen Comp Endocrinol 2019; 271:91-96. [PMID: 30472386 PMCID: PMC6322911 DOI: 10.1016/j.ygcen.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022]
Abstract
Amphibian metamorphosis has long been used as model to study postembryonic development in vertebrates, a period around birth in mammals when many organs/tissues mature into their adult forms and is characterized by peak levels of plasma thyroid hormone (T3). Of particular interest is the remodeling of the intestine during metamorphosis. In the highly-related anurans Xenopus laevis and Xenopus tropicalis, this remodeling process involves larval epithelial cell death and de novo formation of adult stem cells via dedifferentiation of some larval cells under the induction of T3, making it a valuable system to investigate how adult organ-specific stem cells are formed during vertebrate development. Here, we will review some studies by us and others on how T3 regulates the formation of the intestinal stem cells during metamorphosis. We will highlight the involvement of nucleosome removal and a positive feedback mechanism involving the histone methyltransferases in gene regulation by T3 receptor (TR) during this process.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Jessica Yin
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States.
| |
Collapse
|
41
|
Functional Studies of Transcriptional Cofactors via Microinjection-Mediated Gene Editing in Xenopus. Methods Mol Biol 2019; 1874:507-524. [PMID: 30353533 DOI: 10.1007/978-1-4939-8831-0_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anuran Xenopus laevis has been studied for decades as a model for vertebrate cell and developmental biology. More recently, the highly related species Xenopus tropicalis has offered the opportunity to carry out genetic studies due to its diploid genome as compared to the pseudo-tetraploid Xenopus laevis. Amphibians undergo a biphasic development: embryogenesis to produce a free-living tadpoles and subsequent metamorphosis to transform the tadpole to a frog. This second phase mimics the so-called postembryonic development in mammals when many organs/tissues mature into their adult form in the presence of high levels of plasma thyroid hormone (T3). The total dependence of amphibian metamorphosis on T3 offers a unique opportunity to study postembryonic development in vertebrates, especially with the recent development gene editing technologies that function in amphibians. Here, we first review the basic molecular understanding of the regulation of Xenopus metamorphosis by T3 and T3 receptors (TRs), and then describe a detailed method to use CRISPR to knock out the TR-coactivator SRC3 (steroid receptor coactivator 3), a histone acetyltransferase, in order to study its involvement in gene regulation by T3 in vivo and Xenopus development.
Collapse
|
42
|
Laslo M, Denver RJ, Hanken J. Evolutionary Conservation of Thyroid Hormone Receptor and Deiodinase Expression Dynamics in ovo in a Direct-Developing Frog, Eleutherodactylus coqui. Front Endocrinol (Lausanne) 2019; 10:307. [PMID: 31178826 PMCID: PMC6542950 DOI: 10.3389/fendo.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Direct development is a reproductive mode in amphibians that has evolved independently from the ancestral biphasic life history in at least a dozen anuran lineages. Most direct-developing frogs, including the Puerto Rican coquí, Eleutherodactylus coqui, lack a free-living aquatic larva and instead hatch from terrestrial eggs as miniature adults. Their embryonic development includes the transient formation of many larval-specific features and the formation of adult-specific features that typically form postembryonically-during metamorphosis-in indirect-developing frogs. We found that pre-hatching developmental patterns of thyroid hormone receptors alpha (thra) and beta (thrb) and deiodinases type II (dio2) and type III (dio3) mRNAs in E. coqui limb and tail are conserved relative to those seen during metamorphosis in indirect-developing frogs. Additionally, thra, thrb, and dio2 mRNAs are expressed in the limb before formation of the embryonic thyroid gland. Liquid-chromatography mass-spectrometry revealed that maternally derived thyroid hormone is present throughout early embryogenesis, including stages of digit formation that occur prior to the increase in embryonically produced thyroid hormone. Eleutherodactylus coqui embryos take up much less 3,5,3'-triiodothyronine (T3) from the environment compared with X. tropicalis tadpoles. However, E. coqui tissue explants mount robust and direct gene expression responses to exogenous T3 similar to those seen in metamorphosing species. The presence of key components of the thyroid axis in the limb and the ability of limb tissue to respond to T3 suggest that thyroid hormone-mediated limb development may begin prior to thyroid gland formation. Thyroid hormone-dependent limb development and tail resorption characteristic of metamorphosis in indirect-developing anurans are evolutionarily conserved, but they occur instead in ovo in E. coqui.
Collapse
Affiliation(s)
- Mara Laslo
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
- *Correspondence: Mara Laslo
| | - Robert J. Denver
- Departments of Molecular, Cellular and Developmental Biology, and Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
43
|
Gao J, Li X, Zhang Y, Wang H. Endochondral ossification in hindlimbs during bufo gargarizans
metamorphosis: A model of studying skeletal development in vertebrates. Dev Dyn 2018; 247:1121-1134. [DOI: 10.1002/dvdy.24669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jinshu Gao
- College of Life Science; Shaanxi Normal University; Xi'an, 710119 China
| | - Xinyi Li
- College of Life Science; Shaanxi Normal University; Xi'an, 710119 China
| | - Yuhui Zhang
- College of Life Science; Shaanxi Normal University; Xi'an, 710119 China
| | - Hongyuan Wang
- College of Life Science; Shaanxi Normal University; Xi'an, 710119 China
| |
Collapse
|
44
|
Yaoita Y, Nakajima K. Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax. Genes Cells 2018; 23:998-1008. [PMID: 30294949 DOI: 10.1111/gtc.12647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 11/29/2022]
Abstract
Thyroid hormones (THs) induce metamorphosis in amphibians, causing dynamic changes, whereas mammalian newborns undergo environmental transition from placenta to open air at birth. The similarity between amphibian metamorphosis and the mammalian perinatal periods has been repeatedly discussed. However, a corresponding developmental gene expression analysis has not yet been reported. In this study, we examined the developmental gene expression profiles in the brain and liver of Xenopus tropicalis during metamorphosis climax and compared them to the respective gene expression profiles of newborn rodents. Many upregulated genes identified in the tadpole brain during metamorphosis are also upregulated in the rodent brain during the first three postnatal weeks when the TH surge occurs. The upregulation of some genes in the brain was inhibited in thyroid hormone receptor α (TRα) knockout tadpoles but not in TRβ-knockout tadpoles, implying that brain metamorphosis is mainly mediated by TRα. The expression of some genes was also increased in the liver during metamorphosis climax. Our data suggest that the rodent brain undergoes TH-dependent remodeling during the first three postnatal weeks as observed in X. tropicalis during the larva-to-adult metamorphosis.
Collapse
Affiliation(s)
- Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
45
|
Okada M, Shi YB. The balance of two opposing factors Mad and Myc regulates cell fate during tissue remodeling. Cell Biosci 2018; 8:51. [PMID: 30237868 PMCID: PMC6139171 DOI: 10.1186/s13578-018-0249-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/08/2018] [Indexed: 02/04/2023] Open
Abstract
Cell proliferation and differentiation are two distinct yet coupled processes in development in diverse organisms. Understanding the molecular mechanisms that regulate this process is a central theme in developmental biology. The intestinal epithelium is a highly complex tissue that relies on the coordination of cell proliferation within the crypts and apoptosis mainly at the tip of the villi, preservation of epithelial function through differentiation, and homeostatic cell migration along the crypt-villus axis. Small populations of adult stem cells are responsible for the self-renewal of the epithelium throughout life. Surprisingly, much less is known about the mechanisms governing the remodeling of the intestine from the embryonic to adult form. Furthermore, it remains unknown how thyroid hormone (T3) affects stem cell development during this postembryonic process, which is around birth in mammals when T3 level increase rapidly in the plasma. Tissue remodeling during amphibian metamorphosis is very similar to the maturation of the mammalian organs around birth in mammals and is regulated by T3. In particular, many unique features of Xenopus intestinal remodeling during metamorphosis has enabled us and others to elucidate how adult stem cells are formed during postembryonic development in vertebrates. In this review, we will focus on recent findings on the role of Mad1/c-Myc in cell death and proliferation during intestinal metamorphosis and discuss how a Mad1-c-Myc balance controls intestinal epithelial cell fate during this T3-dependent process.
Collapse
Affiliation(s)
- Morihiro Okada
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD 20892 USA
| |
Collapse
|
46
|
Buchholz DR, Shi YB. Dual function model revised by thyroid hormone receptor alpha knockout frogs. Gen Comp Endocrinol 2018; 265:214-218. [PMID: 29689262 PMCID: PMC6087486 DOI: 10.1016/j.ygcen.2018.04.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/14/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
Abstract
All vertebrates require thyroid hormone (TH) for normal growth and development. Plasma TH enters cells and alters gene expression via nuclear receptors TRα and TRβ. In-vitro studies showed that TRs function as repressors of TH-inducible genes in the absence of TH and as activators of those same genes in the presence of TH. A dual function model was proposed to harmonize these molecular TR actions with the dynamic expression of TRs and peak in production of TH experienced during development. Conclusive tests of the repression activity of TRs early in development as predicted by the model awaited gene knockout technology targeting TRα. At the molecular level, active repression of genes involved in metamorphosis by TRα in the absence of TH was confirmed in whole bodies and intestine from TRα knockout studies. As a consequence of this reduced repression in TRα knockout animals, initiation of limb morphogenesis occurs precociously. However, subsequent limb development is retarded during rising plasma TH levels due to reduced TR-dependent responsivity to TH. In contrast to the limbs, intestine remodeling is delayed by one to two developmental stages in TRα knockout animals, despite de-repressed levels of TH-induced genes during premetamorphosis. Surprisingly, in the absence of TRα, hind limbs do not require gene induction by TH signaling to complete morphological growth and development, which is contrary to prediction by the dual function model. Full evaluation of the dual function model for all organs awaits the production of TRα and TRβ double knockout frogs.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - Yun-Bo Shi
- Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Liu L, Zhu W, Liu J, Wang S, Jiang J. Identification and differential regulation of microRNAs during thyroid hormone-dependent metamorphosis in Microhyla fissipes. BMC Genomics 2018; 19:507. [PMID: 29954327 PMCID: PMC6025837 DOI: 10.1186/s12864-018-4848-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anuran metamorphosis, which is obligatorily initiated and sustained by thyroid hormone (TH), is a dramatic example of extensive morphological, biochemical and cellular changes occurring during post-embryonic development. Thus, it provides an ideal model to understand the actions of the hormone and molecular mechanisms underlying these developmental and apoptotic processes. In addition to transcriptional factors, microRNAs (miRNAs) play key roles in diverse biological processes via post-transcriptional repression of mRNAs. However, the possible role of miRNAs in anuran metamorphosis is not well understood. Screening and identification of TH-responding miRNAs are required to reveal the integrated regulatory mechanisms of TH during metamorphosis. Given the specific role of TRs during M. fissipes metamorphosis and the characteristics of M. fissipes as an ideal model, Illumina sequencing technology was employed to get a full scope of miRNA in M. fissipes metamorphosis treated by T3. RESULTS Morphological and histological analysis revealed that 24 h T3 treatment M. fissipes tadpoles resembled that at the climax of natural metamorphosis. Thus, small RNA libraries were constructed from control and 24 h T3 treatment groups. A total of 164 conserved miRNAs and 36 predicted novel miRNAs were characterized. Furthermore, 5' first and ninth nucleotides of miRNAs were significantly enriched in U in our study. In all, 21 miRNAs were differentially expressed between the T3 and control groups (p < 0.01). A total of 10,206 unigenes were identified as target genes of these differentially expressed miRNAs. KEGG pathway analysis indicated that the most overrepresented miRNA target genes were enriched in the "PI3k-Akt signaling pathway". In addition, a network associated with the TH signaling pathway provides an opportunity to further understand the complex biological processes that occur in metamorphosis. CONCLUSIONS We identified a large number of miRNAs during M. fissipes metamorphosis, and 21 of them were differentially expressed in the two groups that represented two different metamorphic stages. These miRNAs may play important roles during metamorphosis. The study gives us clues for further studies of the mechanisms of anuran metamorphosis and provides a model to study the mechanism of TH-affected biological processes in humans.
Collapse
Affiliation(s)
- Lusha Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Jiongyu Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Shouhong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| |
Collapse
|
48
|
Zhang Y, Xie L, Li X, Chai L, Chen M, Kong X, Wang Q, Liu J, Zhi L, Yang C, Wang H. Effects of fluoride on morphology, growth, development, and thyroid hormone of Chinese toad (Bufo gargarizans) embryos. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:123-133. [PMID: 29024016 DOI: 10.1002/em.22147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/02/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Excessive fluoride in natural water ecosystem has the potential to detrimentally affect amphibians, but little is known of such effects or underlying mechanisms in Bufo gargarizans embryos. In the present study, the effects of fluoride exposure on B. gargarizans embryos were investigated. First, fluoride teratogenic experiment showed that the 9 days EC50 of fluoride on B. gargarizans embryos was 177.62 mg/L. Then, we studied the sublethal effects of fluoride on B. gargarizans embryos at control, 0.7, 4.1, 19.6, 41.9, and 62.7 mg/L fluoride concentration. Malformation, growth, and development of embryos were monitored, and type 2 and 3 iodothyronine deiodinase (Dio2 and Dio3), thyroid hormone receptors (TRα and TRβ) mRNA levels were measured. Our results showed the morphological malformations, such as tail curvature (lordosis), edema, cuticularized ciliated cells, and hyperplasia were occurred during fluoride exposure. Growth and development were all inhibited at 19.5, 41.9, and 62.7 mg/L fluoride-treated groups after 9 days' exposure. According to real-time PCR results, exposure to fluoride upregulated Dio3 and TRβ mRNA expression and downregulated Dio2 and TRα mRNA level. All above indicated that excessive fluoride could induce morphology malformations, inhibit embryonic growth and development, and disrupt the normal function of maternal thyroid hormone in B. gargarizans embryos. Environ. Mol. Mutagen. 59:123-133, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuhui Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lei Xie
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Mengxing Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaojing Kong
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Qingqing Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Jingfei Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lijuan Zhi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Chang Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
49
|
Nakajima K, Tazawa I, Yaoita Y. Thyroid Hormone Receptor α- and β-Knockout Xenopus tropicalis Tadpoles Reveal Subtype-Specific Roles During Development. Endocrinology 2018; 159:733-743. [PMID: 29126198 DOI: 10.1210/en.2017-00601] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (TH) binds TH receptor α (TRα) and β (TRβ) to induce amphibian metamorphosis. Whereas TH signaling has been well studied, functional differences between TRα and TRβ during this process have not been characterized. To understand how each TR contributes to metamorphosis, we generated TRα- and TRβ-knockout tadpoles of Xenopus tropicalis and examined developmental abnormalities, histology of the tail and intestine, and messenger RNA expression of genes encoding extracellular matrix-degrading enzymes. In TRβ-knockout tadpoles, tail regression was delayed significantly and a healthy notochord was observed even 5 days after the initiation of tail shortening (stage 62), whereas in the tails of wild-type and TRα-knockout tadpoles, the notochord disappeared after ∼1 day. The messenger RNA expression levels of genes encoding extracellular matrix-degrading enzymes (MMP2, MMP9TH, MMP13, MMP14, and FAPα) were obviously reduced in the tail tip of TRβ-knockout tadpoles, with the shortening tail. The reduction in olfactory nerve length and head narrowing by gill absorption were also affected. Hind limb growth and intestinal shortening were not compromised in TRβ-knockout tadpoles, whereas tail regression and olfactory nerve shortening appeared to proceed normally in TRα-knockout tadpoles, except for the precocious development of hind limbs. Our results demonstrated the distinct roles of TRα and TRβ in hind limb growth and tail regression, respectively.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Ichiro Tazawa
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
50
|
Sakane Y, Iida M, Hasebe T, Fujii S, Buchholz DR, Ishizuya-Oka A, Yamamoto T, Suzuki KIT. Functional analysis of thyroid hormone receptor beta in Xenopus tropicalis founders using CRISPR-Cas. Biol Open 2018; 7:bio.030338. [PMID: 29358165 PMCID: PMC5829506 DOI: 10.1242/bio.030338] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amphibians provide an ideal model to study the actions of thyroid hormone (TH) in animal development because TH signaling via two TH receptors, TRα and TRβ, is indispensable for amphibian metamorphosis. However, specific roles for the TRβ isoform in metamorphosis are poorly understood. To address this issue, we generated trβ-disrupted Xenopus tropicalis tadpoles using the CRISPR-Cas system. We first established a highly efficient and rapid workflow for gene disruption in the founder generation (F0) by injecting sgRNA and Cas9 ribonucleoprotein. Most embryos showed severe mutant phenotypes carrying high somatic mutation rates. Utilizing this founder analysis system, we examined the role of trβ in metamorphosis. trβ-disrupted pre-metamorphic tadpoles exhibited mixed responsiveness to exogenous TH. Specifically, gill resorption and activation of several TH-response genes, including trβ itself and two protease genes, were impaired. However, hind limb outgrowth and induction of the TH-response genes, klf9 and fra-2, were not affected by loss of trβ Surprisingly, trβ-disrupted tadpoles were able to undergo spontaneous metamorphosis normally, except for a slight delay in tail resorption. These results indicate TRβ is not required but contributes to the timing of resorptive events of metamorphosis.
Collapse
Affiliation(s)
- Yuto Sakane
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Midori Iida
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Musashino, Tokyo 180-0023, Japan
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Ct., Cincinnati, OH, 45221, USA
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Musashino, Tokyo 180-0023, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ken-Ichi T Suzuki
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|