1
|
Saenz C, Fernandez G, Llovera R, Tolosa MJ, Cantel S, Fehrentz JA, Mackie K, Leggio L, Zigman J, De Francesco PN, Perello M. Growth hormone secretagogue receptor and cannabinoid receptor type 1 intersection in the mouse brain. Brain Struct Funct 2024; 230:15. [PMID: 39702649 PMCID: PMC11659360 DOI: 10.1007/s00429-024-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 12/21/2024]
Abstract
The growth hormone secretagogue receptor (GHSR) and the cannabinoid receptor type 1 (CB1R) are G-protein coupled receptors highly expressed in the brain and involved in critical regulatory processes, such as energy homeostasis, appetite control, reward, and stress responses. GHSR mediates the effects of both ghrelin and liver-expressed antimicrobial peptide 2, while CB1R is targeted by cannabinoids. Strikingly, both receptors mediate their effects by acting on common brain areas and their individual roles have been well characterized. However, the potential for their co-expression in the same neuronal subsets remains largely unexplored. Here, we aim to map the cell populations where GHSR and CB1R might converge, hypothesizing that their co-expression in specific brain circuits could mediate integrated physiological responses. By utilizing two complementary labeling techniques-GHSR-eGFP mice and Fr-ghrelin labeling of GHSR+ cells-along with specific CB1R immunostaining, we sought to visualize and quantify potential areas of overlap. Also, we analyzed several cell RNA sequencing datasets to estimate the fraction of brain cells expressing both GPCRs and their phenotype. Our neuroanatomical studies revealed evident overlap of GHSR+ and CB1R+ signals in specific neuronal subsets mainly located in the cerebral cortex, hippocampus and the amygdala. Transcriptomic analysis revealed specific subsets of Ghsr+/Cnr1+ glutamatergic neurons in the hippocampus and amygdala, as well as different subtypes of Ghsr+/Cnr1+ neurons in the midbrain, hypothalamus, pons, and medulla. Thus, we revealed that GHSR and CB1R interact differentially across specific regions of the mouse brain, providing new insights into how these receptors' actions are integrated. Current findings may open new avenues for dual therapeutic interventions in metabolic disorders, obesity, and psychiatric conditions.
Collapse
Affiliation(s)
- Camila Saenz
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Ramiro Llovera
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - María J Tolosa
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Kenneth Mackie
- Department of Psychological & Brain Sciences, Indiana University, Bloomington Indiana, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Jeffrey Zigman
- Center for Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina.
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina.
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
2
|
Nicolas JC, Lee TH, Quarta C. Can brain neurons change identity? Lessons from obesity. Trends Endocrinol Metab 2024:S1043-2760(24)00297-2. [PMID: 39643545 DOI: 10.1016/j.tem.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
It has long been thought that the functional identity of mammalian brain neurons is programmed during development and remains stable throughout adult life; however, certain populations of neurons continue to express active regulators of neuronal identity into adulthood. Prolonged exposure to diet-induced metabolic stress induces features of neuronal identity modification in adult mice, and maladaptive changes in neuronal identity maintenance have been linked to cognitive impairment in humans suffering from neurodegenerative diseases often associated with obesity. Here we discuss how, by unraveling the neurological roots of obesity, we may solve the puzzle of whether mammalian brain neurons retain identity plasticity into adulthood, while advancing knowledge of the pathogenic mechanisms at the interface of metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jean Charles Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Thomas H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
3
|
Vanyan L, Trchounian K. Glucose concentration is determinant for the functioning of hydrogenase 1 and hydrogenase 2 in regulating the proton and potassium fluxes in Escherichia coli at pH 7.5. Biochimie 2024; 227:205-216. [PMID: 39038731 DOI: 10.1016/j.biochi.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
This study examines how FOF1-ATPase, hydrogenases (Hyd-1 and Hyd-2), and potassium transport systems (TrkA) interact to maintain the proton motive force (pmf) in E. coli during fermentation of different glucose concentrations (2 g L-1 and 8 g L-1). Our findings indicate that mutants lacking the hyaA-hyaC genes exhibited a 30 % increase in total proton flux compared to the wild type when grown with 2 g L-1 glucose. This has been observed during assays where similar glucose levels were supplemented. Disruptions in proton pumping, particularly in hyaB and hyaC single mutants, led to increased potassium uptake. The hyaB mutant showed a threefold increase in the contribution of FOF1-ATPase to proton flux, suggesting a significant role for Hyd-1 in proton translocation. In the hybC mutant grown in 2 g L-1 glucose conditions, DCCD-sensitive fluxes decreased by 70 %, indicating critical role of Hyd-2 in proton transport and FOF1 function. When cells were grown with 8 g L-1 glucose, the 2H+/1K+ ratio was significantly disturbed in both wild type and mutants. Despite these perturbances, mutants with disruptions in Hyd-1 and Hyd-2 maintained constant FOF1 function, suggesting that this enzyme remains stable in glucose-rich environments. These results provide valuable insights into how Hyd-1 and Hyd-2 contribute to the regulation of ion transport, particularly proton translocation, in response to glucose concentration. Our study uncovered potential complementary mechanisms between Hyd-1 and Hyd-2 subunits, suggesting a complex interplay between these enzymes via metabolic cross talk with FOF1 in response to glucose concentrations to maintain pmf.
Collapse
Affiliation(s)
- Liana Vanyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia; Research Institute of Biology, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia; Research Institute of Biology, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian str., 0025, Yerevan, Armenia.
| |
Collapse
|
4
|
Aguggia J, Fernandez G, Cassano D, Mustafá ER, Rodríguez SS, Cantel S, Fehrentz JA, Raingo J, Schiöth HB, Habib AM, De Francesco PN, Perello M. Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction. Endocrinology 2024; 166:bqae160. [PMID: 39737802 DOI: 10.1210/endocr/bqae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 01/01/2025]
Abstract
The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear. To explore the potential colocalization of GHSR and GLP-1R in specific neurons, we performed detailed mapping of cells positive for both receptors using GHSR-eGFP reporter mice or wild-type mice infused with fluorescent ghrelin, alongside an anti-GLP-1R antibody. We found that GHSR+ and GLP-1R+ cells are largely segregated in the mouse brain. The highest overlap was observed in the hypothalamic arcuate nucleus, where 15% to 20% of GHSR+ cells were also GLP-1R+ cells. Additionally, we examined RNA-sequencing datasets from mouse and human brains to assess the fraction and distribution of neurons expressing both receptors, finding that double-positive Ghsr+/Glp1r+ cells are highly segregated, with a small subset of double-positive Ghsr+/Glp1r+ cells representing <10% of all Ghsr+ or Glp1r+ cells, primarily enriched in the hypothalamus. Furthermore, we conducted functional studies using patch-clamp recordings in a heterologous expression system to assess potential crosstalk in regulating presynaptic calcium channels. We provide the first evidence that liraglutide-evoked GLP-1R activity inhibits presynaptic channels, and that the presence of one GPCR attenuates the inhibitory effects of ligand-evoked activity mediated by the other on presynaptic calcium channels. In conclusion, while GHSR and GLP-1R can engage in molecular crosstalk, they are largely segregated across most neuronal types within the brain.
Collapse
Affiliation(s)
- Julieta Aguggia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Silvia S Rodríguez
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jesica Raingo
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| |
Collapse
|
5
|
Shirvanyan A, Trchounian K. Sodium transport and redox regulation in Saccharomyces cerevisiae under osmotic stress depending on oxygen availability. Sci Rep 2024; 14:23982. [PMID: 39402154 PMCID: PMC11479268 DOI: 10.1038/s41598-024-75108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/01/2024] [Indexed: 10/17/2024] Open
Abstract
This study explores the molecular mechanisms behind the differential responses of Saccharomyces cerevisiae industrial strains (ATCC 9804 and ATCC 13007) to osmotic stress. We observed that, in contrast to ATCC 9804 strain, sodium flux in ATCC 13,007 is not N, N'-dicyclohexylcarbodiimide (DCCD)-sensitive under osmotic stress, suggesting a distinct ion homeostasis mechanism. Under aerobic conditions, osmotic stress increased reduced SH groups by 45% in ATCC 9804 and 34% in ATCC 13,007. In contrast, under microaerophilic conditions, both strains experienced a 50% reduction in thiol groups. Notably, ATCC 13,007 exhibited a 1.5-fold increase in catalase (CAT) activity under aerobic stress compared to standard conditions, while ATCC 9804 showed enhanced CAT activity due to SH group binding. Additionally, superoxide dismutase (SOD) activity was doubled during aerobic growth in both strains, with ATCC 13,007 showing a 1.5-fold higher SOD activity under osmotic stress. The results demonstrate that S. cerevisiae adapts to osmotic stress differently under aerobic and microaerophilic conditions, with aerobic conditions promoting Pma-Ena-Trk interplay, reduced thiol levels and increased catalase activity, while microaerophilic conditions demonstrate Pma-Nha-Trk interplay and shifts redox balance towards oxidized thiol groups and enhance superoxide dismutase activity. Understanding these mechanisms can aid in developing stress-resistant yeast strains for industrial applications.
Collapse
Affiliation(s)
- A Shirvanyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia
| | - K Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia.
| |
Collapse
|
6
|
Babayan A, Vassilian A, Poladyan A, Trchounian K. Role of the Escherichia coli FocA and FocB formate channels in controlling proton/potassium fluxes and hydrogen production during osmotic stress in energy-limited, stationary phase fermenting cells. Biochimie 2024; 221:91-98. [PMID: 38307245 DOI: 10.1016/j.biochi.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Escherichia coli FocA and FocB formate channels export formate or import it for further disproportionation by the formate hydrogenlyase (FHL) complex to H2 and CO2. Here, we show that under pH and osmotic stress FocA and FocB play important roles in regulating proton and potassium fluxes and couple this with H2 production in stationary-phase cells. Using whole-cell assays with glucose as electron donor, a focB mutant showed a 50 % decrease in VH2, while N'N'-dicyclohexylcarbodiimide (DCCD) treatment of osmotically stressed cells underlined the role of FOF1 ATPase in H2 production. At pH 7.5 and under osmotic stress FocB contributed to the proton flux but not to the potassium flux. At pH 5.5 both formate channels contributed to the proton and potassium fluxes. Particulalry, a focA mutant had 40 % lower potassium flux whereas the proton flux increased approximately two-fold. Moreover, at pH 5.5H2 production was totally inhibited by DCCD in the focA mutant. Taken together, our results suggest that depending on external pH, the formate channels play an important role in osmoregulation by helping to balance proton/potassium fluxes and H2 production, and thus assist the proton FOF1-ATPase in maintenance of ion gradients in fermenting stationary-phase cells.
Collapse
Affiliation(s)
- A Babayan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025, Yerevan, Armenia; Research Institute of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - A Vassilian
- Research Institute of Biology, Yerevan State University, 0025, Yerevan, Armenia.
| | - A Poladyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025, Yerevan, Armenia; Research Institute of Biology, Yerevan State University, 0025, Yerevan, Armenia.
| | - K Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025, Yerevan, Armenia; Research Institute of Biology, Yerevan State University, 0025, Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025, Yerevan, Armenia.
| |
Collapse
|
7
|
Papadakis S, Thompson JR, Feczko E, Miranda-Dominguez O, Dunn GA, Selby M, Mitchell AJ, Sullivan EL, Fair DA. Perinatal Western-style diet exposure associated with decreased microglial counts throughout the arcuate nucleus of the hypothalamus in Japanese macaques. J Neurophysiol 2024; 131:241-260. [PMID: 38197176 PMCID: PMC11286309 DOI: 10.1152/jn.00213.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Perinatal exposure to a high-fat, high-sugar Western-style diet (WSD) is associated with altered neural circuitry in the melanocortin system. This association may have an underlying inflammatory component, as consumption of a WSD during pregnancy can lead to an elevated inflammatory environment. Our group previously demonstrated that prenatal WSD exposure was associated with increased markers of inflammation in the placenta and fetal hypothalamus in Japanese macaques. In this follow-up study, we sought to determine whether this heightened inflammatory state persisted into the postnatal period, as prenatal exposure to inflammation has been shown to reprogram offspring immune function and long-term neuroinflammation would present a potential means for prolonged disruptions to microglia-mediated neuronal circuit formation. Neuroinflammation was approximated in 1-yr-old offspring by counting resident microglia and peripherally derived macrophages in the region of the hypothalamus examined in the fetal study, the arcuate nucleus (ARC). Microglia and macrophages were immunofluorescently stained with their shared marker, ionized calcium-binding adapter molecule 1 (Iba1), and quantified in 11 regions along the rostral-caudal axis of the ARC. A mixed-effects model revealed main effects of perinatal diet (P = 0.011) and spatial location (P = 0.003) on Iba1-stained cell count. Perinatal WSD exposure was associated with a slight decrease in the number of Iba1-stained cells, and cells were more densely located in the center of the ARC. These findings suggest that the heightened inflammatory state experienced in utero does not persist postnatally. This inflammatory response trajectory could have important implications for understanding how neurodevelopmental disorders progress.NEW & NOTEWORTHY Prenatal Western-style diet exposure is associated with increased microglial activity in utero. However, we found a potentially neuroprotective reduction in microglia count during early postnatal development. This trajectory could inform the timing of disruptions to microglia-mediated neuronal circuit formation. Additionally, this is the first study in juvenile macaques to characterize the distribution of microglia along the rostral-caudal axis of the arcuate nucleus of the hypothalamus. Nearby neuronal populations may be greater targets during inflammatory insults.
Collapse
Affiliation(s)
- Samantha Papadakis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States
| | - Jacqueline R Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Oscar Miranda-Dominguez
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Matthew Selby
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Elinor L Sullivan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
8
|
Vanyan L, Kammel M, Sawers RG, Trchounian K. Evidence for bidirectional formic acid translocation in vivo via the Escherichia coli formate channel FocA. Arch Biochem Biophys 2024; 752:109877. [PMID: 38159898 DOI: 10.1016/j.abb.2023.109877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Pentameric FocA permeates either formate or formic acid bidirectionally across the cytoplasmic membrane of anaerobically growing Escherichia coli. Each protomer of FocA has its own hydrophobic pore, but it is unclear whether formate or neutral formic acid is translocated in vivo. Here, we measured total and dicyclohexylcarbodiimide (DCCD)-inhibited proton flux out of resting, fermentatively grown, stationary-phase E. coli cells in dependence on FocA. Using a wild-type strain synthesizing native FocA, it was shown that using glucose as a source of formate, DCCD-independent proton efflux was ∼2.5 mmol min-1, while a mutant lacking FocA showed only DCCD-inhibited, FOF1-ATPase-dependent proton-efflux. A strain synthesizing a chromosomally-encoded FocAH209N variant that functions exclusively to translocate formic acid out of the cell, showed a further 20 % increase in FocA-dependent proton efflux relative to the parental strain. Cells synthesizing a FocAT91A variant, which is unable to translocate formic acid out of the cell, showed only DCCD-inhibited proton efflux. When exogenous formate was added, formic acid uptake was shown to be both FocA- and proton motive force-dependent. By measuring rates of H2 production, potassium ion flux and ATPase activity, these data support a role for coupling between formate, proton and K+ ion translocation in maintaining pH and ion gradient homeostasis during fermentation. FocA thus plays a key role in maintaining this homeostatic balance in fermenting cells by bidirectionally translocating formic acid.
Collapse
Affiliation(s)
- Liana Vanyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia; Scientific-Research Institute of Biology Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025, Yerevan, Armenia
| | - Michelle Kammel
- Institute for Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - R Gary Sawers
- Institute for Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia; Scientific-Research Institute of Biology Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia; Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025, Yerevan, Armenia.
| |
Collapse
|
9
|
Salvi J, Andreoletti P, Audinat E, Balland E, Ben Fradj S, Cherkaoui-Malki M, Heurtaux T, Liénard F, Nédélec E, Rovère C, Savary S, Véjux A, Trompier D, Benani A. Microgliosis: a double-edged sword in the control of food intake. FEBS J 2024; 291:615-631. [PMID: 35880408 DOI: 10.1111/febs.16583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 02/16/2024]
Abstract
Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient-sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it.
Collapse
Affiliation(s)
- Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre Andreoletti
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Etienne Audinat
- IGF, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Eglantine Balland
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, Australia
| | - Selma Ben Fradj
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | | | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fabienne Liénard
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Stéphane Savary
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Anne Véjux
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Bañuelos C, Kittleson JR, LaNasa KH, Galiano CS, Roth SM, Perez EJ, Long JM, Roberts MT, Fong S, Rapp PR. Cognitive Aging and the Primate Basal Forebrain Revisited: Disproportionate GABAergic Vulnerability Revealed. J Neurosci 2023; 43:8425-8441. [PMID: 37798131 PMCID: PMC10711728 DOI: 10.1523/jneurosci.0456-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
Basal forebrain (BF) projections to the hippocampus and cortex are anatomically positioned to influence a broad range of cognitive capacities that are known to decline in normal aging, including executive function and memory. Although a long history of research on neurocognitive aging has focused on the role of the cholinergic basal forebrain system, intermingled GABAergic cells are numerically as prominent and well positioned to regulate the activity of their cortical projection targets, including the hippocampus and prefrontal cortex. The effects of aging on noncholinergic BF neurons in primates, however, are largely unknown. In this study, we conducted quantitative morphometric analyses in brains from young adult (6 females, 2 males) and aged (11 females, 5 males) rhesus monkeys (Macaca mulatta) that displayed significant impairment on standard tests that require the prefrontal cortex and hippocampus. Cholinergic (ChAT+) and GABAergic (GAD67+) neurons were quantified through the full rostrocaudal extent of the BF. Total BF immunopositive neuron number (ChAT+ plus GAD67+) was significantly lower in aged monkeys compared with young, largely because of fewer GAD67+ cells. Additionally, GAD67+ neuron volume was greater selectively in aged monkeys without cognitive impairment compared with young monkeys. These findings indicate that the GABAergic component of the primate BF is disproportionally vulnerable to aging, implying a loss of inhibitory drive to cortical circuitry. Moreover, adaptive reorganization of the GABAergic circuitry may contribute to successful neurocognitive outcomes.SIGNIFICANCE STATEMENT A long history of research has confirmed the role of the basal forebrain in cognitive aging. The majority of that work has focused on BF cholinergic neurons that innervate the cortical mantle. Codistributed BF GABAergic populations are also well positioned to influence cognitive function, yet little is known about this prominent neuronal population in the aged brain. In this unprecedented quantitative comparison of both cholinergic and GABAergic BF neurons in young and aged rhesus macaques, we found that neuron number is significantly reduced in the aged BF compared with young, and that this reduction is disproportionately because of a loss of GABAergic neurons. Together, our findings encourage a new perspective on the functional organization of the primate BF in neurocognitive aging.
Collapse
Affiliation(s)
- Cristina Bañuelos
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland 21224
| | - Joshua R Kittleson
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland 21224
| | - Katherine H LaNasa
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland 21224
| | - Christina S Galiano
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland 21224
| | - Stephanie M Roth
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland 21224
| | - Evelyn J Perez
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland 21224
| | - Jeffrey M Long
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland 21224
| | - Mary T Roberts
- California National Primate Research Center, University of California, Davis, Davis, California 95616
| | - Sania Fong
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland 21224
- California National Primate Research Center, University of California, Davis, Davis, California 95616
| | - Peter R Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland 21224
| |
Collapse
|
11
|
Bora A, Fisette A. The obese brain: is it a matter of time? Trends Endocrinol Metab 2023; 34:691-693. [PMID: 37640666 DOI: 10.1016/j.tem.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
Understanding how obesity rewires the brain, triggers neuroinflammation and neurodegeneration relies on research using animal models. There is, however, a disconnect between the timeline of human obesity and typical preclinical protocols. We emphasize here the need to adopt models of chronic obesity to study the pathophysiology of human obesity.
Collapse
Affiliation(s)
- Ambica Bora
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Alexandre Fisette
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.
| |
Collapse
|
12
|
Shahanoor Z, Sultana R, Savenkova M, Karatsoreos IN, Romeo RD. Metabolic dysfunctions following chronic oral corticosterone are modified by adolescence and sex in mice. Physiol Behav 2023; 269:114289. [PMID: 37422081 PMCID: PMC10530018 DOI: 10.1016/j.physbeh.2023.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Adolescence is a period of development in which shifts in responses to glucocorticoids is well-documented. Obesity and metabolic syndrome are substantial health issues whose rates continue to rise in both adult and adolescent populations. Though many interacting factors contribute to these dysfunctions, how these shifts in glucocorticoid responses may be related remain unknown. Using a model of oral corticosterone (CORT) exposure in male and female mice, we demonstrate differential responses during adolescence (30-58 days of age) or adulthood (70-98 day of age) in endpoints relevant to metabolic function. Our data indicate that CORT resulted in significant weight gain in adult- and adolescent-exposed females and adult-exposed males, but not adolescent-exposed males. Despite this difference, all animals treated with high levels of CORT showed significant increases in white adipose tissue, indicating a dissociation between weight gain and adiposity in adolescent-treated males. Similarly, all experimental groups showed significant increases in plasma insulin, leptin, and triglyceride levels, further suggesting potential disconnects between overt weight gain, and underlying metabolic dysregulation. Finally, we found age- and dose-dependent changes in the expression of hepatic genes important in glucocorticoid receptor and lipid regulation, which showed different patterns in males and females. Thus, altered transcriptional pathways in the liver might be contributing differentially to the similar metabolic phenotype observed among these experimental groups. We also show that despite little CORT-induced changes in the hypothalamic levels of orexin-A and NPY, we found that food and fluid intake were elevated in adolescent-treated males and females. These data indicate chronic exposure to elevated glucocorticoid levels results in metabolic dysfunction in both males and females, which can be further modulated by developmental stage.
Collapse
Affiliation(s)
- Ziasmin Shahanoor
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States
| | - Razia Sultana
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States
| | - Marina Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Ilia N Karatsoreos
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Russell D Romeo
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
13
|
Han C, Pei H, Shen H, Zhai L, Yang Y, Li W, Wang J. Antcin K targets NLRP3 to suppress neuroinflammation and improve the neurological behaviors of mice with depression. Int Immunopharmacol 2023; 117:109908. [PMID: 37012885 DOI: 10.1016/j.intimp.2023.109908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
AIM We aimed to explored the role of Antcin K in resisting depression and its targets. METHODS LPS/IFN-γwas used to induce the activation of microglial BV2 cells. Following Antcin K pretreatment, the proportion of M1 cells was determined using flow cytometry (FCM), the expression of cytokines was measured through ELISA, and that of CDb and NLRP3 was analyzed by cell fluorescence staining. The protein levels were detected by Western-blot assay. After NLRP3 was knocked down in BV2 cells (BV2-nlrp3-/-), the M1 polarization level was detected with Antcin K treatment. The targeted binding relation of Antcin K with NLRP3 was confirmed through small molecule-protein docking and co-immunoprecipitation assay. The chronic unpredictable stress model (CUMS) was constructed to mimic the depression mice. After the administration of Antcin K, the neurological behavior of CUMS mice were detected by open-field test (OFT), elevated plus maze, forced swimming test (FST), and tail suspension test (TST). In addition, the expression of CD11b and IBA-1 was detected through histochemical staining, and the tissue pathological changes were detected by H&E staining. RESULTS Antcin K suppressed the M1 polarization of BV2 cells and reduced the expression of inflammatory factors. Meanwhile, NLRP3 exhibited targeted binding relation with Antcin K, and Antcin K lost its effect after NLRP3 knockdown. In the CUMS mouse model, Antcin K improved the depression status and neurological behaviors in mice, and decreased central neuroinflammation and microglial cell polarization. CONCLUSION Antcin K targets NLRP3 to suppress microglial cell polarization, alleviate central inflammation in mice and improve their neurological behaviors.
Collapse
|
14
|
Salsinha AS, Rodríguez-Alcalá LM, Pimentel LL, Pintado M. Role of bioactive lipids in obesity. BIOACTIVE LIPIDS 2023:133-167. [DOI: 10.1016/b978-0-12-824043-4.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Sánchez-Alegría K, Arias C. Functional consequences of brain exposure to saturated fatty acids: From energy metabolism and insulin resistance to neuronal damage. Endocrinol Diabetes Metab 2023; 6:e386. [PMID: 36321333 PMCID: PMC9836261 DOI: 10.1002/edm2.386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Saturated fatty acids (FAs) are the main component of high-fat diets (HFDs), and high consumption has been associated with the development of insulin resistance, endoplasmic reticulum stress and mitochondrial dysfunction in neuronal cells. In particular, the reduction in neuronal insulin signaling seems to underlie the development of cognitive impairments and has been considered a risk factor for Alzheimer's disease (AD). METHODS This review summarized and critically analyzed the research that has impacted the field of saturated FA metabolism in neurons. RESULTS We reviewed the mechanisms for free FA transport from the systemic circulation to the brain and how they impact neuronal metabolism. Finally, we focused on the molecular and the physiopathological consequences of brain exposure to the most abundant FA in the HFD, palmitic acid (PA). CONCLUSION Understanding the mechanisms that lead to metabolic alterations in neurons induced by saturated FAs could help to develop several strategies for the prevention and treatment of cognitive impairment associated with insulin resistance, metabolic syndrome, or type II diabetes.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
16
|
James MH, Aston-Jones G. Orexin Reserve: A Mechanistic Framework for the Role of Orexins (Hypocretins) in Addiction. Biol Psychiatry 2022; 92:836-844. [PMID: 36328706 PMCID: PMC10184826 DOI: 10.1016/j.biopsych.2022.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
In 2014, we proposed that orexin signaling transformed motivationally relevant states into adaptive behavior directed toward exploiting an opportunity or managing a threat, a process we referred to as motivational activation. Advancements in animal models since then have permitted higher-resolution measurements of motivational states; in particular, the behavioral economics approach for studying drug demand characterizes conditions that lead to the enhanced motivation that underlies addiction. This motivational plasticity is paralleled by persistently increased orexin expression in a topographically specific manner-a finding confirmed across species, including in humans. Normalization of orexin levels also reduces drug motivation in addiction models. These new advancements lead us to update our proposed framework for the orexin function. We now propose that the capacity of orexin neurons to exhibit dynamic shifts in peptide production contributes to their role in adaptive motivational regulation and that this is achieved via a pool of reserve orexin neurons. This reserve is normally bidirectionally recruited to permit motivational plasticity that promotes flexible, adaptive behavior. In pathological states such as addiction, however, we propose that the orexin system loses capacity to adaptively adjust peptide production, resulting in focused hypermotivation for drug, driven by aberrantly and persistently high expression in the orexin reserve pool. This mechanistic framework has implications for the understanding and treatment of several psychiatric disorders beyond addiction, particularly those characterized by motivational dysfunction.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey.
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey.
| |
Collapse
|
17
|
Mak KWY, Mustafa AF, Belsham DD. Neuroendocrine microRNAs linked to energy homeostasis: future therapeutic potential. Pharmacol Rep 2022; 74:774-789. [PMID: 36083576 DOI: 10.1007/s43440-022-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
The brain orchestrates whole-body metabolism through an intricate system involving interneuronal crosstalk and communication. Specifically, a key player in this complex circuitry is the hypothalamus that controls feeding behaviour, energy expenditure, body weight and metabolism, whereby hypothalamic neurons sense and respond to circulating hormones, nutrients, and chemicals. Dysregulation of these neurons contributes to the development of metabolic disorders, such as obesity and type 2 diabetes. The involvement of hypothalamic microRNAs, post-transcriptional regulators of gene expression, in the central regulation of energy homeostasis has become increasingly apparent, although not completely delineated. This review summarizes current evidence demonstrating the regulation of feeding-related neuropeptides by brain-derived microRNAs as well as the regulation of specific miRNAs by nutrients and other peripheral signals. Moreover, the involvement of microRNAs in the central nervous system control of insulin, leptin, and estrogen signal transduction is examined. Finally, the therapeutic and diagnostic potential of microRNAs for metabolic disorders will be discussed and the regulation of brain-derived microRNAs by nutrients and other peripheral signals is considered. Demonstrating a critical role of microRNAs in hypothalamic regulation of energy homeostasis is an innovative route to uncover novel biomarkers and therapeutic candidates for metabolic disorders.
Collapse
Affiliation(s)
- Kimberly W Y Mak
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Aws F Mustafa
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
O'Connor RM, Kenny PJ. Utility of 'substance use disorder' as a heuristic for understanding overeating and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110580. [PMID: 35636576 DOI: 10.1016/j.pnpbp.2022.110580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Rates of obesity and obesity-associated diseases have increased dramatically in countries with developed economies. Substance use disorders (SUDs) are characterized by the persistent use of the substance despite negative consequences. It has been hypothesized that overconsumption of palatable energy dense food can elicit SUD-like maladaptive behaviors that contribute to persistent caloric intake beyond homeostatic need even in the face of negative consequences. Palatable food and drugs of abuse act on many of the same motivation-related circuits in the brain, and can induce, at least superficially, similar molecular, cellular, and physiological adaptations on these circuits. As such, applying knowledge about the neurobiological mechanisms of SUDs may serve as useful heuristic to better understand the persistent overconsumption of palatable food that contributes to obesity. However, many important differences exist between the actions of drugs of abuse and palatable food in the brain. This warrants caution when attributing weight gain and obesity to the manifestation of a putative SUD-related behavioral disorder. Here, we describe similarities and differences between compulsive drug use in SUDs and overconsumption in obesity and consider the merit of the concept of "food addiction".
Collapse
Affiliation(s)
- Richard M O'Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America.
| |
Collapse
|
19
|
Sa M, Park MG, Lee CJ. Role of Hypothalamic Reactive Astrocytes in Diet-Induced Obesity. Mol Cells 2022; 45:65-75. [PMID: 35236781 PMCID: PMC8907000 DOI: 10.14348/molcells.2022.2044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hypothalamus is a brain region that controls food intake and energy expenditure while sensing signals that convey information about energy status. Within the hypothalamus, molecularly and functionally distinct neurons work in concert under physiological conditions. However, under pathological conditions such as in diet-induced obesity (DIO) model, these neurons show dysfunctional firing patterns and distorted regulation by neurotransmitters and neurohormones. Concurrently, resident glial cells including astrocytes dramatically transform into reactive states. In particular, it has been reported that reactive astrogliosis is observed in the hypothalamus, along with various neuroinflammatory signals. However, how the reactive astrocytes control and modulate DIO by influencing neighboring neurons is not well understood. Recently, new lines of evidence have emerged indicating that these reactive astrocytes directly contribute to the pathology of obesity by synthesizing and tonically releasing the major inhibitory transmitter GABA. The released GABA strongly inhibits the neighboring neurons that control energy expenditure. These surprising findings shed light on the interplay between reactive astrocytes and neighboring neurons in the hypothalamus. This review summarizes recent discoveries related to the functions of hypothalamic reactive astrocytes in obesity and raises new potential therapeutic targets against obesity.
Collapse
Affiliation(s)
- Moonsun Sa
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
20
|
Engel DF, Velloso LA. The timeline of neuronal and glial alterations in experimental obesity. Neuropharmacology 2022; 208:108983. [PMID: 35143850 DOI: 10.1016/j.neuropharm.2022.108983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
In experimental models, hypothalamic dysfunction is a key component of the pathophysiology of diet-induced obesity. Early after the introduction of a high-fat diet, neurons, microglia, astrocytes and tanycytes of the mediobasal hypothalamus undergo structural and functional changes that impact caloric intake, energy expenditure and systemic glucose tolerance. Inflammation has emerged as a central component of this response, and as in other inflammatory conditions, there is a time course of events that determine the fate of distinct cells involved in the central regulation of whole-body energy homeostasis. Here, we review the work that identified key mechanisms, cellular players and temporal features of diet-induced hypothalamic abnormalities.
Collapse
Affiliation(s)
- Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Brazil.
| |
Collapse
|
21
|
Brown RM, Dayas CV, James MH, Smith RJ. New directions in modelling dysregulated reward seeking for food and drugs. Neurosci Biobehav Rev 2022; 132:1037-1048. [PMID: 34736883 PMCID: PMC8816817 DOI: 10.1016/j.neubiorev.2021.10.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Behavioral models are central to behavioral neuroscience. To study the neural mechanisms of maladaptive behaviors (including binge eating and drug addiction), it is essential to develop and utilize appropriate animal models that specifically focus on dysregulated reward seeking. Both food and cocaine are typically consumed in a regulated manner by rodents, motivated by reward and homeostatic mechanisms. However, both food and cocaine seeking can become dysregulated, resulting in binge-like consumption and compulsive patterns of intake. The speakers in this symposium for the 2021 International Behavioral Neuroscience Meeting utilize behavioral models of dysregulated reward-seeking to investigate the neural mechanisms of binge-like consumption, enhanced cue-driven reward seeking, excessive motivation, and continued use despite negative consequences. In this review, we outline examples of maladaptive patterns of intake and explore recent animal models that drive behavior to become dysregulated, including stress exposure and intermittent access to rewards. Lastly, we explore select behavioral and neural mechanisms underlying dysregulated reward-seeking for both food and drugs.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Christopher V Dayas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Rachel J Smith
- Department of Psychological & Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
22
|
Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021; 133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
In this review study, we aimed to introduce the orexinergic system as an important signaling pathway involved in a variety of cognitive functions such as memory, motivation, and reward-related behaviors. This study focused on the role of orexinergic system in modulating reward-related behavior, with or without the presence of stressors. Cross-talk between the reward system and orexinergic signaling was also investigated, especially orexinergic signaling in the ventral tegmental area (VTA), the nucleus accumbens (NAc), and the hippocampus. Furthermore, we discussed the role of the orexinergic system in modulating mood states and mental illnesses such as depression, anxiety, panic, and posttraumatic stress disorder (PTSD). Here, we narrowed down our focus on the orexinergic signaling in three brain regions: the VTA, NAc, and the hippocampus (CA1 region and dentate gyrus) for their prominent role in reward-related behaviors and memory. It was concluded that the orexinergic system is critically involved in reward-related behavior and significantly alters stress responses and stress-related psychiatric and mood disorders.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shahram Zarrabian
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
23
|
Metz MJ, Daimon CM, King CM, Rau AR, Hentges ST. Individual arcuate nucleus proopiomelanocortin neurons project to select target sites. Am J Physiol Regul Integr Comp Physiol 2021; 321:R982-R989. [PMID: 34755553 PMCID: PMC8714814 DOI: 10.1152/ajpregu.00169.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) are a diverse group of neurons that project widely to different brain regions. It is unknown how this small population of neurons organizes its efferent projections. In this study, we hypothesized that individual ARH POMC neurons exclusively innervate select target regions. To investigate this hypothesis, we first verified that only a fraction of ARH POMC neurons innervate the lateral hypothalamus (LH), the paraventricular nucleus of the hypothalamus (PVN), the periaqueductal gray (PAG), or the ventral tegmental area (VTA) using the retrograde tracer cholera toxin B (CTB). Next, two versions of CTB conjugated to distinct fluorophores were injected bilaterally into two of the regions such that PVN and VTA, PAG and VTA, or LH and PVN received tracers simultaneously. These pairs of target sites were chosen based on function and location. Few individual ARH POMC neurons projected to two brain regions at once, suggesting that there are ARH POMC neuron subpopulations organized by their efferent projections. We also investigated whether increasing the activity of POMC neurons could increase the number of ARH POMC neurons labeled with CTB, implying an increase in new synaptic connections to downstream regions. However, chemogenetic enhancement of POMC neuron activity did not increase retrograde tracing of CTB back to ARH POMC neurons from either the LH, PVN, or VTA. Overall, subpopulations of ARH POMC neurons with distinct efferent projections may serve as a way for the POMC population to organize its many functions.
Collapse
Affiliation(s)
- Marissa J Metz
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Caitlin M Daimon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Andrew R Rau
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
24
|
Huang HT, Chen PC, Chen PS, Chiu WT, Kuo YM, Tzeng SF. Inhibitory Effects of Trifluoperazine on Peripheral Proinflammatory Cytokine Expression and Hypothalamic Microglia Activation in Obese Mice Induced by Chronic Feeding With High-Fat-Diet. Front Cell Neurosci 2021; 15:752771. [PMID: 34764855 PMCID: PMC8576196 DOI: 10.3389/fncel.2021.752771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Microglia and astrocytes are the glial cells of the central nervous system (CNS) to support neurodevelopment and neuronal function. Yet, their activation in association with CNS inflammation is involved in the initiation and progression of neurological disorders. Mild inflammation in the periphery and glial activation called as gliosis in the hypothalamic region, arcuate nucleus (ARC), are generally observed in obese individuals and animal models. Thus, reduction in peripheral and central inflammation is considered as a strategy to lessen the abnormality of obesity-associated metabolic indices. In this study, we reported that acute peripheral challenge by inflammagen lipopolysaccharide (LPS) upregulated the expression of hypothalamic dopamine type 2 receptor (D2R) mRNA, and chronic feeding by high-fat-diet (HFD) significantly caused increased levels of D2R in the ARC. The in vitro and in vivo studies indicated that an FDA-approved antipsychotic drug named trifluoperazine (TFP), a D2R inhibitor was able to suppress LPS-stimulated activation of microglia and effectively inhibited LPS-induced peripheral inflammation, as well as hypothalamic inflammation. Further findings showed daily peripheral administration intraperitoneally (i.p.) by TFP for 4 weeks was able to reduce the levels of plasma tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in accompany with lower levels of plasma glucose and insulin in obese mice receiving HFD for 16 weeks when compared those in obese mice without TFP treatment. In parallel, the activation of microglia and astrocytes in the ARC was also inhibited by peripheral administration by TFP. According to our results, TFP has the ability to suppress HFD-induced ARC gliosis and inflammation in the hypothalamus.
Collapse
Affiliation(s)
- Hui-Ting Huang
- Institute of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chun Chen
- Institute of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Institute of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Sleep dysregulation in binge eating disorder and "food addiction": the orexin (hypocretin) system as a potential neurobiological link. Neuropsychopharmacology 2021; 46:2051-2061. [PMID: 34145404 PMCID: PMC8505614 DOI: 10.1038/s41386-021-01052-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
It has been proposed that binge eating reflects a pathological compulsion driven by the "addictive" properties of foods. Proponents of this argument highlight the large degree of phenomenological and diagnostic overlap between binge eating disorder (BED) and substance use disorders (SUDs), including loss of control over how much is consumed and repeated unsuccessful attempts to abstain from consumption, as well as commonalities in brain structures involved in food and drug craving. To date, very little attention has been given to an additional behavioral symptom that BED shares with SUDs-sleep dysregulation-and the extent to which this may contribute to the pathophysiology of BED. Here, we review studies examining sleep outcomes in patients with BED, which collectively point to a heightened incidence of sleep abnormalities in BED. We identify the orexin (hypocretin) system as a potential neurobiological link between compulsive eating and sleep dysregulation in BED, and provide a comprehensive update on the evidence linking this system to these processes. Finally, drawing on evidence from the SUD literature indicating that the orexin system exhibits significant plasticity in response to drugs of abuse, we hypothesize that chronic palatable food consumption likewise increases orexin system activity, resulting in dysregulated sleep/wake patterns. Poor sleep, in turn, is predicted to exacerbate binge eating, contributing to a cycle of uncontrolled food consumption. By extension, we suggest that pharmacotherapies normalizing orexin signaling, which are currently being trialed for the treatment of SUDs, might also have utility in the clinical management of BED.
Collapse
|
26
|
Ruan S, Zhai L, Wu S, Zhang C, Guan Q. SCFAs promote intestinal double-negative T cells to regulate the inflammatory response mediated by NLRP3 inflammasome. Aging (Albany NY) 2021; 13:21470-21482. [PMID: 34491906 PMCID: PMC8457588 DOI: 10.18632/aging.203487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 01/16/2023]
Abstract
Short-chain fatty acids (SCFAs) are a product of intestinal bacteria metabolism. Our previous study has found that intestinal bacteria in patients with Alzheimer's disease (AD) can promote the activation of NLRP3 inflammasome and mediate neuroinflammation. In this study, we mainly explored the regulation of intestinal microenvironmental immunity by intestinal bacterial metabolite SCFAs and the mechanism of NLRP3 activation. First, wild-type (WT) and APP/PS1 mice were intervened with SCFAs. As a result, the proportion of double-negative T cells (CD3+CD4-CD8-, DNTs) in the intestine was increased, SCFAs could promote the expression of intestinal NLRP3 and inflammatory factors (IL-18, IL-6 and TNF-α). Moreover, SCAFs could also promote the level of inflammatory factors in the cerebrospinal fluid (CSF) of mice and aggravate the cognitive impairment in AD mice. CD3+ T cells isolated from the spleen were pre-treated with SCFAs, followed by detection of the proportion of DNTs. Consequently, SCFAs could promote the formation of DNTs, activate OX40 signal and simultaneously up-regulate the protein expression of Bcl-2, Bcl-xl and Survivin. Knockdown of OX40 could inhibit SCFAs-induced differentiation of DNTs. The co-culture of DNTs and intestinal macrophages showed that DNTs could activate Fas/FasL-TNF-α signal and induce the activation of NLRP3 inflammasome. In AD mouse models, treatment with Fas and TNFR1 inhibitors could significantly inhibit SCFAs-induced NLRP3 activation and inflammatory factors, while attenuate the inflammatory response in the brain tissue of mice and improve the cognitive ability of mice, however, without significant effect on the level of DNTs. The present study showed that SCFAs can promote the formation of DNTs through OX40. DNTs could induce the activation of NLRP3 inflammasome and the release of inflammatory factors in macrophages through Fas/FasL-TNF-α signals, thereby increasing the level of inflammatory factors in the central nervous system. When Fas and TNFR1 were inhibited by suppressing the functions of DNTs and macrophages, the activation of NLRP3 was inhibited. DNTs are affected by SCFAs, which is a new mechanism of neuroinflammation in AD.
Collapse
Affiliation(s)
- Shuiliang Ruan
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Liping Zhai
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Shasha Wu
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Caiqun Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Qiaobing Guan
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| |
Collapse
|
27
|
Xiang J, Zhang S, Xu R, Chu H, Biswas S, Yu S, Miao D, Li W, Li S, Brown AJ, Yang H, Xu Y, Li B, Liu H. Elevated HB-EGF expression in neural stem cells causes middle age obesity by suppressing Hypocretin/Orexin expression. FASEB J 2021; 35:e21345. [PMID: 33715219 DOI: 10.1096/fj.202001945r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Obesity is common in the middle aged population and it increases the risks of diabetes, cardiovascular diseases, certain cancers, and dementia. Yet, its etiology remains incompletely understood. Here, we show that ectopic expression of HB-EGF, an important regulator of neurogenesis, in Nestin+ neuroepithelial progenitors with the Cre-LoxP system leads to development of spontaneous middle age obesity in male mice accompanied by hyperglycemia and insulin resistance. The Nestin-HB-EGF mice show decreases in food uptake, energy expenditure, and physical activity, suggesting that reduced energy expenditure underlies the pathogenesis of this obesity model. However, HB-EGF expression in appetite-controlling POMC or AgRP neurons or adipocytes fails to induce obesity. Mechanistically, HB-EGF suppresses expression of Hypocretin/Orexin, an orexigenic neuropeptide hormone, in the hypothalamus of middle aged Nestin-HB-EGF mice. Hypothalamus Orexin administration alleviates the obese and hyperglycemic phenotypes in Nestin-HB-EGF mice. This study uncovers an important role for HB-EGF in regulating Orexin expression and energy expenditure and establishes a midlife obesity model whose pathogenesis involves age-dependent changes in hypothalamus neurons.
Collapse
Affiliation(s)
- Jinnan Xiang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyang Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiyao Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Hongshang Chu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Soma Biswas
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxiang Yu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Weidong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shentian Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Yuhong Xu
- Pharmacy School, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Center for Traditional Chinese Medicine and Stem Cell Research, The Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Huijuan Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Hypothalamic Expression of Neuropeptide Y (NPY) and Pro-OpioMelanoCortin (POMC) in Adult Male Mice Is Affected by Chronic Exposure to Endocrine Disruptors. Metabolites 2021; 11:metabo11060368. [PMID: 34207679 PMCID: PMC8228876 DOI: 10.3390/metabo11060368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
In the arcuate nucleus, neuropeptide Y (NPY) neurons, increase food intake and decrease energy expenditure, and control the activity of pro-opiomelanocortin (POMC) neurons, that decrease food intake and increase energy expenditure. Both systems project to other hypothalamic nuclei such as the paraventricular and dorsomedial hypothalamic nuclei. Endocrine disrupting chemicals (EDCs) are environmental contaminants that alter the endocrine system causing adverse health effects in an intact organism or its progeny. We investigated the effects of long-term exposure to some EDCs on the hypothalamic NPY and POMC systems of adult male mice that had been previously demonstrated to be a target of some of these EDCs after short-term exposure. Animals were chronically fed for four months with a phytoestrogen-free diet containing two different concentrations of bisphenol A, diethylstilbestrol, tributyltin, or E2. At the end, brains were processed for NPY and POMC immunohistochemistry and quantitatively analyzed. In the arcuate and dorsomedial nuclei, both NPY and POMC immunoreactivity showed a statistically significant decrease. In the paraventricular nucleus, only the NPY system was affected, while the POMC system was not affected. Finally, in the VMH the NPY system was affected whereas no POMC immunoreactive material was observed. These results indicate that adult exposure to different EDCs may alter the hypothalamic circuits that control food intake and energy metabolism.
Collapse
|
29
|
Hypothalamic Astrocytes as a Specialized and Responsive Cell Population in Obesity. Int J Mol Sci 2021; 22:ijms22126176. [PMID: 34201099 PMCID: PMC8228119 DOI: 10.3390/ijms22126176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a type of glial cell anatomically and functionally integrated into the neuronal regulatory circuits for the neuroendocrine control of metabolism. Being functional integral compounds of synapses, astrocytes are actively involved in the physiological regulatory aspects of metabolic control, but also in the pathological processes that link neuronal dysfunction and obesity. Between brain areas, the hypothalamus harbors specialized functional circuits that seem selectively vulnerable to metabolic damage, undergoing early cellular rearrangements which are thought to be at the core of the pathogenesis of diet-induced obesity. Such changes in the hypothalamic brain region consist of a rise in proinflammatory cytokines, the presence of a reactive phenotype in astrocytes and microglia, alterations in the cytoarchitecture and synaptology of hypothalamic circuits, and angiogenesis, a phenomenon that cannot be found elsewhere in the brain. Increasing evidence points to the direct involvement of hypothalamic astrocytes in such early metabolic disturbances, thus moving the study of these glial cells to the forefront of obesity research. Here we provide a comprehensive review of the most relevant findings of molecular and pathophysiological mechanisms by which hypothalamic astrocytes might be involved in the pathogenesis of obesity.
Collapse
|
30
|
Fatty acids role on obesity induced hypothalamus inflammation: From problem to solution – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Berteotti C, Lo Martire V, Alvente S, Bastianini S, Bombardi C, Matteoli G, Ohtsu H, Lin JS, Silvani A, Zoccoli G. Orexin/Hypocretin and Histamine Cross-Talk on Hypothalamic Neuron Counts in Mice. Front Neurosci 2021; 15:660518. [PMID: 34093114 PMCID: PMC8173058 DOI: 10.3389/fnins.2021.660518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
The loss of hypothalamic neurons that produce wake-promoting orexin (hypocretin) neuropeptides is responsible for narcolepsy type 1 (NT1). While the number of histamine neurons is increased in patients with NT1, results on orexin-deficient mouse models of NT1 are inconsistent. On the other hand, the effect of histamine deficiency on orexin neuron number has never been tested on mammals, even though histamine has been reported to be essential for the development of a functional orexin system in zebrafish. The aim of this study was to test whether histamine neurons are increased in number in orexin-deficient mice and whether orexin neurons are decreased in number in histamine-deficient mice. The hypothalamic neurons expressing L-histidine decarboxylase (HDC), the histamine synthesis enzyme, and those expressing orexin A were counted in four orexin knock-out mice, four histamine-deficient HDC knock-out mice, and four wild-type C57BL/6J mice. The number of HDC-positive neurons was significantly higher in orexin knock-out than in wild-type mice (2,502 ± 77 vs. 1,800 ± 213, respectively, one-tailed t-test, P = 0.011). Conversely, the number of orexin neurons was not significantly lower in HDC knock-out than in wild-type mice (2,306 ± 56 vs. 2,320 ± 120, respectively, one-tailed t-test, P = 0.459). These data support the view that orexin peptide deficiency is sufficient to increase histamine neuron number, supporting the involvement of the histamine waking system in the pathophysiology of NT1. Conversely, these data do not support a significant role of histamine in orexin neuron development in mammals.
Collapse
Affiliation(s)
- Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Center for Applied Biomedical Research, S. Orsola University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Center for Applied Biomedical Research, S. Orsola University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Center for Applied Biomedical Research, S. Orsola University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Center for Applied Biomedical Research, S. Orsola University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Gabriele Matteoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Center for Applied Biomedical Research, S. Orsola University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Jian-Sheng Lin
- Physiologie Intégrée du Système d'éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR, Bron, France
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Center for Applied Biomedical Research, S. Orsola University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Center for Applied Biomedical Research, S. Orsola University Hospital, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Microglia-Neuron Crosstalk in Obesity: Melodious Interaction or Kiss of Death? Int J Mol Sci 2021; 22:ijms22105243. [PMID: 34063496 PMCID: PMC8155827 DOI: 10.3390/ijms22105243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Diet-induced obesity can originate from the dysregulated activity of hypothalamic neuronal circuits, which are critical for the regulation of body weight and food intake. The exact mechanisms underlying such neuronal defects are not yet fully understood, but a maladaptive cross-talk between neurons and surrounding microglial is likely to be a contributing factor. Functional and anatomical connections between microglia and hypothalamic neuronal cells are at the core of how the brain orchestrates changes in the body's metabolic needs. However, such a melodious interaction may become maladaptive in response to prolonged diet-induced metabolic stress, thereby causing overfeeding, body weight gain, and systemic metabolic perturbations. From this perspective, we critically discuss emerging molecular and cellular underpinnings of microglia-neuron communication in the hypothalamic neuronal circuits implicated in energy balance regulation. We explore whether changes in this intercellular dialogue induced by metabolic stress may serve as a protective neuronal mechanism or contribute to disease establishment and progression. Our analysis provides a framework for future mechanistic studies that will facilitate progress into both the etiology and treatments of metabolic disorders.
Collapse
|
33
|
Lonstein JS, Linning-Duffy K, Tang Y, Moody A, Yan L. Impact of daytime light intensity on the central orexin (hypocretin) system of a diurnal rodent (Arvicanthis niloticus). Eur J Neurosci 2021; 54:4167-4181. [PMID: 33899987 DOI: 10.1111/ejn.15248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/29/2022]
Abstract
The neuropeptide orexin/hypocretin is implicated in sleep and arousal, energy expenditure, reward, affective state and cognition. Our previous work using diurnal Nile grass rats (Arvicanthis niloticus) found that orexin mediates the effects of environmental light, particularly daytime light intensity, on affective and cognitive behaviours. The present study further investigated how daytime light intensity affects the central orexin system in male and female grass rats. Subjects were housed for 4 weeks in 12:12 hr dim light:dark (50 lux, dimLD) or in 12:12 hr bright light:dark cycle (1000 lux, brightLD). Day/night fluctuations in some orexin measures were also assessed. Despite similar hypothalamic prepro-orexin mRNA expression across all conditions, there were significantly more orexin-immunoreactive neurons, larger somata, greater optical density or higher orexin A content at night (ZT14) than during the day (ZT2), and/or in animals housed in brightLD compared to dimLD. Grass rats in brightLD also had higher cisternal CSF levels of orexin A. Furthermore, orexin receptor OX1R and OX2R proteins in the medial prefrontal cortex were higher in brightLD than dimLD males, but lower in brightLD than dimLD females. In the CA1 and dorsal raphe nucleus, females had higher OX1R than males without any significant effects of light condition, and OX2R levels were unaffected by sex or light. These results reveal that daytime light intensity alters the central orexin system of both male and female diurnal grass rats, sometimes sex-specifically, and provides insight into the mechanisms underlying how daytime light intensity impacts orexin-regulated functions.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Katrina Linning-Duffy
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Yuping Tang
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Anna Moody
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
34
|
Quarta C, Claret M, Zeltser LM, Williams KW, Yeo GSH, Tschöp MH, Diano S, Brüning JC, Cota D. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat Metab 2021; 3:299-308. [PMID: 33633406 PMCID: PMC8085907 DOI: 10.1038/s42255-021-00345-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Hypothalamic AgRP and POMC neurons are conventionally viewed as the yin and yang of the body's energy status, since they act in an opposite manner to modulate appetite and systemic energy metabolism. However, although AgRP neurons' functions are comparatively well understood, a unifying theory of how POMC neuronal cells operate has remained elusive, probably due to their high level of heterogeneity, which suggests that their physiological roles might be more complex than initially thought. In this Perspective, we propose a conceptual framework that integrates POMC neuronal heterogeneity with appetite regulation, whole-body metabolic physiology and the development of obesity. We highlight emerging evidence indicating that POMC neurons respond to distinct combinations of interoceptive signals and food-related cues to fine-tune divergent metabolic pathways and behaviours necessary for survival. The new framework we propose reflects the high degree of developmental plasticity of this neuronal population and may enable progress towards understanding of both the aetiology and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Carmelo Quarta
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Cota
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France.
| |
Collapse
|
35
|
Ma Q, Deng P, Lin M, Yang L, Li L, Guo L, Zhang L, He M, Lu Y, Pi H, Zhang Y, Yu Z, Chen C, Zhou Z. Long-term bisphenol A exposure exacerbates diet-induced prediabetes via TLR4-dependent hypothalamic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123926. [PMID: 33254826 DOI: 10.1016/j.jhazmat.2020.123926] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), an environmental endocrine-disrupting compound, has been revealed associated with metabolic disorders such as obesity, prediabetes, and type 2 diabetes (T2D). However, its underlying mechanisms are still not fully understood. Here, we provide new evidence that BPA is a risk factor for T2D from a case-control study. To explore the detailed mechanisms, we used two types of diet models, standard diet (SD) and high-fat diet (HFD), to study the effects of long-term BPA exposure on prediabetes in 4-week-old mice. We found that BPA exposure for 12 weeks exacerbated HFD-induced prediabetic symptoms. Female mice showed increased body mass, serum insulin level, and impaired glucose tolerance, while male mice only exhibited impaired glucose tolerance. No change was found in SD-fed mice. Besides, BPA exposure enhanced astrocyte-dependent hypothalamic inflammation in both male and female mice, which impaired proopiomelanocortin (POMC) neuron functions. Moreover, eliminating inflammation by toll-like receptor 4 (TLR4) knockout significantly abolished the effects of BPA on the hypothalamus and diet-induced prediabetes. Taken together, our data establish a key role for TLR4-dependent hypothalamic inflammation in regulating the effects of BPA on prediabetes.
Collapse
Affiliation(s)
- Qinlong Ma
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Ping Deng
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Min Lin
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lingling Yang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Le Li
- Department of Health Management Center, Southwest Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lu Guo
- Department of Neurology, Daping Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Mindi He
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yonghui Lu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yanwen Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Chunhai Chen
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China.
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
36
|
Guerra-Cantera S, Frago LM, Collado-Pérez R, Canelles S, Ros P, Freire-Regatillo A, Jiménez-Hernaiz M, Barrios V, Argente J, Chowen JA. Sex Differences in Metabolic Recuperation After Weight Loss in High Fat Diet-Induced Obese Mice. Front Endocrinol (Lausanne) 2021; 12:796661. [PMID: 34975768 PMCID: PMC8716724 DOI: 10.3389/fendo.2021.796661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary intervention is a common tactic employed to curtail the current obesity epidemic. Changes in nutritional status alter metabolic hormones such as insulin or leptin, as well as the insulin-like growth factor (IGF) system, but little is known about restoration of these parameters after weight loss in obese subjects and if this differs between the sexes, especially regarding the IGF system. Here male and female mice received a high fat diet (HFD) or chow for 8 weeks, then half of the HFD mice were changed to chow (HFDCH) for 4 weeks. Both sexes gained weight (p < 0.001) and increased their energy intake (p < 0.001) and basal glycemia (p < 0.5) on the HFD, with these parameters normalizing after switching to chow but at different rates in males and females. In both sexes HFD decreased hypothalamic NPY and AgRP (p < 0.001) and increased POMC (p < 0.001) mRNA levels, with all normalizing in HFDCH mice, whereas the HFD-induced decrease in ObR did not normalize (p < 0.05). All HFD mice had abnormal glucose tolerance tests (p < 0.001), with males clearly more affected, that normalized when returned to chow. HFD increased insulin levels and HOMA index (p < 0.01) in both sexes, but only HFDCH males normalized this parameter. Returning to chow normalized the HFD-induced increase in circulating leptin (p < 0.001), total IGF1 (p < 0.001), IGF2 (p < 0.001, only in females) and IGFBP3 (p < 0.001), whereas free IGF1 levels remained elevated (p < 0.01). In males IGFBP2 decreased with HFD and normalized with chow (p < 0.001), with no changes in females. Although returning to a healthy diet improved of most metabolic parameters analyzed, fIGF1 levels remained elevated and hypothalamic ObR decreased in both sexes. Moreover, there was sex differences in both the response to HFD and the switch to chow including circulating levels of IGF2 and IGFBP2, factors previously reported to be involved in glucose metabolism. Indeed, glucose metabolism was also differentially modified in males and females, suggesting that these observations could be related.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Julie A. Chowen, ; Jesús Argente,
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Julie A. Chowen, ; Jesús Argente,
| |
Collapse
|
37
|
Guerra-Cantera S, Frago LM, Jiménez-Hernaiz M, Ros P, Freire-Regatillo A, Barrios V, Argente J, Chowen JA. Impact of Long-Term HFD Intake on the Peripheral and Central IGF System in Male and Female Mice. Metabolites 2020; 10:metabo10110462. [PMID: 33202914 PMCID: PMC7698111 DOI: 10.3390/metabo10110462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The insulin-like growth factor (IGF) system is responsible for growth, but also affects metabolism and brain function throughout life. New IGF family members (i.e., pappalysins and stanniocalcins) control the availability/activity of IGFs and are implicated in growth. However, how diet and obesity modify this system has been poorly studied. We explored how intake of a high-fat diet (HFD) or commercial control diet (CCD) affects the IGF system in the circulation, visceral adipose tissue (VAT) and hypothalamus. Male and female C57/BL6J mice received HFD (60% fat, 5.1 kcal/g), CCD (10% fat, 3.7 kcal/g) or chow (3.1 % fat, 3.4 kcal/g) for 8 weeks. After 7 weeks of HFD intake, males had decreased glucose tolerance (p < 0.01) and at sacrifice increased plasma insulin (p < 0.05) and leptin (p < 0.01). Circulating free IGF1 (p < 0.001), total IGF1 (p < 0.001), IGF2 (p < 0.05) and IGFBP3 (p < 0.01) were higher after HFD in both sexes, with CCD increasing IGFBP2 in males (p < 0.001). In VAT, HFD reduced mRNA levels of IGF2 (p < 0.05), PAPP-A (p < 0.001) and stanniocalcin (STC)-1 (p < 0.001) in males. HFD increased hypothalamic IGF1 (p < 0.01), IGF2 (p < 0.05) and IGFBP5 (p < 0.01) mRNA levels, with these changes more apparent in females. Our results show that diet-induced changes in the IGF system are tissue-, sex- and diet-dependent.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Department of Pediatrics, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain
- Correspondence: (J.A.); (J.A.C.)
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain
- Correspondence: (J.A.); (J.A.C.)
| |
Collapse
|
38
|
Dragano NR, Monfort-Pires M, Velloso LA. Mechanisms Mediating the Actions of Fatty Acids in the Hypothalamus. Neuroscience 2020; 447:15-27. [PMID: 31689488 DOI: 10.1016/j.neuroscience.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
|
39
|
Wu Z, Han J, Xue J, Xi P, Wang H, He L, Wang Q, Liang H, Sun X, Tian D. Deletion of liver kinase B1 in POMC neurons predisposes to diet-induced obesity. Life Sci 2020; 258:118204. [PMID: 32763296 DOI: 10.1016/j.lfs.2020.118204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 01/10/2023]
Abstract
AIMS Liver kinase B1 (LKB1) is a serine/threonine kinase. Although many biological functions of LKB1 have been identified, the role of hypothalamic LKB1 in the regulation of central energy metabolism and susceptibility to obesity is unknown. Therefore, we constructed POMC neuron-specific LKB1 knockout mice (PomcLkb1 KO) and studied it at the physiological, morphological, and molecular biology levels. MAIN METHODS Eight-week-old male PomcLkb1 KO mice and their littermates were fed a standard chow fat diet (CFD) or a high-fat diet (HFD) for 3 months. Body weight and food intake were monitored. Dual-energy X-ray absorptiometry was used to measure the fat mass and lean mass. Glucose and insulin tolerance tests and serum biochemical markers were evaluated in the experimental mice. In addition, the levels of peripheral lipogenesis genes and central energy metabolism were measured. KEY FINDINGS PomcLkb1 KO mice did not exhibit impairments under normal physiological conditions. After HFD intervention, the metabolic phenotype of the PomcLkb1 KO mice changed, manifesting as increased food intake and an enhanced obesity phenotype. More seriously, PomcLkb1 KO mice showed increased leptin resistance, worsened hypothalamic inflammation and reduced POMC neuronal expression. SIGNIFICANCE We provide evidence that LKB1 in POMC neurons plays a significant role in regulating energy homeostasis. LKB1 in POMC neurons emerges as a target for therapeutic intervention against HFD-induced obesity and metabolic diseases.
Collapse
Affiliation(s)
- Zhaoxia Wu
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Jie Han
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China
| | - Jie Xue
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China
| | - Pengjiao Xi
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Haomin Wang
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China
| | - Lu He
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China
| | - Qiming Wang
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China
| | - Huimin Liang
- Department of School of Nursing, Tianjin Medical University, Tianjin 300070, China
| | - Xuguo Sun
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China.
| | - Derun Tian
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China; Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
40
|
Razolli DS, de Araújo TM, Sant Apos Ana MR, Kirwan P, Cintra DE, Merkle FT, Velloso LA. Proopiomelanocortin Processing in the Hypothalamus Is Directly Regulated by Saturated Fat: Implications for the Development of Obesity. Neuroendocrinology 2020; 110:92-104. [PMID: 31104058 PMCID: PMC7614303 DOI: 10.1159/000501023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023]
Abstract
In outbred mice, susceptibility or resistance to diet-induced obesity is associated with rapid changes in hypothalamic proopiomelanocortin (POMC) levels. Here, we evaluated 3 hypotheses that potentially explain the development of the different obesity phenotypes in outbred Swiss mice. First, rapid and differential changes in the gut microbiota in obesity-prone (OP) and obesity-resistant (OR) mice fed on a high-fat diet (HFD) might cause differential efficiencies in fatty acid harvesting leading to changes in systemic fatty acid concentrations that in turn affect POMC expression and processing. Second, independently of the gut microbiota, OP mice might have increased blood fatty acid levels after the introduction of a HFD, which could affect POMC expression and processing. Third, fatty acids might act directly in the hypothalamus to differentially regulate POMC expression and/or processing in OP and OR mice. We evaluated OP and OR male Swiss mice using 16S rRNA sequencing for the determination of gut microbiota; gas chromatography for blood lipid determination; and immunoblot and real-time polymerase chain reaction for protein and transcript determination and indirect calorimetry. Some experiments were performed with human pluripotent stem cells differentiated into hypothalamic neurons. We did not find evidence supporting the first 2 hypotheses. However, we found that in OP but not in OR mice, palmitate induces a rapid increase in hypothalamic POMC, which is followed by increased expression of proprotein convertase subtilisin/kexin type 1 PC1/3. Lentiviral inhibition of hypothalamic PC1/3 increased caloric intake and body mass in both OP and OR mice. In human stem cell-derived hypothalamic cells, we found that palmitate potently suppressed the production of POMC-derived peptides. Palmitate directly regulates PC1/3 in OP mice and likely has a functional impact on POMC processing.
Collapse
Affiliation(s)
- Daniela S Razolli
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Thiago M de Araújo
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marcella R Sant Apos Ana
- Laboratory of Nutritional Genomics, School of Applied Science, University of Campinas, Limeira, Brazil
| | - Peter Kirwan
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust, Medical Research Council Institute of Metabolic Science, and Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics, School of Applied Science, University of Campinas, Limeira, Brazil
| | - Florian T Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust, Medical Research Council Institute of Metabolic Science, and Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Licio A Velloso
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil,
| |
Collapse
|
41
|
Global transcriptome analysis of rat hypothalamic arcuate nucleus demonstrates reversal of hypothalamic gliosis following surgically and diet induced weight loss. Sci Rep 2019; 9:16161. [PMID: 31695063 PMCID: PMC6834618 DOI: 10.1038/s41598-019-52257-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.
Collapse
|
42
|
Quarta C, Fioramonti X, Cota D. POMC Neurons Dysfunction in Diet-induced Metabolic Disease: Hallmark or Mechanism of Disease? Neuroscience 2019; 447:3-14. [PMID: 31689486 DOI: 10.1016/j.neuroscience.2019.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
One important lesson from the last decade of studies in the field of systemic energy metabolism is that obesity is first and foremost a brain disease. Hypothalamic neurons dysfunction observed in response to chronic metabolic stress is a key pathogenic node linking consumption of hypercaloric diets with body weight gain and associated metabolic sequelae. A key hypothalamic neuronal population expressing the neuropeptide Pro-opio-melanocortin (POMC) displays altered electrical activity and dysregulated neuropeptides production capacity after long-term feeding with hypercaloric diets. However, whether such neuronal dysfunction represents a consequence or a mechanism of disease, remains a subject of debate. Here, we will review and highlight emerging pathogenic mechanisms that explain why POMC neurons undergo dysfunctional activity in response to caloric overload, and critically address whether these mechanisms may be causally implicated in the physiopathology of obesity and of its associated co-morbidities.
Collapse
Affiliation(s)
- Carmelo Quarta
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| | - Xavier Fioramonti
- Université de Bordeaux, Institut National de la Recherche Agronomique, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
43
|
Reichenbach A, Stark R, Mequinion M, Denis RRG, Goularte JF, Clarke RE, Lockie SH, Lemus MB, Kowalski GM, Bruce CR, Huang C, Schittenhelm RB, Mynatt RL, Oldfield BJ, Watt MJ, Luquet S, Andrews ZB. AgRP Neurons Require Carnitine Acetyltransferase to Regulate Metabolic Flexibility and Peripheral Nutrient Partitioning. Cell Rep 2019; 22:1745-1759. [PMID: 29444428 DOI: 10.1016/j.celrep.2018.01.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/13/2017] [Accepted: 01/22/2018] [Indexed: 01/29/2023] Open
Abstract
AgRP neurons control peripheral substrate utilization and nutrient partitioning during conditions of energy deficit and nutrient replenishment, although the molecular mechanism is unknown. We examined whether carnitine acetyltransferase (Crat) in AgRP neurons affects peripheral nutrient partitioning. Crat deletion in AgRP neurons reduced food intake and feeding behavior and increased glycerol supply to the liver during fasting, as a gluconeogenic substrate, which was mediated by changes to sympathetic output and peripheral fatty acid metabolism in the liver. Crat deletion in AgRP neurons increased peripheral fatty acid substrate utilization and attenuated the switch to glucose utilization after refeeding, indicating altered nutrient partitioning. Proteomic analysis in AgRP neurons shows that Crat regulates protein acetylation and metabolic processing. Collectively, our studies highlight that AgRP neurons require Crat to provide the metabolic flexibility to optimize nutrient partitioning and regulate peripheral substrate utilization, particularly during fasting and refeeding.
Collapse
Affiliation(s)
- Alex Reichenbach
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Romana Stark
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Raphael R G Denis
- Université of Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionelle et Adaptative, CNRS UMR 8251, 75205 Paris, France
| | - Jeferson F Goularte
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Rachel E Clarke
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Moyra B Lemus
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, VIC, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, VIC, Australia
| | - Cheng Huang
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Monash Biomedical Proteomics Facility and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Monash Biomedical Proteomics Facility and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Randall L Mynatt
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA; Transgenic Core Facility, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Brian J Oldfield
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia
| | - Serge Luquet
- Université of Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionelle et Adaptative, CNRS UMR 8251, 75205 Paris, France
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia; Department of Physiology, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|
44
|
Nyamugenda E, Trentzsch M, Russell S, Miles T, Boysen G, Phelan KD, Baldini G. Injury to hypothalamic Sim1 neurons is a common feature of obesity by exposure to high-fat diet in male and female mice. J Neurochem 2019; 149:73-97. [PMID: 30615192 DOI: 10.1111/jnc.14662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/16/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
The hypothalamus is essential for regulation of energy homeostasis and metabolism. Feeding hypercaloric, high-fat (HF) diet induces hypothalamic arcuate nucleus injury and alters metabolism more severely in male than in female mice. The site(s) and extent of hypothalamic injury in male and female mice are not completely understood. In the paraventricular nucleus (PVN) of the hypothalamus, single-minded family basic helix-loop helix transcription factor 1 (Sim1) neurons are essential to control energy homeostasis. We tested the hypothesis that exposure to HF diet induces injury to Sim1 neurons in the PVN of male and female mice. Mice expressing membrane-bound enhanced green fluorescent protein (mEGFP) in Sim1 neurons (Sim1-Cre:Rosa-mEGFP mice) were generated to visualize the effects of exposure to HF diet on these neurons. Male and female Sim1-Cre:Rosa-mEGFP mice exposed to HF diet had increased weight, hyperleptinemia, and developed hepatosteatosis. In male and female mice exposed to HF diet, expression of mEGFP was reduced by > 40% in Sim1 neurons of the PVN, an effect paralleled by cell apoptosis and neuronal loss, but not by microgliosis. In the arcuate nucleus of the Sim1-Cre:Rosa-mEGFP male mice, there was decreased alpha-melanocyte-stimulating hormone in proopiomelanocortin neurons projecting to the PVN, with increased cell apoptosis, neuronal loss, and microgliosis. These defects were undetectable in the arcuate nucleus of female mice exposed to the HF diet. Thus, injury to Sim1 neurons of the PVN is a shared feature of exposure to HF diet in mice of both sexes, while injury to proopiomelanocortin neurons in arcuate nucleus is specific to male mice. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Eugene Nyamugenda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marcus Trentzsch
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Susan Russell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tiffany Miles
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
45
|
Pimentel LL, Fontes AL, Salsinha AS, Cardoso BB, Gomes AM, Rodríguez-Alcalá LM. Microbiological In Vivo Production of CLNA as a Tool in the Regulation of Host Microbiota in Obesity Control. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:369-394. [DOI: 10.1016/b978-0-444-64183-0.00010-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way forward. Pharmacol Ther 2018; 194:44-58. [PMID: 30189290 DOI: 10.1016/j.pharmthera.2018.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of Translocator Protein 18 kDa (TSPO) as a clinical neuroimaging biomarker of brain injury and neuroinflammation has increased exponentially in the last decade. There has been a furious pace in the development of new radiotracers for TSPO positron emission tomography (PET) imaging and its use has now been extensively described in many neurological and mental disorders. This fast pace of research and the ever-increasing number of new laboratories entering the field often times lack an appreciation of the historical perspective of the field and introduce dogmatic, but unproven facts, related to the underlying neurobiology of the TSPO response to brain injury and neuroinflammation. Paradoxically, while in neurodegenerative disorders and in all types of CNS pathologies brain TSPO levels increase, a new observation in psychiatric disorders such as schizophrenia is decreased brain levels of TSPO measured by PET. The neurobiological bases for this new finding is currently not known, but rigorous experimental design using multiple experimental approaches and careful interpretation of results is critically important to provide the methodological and/or biological underpinnings to this new observation. This review provides a perspective of the early history of validating TSPO as a biomarker of brain injury and neuroinflammation and a critical analysis of controversial topics in the literature related to the cellular sources of the TSPO response. The latter is important in order to provide the correct interpretation of PET studies in neurodegenerative and psychiatric disorders. Furthermore, this review proposes some yet to be explored explanations to new findings in psychiatric disorders and new approaches to quantitatively assess the glial sources of the TSPO response in order to move the field forward.
Collapse
|
47
|
Molina J, Joaquim A, Bonamin LV, Martins MDFM, Kirsten TB, Cardoso CV, Bernardi MM, Bondan EF. Reduced astrocytic expression of GFAP in the offspring of female rats that received hypercaloric diet. Nutr Neurosci 2018; 23:411-421. [PMID: 30126346 DOI: 10.1080/1028415x.2018.1512783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Introduction: Obesity promotes hypothalamic inflammation and local morphological changes in astrocytes, including the increased expression of the astrocytic biomarker glial fibrillary acidic protein (GFAP), which is seen as a sign of neuroinflammation.Objective: This study aimed to observe the astrocytic expression of GFAP in different brain areas from female rats that received a hypercaloric (HD) or a normocaloric (ND) diet during puberty (F0 generation) as well as in their male pups (F1 generation).Methods: Female rats received highly palatable HD (Ensure®) or ND from postnatal day (PND) 23-65. On PND90-95, some were euthanized for the immunohistochemical study and some were mated to obtain the F1 generation. Male pups were immunochallenged on PND50 with lipopolysaccharide (LPS, 100 μg/kg) or 0.9% saline solution (1 mL/kg) intraperitoneal injection. Body weight (BW) and retroperitoneal fat weight (RFW) were recorded on PND95 for F0 generation and on PND50 for F1 generation. GFAP expression for both generations was assessed by morphometry in the parietal/frontal cortex, corpus callosum, nucleus accumbens, arcuate/periventricular nuclei of hypothalamus, pons, molecular/granular layers of cerebellum.Results: Female rats fed with HD presented a significant increase in the GFAP expression in all evaluated areas as well as in the RFW. Male rats born from mothers that received HD showed decreased GFAP expression, BW and RFW when treated with LPS in relation to those from mothers fed with ND.Discussion: HD induced astrogliosis in several brain areas in females from F0 generation and an adaptive phenotypic change of decreased GFAP expression in males from F1 generation after LPS challenge.
Collapse
Affiliation(s)
- Jéssica Molina
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), Dr. Bacelar, 1212, São Paulo 04026-002, Brazil
| | - Andréia Joaquim
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), Dr. Bacelar, 1212, São Paulo 04026-002, Brazil
| | - Leoni Vilano Bonamin
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), Dr. Bacelar, 1212, São Paulo 04026-002, Brazil
| | - Maria de Fátima Monteiro Martins
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), Dr. Bacelar, 1212, São Paulo 04026-002, Brazil.,Department of Veterinary Medicine, University Cruzeiro do Sul, Av. Dr. Ussiel Cirilo, 225, São Paulo 08060-070, Brazil
| | - Thiago Berti Kirsten
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), Dr. Bacelar, 1212, São Paulo 04026-002, Brazil
| | - Carolina Vieira Cardoso
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), Dr. Bacelar, 1212, São Paulo 04026-002, Brazil
| | - Maria Martha Bernardi
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), Dr. Bacelar, 1212, São Paulo 04026-002, Brazil
| | - Eduardo Fernandes Bondan
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), Dr. Bacelar, 1212, São Paulo 04026-002, Brazil.,Department of Veterinary Medicine, University Cruzeiro do Sul, Av. Dr. Ussiel Cirilo, 225, São Paulo 08060-070, Brazil
| |
Collapse
|
48
|
Tse EK, Salehi A, Clemenzi MN, Belsham DD. Role of the saturated fatty acid palmitate in the interconnected hypothalamic control of energy homeostasis and biological rhythms. Am J Physiol Endocrinol Metab 2018; 315:E133-E140. [PMID: 29631363 DOI: 10.1152/ajpendo.00433.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The brain, specifically the hypothalamus, controls whole body energy and glucose homeostasis through neurons that synthesize specific neuropeptides, whereas hypothalamic dysfunction is linked directly to insulin resistance, obesity, and type 2 diabetes mellitus. Nutrient excess, through overconsumption of a Western or high-fat diet, exposes the hypothalamus to high levels of free fatty acids, which induces neuroinflammation, endoplasmic reticulum stress, and dysregulation of neuropeptide synthesis. Furthermore, exposure to a high-fat diet also disrupts normal circadian rhythms, and conversely, clock gene knockout models have symptoms of metabolic disorders. While whole brain/animal studies have provided phenotypic end points and important clues to the genes involved, there are still major gaps in our understanding of the intracellular pathways and neuron-specific components that ultimately control circadian rhythms and energy homeostasis. Because of its complexity and heterogeneous nature, containing a diverse mix cell types, it is difficult to dissect the critical hypothalamic components involved in these processes. Of significance, we have the capacity to study these individual components using an extensive collection of both embryonic- and adult-derived, immortalized hypothalamic neuronal cell lines from rodents. These defined neuronal cell lines have been used to examine the impact of nutrient excess, such as palmitate, on circadian rhythms and neuroendocrine signaling pathways, as well as changes in vital neuropeptides, leading to the development of neuronal inflammation; the role of proinflammatory molecules in this process; and ultimately, restoration of normal signaling, clock gene expression, and neuropeptide synthesis in disrupted states by beneficial anti-inflammatory compounds in defined hypothalamic neurons.
Collapse
Affiliation(s)
- Erika K Tse
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Ashkan Salehi
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Matthew N Clemenzi
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
- Department Obstetrics and Gynaecology and Medicine, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
49
|
Chunchai T, Chattipakorn N, Chattipakorn SC. The possible factors affecting microglial activation in cases of obesity with cognitive dysfunction. Metab Brain Dis 2018; 33:615-635. [PMID: 29164373 DOI: 10.1007/s11011-017-0151-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
Obesity has reached epidemic proportions in many countries around the world. Several studies have reported that obesity can lead to the development of cognitive decline. There is increasing evidence to demonstrate that microglia play a crucial role in cognitive decline in cases of obesity, Alzheimer's disease and also in the aging process. Although there have been several studies into microglia over the past decades, the mechanistic link between microglia and cognitive decline in obese models is still not fully understood. In this review, the current available evidence from both in vitro and in vivo investigations regarding the association between the alteration in microglial activity in different obese models with respect to cognition are included. The metabolite profiles from obesity, adiposity, dietary and hormone affected microglial activation and its function in the brain are comprehensively summarized. In addition, the possible roles of microglial activation in relation to cognitive dysfunction are also presented and discussed. To ensure a balanced perspective controversial reports regarding these issues are included and discussed.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
50
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sleep, a mysterious behavior, has recently been recognized as a crucial factor for health and longevity. The daily sleep/wake cycle provides the basis of biorhythms controlling whole-body homeostasis and homeodynamics; therefore, disruption of sleep causes several physical and psychological disorders, including cardiovascular disease, obesity, diabetes, cancer, anxiety, depression, and cognitive dysfunction. However, the mechanism linking sleep disturbances and sleep-related disorders remains unknown. Orexin (also known as hypocretin) is a neuropeptide produced in the hypothalamus. Central levels of orexin oscillate with the daily rhythm and peak at the awake phase. Orexin plays a major role in stabilizing the wakefulness state. Orexin deficiency causes sleep/wake-state instability, resulting in narcolepsy. Hyper-activation of the orexin system also causes sleep disturbances, such as insomnia, and hence, suvorexant, an orexin receptor antagonist, has been clinically used to treat insomnia. Importantly, central actions of orexin regulate motivated behaviors, stress response, and energy/glucose metabolism by coordinating the central-autonomic nervous systems and endocrine systems. These multiple actions of orexin maintain survival. However, it remains unknown whether chronopharmacological interventions targeting the orexin system ameliorate sleep-related disorders as well as sleep in humans. To understand the significance of adequate orexin action for prevention of these disorders, this review summarizes the physiological functions of daily orexin action and pathological implications of its mistimed or reduced action in sleep disturbances and sleep-related disorders (lifestyle-related physical and neurological disorders in particular). Timed administration of drugs targeting the orexin system may prevent lifestyle-related diseases by improving the quality of life in patients with sleep disturbances.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|