1
|
Belinda A, Humardani FM, Dwi Putra SE, Widyadhana B. The potential of circulating free DNA of methylated IGFBP as a biomarker for type 2 diabetes Mellitus: A Comprehensive review. Clin Chim Acta 2025; 567:120104. [PMID: 39706247 DOI: 10.1016/j.cca.2024.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
T2DM detection methods are commonly used in teens and adults but are generally unsuitable to unborn fetuses in the context of non-invasive prenatal testing (NIPT). Biophysical and biochemical tests for fetuses are often invasive, carry risks, and have low sensitivity and specificity, with no direct method available to diagnose T2DM in utero. In contrast, cell-free DNA (cfDNA) is known have high sensitivity (93-98 %) and specificity (94-100 %) for cancer detection and fetal genetic disorders (trisomy 21, 8, and 13) making it applicable for fetal epigenetic and genetic analysis, including T2DM early detection. However, no study has explored its use for this purpose. Our review focuses on the potential of IGFBP methylation levels in cfDNA as biomarkers for NIPT of T2DM. Placental global hypomethylation in GDM may predict T2DM during the prenatal period, and a similar pattern potentially be detected in cfDNA. Targeted genes reliable for NIPT, such as IGFBPs are needed because their significant role in T2DM and GDM. Among these, IGFBP-1 and IGFBP-2 have shown potential as predictive genes, exhibiting hypermethylation in placental tissue from GDM cases. This hypermethylation reduces their expression and the formation of the IGF-1-IGFBP complex, leading to increased levels of free IGF-1, which is associated with T2DM in the fetus. Hypermethylation regions have longer fragment sizes in cfDNA, thus in T2DM cases, hypermethylation of IGFBP-1 and IGFBP-2 from fetus results in longer cfDNA fragments. Therefore, analyzing the methylation levels and fragment sizes of IGFBP-1 or IGFBP-2 cfDNA could be a promising biomarker for identifying fetal T2DM risk non-invasively.
Collapse
Affiliation(s)
- Audrey Belinda
- Faculty of Biotechnology, University of Surabaya, Surabaya 60292, Indonesia.
| | | | | | - Bhanu Widyadhana
- Faculty of Biotechnology, University of Surabaya, Surabaya 60292, Indonesia.
| |
Collapse
|
2
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Nair S, Ormazabal V, Carrion F, Handberg A, McIntyre H, Salomon C. Extracellular vesicle-mediated targeting strategies for long-term health benefits in gestational diabetes. Clin Sci (Lond) 2023; 137:1311-1332. [PMID: 37650554 PMCID: PMC10472199 DOI: 10.1042/cs20220150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Extracellular vesicles (EVs) are critical mediators of cell communication, playing important roles in regulating molecular cross-talk between different metabolic tissues and influencing insulin sensitivity in both healthy and gestational diabetes mellitus (GDM) pregnancies. The ability of EVs to transfer molecular cargo between cells imbues them with potential as therapeutic agents. During pregnancy, the placenta assumes a vital role in metabolic regulation, with multiple mechanisms of placenta-mediated EV cross-talk serving as central components in GDM pathophysiology. This review focuses on the role of the placenta in the pathophysiology of GDM and explores the possibilities and prospects of targeting the placenta to address insulin resistance and placental dysfunction in GDM. Additionally, we propose the use of EVs as a novel method for targeted therapeutics in treating the dysfunctional placenta. The primary aim of this review is to comprehend the current status of EV targeting approaches and assess the potential application of these strategies in placental therapeutics, thereby delivering molecular cargo and improving maternal and fetal outcomes in GDM. We propose that EVs have the potential to revolutionize GDM management, offering hope for enhanced maternal-fetal health outcomes and more effective treatments.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicle in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Australia
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - H David McIntyre
- Mater Research, Faculty of Medicine, University of Queensland, Mater Health, South Brisbane, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicle in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| |
Collapse
|
5
|
Fan M, Pan T, Jin W, Sun J, Zhang S, Du Y, Chen X, Chen Q, Xu W, Choo SW, Zhu G, Chen Y, Zhou J. FGF4, A New Potential Regulator in Gestational Diabetes Mellitus. Front Pharmacol 2022; 13:827617. [PMID: 35317005 PMCID: PMC8934430 DOI: 10.3389/fphar.2022.827617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Gestational diabetes mellitus (GDM) is associated with adverse maternal and neonatal outcomes, however the underlying mechanisms remain elusive. The aim of this study was to find efficient regulator of FGFs in response to the pathogenesis of GDM and explore the role of the FGFs in GDM.Methods: We performed a systematic screening of placental FGFs in GDM patients and further in two different GDM mouse models to investigate their expression changes. Significant changed FGF4 was selected, engineered, purified, and used to treat GDM mice in order to examine whether it can regulate the adverse metabolic phenotypes of the diabetic mice and protect their fetus.Results: We found FGF4 expression was elevated in GDM patients and its level was positively correlated to blood glucose, indicating a physiological relevance of FGF4 with respect to the development of GDM. Recombinant FGF4 (rFGF4) treatment could effectively normalize the adverse metabolic phenotypes in high fat diet induced GDM mice but not in STZ induced GDM mice. However, rFGF4 was highly effective in reduce of neural tube defects (NTDs) of embryos in both the two GDM models. Mechanistically, rFGF4 treatment inhibits pro-inflammatory signaling cascades and neuroepithelial cell apoptosis of both GDM models, which was independent of glucose regulation.Conclusions/interpretation: Our study provides novel insight into the important roles of placental FGF4 and suggests that it may serve as a promising diagnostic factor and therapeutic target for GDM.
Collapse
Affiliation(s)
- Miaojuan Fan
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Baoji Maternal and Child Health Hospital, Baoji, China
| | - Tongtong Pan
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Jin
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shujun Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yali Du
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinwei Chen
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiong Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Guanghui Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Zhu, ; Yongping Chen, ; Jie Zhou,
| | - Yongping Chen
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Zhu, ; Yongping Chen, ; Jie Zhou,
| | - Jie Zhou
- Department of Infectious Diseases & Zhejiang Provincial Key laboratory of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Zhu, ; Yongping Chen, ; Jie Zhou,
| |
Collapse
|
6
|
Clarke GS, Gatford KL, Young RL, Grattan DR, Ladyman SR, Page AJ. Maternal adaptations to food intake across pregnancy: Central and peripheral mechanisms. Obesity (Silver Spring) 2021; 29:1813-1824. [PMID: 34623766 DOI: 10.1002/oby.23224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/17/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
A sufficient and balanced maternal diet is critical to meet the nutritional demands of the developing fetus and to facilitate deposition of fat reserves for lactation. Multiple adaptations occur to meet these energy requirements, including reductions in energy expenditure and increases in maternal food intake. The central nervous system plays a vital role in the regulation of food intake and energy homeostasis and responds to multiple metabolic and nutrient cues, including those arising from the gastrointestinal tract. This review describes the nutrient requirements of pregnancy and the impact of over- and undernutrition on the risk of pregnancy complications and adult disease in progeny. The central and peripheral regulation of food intake is then discussed, with particular emphasis on the adaptations that occur during pregnancy and the mechanisms that drive these changes, including the possible role of the pregnancy-associated hormones progesterone, estrogen, prolactin, and growth hormone. We identify the need for deeper mechanistic understanding of maternal adaptations, in particular, changes in gut-brain axis satiety signaling. Improved understanding of food intake regulation during pregnancy will provide a basis to inform strategies that prevent maternal under- or overnutrition, improve fetal health, and reduce the long-term health and economic burden for mothers and offspring.
Collapse
Affiliation(s)
- Georgia S Clarke
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Richard L Young
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Intestinal Nutrient Sensing Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Wang Y, Langley RJ, Tamshen K, Jamieson SM, Lu M, Maynard HD, Perry JK. Long-Acting Human Growth Hormone Receptor Antagonists Produced in E. coli and Conjugated with Polyethylene Glycol. Bioconjug Chem 2020; 31:1651-1660. [PMID: 32423203 DOI: 10.1021/acs.bioconjchem.0c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Growth hormone (GH) is a peptide hormone that mediates actions through binding to a cell surface GH receptor (GHR). The GHR antagonist, B2036, combines an amino acid substitution at 120 that confers GHR antagonist activity, with eight additional amino acid substitutions. Conjugation to polyethylene glycol (PEG) increases the serum half-life of these proteins due to reduced renal clearance. Recombinant forms of GH and its antagonists are mainly produced in prokaryotic expression systems, such as E. coli. However, efficient production in E. coli is problematic, as these proteins form aggregates as inclusion bodies resulting in poor solubility. In the present study, we demonstrate that N-terminal fusion to a thioredoxin (Trx) fusion partner improves soluble expression of codon-optimized B2036 in E. coli when expressed at 18 °C. Expression, purification and PEGylation protocols were established for three GHR antagonists: B2036, B20, and G120Rv. Following purification, these antagonists inhibited the proliferation of Ba/F3-GHR cells in a concentration-dependent manner. PEGylation with amine-reactive 5 kDa methoxy PEG succinimidyl propionate yielded a heterogeneous mixture of conjugates containing four to seven PEG moieties. PEGylation significantly reduced in vitro bioactivity of the conjugates. However, substitution of lysine to arginine at amino acid residue 120 in B2036 improved the in vitro activity of the PEGylated protein when compared to unmodified PEGylated B2036. Pharmacokinetic analysis demonstrated that the circulating half-life of PEGylated B20 was 15.2 h in mice. Taken together, we describe an effective strategy to produce biologically active PEGylated human GHR antagonists.
Collapse
Affiliation(s)
- Yue Wang
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | - Ries J Langley
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
| | - Kyle Tamshen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Stephen M Jamieson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand.,Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Man Lu
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States.,California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza Building, Los Angeles, California 90095, United States
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
| |
Collapse
|
8
|
Sferruzzi-Perri AN, Lopez-Tello J, Napso T, Yong HEJ. Exploring the causes and consequences of maternal metabolic maladaptations during pregnancy: Lessons from animal models. Placenta 2020; 98:43-51. [PMID: 33039031 DOI: 10.1016/j.placenta.2020.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Pregnancy is a remarkable physiological state, during which the metabolic system of the mother adapts to ensure that nutrients are made available for transfer to the fetus for growth and development. Adaptations of maternal metabolism during pregnancy are influenced by the metabolic and nutritional status of the mother and the production of endocrine factors by the placenta that exert metabolic effects. Insufficient or inappropriate adaptations in maternal metabolism during pregnancy may lead to pregnancy complications with important short- and long-term effects for both the health of the child and mother. This is very evident in gestational diabetes, which is marked by greater glucose intolerance and insulin resistance above that expected of a normal pregnancy. Gestational diabetes is associated with increased fetal weight and/or increased adiposity, higher instrumented delivery rates and greater risks for both mother and child of developing type 2 diabetes in the long-term. However, despite the negative health impacts of such metabolic imbalances during pregnancy, the precise mechanisms responsible for orchestrating these changes remain largely unknown. The present review describes the dynamic pregnancy-specific changes that occur in the metabolic system of the mother during pregnancy. It also discusses findings using surgical, pharmacological, genetic and dietary methods in experimental animals that highlight the role of pathways in maternal tissues that lead to metabolic dysfunction, with a particular focus on gestational diabetes. Finally, it summarises the work largely employing gene targeting and hormone administration in rodents that have illuminated the involvement of placental endocrine function in driving maternal metabolic adaptations. While current animal models may not fully replicate what is observed in humans, these have been instrumental in showing that there is a dynamic interplay between changes in maternal metabolic physiology and the placental production of endocrine factors that govern the availability of nutrients to the growing fetus. However, more work is required to specifically identify the placenta-driven changes in maternal metabolic physiology that ensure the appropriate level of insulin production and action during pregnancy. In doing so, these studies may pave the way to understanding the development of pregnancy complications like gestational diabetes, as well as further our understanding of type-2 diabetes and the control of metabolic physiology more broadly.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Hannah E J Yong
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
9
|
Teixeira PDS, Couto GC, Furigo IC, List EO, Kopchick JJ, Donato J. Central growth hormone action regulates metabolism during pregnancy. Am J Physiol Endocrinol Metab 2019; 317:E925-E940. [PMID: 31479305 PMCID: PMC7132326 DOI: 10.1152/ajpendo.00229.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The maternal organism undergoes numerous metabolic adaptations to become prepared for the demands associated with the coming offspring. These metabolic adaptations involve changes induced by several hormones that act at multiple levels, ultimately influencing energy and glucose homeostasis during pregnancy and lactation. Previous studies have shown that central growth hormone (GH) action modulates glucose and energy homeostasis. However, whether central GH action regulates metabolism during pregnancy and lactation is still unknown. In the present study, we generated mice carrying ablation of GH receptor (GHR) in agouti-related protein (AgRP)-expressing neurons, in leptin receptor (LepR)-expressing cells or in the entire brain to investigate the role played by central GH action during pregnancy and lactation. AgRP-specific GHR ablation led to minor metabolic changes during pregnancy and lactation. However, while brain-specific GHR ablation reduced food intake and body adiposity during gestation, LepR GHR knockout (KO) mice exhibited increased leptin responsiveness in the ventromedial nucleus of the hypothalamus during late pregnancy, although their offspring showed reduced growth rate. Additionally, both Brain GHR KO and LepR GHR KO mice had lower glucose tolerance and glucose-stimulated insulin secretion during pregnancy, despite presenting increased insulin sensitivity, compared with control pregnant animals. Our findings revealed that during pregnancy central GH action regulates food intake, fat retention, as well as the sensitivity to insulin and leptin in a cell-specific manner. Together, the results suggest that GH acts in concert with other "gestational hormones" to prepare the maternal organism for the metabolic demands of the offspring.
Collapse
Affiliation(s)
- Pryscila D S Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gisele C Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Liao S, Vickers MH, Stanley JL, Baker PN, Perry JK. Human Placental Growth Hormone Variant in Pathological Pregnancies. Endocrinology 2018; 159:2186-2198. [PMID: 29659791 DOI: 10.1210/en.2018-00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/02/2018] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH), an endocrine hormone, primarily secreted from the anterior pituitary, stimulates growth, cell reproduction, and regeneration and is a major regulator of postnatal growth. Humans have two GH genes that encode two versions of GH proteins: a pituitary version (GH-N/GH1) and a placental GH-variant (GH-V/GH2), which are expressed in the syncytiotrophoblast and extravillous trophoblast cells of the placenta. During pregnancy, GH-V replaces GH-N in the maternal circulation at mid-late gestation as the major circulating form of GH. This remarkable change in spatial and temporal GH secretion patterns is proposed to play a role in mediating maternal adaptations to pregnancy. GH-V is associated with fetal growth, and its circulating concentrations have been investigated across a range of pregnancy complications. However, progress in this area has been hindered by a lack of readily accessible and reliable assays for measurement of GH-V. This review will discuss the potential roles of GH-V in normal and pathological pregnancies and will touch on the assays used to quantify this hormone.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Joanna L Stanley
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Philip N Baker
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| |
Collapse
|
12
|
Niaz K, Maqbool F, Khan F, Hassan FI, Momtaz S, Abdollahi M. Comparative occurrence of diabetes in canine, feline, and few wild animals and their association with pancreatic diseases and ketoacidosis with therapeutic approach. Vet World 2018; 11:410-422. [PMID: 29805204 PMCID: PMC5960778 DOI: 10.14202/vetworld.2018.410-422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/26/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder in which blood glucose level raises that can result in severe complications. However, the incidence increased mostly by obesity, pregnancy, persistent corpus luteum, and diestrus phase in humans and animals. This review has focused on addressing the possible understanding and pathogenesis of spontaneous DM in canine, feline, and few wild animals. Furthermore, pancreatic associated disorders, diabetic ketoacidosis, hormonal and drug interaction with diabetes, and herbal remedies associated with DM are elucidated. Bibliographic search for the present review was done using PubMed, Scopus, and Google Scholar for articles on concurrent DM in small and wild animals. Persistent corpus luteal and pseudopregnancy in female dogs generate gestational DM (GDM). GDM can also be caused by extensive use of drugs/hormones such as glucocorticosteroids. Although many similarities are present between diabetic cats and diabetic humans which present islet amyloidosis, there was a progressive loss of β- and α-cells and the normal number of δ-cells. The most prominent similarity is the occurrence of islet amyloidosis in all cases of diabetic cat and over 90% of human non-insulin dependent DM Type-2. Acute pancreatic necrosis (APN) occurs due to predisposing factors such as insulin antagonism, insulin resistance, alteration in glucose tolerance, obesity, hyperadrenocorticism, and persistent usage of glucocorticoids, as these play a vital role in the progression of APN. To manage such conditions, it is important to deal with the etiological agent, risk factors, diagnosis of diabetes, and hormonal and drug interaction along with its termination with suitable therapy (herbal) protocols. It should be noted that the protocols used for the diagnosis and treatment of human DM are not appropriate for animals. Further investigations regarding diabetic conditions of pets and wild animals are required, which will benefit the health status of all animals health worldwide.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Faheem Maqbool
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatima Ismail Hassan
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, International Campus, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Liao S, Vickers MH, Evans A, Stanley JL, Baker PN, Perry JK. Comparison of pulsatile vs. continuous administration of human placental growth hormone in female C57BL/6J mice. Endocrine 2016; 54:169-181. [PMID: 27515803 DOI: 10.1007/s12020-016-1060-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/12/2016] [Indexed: 01/14/2023]
Abstract
Exogenous growth hormone has different actions depending on the method of administration. However, the effects of different modes of administration of the placental variant of growth hormone on growth, body composition and glucose metabolism have not been investigated. In this study, we examined the effect of pulsatile vs. continuous administration of recombinant variant of growth hormone in a normal mouse model. Female C57BL/6J mice were randomized to receive vehicle or variant of growth hormone (2 or 5 mg/kg per day) by daily subcutaneous injection (pulsatile) or osmotic pump for 6 days. Pulsatile treatment with 2 and 5 mg/kg per day significantly increased body weight. There was also an increase in liver, kidney and spleen weight via pulsatile treatment, whereas continuous treatment did not affect body weight or organ size. Pulsatile treatment with 5 mg/kg per day significantly increased fasting plasma insulin concentration, whereas with continuous treatment, fasting insulin concentration was not significantly different from the vehicle-treated control. However, a dose-dependent increase in fasting insulin concentration and decrease in insulin sensitivity, as assessed by HOMA, was observed with both modes of treatment. At 5 mg/kg per day, hepatic growth hormone receptor expression was increased compared to vehicle-treated animals, by both modes of administration. Pulsatile variant of growth hormone did not alter the plasma insulin-like growth factor-1 concentration, whereas a slight decrease was observed with continuous variant of growth hormone treatment. Neither pulsatile nor continuous treatment affected hepatic insulin-like growth factor-1 mRNA expression. Our findings suggest that pulsatile variant of growth hormone treatment was more effective in stimulating growth but caused marked hyperinsulinemia in mice.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Angharad Evans
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Joanna L Stanley
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Philip N Baker
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand.
- Gravida: National Centre for Growth and Development, Auckland, New Zealand.
| |
Collapse
|