1
|
Li S, Ma H, Ding XQ. Resveratrol Protects Photoreceptors in Mouse Models of Retinal Degeneration. Antioxidants (Basel) 2025; 14:154. [PMID: 40002341 PMCID: PMC11851417 DOI: 10.3390/antiox14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Photoreceptor/retinal degeneration is the major cause of blindness. Induced and inherited mouse models of retinal degeneration are valuable tools for investigating disease mechanisms and developing therapeutic interventions. This study investigated the potential of the antioxidant resveratrol to relieve photoreceptor degeneration using mouse models. Clinical studies have shown a potential association between thyroid hormone (TH) signaling and age-related retinal degeneration. Excessive TH signaling induces oxidative stress/damage and photoreceptor death in mice. C57BL/6 (rod-dominant) and Nrl-/- (cone-dominant) mice at postnatal day 30 (P30) received triiodothyronine (T3) via drinking water (20 µg/mL) with or without concomitant treatment with resveratrol via drinking water (120 µg/mL) for 30 days, followed by evaluation of photoreceptor degeneration, oxidative damage, and retinal stress responses. In experiments using Leber congenital amaurosis model mice, mother Rpe65-/- and Rpe65-/-/Nrl-/- mice received resveratrol via drinking water (120 µg/mL) for 20 days and 10-13 days, respectively, beginning on the day when the pups were at P5, and pups were then evaluated for cone degeneration. Treatment with resveratrol significantly diminished the photoreceptor degeneration induced by T3 and preserved photoreceptors in Rpe65-deficient mice, manifested as preserved retinal morphology/outer nuclear layer thickness, increased cone density, reduced photoreceptor oxidative stress/damage and apoptosis, reduced upregulation of genes involved in cell death/inflammatory responses, and reduced macroglial cell activation. These findings demonstrate the role of oxidative stress in photoreceptor degeneration, associated with TH signaling and Rpe65 deficiency, and support the therapeutic potential of resveratrol/antioxidants in the management of retinal degeneration.
Collapse
Affiliation(s)
| | | | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.)
| |
Collapse
|
2
|
Demircan K, Chillon TS, Jensen RC, Jensen TK, Sun Q, Bonnema SJ, Glintborg D, Bilenberg N, Andersen MS, Schomburg L. Maternal selenium deficiency during pregnancy in association with autism and ADHD traits in children: The Odense Child Cohort. Free Radic Biol Med 2024; 220:324-332. [PMID: 38704054 DOI: 10.1016/j.freeradbiomed.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Selenoproteins regulate pathways controlling neurodevelopment, e.g., redox signaling and thyroid hormone metabolism. However, studies investigating maternal selenium in relation to child neurodevelopmental disorders are scarce. METHODS 719 mother-child pairs from the prospective population-based Odense Child Cohort study in Denmark were included. Three selenium biomarkers, i.e. concentrations of serum selenium, selenoprotein P (SELENOP), and activity of glutathione peroxidase 3 (GPX3), along with serum copper, zinc and iron were measured in early third trimester (at 28.9+/-0.8 weeks of pregnancy). ADHD and ASD traits in children were assessed systematically using the established Child Behaviour Checklist at 5 years of age, based on a Danish reference cohort with cut-off at 90th percentile. Multivariable regression models adjusted for biologically relevant confounders were applied. RESULTS 155 of 719 (21.6 %) children had ASD traits and 59 of 719 (8.2 %) children had traits of ADHD at 5 years of age. In crude and adjusted models, all three selenium biomarkers associated inversely with ADHD traits. For ADHD, fully adjusted OR for 10 μg/L increment in selenium was 0.76 (95 % CI 0.60, 0.94), for one mg/L increment in SELENOP was 0.73 (0.56, 0.95), and for 10 U/L increment in GPx3 was 0.93 (0.87,1.00). Maternal total selenium was inversely associated with child ASD traits, OR per 10 μg/L increment was 0.85 (0.74, 0,98). SELENOP and GPx3 were not associated with ASD traits. The associations were specific to selenium, as other trace elements such as copper, zinc, or iron were not associated with the outcomes. CONCLUSIONS The results provide coherent evidence for selenium deficiency as a risk factor for ADHD and ASD traits in an environment with borderline supply, the causality of which should be elucidated in a randomized controlled trial.
Collapse
Affiliation(s)
- Kamil Demircan
- Institute for Experimental Endocrinology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Richard Christian Jensen
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000, Odense C, Denmark; University of Southern Denmark, Odense, Denmark; Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark; Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000, Odense C, Denmark; OPEN Patient Data Explorative Network (OPEN), SDU, Denmark
| | - Qian Sun
- Institute for Experimental Endocrinology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Steen Joop Bonnema
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000, Odense C, Denmark; University of Southern Denmark, Odense, Denmark
| | - Dorte Glintborg
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000, Odense C, Denmark; University of Southern Denmark, Odense, Denmark
| | - Niels Bilenberg
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Child and Adolescent Mental Health, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Marianne Skovsager Andersen
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000, Odense C, Denmark; University of Southern Denmark, Odense, Denmark.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Liu Y, Ng L, Liu H, Heuer H, Forrest D. Cone photoreceptor differentiation regulated by thyroid hormone transporter MCT8 in the retinal pigment epithelium. Proc Natl Acad Sci U S A 2024; 121:e2402560121. [PMID: 39018199 PMCID: PMC11287251 DOI: 10.1073/pnas.2402560121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
The key role of a thyroid hormone receptor in determining the maturation and diversity of cone photoreceptors reflects a profound influence of endocrine signaling on the cells that mediate color vision. However, the route by which hormone reaches cones remains enigmatic as cones reside in the retinal photoreceptor layer, shielded by the blood-retina barrier. Using genetic approaches, we report that cone differentiation is regulated by a membrane transporter for thyroid hormone, MCT8 (SLC16A2), in the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier. Mct8-deficient mice display hypothyroid-like cone gene expression and compromised electroretinogram responses. Mammalian color vision is typically facilitated by cone types that detect medium-long (M) and short (S) wavelengths of light but Mct8-deficient mice have a partial shift of M to S cone identity, resembling the phenotype of thyroid hormone receptor deficiency. RPE-specific ablation of Mct8 results in similar shifts in cone identity and hypothyroid-like gene expression whereas reexpression of MCT8 in the RPE in Mct8-deficient mice partly restores M cone identity, consistent with paracrine-like control of thyroid hormone signaling by the RPE. Our findings suggest that in addition to transport of essential solutes and homeostatic support for photoreceptors, the RPE regulates the thyroid hormone signal that promotes cone-mediated vision.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen45147, Germany
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
4
|
Ma H, Stanford D, Freeman WM, Ding XQ. Transcriptomic Analysis Reveals That Excessive Thyroid Hormone Signaling Impairs Phototransduction and Mitochondrial Bioenergetics and Induces Cellular Stress in Mouse Cone Photoreceptors. Int J Mol Sci 2024; 25:7435. [PMID: 39000540 PMCID: PMC11242393 DOI: 10.3390/ijms25137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid hormone (TH) plays an essential role in cell proliferation, differentiation, and metabolism. Experimental and clinical studies have shown a potential association between TH signaling and retinal degeneration. The suppression of TH signaling protects cone photoreceptors in mouse models of retinal degeneration, whereas excessive TH signaling induces cone degeneration, manifested as reduced light response and a loss of cones. This work investigates the genes/transcriptomic alterations that might be involved in TH-induced cone degeneration in mice using single-cell RNA sequencing (scRNAseq) analysis. One-month-old C57BL/6 mice received triiodothyronine (T3, 20 µg/mL in drinking water) for 4 weeks as a model of hyperthyroidism/excessive TH signaling. At the end of the experiments, retinal cells were dissociated, and cell viability was analyzed before being subjected to scRNAseq. The resulting data were analyzed using the Seurat package and visualized using the Loupe browser. Among 155,866 single cells, we identified 14 cell clusters, representing various retinal cell types, with rod and cone clusters comprising 76% and 4.1% of the total cell population, respectively. Cone cluster transcriptomes demonstrated the most alterations after the T3 treatment, with 450 differentially expressed genes (DEGs), accounting for 38.5% of the total DEGs. Statistically significant changes in the expression of genes in the cone cluster revealed that phototransduction and oxidative phosphorylation were impaired after the T3 treatment, along with mitochondrial dysfunction. A pathway analysis also showed the activation of the sensory neuronal/photoreceptor stress pathways after the T3 treatment. Specifically, the eukaryotic initiation factor-2 signaling pathway and the cAMP response element-binding protein signaling pathway were upregulated. Thus, excessive TH signaling substantially affects cones at the transcriptomic level. The findings from this work provide an insight into how excessive TH signaling induces cone degeneration.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 553, Oklahoma, OK 73104, USA;
| | - David Stanford
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA; (D.S.); (W.M.F.)
| | - Willard M. Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA; (D.S.); (W.M.F.)
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 553, Oklahoma, OK 73104, USA;
| |
Collapse
|
5
|
Nicolini G, Casini G, Posarelli C, Amato R, Lulli M, Balzan S, Forini F. Thyroid Hormone Signaling in Retinal Development and Function: Implications for Diabetic Retinopathy and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7364. [PMID: 39000471 PMCID: PMC11242054 DOI: 10.3390/ijms25137364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid Hormones (THs) play a central role in the development, cell growth, differentiation, and metabolic homeostasis of neurosensory systems, including the retina. The coordinated activity of various components of TH signaling, such as TH receptors (THRs) and the TH processing enzymes deiodinases 2 and 3 (DIO2, DIO3), is required for proper retinal maturation and function of the adult photoreceptors, Müller glial cells, and pigmented epithelial cells. Alterations of TH homeostasis, as observed both in frank or subclinical thyroid disorders, have been associated with sight-threatening diseases leading to irreversible vision loss i.e., diabetic retinopathy (DR), and age-related macular degeneration (AMD). Although observational studies do not allow causal inference, emerging data from preclinical models suggest a possible correlation between TH signaling imbalance and the development of retina disease. In this review, we analyze the most important features of TH signaling relevant to retinal development and function and its possible implication in DR and AMD etiology. A better understanding of TH pathways in these pathological settings might help identify novel targets and therapeutic strategies for the prevention and management of retinal disease.
Collapse
Affiliation(s)
| | - Giovanni Casini
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Chiara Posarelli
- Ophthalmology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
| | - Rosario Amato
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | | | | |
Collapse
|
6
|
Ma H, Yang F, York LR, Li S, Ding XQ. Excessive Thyroid Hormone Signaling Induces Photoreceptor Degeneration in Mice. eNeuro 2023; 10:ENEURO.0058-23.2023. [PMID: 37596046 PMCID: PMC10481642 DOI: 10.1523/eneuro.0058-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Rod and cone photoreceptors degenerate in inherited and age-related retinal degenerative diseases, ultimately leading to loss of vision. Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have shown a link between TH signaling and retinal degeneration. This work investigates the effects of excessive TH signaling on photoreceptor function and survival in mice. C57BL/6, Thra1 -/-, Thrb2 -/-, Thrb -/-, and the cone dominant Nrl -/- mice received triiodothyronine (T3) treatment (5-20 μg/ml in drinking water) for 30 d, followed by evaluations of retinal function, photoreceptor survival/death, and retinal stress/damage. Treatment with T3 reduced light responses of rods and cones by 50-60%, compared with untreated controls. Outer nuclear layer thickness and cone density were reduced by ∼18% and 75%, respectively, after T3 treatment. Retinal sections prepared from T3-treated mice showed significantly increased numbers of TUNEL-positive, p-γH2AX-positive, and 8-OHdG-positive cells, and activation of Müller glial cells. Gene expression analysis revealed upregulation of the genes involved in oxidative stress, necroptosis, and inflammation after T3 treatment. Deletion of Thra1 prevented T3-induced degeneration of rods but not cones, whereas deletion of Thrb2 preserved both rods and cones. Treatment with an antioxidant partially preserved photoreceptors and reduced retinal stress responses. This study demonstrates that excessive TH signaling induces oxidative stress/damage and necroptosis, induces photoreceptor degeneration, and impairs retinal function. The findings provide insights into the role of TH signaling in retinal degeneration and support the view of targeting TH signaling for photoreceptor protection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Lilliana R York
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shujuan Li
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
7
|
Fernández-Suárez E, González-del Pozo M, García-Núñez A, Méndez-Vidal C, Martín-Sánchez M, Mejías-Carrasco JM, Ramos-Jiménez M, Morillo-Sánchez MJ, Rodríguez-de la Rúa E, Borrego S, Antiñolo G. Expanding the phenotype of THRB: a range of macular dystrophies as the major clinical manifestations in patients with a dominant splicing variant. Front Cell Dev Biol 2023; 11:1197744. [PMID: 37547476 PMCID: PMC10401274 DOI: 10.3389/fcell.2023.1197744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of disorders that often severely impair vision. Some patients manifest poor central vision as the first symptom due to cone-dysfunction, which is consistent with cone dystrophy (COD), Stargardt disease (STGD), or macular dystrophy (MD) among others. Here, we aimed to identify the genetic cause of autosomal dominant COD in one family. WGS was performed in 3 affected and 1 unaffected individual using the TruSeq Nano DNA library kit and the NovaSeq 6,000 platform (Illumina). Data analysis identified a novel spliceogenic variant (c.283 + 1G>A) in the thyroid hormone receptor beta gene (THRB) as the candidate disease-associated variant. Further genetic analysis revealed the presence of the same heterozygous variant segregating in two additional unrelated dominant pedigrees including 9 affected individuals with a diagnosis of COD (1), STGD (4), MD (3) and unclear phenotype (1). THRB has been previously reported as a causal gene for autosomal dominant and recessive thyroid hormone resistance syndrome beta (RTHβ); however, none of the IRD patients exhibited RTHβ. Genotype-phenotype correlations showed that RTHβ can be caused by both truncating and missense variants, which are mainly located at the 3' (C-terminal/ligand-binding) region, which is common to both THRB isoforms (TRβ1 and TRβ2). In contrast, the c.283 + 1G>A variant is predicted to disrupt a splice site in the 5'-region of the gene that encodes the N-terminal domain of the TRβ1 isoform protein, leaving the TRβ2 isoform intact, which would explain the phenotypic variability observed between RTHβ and IRD patients. Interestingly, although monochromacy or cone response alterations have already been described in a few RTHβ patients, herein we report the first genetic association between a pathogenic variant in THRB and non-syndromic IRDs. We thereby expand the phenotype of THRB pathogenic variants including COD, STGD, or MD as the main clinical manifestation, which also reflects the extraordinary complexity of retinal functions mediated by the different THRB isoforms.
Collapse
Affiliation(s)
- Elena Fernández-Suárez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - María González-del Pozo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Alejandro García-Núñez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Cristina Méndez-Vidal
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Marta Martín-Sánchez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - José Manuel Mejías-Carrasco
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Manuel Ramos-Jiménez
- Department of Clinical Neurophysiology, University Hospital Virgen Macarena, Seville, Spain
| | | | - Enrique Rodríguez-de la Rúa
- Department of Ophthalmology, University Hospital Virgen Macarena, Seville, Spain
- RETICS Patología Ocular, OFTARED, Instituto de Salud Carlos III, Madrid, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| |
Collapse
|
8
|
Hernandez A, Martinez ME, Ng L, Forrest D. Thyroid Hormone Deiodinases: Dynamic Switches in Developmental Transitions. Endocrinology 2021; 162:bqab091. [PMID: 33963379 PMCID: PMC8248586 DOI: 10.1210/endocr/bqab091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Thyroid hormones exert pleiotropic, essential actions in mammalian, including human, development. These actions depend on provision of thyroid hormones in the circulation but also to a remarkable extent on deiodinase enzymes in target tissues that amplify or deplete the local concentration of the primary active form of the hormone T3 (3,5,3'-triiodothyronine), the high affinity ligand for thyroid hormone receptors. Genetic analyses in mice have revealed key roles for activating (DIO2) and inactivating (DIO3) deiodinases in cell differentiation fates and tissue maturation, ultimately promoting neonatal viability, growth, fertility, brain development, and behavior, as well as metabolic, endocrine, and sensory functions. An emerging paradigm is how the opposing activities of DIO2 and DIO3 are coordinated, providing a dynamic switch that controls the developmental timing of a tissue response, often during neonatal and maturational transitions. A second paradigm is how cell to cell communication within a tissue determines the response to T3. Deiodinases in specific cell types, often strategically located near to blood vessels that convey thyroid hormones into the tissue, can regulate neighboring cell types, suggesting a paracrine-like layer of control of T3 action. We discuss deiodinases as switches for developmental transitions and their potential to influence tissue dysfunction in human thyroid disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, USA
| | - M Elena Martinez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Martinez ME, Hernandez A. The Type 3 Deiodinase Is a Critical Modulator of Thyroid Hormone Sensitivity in the Fetal Brain. Front Neurosci 2021; 15:703730. [PMID: 34248495 PMCID: PMC8265566 DOI: 10.3389/fnins.2021.703730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones (TH) are critical for the development and function of the central nervous system (CNS). Although their effects on the rodent brain peak within 2-3 weeks postnatally, the fetal brain has been found largely insensitive to exogenously administrated TH. To address this issue, here we examined gene expression in brains from mouse fetuses deficient in the type 3 deiodinase (DIO3), the selenoenzyme responsible for clearing TH. At embryonic day E18.5 qPCR determinations indicated a marked increase in the mRNA expression of T3-responsive genes Klf9 and Nrgn. The increased expression of these genes was confirmed by in situ hydridization in multiple areas of the cortex and in the striatum. RNA sequencing revealed 246 genes differentially expressed (70% up-regulated) in the brain of E18.5 Dio3-/- male fetuses. Differential expression of 13 of these genes was confirmed in an extended set of samples that included females. Pathway analyses of differentially expressed genes indicated enrichment in glycolysis and signaling related to axonal guidance, synaptogenesis and hypoxia inducible factor alpha. Additional RNA sequencing identified 588 genes differentially expressed (35% up-regulated) in the brain of E13.5 Dio3-/- male fetuses. Differential expression of 13 of these genes, including Klf9, Hr, and Mgp, was confirmed in an extended set of samples including females. Although pathway analyses of differentially expressed genes at E13.5 also revealed significant enrichment in axonal guidance and synaptogenesis signaling, top enrichment was found for functions related to the cell cycle, aryl hydrocarbon receptor signaling, PCP and kinetochore metaphase signaling pathways and mitotic roles of polo-like kinase. Differential expression at E13.5 was confirmed by qPCR for additional genes related to collagen and extracellular matrix and for selected transcription factors. Overall, our results demonstrate that the rodent fetal brain is sensitive to TH as early as E13.5 of gestational age, and suggest that TH distinctly affects brain developmental programs in early and late gestation. We conclude that DIO3 function is critical to ensure an adequate timing for TH action in the developing brain and is probably the main factor underlying the lack of effects on the fetal brain observed in previous studies after TH administration.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, United States.,Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
10
|
McNerney C, Johnston RJ. Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: Insights from model organisms and human stem cell-derived retinal organoids. VITAMINS AND HORMONES 2021; 116:51-90. [PMID: 33752828 DOI: 10.1016/bs.vh.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cones are the color-detecting photoreceptors of the vertebrate eye. Cones are specialized into subtypes whose functions are determined by the expression of color-sensitive opsin proteins. Organisms differ greatly in the number and patterning of cone subtypes. Despite these differences, thyroid hormone is an important regulator of opsin expression in most vertebrates. In this chapter, we outline how the timing of thyroid hormone signaling controls cone subtype fates during retinal development. We first examine our current understanding of cone subtype specification in model organisms and then describe advances in human stem cell-derived organoid technology that identified mechanisms controlling development of the human retina.
Collapse
Affiliation(s)
- Christina McNerney
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
11
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:E931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| |
Collapse
|
12
|
Vancamp P, Bourgeois NMA, Houbrechts AM, Darras VM. Knockdown of the thyroid hormone transporter MCT8 in chicken retinal precursor cells hampers early retinal development and results in a shift towards more UV/blue cones at the expense of green/red cones. Exp Eye Res 2018; 178:135-147. [PMID: 30273578 DOI: 10.1016/j.exer.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022]
Abstract
Thyroid hormones (THs) play a crucial role in coordinating brain development in vertebrates. They fine-tune processes like cell proliferation, migration, and differentiation mainly by regulating the transcriptional activity of many essential genes. Regulators of TH availability thereby define the cellular concentration of the bioactive 3,5,3'-triiodothyronine, which binds to nuclear TH receptors. One important regulator, the monocarboxylate transporter 8 (MCT8), facilitates cellular TH uptake and is known to be necessary for correct brain development, but data on its potential role during retinal development is lacking. The retinal cyto-architecture has been conserved throughout vertebrate evolution, and we used the chicken embryo to study the need for MCT8 during retinal development. Its external development allows easy manipulation, and MCT8 is abundantly expressed in the retina from early stages onwards. We induced MCT8 knockdown by electroporating a pRFP-MCT8-RNAi vector into the retinal precursor cells (RPCs) at embryonic day 4 (E4), and studied the consequences for early (E6) and late (E18) retinal development. The empty pRFP-RNAi vector was used as a control. RPC proliferation was reduced at E6. This resulted in cellular hypoplasia and a thinner retina at E18 where mainly photoreceptors and horizontal cells were lost, the two predominant cell types that are born around the stage of electroporation. At E6, differentiation into retinal ganglion cells and amacrine cells was delayed. However, since the proportion of a given cell type within the transfected cell population at E18 was similar in knockdown and controls, the partial loss of some cell types was most-likely due to reduced RPC proliferation and not impaired cell differentiation. Photoreceptors displayed delayed migration at first, but had successfully reached the outer nuclear layer at E18. However, they increasingly differentiated into short wavelength-sensitive cones at the expense of medium/long wavelength-sensitive cones, while the proportion of rods was unaltered. Improperly formed sublaminae in the inner plexiform layer additionally suggested defects in synaptogenesis. Altogether, our data echoes effects of hypothyroidism and the loss of some other regulators of TH availability in the developing zebrafish and rodent retina. Therefore, the expression of MCT8 in RPCs is crucial for adequate TH uptake during cell type-specific events in retinal development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Nele M A Bourgeois
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Anne M Houbrechts
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium.
| |
Collapse
|
13
|
Hernandez A, Stohn JP. The Type 3 Deiodinase: Epigenetic Control of Brain Thyroid Hormone Action and Neurological Function. Int J Mol Sci 2018; 19:ijms19061804. [PMID: 29921775 PMCID: PMC6032375 DOI: 10.3390/ijms19061804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones (THs) influence multiple processes in the developing and adult central nervous system, and their local availability needs to be maintained at levels that are tailored to the requirements of their biological targets. The local complement of TH transporters, deiodinase enzymes, and receptors is critical to ensure specific levels of TH action in neural cells. The type 3 iodothyronine deiodinase (DIO3) inactivates THs and is highly present in the developing and adult brain, where it limits their availability and action. DIO3 deficiency in mice results in a host of neurodevelopmental and behavioral abnormalities, demonstrating the deleterious effects of TH excess, and revealing the critical role of DIO3 in the regulation of TH action in the brain. The fact the Dio3 is an imprinted gene and that its allelic expression pattern varies across brain regions and during development introduces an additional level of control to deliver specific levels of hormone action in the central nervous system (CNS). The sensitive epigenetic nature of the mechanisms controlling the genomic imprinting of Dio3 renders brain TH action particularly susceptible to disruption due to exogenous treatments and environmental exposures, with potential implications for the etiology of human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
| |
Collapse
|
14
|
Yang F, Ma H, Butler MR, Ding XQ. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J 2018; 32:fj201800484RR. [PMID: 29874126 PMCID: PMC6181634 DOI: 10.1096/fj.201800484rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormone (TH) signaling has been shown to regulate cone photoreceptor viability. Suppression of TH signaling with antithyroid drug treatment or by targeting iodothyronine deiodinases and TH receptors preserves cones in mouse models of retinal degeneration, including the Leber congenital amaurosis Rpe65-deficient mice. This work investigates the cellular mechanisms underlying how suppressing TH signaling preserves cones in Rpe65-deficient mice, using mice deficient in type 2 iodothyronine deiodinase (Dio2), the enzyme that converts the prohormone thyroxine to the active hormone triiodothyronine (T3). Deficiency of Dio2 improved cone survival and function in Rpe65-/- and Rpe65-deficiency on a cone dominant background ( Rpe65-/-/ Nrl-/-) mice. Analysis of cell death pathways revealed that receptor-interacting serine/threonine-protein kinase (RIPK)/necroptosis activity was increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency reversed the alterations. Cell-stress analysis showed that the cellular oxidative stress responses were increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency abolished the elevations. Similarly, antithyroid drug treatment resulted in reduced RIPK/necroptosis activity and oxidative stress responses in Rpe65-/-/ Nrl-/- retinas. Moreover, treatment with T3 significantly induced RIPK/necroptosis activity and oxidative stress responses in the retina. This work shows that suppression of TH signaling reduces cellular RIPK/necroptosis activity and oxidative stress responses in degenerating retinas, suggesting a mechanism underlying the observed cone preservation.-Yang, F., Ma, H., Butler, M. R., Ding, X.-Q. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R. Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
15
|
Human aging and disease: Lessons from age-related macular degeneration. Proc Natl Acad Sci U S A 2018; 115:2866-2872. [PMID: 29483257 DOI: 10.1073/pnas.1721033115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aging is the most significant risk factor associated with chronic disease in humans. The accumulation of genetic damage throughout life leads to a variety of biological aberrations, including disrupted protein homeostasis, metabolic dysfunction, and altered cellular signaling. Such changes ultimately result in cellular senescence, death, or transformation to uncontrolled proliferation, thereby compromising human health. Events contributing to age-dependent physiological decline also occur in the context of hormonal and metabolic changes, affecting interconnected cellular networks. This complexity often confounds the development of effective treatments for aging and age-related diseases. In contrast to monotherapy and polypharmacology, an innovative systems pharmacology approach can identify synergistic combinations of drugs that modulate distinct mechanistic nodes within a network, minimizing off-target side effects and enabling better therapeutic outcomes. G protein-coupled receptors (GPCRs) are particularly good targets for the application of systems pharmacology, because they activate different signal transduction pathways that can culminate in a common response. Here, we describe a systems pharmacology strategy for the treatment of age-related macular degeneration (AMD), a multifactorial chronic disease of the eye. By considering the retina as part of a large, interconnected network, systems pharmacology will enable the identification of combination therapies targeting GPCRs to help restore genomic, proteomic, and endocrine homeostasis. Such an approach can be advantageous in providing drug regimens for the treatment of AMD, while also having broader ramifications for ameliorating adverse effects of chronic, age-related disease in humans.
Collapse
|
16
|
Sawant OB, Horton AM, Zucaro OF, Chan R, Bonilha VL, Samuels IS, Rao S. The Circadian Clock Gene Bmal1 Controls Thyroid Hormone-Mediated Spectral Identity and Cone Photoreceptor Function. Cell Rep 2017; 21:692-706. [PMID: 29045837 PMCID: PMC5647869 DOI: 10.1016/j.celrep.2017.09.069] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/15/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022] Open
Abstract
Circadian clocks regulate various aspects of photoreceptor physiology, but their contribution to photoreceptor development and function is unclear. Cone photoreceptors are critical for color vision. Here, we define the molecular function of circadian activity within cone photoreceptors and reveal a role for the clock genes Bmal1 and Per2 in regulating cone spectral identity. ChIP analysis revealed that BMAL1 binds to the promoter region of the thyroid hormone (TH)-activating enzyme type 2 iodothyronine deiodinase (Dio2) and thus regulates the expression of Dio2. TH treatment resulted in a partial rescue of the phenotype caused by the loss of Bmal1, thus revealing a functional relationship between Bmal1 and Dio2 in establishing cone photoreceptor identity. Furthermore, Bmal1 and Dio2 are required to maintain cone photoreceptor functional integrity. Overall, our results suggest a mechanism by which circadian proteins can locally regulate the availability of TH and influence tissue development and function.
Collapse
Affiliation(s)
- Onkar B Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Amanda M Horton
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Olivia F Zucaro
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Ricky Chan
- Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Vera L Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Ivy S Samuels
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
17
|
Härer A, Torres-Dowdall J, Meyer A. Rapid adaptation to a novel light environment: The importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (Amphilophus citrinellus
spp.). Mol Ecol 2017; 26:5582-5593. [DOI: 10.1111/mec.14289] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Andreas Härer
- Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
| | - Julián Torres-Dowdall
- Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
- Zukunftskolleg; University of Konstanz; Konstanz Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
| |
Collapse
|