1
|
Engström M, Westholm E, Wendt A, Eliasson L. The role of islet CFTR in the development of cystic fibrosis-related diabetes: A semi-systematic review. J Cyst Fibros 2025:S1569-1993(25)00772-6. [PMID: 40254519 DOI: 10.1016/j.jcf.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Cystic fibrosis related diabetes (CFRD) is the most common comorbidity of cystic fibrosis (CF) still, its pathogenesis is poorly understood. Recent studies have suggested that although pancreatic insufficiency is an important explanation for CFRD development, inherent pancreatic islet cell dysfunction may play a role. This study aimed to systematically compile current data regarding the impact of pancreatic islet cell dysfunction on the development of CFRD. METHODS A systematic search was conducted in PubMed and Embase. The resulting articles were screened for relevant experimental design and outcomes. Articles underwent data extraction and quality assessment before compilation and analysis of the results. RESULTS A total of 268 articles were initially screened and 19 studies conducted between 2006-2022 were finally included in this review. Half of the studies in human tissue and most of the studies in animal tissue could detect CFTR in the islets. Similarly, half of the publications in human islets and most studies in animal islets detect decreased insulin secretion with inhibition/mutation of CFTR. CONCLUSIONS The literature on the role of islet CFTR is contradictory. However, a pattern emerges where CFTR loss-of-function mutations have the potential to negatively affect islet cell function in a way that, together with previously described exocrine damage occurring in CF, could play a part in the development of CFRD.
Collapse
Affiliation(s)
- Matilda Engström
- Islet Cell Exocytosis, Lund University Diabetes Centre (LUDC), Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden; Clinical Research Centre (CRC), Skåne University Hospital, Malmö, Sweden
| | - Efraim Westholm
- Islet Cell Exocytosis, Lund University Diabetes Centre (LUDC), Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden; Clinical Research Centre (CRC), Skåne University Hospital, Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre (LUDC), Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden; Clinical Research Centre (CRC), Skåne University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre (LUDC), Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden; Clinical Research Centre (CRC), Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
2
|
Sun M, Wu Y, Yuan C, Lyu J, Zhao X, Ruan YC, Guo J, Chen H, Huang WQ. Androgen-induced upregulation of CFTR in pancreatic β-cell contributes to hyperinsulinemia in PCOS model. Endocrine 2024; 83:242-250. [PMID: 37922092 DOI: 10.1007/s12020-023-03516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 11/05/2023]
Abstract
PURPOSE Polycystic ovarian syndrome (PCOS) is an endocrine-metabolic condition affecting 5-10% of reproductive-aged women and characterized by hyperandrogenism, insulin resistance (IR), and hyperinsulinemia. CFTR is known to be regulated by steroid hormones, and our previous study has demonstrated an essential role of CFTR in β-cell function. This study aims to investigate the contribution of androgen and CFTR to hypersecretion of insulin in PCOS and the underlying mechanism. METHODS We established a rat PCOS model by subcutaneously implanting silicon tubing containing Dihydrotestosterone (DHT). Glucose tolerance test with insulin levels was performed at 9 weeks after implantation. A rat β-cell line RINm5F, a mouse β-cell line β-TC-6, and mouse islets were treated with DHT, and with or without the androgen antagonist flutamide for CFTR and insulin secretion-related functional assays or mRNA/protein expression measurement. The effect of CFTR inhibitors on DHT-promoted membrane depolarization, glucose-stimulated intracellular Ca2+ oscillation and insulin secretion were examined by membrane potential imaging, calcium imaging and ELISA, respectively. RESULTS The DHT-induced PCOS model showed increased body weight, impaired glucose tolerance, and higher blood glucose and insulin levels after glucose stimulation. CFTR was upregulated in islets of PCOS model and DHT-treated cells, which was reversed by flutamide. The androgen receptor (AR) could bind to the CFTR promoter region, which was enhanced by DHT. Furthermore, DHT-induced membrane depolarization, enhanced glucose-stimulated Ca2+ oscillations and insulin secretion, which could be abolished by CFTR inhibitors. CONCLUSIONS Excessive androgen enhances glucose-stimulating insulin secretion through upregulation of CFTR, which may contribute to hyperinsulinemia in PCOS.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yong Wu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chun Yuan
- State Key Laboratory of Reproductive Medicine, Clinical Centre of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jingya Lyu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xinyi Zhao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| | - Hui Chen
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Wen Qing Huang
- Department of Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Lurquin F, Buysschaert M, Preumont V. Advances in cystic fibrosis-related diabetes: Current status and future directions. Diabetes Metab Syndr 2023; 17:102899. [PMID: 37939435 DOI: 10.1016/j.dsx.2023.102899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
AIMS The aim of this review is to give an update of the recent advances in the pathophysiology, prognosis, diagnosis and treatments of cystic fibrosis-related diabetes (CFRD). METHODS The literature survey focuses on original and review articles dealing with CFRD between 2006 and 2023, and in particular with: pathophysiology, risk and predictive factors, screening, chronic complications of CFRD, management and the effects of CFTR channel modulator therapies on glucose homeostasis, using PubMed®. RESULTS The rising prevalence of CFRD is due to prolonged life survival among patients with cystic fibrosis (CF). Advances in the understanding of the pathophysiology highlight the singularity of CFRD. Adherence to diagnostic guidelines remains challenging. Besides the classical OGTT, alternative diagnostic tests are being considered: HbA1c measurement, continuous glucose monitoring (CGM), intermediate measurements of alternative glucose tolerance stages through OGTT and homeostatic model assessment (HOMA). Early treatment of (pre)diabetes in CF patients is mandatory. The advent of CFTR channel modulator therapies have created a paradigm shift in the management of CF: they seem to improve glucose homeostasis, but the mechanism remains unclear. CONCLUSION CFRD management is an ongoing concern. Optimal care has reduced the negative impact of CFRD on lung function, nutrition, and survival. Increasing prevalence of CFRD and prolonged lifespan lead to more microvascular complications. New screening tools (Hba1c, CGM, HOMA) show potential for better classification of patients. The effect of CFTR modulators on glucose metabolism warrants further research.
Collapse
Affiliation(s)
- F Lurquin
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - M Buysschaert
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - V Preumont
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
4
|
Lurquin F, Gohy S, Hermans MP, Preumont V. Combined CFTR modulator therapies are linked with anabolic benefits and insulin-sparing in cystic fibrosis-related diabetes. J Clin Transl Endocrinol 2023; 33:100320. [PMID: 37448650 PMCID: PMC10336243 DOI: 10.1016/j.jcte.2023.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Aims Combined CFTR modulator therapies have dramatically altered pulmonary outcomes in patients with cystic fibrosis (CF). Their impact on glucose metabolism requires further investigations. This study aims to evaluate insulin requirements after initiation of combined CFTR modulator therapy in patients with CF-related diabetes (CFRD) and HOMA indices changes in CF patients without diabetes. Methods We retrospectively analyzed: 1) the effects of tezacaftor + ivacaftor and elexacaftor + tezacaftor + ivacaftor on FEV1, weight, BMI, HbA1c, and daily insulin dose, in 17 CFRD patients and 2) the impact of tezacaftor + ivacaftor on HOMA indices in 15 CF patients without diabetes. Results Age was 37±12y in the CFRD group (70% men), 88% of whom were homozygous for F508del mutation. Diabetes duration was 15±10y. Median duration of combined CFTR modulator therapy was 16 months (IQR: 4) Thirteen patients received tezacaftor + ivacaftor, of whom 9 were switched to elexacaftor + tezacaftor + ivacaftor. Four patients received elexacaftor + tezacaftor + ivacaftor up front. A decrease in insulin needs was noticed in 88% of patients (0.85±0.3 vs 0.71±0.3U/kg/day; p = 0001). Total daily insulin dose decreased from 50±16 to 44±20U/day (p = 0.017). BMI improved (20.9 (IQR: 1.90) vs 22.1 kg/m2 (IQR: 3.70); p = 0.014). HbA1c went from 7.3±1.1 to 7.7±1.6% (p = 0.072). Median age was 22y (IQR: 11) in the CF group without diabetes (67% men), 93% of whom were homozygous for F508del mutation. Duration of combined CFTR modulator therapy was 10±5 months. HOMA-B changes were not significant (129.2 (IQR: 84.8) vs 103.5% (IQR: 66.3) nor were HOMA-S changes (from 94±64 to 95±49%). HOMA-BxS decreased from 112±45 to 104±29% (NS). BMI rose from 21.9±3 to 23.1±3.5 kg/m2 (p = 0.047). HbA1c was unchanged (5.0±0.5%). FEV1 improved in both groups (+11% and + 7% of predicted value; p < 0.001; p = 0.013). Conclusion Combined CFTR modulator therapies are correlated with a decrease in insulin doses and positive effects on BMI and FEV1. HOMA indices did not change on tezacaftor + ivacaftor among CF patients without diabetes.
Collapse
Affiliation(s)
- Fabian Lurquin
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Sophie Gohy
- Department of Pneumology, CF Reference Center, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Michel P. Hermans
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Vanessa Preumont
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
5
|
Wang H, Su X, Zhang QQ, Zhang YY, Chu ZY, Sun ZH, Zhang JL, Tang YF. Cystic Fibrosis Transmembrane Conductance Regulator Attenuates Oxidative Stress-Induced Injury in Diabetic Retinopathy Rats. Curr Eye Res 2023; 48:416-424. [PMID: 36476257 DOI: 10.1080/02713683.2022.2156548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the effects of cystic fibrosis transmembrane conductance regulator (CFTR) on oxidative stress-induced injury of diabetic retinopathy (DR) rats. METHODS DR rat model was constructed treated with Ad-CFTR. Hematoxylin and Eosin (HE) staining was applied for testing the thickness of each layer of retinal tissues. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of serum inflammatory cytokines and contents of oxidative stress related genes in rats. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining was used to detect retinal cell apoptosis, and western blotting to measure the expression of MAPK/NF-κB pathway-related proteins in retinal tissues. RESULTS Our experiment revealed the remarkable decrease of CFTR protein in retinal tissues of DR rats. DR rats had decreased body weight and increased blood glucose level, with decreased thickness of total retinal thickness (TRT), outer nuclear layer and outer plexiform layer (ONL + OPL), inner nuclear layer (INL), and inner plexiform layer (IPL). Besides, DR rats were apparently up-regulated in the expression of pro-inflammatory cytokines, with increased malondial dehyde (MDA), p-ERK1/2/ERK1/2 and p-JNK1/2/JNK1/2 expressions, decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in retinal tissues, as well as up-regulated p65 protein in nucleus and down-regulated p65 protein in cytoplasm. DR rats treated with Ad-CFTR were effectively improved regarding the above parameters except body weight and blood glucose. CONCLUSIONS CFTR can inhibit MAPK/NF-κB signaling pathway to ameliorate inflammatory response and oxidative stress-induced injury of DR rats, thereby reducing retinal cell apoptosis and playing a protective role in retina.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xian Su
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Qian-Qian Zhang
- Outpatient Department, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Ying-Ying Zhang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhan-Ya Chu
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhao-Hui Sun
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Jin-Ling Zhang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yu-Fen Tang
- Department of Outpatient Operating Room, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
6
|
Hasan S, Khan MS, Lansang MC. The effect of cystic fibrosis transmembrane conductance regulator modulators on impaired glucose tolerance and cystic fibrosis related diabetes. J Clin Transl Endocrinol 2022; 29:100301. [PMID: 35746945 PMCID: PMC9209718 DOI: 10.1016/j.jcte.2022.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder, with a prevalence of 1 in 2,500 live births. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. With the significant advancement in CFTR-directed therapies, life expectancy of CF patients has steadily increased. With improved survival, CF related co-morbidities have become more apparent. The most common endocrine complication includes Cystic fibrosis related diabetes (CFRD). Impaired glucose tolerance and insulin deficiency in CFRD leads to a decline in pulmonary function in CF patients. Here we review the underlying mechanisms involved in the pathogenesis of CFRD, focusing on the role of CFTR in the regulation of insulin secretion from the β-cell. We then discuss CFTR modulators and their effect on impaired glucose tolerance and CFRD.
Collapse
Affiliation(s)
- Sana Hasan
- Department of Endocrinology and Metabolism, USA Cleveland Clinic Foundation, Cleveland, OH, USA
- Corresponding author.
| | | | - M. Cecilia Lansang
- Department of Endocrinology and Metabolism, USA Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
7
|
Doliba NM, Rozo AV, Roman J, Qin W, Traum D, Gao L, Liu J, Manduchi E, Liu C, Golson ML, Vahedi G, Naji A, Matschinsky FM, Atkinson MA, Powers AC, Brissova M, Kaestner KH, Stoffers DA. α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody-positive individuals. J Clin Invest 2022; 132:156243. [PMID: 35642629 PMCID: PMC9151702 DOI: 10.1172/jci156243] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUNDMultiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA+ state may represent an early stage of T1D.METHODSHere, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA+ and T1D donors.RESULTSSimilar to the few remaining β cells in the T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA+ and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA+ α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA+ donor islets.CONCLUSIONWe found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D.FUNDINGThis work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593).
Collapse
Affiliation(s)
- Nicolai M. Doliba
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Andrea V. Rozo
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | - Wei Qin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | | | | | | | - Chengyang Liu
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria L. Golson
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Golnaz Vahedi
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Mark A. Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, Florida, USA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Klaus H. Kaestner
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | |
Collapse
|
8
|
Song F, Akonyani ZP, Li Y, Su D, Wu L, Pang Y, Hu S, Wu D, Li C, Yang D, Wu J. The impact of different feeds on DNA methylation, glycolysis/gluconeogenesis signaling pathway, and gene expression of sheep muscle. PeerJ 2022; 10:e13455. [PMID: 35642195 PMCID: PMC9148555 DOI: 10.7717/peerj.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
DNA methylation is an important epigenetic regulatory form that regulates gene expression and tissue development. This study compared the effects of high fiber, low protein (HFLP) and low fiber, high protein (LFHP) diets on the DNA methylation profile of twin lambs' muscles, their effect on glycolysis/gluconeogenesis and related pathways by transcriptome and deep whole-genome bisulfite sequencing (WGBS). Results identified 1,945 differentially methylated regions (DMRs) and 1,471 differentially methylated genes (DMGs). Also, 487 differentially expressed transcripts belonging to 368 differentially expressed genes (DEGs) were discovered between the twin lambs under different diets. Eleven overlapped genes were detected between the DEGs and the DMGs. FKBP5 and FOXO1 were detected to be significantly different. The FOXO1 regulated cAMP and the glycolysis/gluconeogenesis pathways. The glycolysis/gluconeogenesis, and the FOXO pathways were significantly enriched. The expressions of HOMER1 and FOXO1 in the HFLP group were significantly higher than those in the LFHP group. There is a significant correlation between the upregulated gene expression and hypomethylation of HOMER1 and FOXO1 gene in HFLP group. The results showed that FOXO1 induces PDK4 expression in muscle while regulating FKBP5 activity, which stimulates glucose production by activating specific gluconeogenesis target genes. The FOXO1 was able to regulate the glucose metabolism, the cAMP and the occurrence of glycolysis/gluconeogenesis pathways. This study showed that feed type can affect the methylation levels of the glycolysis related gluconeogenesis genes and interaction pathways, providing new ideas for a better understanding of the regulation of muscle energy metabolism and feed development.
Collapse
Affiliation(s)
- Feng Song
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | | | - Ying Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Deqiqige Su
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Lantuya Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yue Pang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Sile Hu
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Dubala Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Chun Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Ding Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Jianghong Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China,Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| |
Collapse
|
9
|
Moheet A, Moran A. New Concepts in the Pathogenesis of Cystic Fibrosis-Related Diabetes. J Clin Endocrinol Metab 2022; 107:1503-1509. [PMID: 35106591 DOI: 10.1210/clinem/dgac020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Cystic fibrosis-related diabetes (CFRD) is the most common extrapulmonary complication of cystic fibrosis (CF). Approximately 40% of people with CF who are older than 20 years have CFRD. Presence of CFRD is associated with poor health outcomes in people with CF. OBJECTIVE This review summarizes current knowledge on pathophysiology of CFRD. METHODS A PubMed review of the literature was conducted, with search terms that included CFRD, cystic fibrosis, cystic fibrosis related diabetes, and cystic fibrosis transmembrane conductance regulator (CFTR). Additional sources were identified through manual searches of reference lists. Pathophysiology of CFRD: The pathophysiology underlying development of glucose tolerance abnormalities in CF is complex and not fully understood. β-cell loss and functional impairment of the remaining β-cell function results in progressive insulin insufficiency. Factors that may contribute to development of CFRD include local islet and systemic inflammation, alterations in the incretion hormone axis, varying degrees of insulin resistance and genetic factors related to type 2 diabetes. CONCLUSION The prevalence of CFRD is expected to further increase with improving life expectancy of people with CF. Further research is needed to better understand the mechanisms underlying the development of CFRD and the impact of diabetes on clinical outcomes in CF.
Collapse
Affiliation(s)
- Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
The role of genetic modifiers, inflammation and CFTR in the pathogenesis of Cystic fibrosis related diabetes. J Clin Transl Endocrinol 2022; 27:100287. [PMID: 34976741 PMCID: PMC8688704 DOI: 10.1016/j.jcte.2021.100287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
|
11
|
Zhang XL, Zhao X, Wu Y, Huang WQ, Chen JJ, Hu P, Liu W, Chen YW, Hao J, Xie RR, Chan HC, Ruan YC, Chen H, Guo J. Angiotensin(1-7) activates MAS-1 and upregulates CFTR to promote insulin secretion in pancreatic β-cells: the association with type 2 diabetes. Endocr Connect 2022; 11:EC-21-0357. [PMID: 34825893 PMCID: PMC8789014 DOI: 10.1530/ec-21-0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The beneficial effect of angiotensin(1-7) (Ang(1-7)), via the activation of its receptor, MAS-1, has been noted in diabetes treatment; however, how Ang(1-7) or MAS-1 affects insulin secretion remains elusive and whether the endogenous level of Ang(1-7) or MAS-1 is altered in diabetic individuals remains unexplored. We recently identified an important role of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- channel, in the regulation of insulin secretion. Here, we tested the possible involvement of CFTR in mediating Ang(1-7)'s effect on insulin secretion and measured the level of Ang(1-7), MAS-1 as well as CFTR in the blood of individuals with or without type 2 diabetes. METHODS Ang(1-7)/MAS-1/CFTR pathway was determined by specific inhibitors, gene manipulation, Western blotting as well as insulin ELISA in a pancreatic β-cell line, RINm5F. Human blood samples were collected from 333 individuals with (n = 197) and without (n = 136) type 2 diabetes. Ang(1-7), MAS-1 and CFTR levels in the human blood were determined by ELISA. RESULTS In RINm5F cells, Ang(1-7) induced intracellular cAMP increase, cAMP-response element binding protein (CREB) activation, enhanced CFTR expression and potentiated glucose-stimulated insulin secretion, which were abolished by a selective CFTR inhibitor, RNAi-knockdown of CFTR, or inhibition of MAS-1. In human subjects, the blood levels of MAS-1 and CFTR, but not Ang(1-7), were significantly higher in individuals with type 2 diabetes as compared to those in non-diabetic healthy subjects. In addition, blood levels of MAS-1 and CFTR were in significant positive correlation in type-2 diabetic but not non-diabetic subjects. CONCLUSION These results suggested that MAS-1 and CFTR as key players in mediating Ang(1-7)-promoted insulin secretion in pancreatic β-cells; MAS-1 and CFTR are positively correlated and both upregulated in type 2 diabetes.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinyi Zhao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yong Wu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen-qing Huang
- Department of Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jun-jiang Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence should be addressed to H Chen or J Guo: or
| | - Peijie Hu
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Liu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi-Wen Chen
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to H Chen or J Guo: or
| | - Jin Hao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rong-Rong Xie
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hui Chen
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence should be addressed to H Chen or J Guo: or
| | - Jinghui Guo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- Correspondence should be addressed to H Chen or J Guo: or
| |
Collapse
|
12
|
Gál E, Dolenšek J, Stožer A, Czakó L, Ébert A, Venglovecz V. Mechanisms of Post-Pancreatitis Diabetes Mellitus and Cystic Fibrosis-Related Diabetes: A Review of Preclinical Studies. Front Endocrinol (Lausanne) 2021; 12:715043. [PMID: 34566890 PMCID: PMC8461102 DOI: 10.3389/fendo.2021.715043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Anatomical proximity and functional correlations between the exocrine and endocrine pancreas warrant reciprocal effects between the two parts. Inflammatory diseases of the exocrine pancreas, such as acute or chronic pancreatitis, or the presence of cystic fibrosis disrupt endocrine function, resulting in diabetes of the exocrine pancreas. Although novel mechanisms are being increasingly identified, the intra- and intercellular pathways regulating exocrine-endocrine interactions are still not fully understood, making the development of new and more effective therapies difficult. Therefore, this review sought to accumulate current knowledge regarding the pathogenesis of diabetes in acute and chronic pancreatitis, as well as cystic fibrosis.
Collapse
Affiliation(s)
- Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - László Czakó
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Westholm E, Wendt A, Eliasson L. Islet Function in the Pathogenesis of Cystic Fibrosis-Related Diabetes Mellitus. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211031204. [PMID: 34345195 PMCID: PMC8280842 DOI: 10.1177/11795514211031204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis-related diabetes mellitus (CFRD) is the most common non-pulmonary
co-morbidity in cystic fibrosis (CF). CF is caused by mutations in the cystic
fibrosis transmembrane conductance regulator gene (CFTR), which
leads to aberrant luminal fluid secretions in organs such as the lungs and
pancreas. How dysfunctional CFTR leads to CFRD is still under debate. Both
intrinsic effects of dysfunctional CFTR in hormone secreting cells of the islets
and effects of exocrine damage have been proposed. In the current review, we
discuss these non-mutually exclusive hypotheses with a special focus on how
dysfunctional CFTR in endocrine cells may contribute to an altered glucose
homeostasis. We outline the proposed role of CFTR in the molecular pathways of
β-cell insulin secretion and α-cell glucagon secretion, and touch upon the
importance of the exocrine pancreas and intra-pancreatic crosstalk for proper
islet function.
Collapse
Affiliation(s)
- Efraim Westholm
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Anna Wendt
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| |
Collapse
|
14
|
Prentice BJ, Jaffe A, Hameed S, Verge CF, Waters S, Widger J. Cystic fibrosis-related diabetes and lung disease: an update. Eur Respir Rev 2021; 30:30/159/200293. [PMID: 33597125 PMCID: PMC9488640 DOI: 10.1183/16000617.0293-2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The development of cystic fibrosis-related diabetes (CFRD) often leads to poorer outcomes in patients with cystic fibrosis including increases in pulmonary exacerbations, poorer lung function and early mortality. This review highlights the many factors contributing to the clinical decline seen in patients diagnosed with CFRD, highlighting the important role of nutrition, the direct effect of hyperglycaemia on the lungs, the immunomodulatory effects of high glucose levels and the potential role of genetic modifiers in CFRD.
Collapse
Affiliation(s)
- Bernadette J Prentice
- Dept of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
| | - Adam Jaffe
- Dept of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
| | - Shihab Hameed
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
- Dept of Endocrinology, Sydney Children's Hospital, Randwick, Australia
| | - Charles F Verge
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
- Dept of Endocrinology, Sydney Children's Hospital, Randwick, Australia
| | - Shafagh Waters
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
- MiCF Research Centre, Sydney, Australia
| | - John Widger
- Dept of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Randwick, Australia
| |
Collapse
|
15
|
Iafusco F, Maione G, Rosanio FM, Mozzillo E, Franzese A, Tinto N. Cystic Fibrosis-Related Diabetes (CFRD): Overview of Associated Genetic Factors. Diagnostics (Basel) 2021; 11:diagnostics11030572. [PMID: 33810109 PMCID: PMC8005125 DOI: 10.3390/diagnostics11030572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in the Caucasian population and is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that encodes for a chloride/bicarbonate channel expressed on the membrane of epithelial cells of the airways and of the intestine, as well as in cells with exocrine and endocrine functions. A common nonpulmonary complication of CF is cystic fibrosis-related diabetes (CFRD), a distinct form of diabetes due to insulin insufficiency or malfunction secondary to destruction/derangement of pancreatic betacells, as well as to other factors that affect their function. The prevalence of CFRD increases with age, and 40–50% of CF adults develop the disease. Several proposed hypotheses on how CFRD develops have emerged, including exocrine-driven fibrosis and destruction of the entire pancreas, as well as contrasting theories on the direct or indirect impact of CFTR mutation on islet function. Among contributors to the development of CFRD, in addition to CFTR genotype, there are other genetic factors related and not related to type 2 diabetes. This review presents an overview of the current understanding on genetic factors associated with glucose metabolism abnormalities in CF.
Collapse
Affiliation(s)
- Fernanda Iafusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
| | - Giovanna Maione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
| | - Francesco Maria Rosanio
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Enza Mozzillo
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Adriana Franzese
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
16
|
Upregulation of CFTR Protects against Palmitate-Induced Endothelial Dysfunction by Enhancing Autophagic Flux. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8345246. [PMID: 33123317 PMCID: PMC7586166 DOI: 10.1155/2020/8345246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Saturated free fatty acids (FFAs) elevate in metabolic symptom leading to endothelial dysfunction. Cystic fibrosis transmembrane regulator (CFTR) functionally expresses in endothelial cells. The role of CFTR in FFA-induced endothelial dysfunction remains unclear. This study is aimed at exploring the effects of CFTR on palmitate- (PA-) induced endothelial dysfunction and its underlying mechanisms. We found that PA-induced endothelial dysfunction is characterized by a decrease of cell viability, reduction of NO generation and mitochondrial membrane potential, impairment of the tube formation, but an increase of ROS generation and cell apoptosis. Simultaneously, PA decreased CFTR protein expression. CFTR agonist Forskolin upregulated CFTR protein expression and protected against PA-induced endothelial dysfunction, while CFTR knockdown exacerbated endothelial dysfunction induced by PA and blunted the protective effects of Forskolin. In addition, PA impaired autophagic flux, and autophagic flux inhibitors aggravated PA-induced endothelial apoptosis. CFTR upregulation significantly restored autophagic flux in PA-insulted endothelial cells, which was involved in increasing the protein expression of Atg16L, Atg12-Atg5 complex, cathepsin B, and cathepsin D. In contrast, CFTR knockdown significantly inhibited the effects of Forskolin on autophagic flux and the expression of the autophagy-regulated proteins. Our findings illustrate that CFTR upregulation protects against PA-induced endothelial dysfunction by improving autophagic flux and underlying mechanisms are involved in enhancing autophagic signaling mediated by the Atg16L-Atg12-Atg5 complex, cathepsin B, and cathepsin D. CFTR might serve as a novel drug target for endothelial protection in cardiovascular diseases with a characteristic of elevation of FFAs.
Collapse
|
17
|
Lam ATN, Aksit MA, Vecchio-Pagan B, Shelton CA, Osorio DL, Anzmann AF, Goff LA, Whitcomb DC, Blackman SM, Cutting GR. Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis. J Clin Invest 2020; 130:272-286. [PMID: 31581148 DOI: 10.1172/jci129833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a common complication of cystic fibrosis (CF) that affects approximately 20% of adolescents and 40%-50% of adults with CF. The age at onset of CF-related diabetes (CFRD) (marked by clinical diagnosis and treatment initiation) is an important measure of the disease process. DNA variants associated with age at onset of CFRD reside in and near SLC26A9. Deep sequencing of the SLC26A9 gene in 762 individuals with CF revealed that 2 common DNA haplotypes formed by the risk variants account for the association with diabetes. Single-cell RNA sequencing (scRNA-Seq) indicated that SLC26A9 is predominantly expressed in pancreatic ductal cells and frequently coexpressed with CF transmembrane conductance regulator (CFTR) along with transcription factors that have binding sites 5' of SLC26A9. These findings were replicated upon reanalysis of scRNA-Seq data from 4 independent studies. DNA fragments derived from the 5' region of SLC26A9-bearing variants from the low-risk haplotype generated 12%-20% higher levels of expression in PANC-1 and CFPAC-1 cells compared with the high- risk haplotype. Taken together, our findings indicate that an increase in SLC26A9 expression in ductal cells of the pancreas delays the age at onset of diabetes, suggesting a CFTR-agnostic treatment for a major complication of CF.
Collapse
Affiliation(s)
- Anh-Thu N Lam
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melis A Aksit
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Briana Vecchio-Pagan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | - Celeste A Shelton
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Ariel Precision Medicine, Pittsburgh, Pennsylvania, USA
| | - Derek L Osorio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arianna F Anzmann
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Loyal A Goff
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Scott M Blackman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garry R Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Wendt A, Eliasson L. Pancreatic α-cells - The unsung heroes in islet function. Semin Cell Dev Biol 2020; 103:41-50. [PMID: 31983511 DOI: 10.1016/j.semcdb.2020.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
The pancreatic islets of Langerhans consist of several hormone-secreting cell types important for blood glucose control. The insulin secreting β-cells are the best studied of these cell types, but less is known about the glucagon secreting α-cells. The α-cells secrete glucagon as a response to low blood glucose. The major function of glucagon is to release glucose from the glycogen stores in the liver. In both type 1 and type 2 diabetes, glucagon secretion is dysregulated further exaggerating the hyperglycaemia, and in type 1 diabetes α-cells fail to counter regulate hypoglycaemia. Although glucagon has been recognized for almost 100 years, the understanding of how glucagon secretion is regulated and how glucagon act within the islet is far from complete. However, α-cell research has taken off lately which is promising for future knowledge. In this review we aim to highlight α-cell regulation and glucagon secretion with a special focus on recent discoveries from human islets. We will present some novel aspects of glucagon function and effects of selected glucose lowering agents on glucagon secretion.
Collapse
Affiliation(s)
- Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden.
| |
Collapse
|
19
|
Okoniewski W, Hughan KS, Weiner GA, Weiner DJ, Forno E. Glycemic control and FEV 1 recovery during pulmonary exacerbations in pediatric cystic fibrosis-related diabetes. J Cyst Fibros 2020; 19:460-465. [PMID: 31980357 DOI: 10.1016/j.jcf.2019.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
Abstract
RATIONALE Whether short-term glucose control in cystic fibrosis-related diabetes (CFRD) is associated with FEV1 recovery during acute pulmonary exacerbations is unclear. METHODS Data from all patients with CFRD ages 6-21 years hospitalized in 2010-2016 for pulmonary exacerbations at our CF Center were analyzed, including CFRD status at each encounter, all FEV1 recorded during each exacerbation, and relevant clinical covariates. Glucose control was analyzed using meter blood glucose area under the curve (AUC) indices. The primary outcome was FEV1 recovery. RESULTS Patients with CFRD who finished IV antibiotics at home were treated for longer than those fully treated in the hospital (22.2 vs. 13.8 days). In those who finished treatment at home, poor inpatient glycemic control was associated with lower lung function improvement: when comparing the 75th to the 25th percentile of each glycemic index (i.e., "poorer" vs. "better" glycemic control), FEV1 recovery at discharge was 20.1% lower for glucose AUC (95%CI -0.4%, -39.9%); 20.9% lower for 48-h AUC (95%CI -2.7%, -39.1%); and 28.2% lower for AUC/day (95%CI -7.1%, -49.3%). Similar results were found at the end of IV antibiotics and at clinic follow-up. Likewise, patients with poor glycemic control had a lower slope of inpatient FEV1 recovery. Analysis in patients with normal glucose tolerance was largely non-significant. No associations were found between hemoglobin A1c and FEV1 recovery. CONCLUSIONS In patients with CFRD who complete IV antibiotic treatment at home, poor inpatient glycemic control is associated with worse FEV1 recovery despite longer duration of treatment.
Collapse
Affiliation(s)
- William Okoniewski
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Division of Pulmonary Medicine, Pittsburgh, PA, United States
| | - Kara S Hughan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Division of Endocrinology and Diabetes, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | | | - Daniel J Weiner
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Division of Pulmonary Medicine, Pittsburgh, PA, United States
| | - Erick Forno
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Division of Pulmonary Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
20
|
Short-term CFTR inhibition reduces islet area in C57BL/6 mice. Sci Rep 2019; 9:11244. [PMID: 31375720 PMCID: PMC6677757 DOI: 10.1038/s41598-019-47745-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis-related diabetes (CFRD) worsens CF lung disease leading to early mortality. Loss of beta cell area, even without overt diabetes or pancreatitis is consistently observed. We investigated whether short-term CFTR inhibition was sufficient to impact islet morphology and function in otherwise healthy mice. CFTR was inhibited in C57BL/6 mice via 8-day intraperitoneal injection of CFTRinh172. Animals had a 7-day washout period before measures of hormone concentration or islet function were performed. Short-term CFTR inhibition increased blood glucose concentrations over the course of the study. However, glucose tolerance remained normal without insulin resistance. CFTR inhibition caused marked reductions in islet size and in beta cell and non-beta cell area within the islet, which resulted from loss of islet cell size rather than islet cell number. Significant reductions in plasma insulin concentrations and pancreatic insulin content were also observed in CFTR-inhibited animals. Temporary CFTR inhibition had little long-term impact on glucose-stimulated, or GLP-1 potentiated insulin secretion. CFTR inhibition has a rapid impact on islet area and insulin concentrations. However, islet cell number is maintained and insulin secretion is unaffected suggesting that early administration of therapies aimed at sustaining beta cell mass may be useful in slowing the onset of CFRD.
Collapse
|
21
|
Kelsey R, Manderson Koivula FN, McClenaghan NH, Kelly C. Cystic Fibrosis-Related Diabetes: Pathophysiology and Therapeutic Challenges. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419851770. [PMID: 31191067 PMCID: PMC6539575 DOI: 10.1177/1179551419851770] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis–related diabetes (CFRD) is among the most common extrapulmonary co-morbidity associated with cystic fibrosis (CF), affecting an estimated 50% of adults with the condition. Cystic fibrosis is prevalent in 1 in every 2500 Caucasian live births and is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Mutated CFTR leads to dehydrated epithelial surfaces and a build-up of mucus in a variety of tissues including the lungs and pancreas. The leading cause of mortality in CF is repeated respiratory bacterial infections, which prompts a decline in lung function. Co-morbid diabetes promotes bacterial colonisation of the airways and exacerbates the deterioration in respiratory health. Cystic fibrosis–related diabetes is associated with a 6-fold higher mortality rate compared with those with CF alone. The management of CFRD adds a further burden for the patient and creates new therapeutic challenges for the clinical team. Several proposed hypotheses on how CFRD develops have emerged, including exocrine-driven fibrosis and destruction of the entire pancreas and contrasting theories on the direct or indirect impact of CFTR mutation on islet function. The current review outlines recent data on the impact of CFTR on endocrine pancreatic function and discusses the use of conventional diabetic therapies and new CFTR-correcting drugs on the treatment of CFRD.
Collapse
Affiliation(s)
- Ryan Kelsey
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, University of Ulster, Derry/Londonderry, UK
| | - Fiona N Manderson Koivula
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, University of Ulster, Derry/Londonderry, UK
| | | | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, University of Ulster, Derry/Londonderry, UK
| |
Collapse
|
22
|
Edlund A, Barghouth M, Huhn M, Abels M, Esguerra J, Mollet I, Svedin E, Wendt A, Renstrom E, Zhang E, Wierup N, Scholte BJ, Flodström-Tullberg M, Eliasson L. Defective exocytosis and processing of insulin in a cystic fibrosis mouse model. J Endocrinol 2019; 241:JOE-18-0570.R1. [PMID: 30721137 DOI: 10.1530/joe-18-0570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/05/2019] [Indexed: 01/21/2023]
Abstract
Cystic fibrosis-related diabetes (CFRD) is a common complication for patients with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The cause of CFRD is unclear, but a commonly observed reduction in first-phase insulin secretion suggests defects at the beta cell level. Here we aimed to examine beta- and alpha-cell function in the Cftrtm1EUR/F508del mouse model (C57BL/6J), which carries the most common human mutation in CFTR, the F508del mutation. CFTR expression, beta cell mass, insulin granule distribution, hormone secretion and single cell capacitance changes were evaluated using islets (or beta cells) from F508del mice and age-matched wild-type mice aged 7-10 weeks. Granular pH was measured with DND-189 fluorescence. Serum glucose, insulin and glucagon levels were measured in vivo, and glucose tolerance was assessed using IPGTT. We show increased secretion of proinsulin and concomitant reduced secretion of C-peptide in islets from F508del mice compared to WT mice. Exocytosis and number of docked granules was reduced. We confirmed reduced granular pH by CFTR stimulation. We detected decreased pancreatic beta cell area, but unchanged beta cell number. Moreover, the F508del mutation caused failure to suppress glucagon secretion leading to hyperglucagonemia. In conclusion, F508del mice have beta cell defects resulting in 1) reduced number of docked insulin granules and reduced exocytosis, and 2) potential defective proinsulin cleavage and secretion of immature insulin. These observations provide insight into the functional role of CFTR in pancreatic islets and contribute to increased understanding of the pathogenesis of CFRD.
Collapse
Affiliation(s)
- Anna Edlund
- A Edlund, Clinical sciences in Malmo, Lund University, Malmo, 21428, Sweden
| | - Mohammad Barghouth
- M Barghouth, Dept Clinical Sciences in Malmö, Lunds Universitet, Malmö, Sweden
| | - Michael Huhn
- M Huhn, of medicine Huddinge, Karolinska institute, Center for infectious medicine, Stockholm, Sweden
| | - Mia Abels
- M Abels, Department of clinical sciencies in Malmo, Lunds Universitet Institutionen for kliniska vetenskaper i Malmo, Malmo, Sweden
| | - Jonathan Esguerra
- J Esguerra, Clinical Sciences - Malmö, Lund University, Malmö, 21428, Sweden
| | - Ines Mollet
- I Mollet, CEDOC - Chronic Diseases Research Center, NOVA Medical School - Faculdade de Ciências Médicas, Lisboa, 1150-082, Portugal
| | - Emma Svedin
- E Svedin, Department of Medicine Huddinge, Karolinska Institutet Department of Medicine Huddinge, Stockholm, Sweden
| | - Anna Wendt
- A Wendt, Dept Clinical Sciences in Malmö, Lunds Universitet, Malmö, Sweden
| | - Erik Renstrom
- E Renstrom, Clinical Sciences Malmo, Lund University, Malmo, SE-20502, Sweden
| | - Enming Zhang
- E Zhang, Department of Clinical Science, Lund Uinversity, Malmö, 20502, Sweden
| | - Nils Wierup
- N Wierup, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, 20502, Sweden
| | - Bob J Scholte
- B Scholte, Department of Cellbiology, Pediatric Pulmonology, Erasmus MC, Rotterdam, Netherlands
| | - Malin Flodström-Tullberg
- M Flodström-Tullberg, Dept of Medicine Huddinge, Karolinska institute, Center for Infectious Medicine, Stockholm, Sweden
| | - Lena Eliasson
- L Eliasson, Dept Clinical Sciences in Malmö, Lunds Universitet, Malmö, 214 28, Sweden
| |
Collapse
|
23
|
Hart NJ, Aramandla R, Poffenberger G, Fayolle C, Thames AH, Bautista A, Spigelman AF, Babon JAB, DeNicola ME, Dadi PK, Bush WS, Balamurugan AN, Brissova M, Dai C, Prasad N, Bottino R, Jacobson DA, Drumm ML, Kent SC, MacDonald PE, Powers AC. Cystic fibrosis-related diabetes is caused by islet loss and inflammation. JCI Insight 2018; 3:98240. [PMID: 29669939 PMCID: PMC5931120 DOI: 10.1172/jci.insight.98240] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis-related (CF-related) diabetes (CFRD) is an increasingly common and devastating comorbidity of CF, affecting approximately 35% of adults with CF. However, the underlying causes of CFRD are unclear. Here, we examined cystic fibrosis transmembrane conductance regulator (CFTR) islet expression and whether the CFTR participates in islet endocrine cell function using murine models of β cell CFTR deletion and normal and CF human pancreas and islets. Specific deletion of CFTR from murine β cells did not affect β cell function. In human islets, CFTR mRNA was minimally expressed, and CFTR protein and electrical activity were not detected. Isolated CF/CFRD islets demonstrated appropriate insulin and glucagon secretion, with few changes in key islet-regulatory transcripts. Furthermore, approximately 65% of β cell area was lost in CF donors, compounded by pancreatic remodeling and immune infiltration of the islet. These results indicate that CFRD is caused by β cell loss and intraislet inflammation in the setting of a complex pleiotropic disease and not by intrinsic islet dysfunction from CFTR mutation.
Collapse
Affiliation(s)
- Nathaniel J. Hart
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Radhika Aramandla
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gregory Poffenberger
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cody Fayolle
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ariel H. Thames
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F. Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Aurielle B. Babon
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Megan E. DeNicola
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Prasanna K. Dadi
- School of Medicine, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Appakalai N. Balamurugan
- Center for Cellular Transplantation, Department of Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| | - Marcela Brissova
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chunhua Dai
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nripesh Prasad
- Hudson Alpha Institute of Biotechnology, Huntsville, Alabama, USA
| | - Rita Bottino
- Allegheny Singer Research Institute, Pittsburgh, Pennsylvania, USA
| | - David A. Jacobson
- School of Medicine, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mitchell L. Drumm
- School of Medicine, Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sally C. Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alvin C. Powers
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- School of Medicine, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disorder in Caucasian populations. Individuals with CF have seen significant increases in life expectancy in the last 60 years. As a result, previously rare complications are now coming to light. The most common of these is cystic fibrosis-related diabetes (CFRD), which affects 40-50% of CF adults. CFRD significantly impacts the pulmonary function and longevity of CF patients, yet a lack of consensus on the best methods to diagnose and treat CFRD remains. We begin by reviewing our understanding of the pathogenesis of CFRD, as emerging evidence shows the cystic fibrosis transmembrane conductance regulator (CFTR) also has important roles in the release of insulin and glucagon and in the protection of β cells from oxidative stress. We then discuss how current recommended methods of CFRD diagnosis are not appropriate, as continuous glucose monitoring becomes more effective, practical, and cost-effective. Finally, we evaluate emerging treatments which have narrowed the mortality gap within the CF patient group. In the future, pharmacological potentiators and correctors directly targeting CFTR show huge promise for both CFRD and the wider CF patient groups.
Collapse
Affiliation(s)
- Kayani Kayani
- Faculty of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Raihan Mohammed
- Faculty of Medicine, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Raihan Mohammed,
| | - Hasan Mohiaddin
- Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Huang WQ, Guo JH, Yuan C, Cui YG, Diao FY, Yu MK, Liu JY, Ruan YC, Chan HC. Abnormal CFTR Affects Glucagon Production by Islet α Cells in Cystic Fibrosis and Polycystic Ovarian Syndrome. Front Physiol 2017; 8:835. [PMID: 29204121 PMCID: PMC5698272 DOI: 10.3389/fphys.2017.00835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
Glucagon, produced by islet α cells, functions to increase blood glucose. Abnormal glucose levels are often seen in cystic fibrosis (CF), a systematic disease caused by mutations of the CF transmembrane conductance regulator (CFTR), and in polycystic ovarian syndrome (PCOS), an endocrine disorder featured with hyperandrogenism affecting 5-10% women of reproductive age. Here, we explored the role of CFTR in glucagon production in α cells and its possible contribution to glucagon disturbance in CF and PCOS. We found elevated fasting glucagon levels in CFTR mutant (DF508) mice compared to the wildtypes. Glucagon and prohormone convertase 2 (PC2) were also upregulated in CFTR inhibitor-treated or DF508 islets, as compared to the controls or wildtypes, respectively. Dihydrotestosterone (DHT)-induced PCOS rats exhibited significantly lower fasting glucagon levels with higher CFTR expression in α cells compared to that of controls. Treatment of mouse islets or αTC1-9 cells with DHT enhanced CFTR expression and reduced the levels of glucagon and PC2. The inhibitory effect of DHT on glucagon production was blocked by CFTR inhibitors in mouse islets, and mimicked by overexpressing CFTR in αTC1-9 cells with reduced phosphorylation of the cAMP/Ca2+ response element binding protein (p-CREB), a key transcription factor for glucagon and PC2. These results revealed a previously undefined role of CFTR in suppressing glucagon production in α-cells, defects in which may contribute to glucose metabolic disorder seen in CF and PCOS.
Collapse
Affiliation(s)
- Wen Qing Huang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Hui Guo
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Chun Yuan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Gui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Yang Diao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mei Kuen Yu
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Jia Yin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Chun Ruan
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|