1
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2025; 31:21-47. [PMID: 39331957 PMCID: PMC11696709 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
2
|
Huang R, Kratka CE, Pea J, McCann C, Nelson J, Bryan JP, Zhou LT, Russo DD, Zaniker EJ, Gandhi AH, Shalek AK, Cleary B, Farhi SL, Duncan FE, Goods BA. Single-cell and spatiotemporal profile of ovulation in the mouse ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594719. [PMID: 38826447 PMCID: PMC11142086 DOI: 10.1101/2024.05.20.594719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ovulation is a spatiotemporally coordinated process that involves several tightly controlled events, including oocyte meiotic maturation, cumulus expansion, follicle wall rupture and repair, and ovarian stroma remodeling. To date, no studies have detailed the precise window of ovulation at single-cell resolution. Here, we performed parallel single-cell RNA-seq and spatial transcriptomics on paired mouse ovaries across an ovulation time course to map the spatiotemporal profile of ovarian cell types. We show that major ovarian cell types exhibit time-dependent transcriptional states enriched for distinct functions and have specific localization profiles within the ovary. We also identified gene markers for ovulation-dependent cell states and validated these using orthogonal methods. Finally, we performed cell-cell interaction analyses to identify ligand-receptor pairs that may drive ovulation, revealing previously unappreciated interactions. Taken together, our data provides a rich and comprehensive resource of murine ovulation that can be mined for discovery by the scientific community.
Collapse
|
3
|
Fiorentino G, Merico V, Zanoni M, Comincini S, Sproviero D, Garofalo M, Gagliardi S, Cereda C, Lin CJ, Innocenti F, Taggi M, Vaiarelli A, Ubaldi FM, Rienzi L, Cimadomo D, Garagna S, Zuccotti M. Extracellular vesicles secreted by cumulus cells contain microRNAs that are potential regulatory factors of mouse oocyte developmental competence. Mol Hum Reprod 2024; 30:gaae019. [PMID: 38745364 PMCID: PMC12054941 DOI: 10.1093/molehr/gaae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Valeria Merico
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Mario Zanoni
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Sergio Comincini
- Functional Genomics Laboratory, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- IFOM, IFOM—The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare Diseases, Buzzi Children’s Hospital, Milan, Italy
| | - Chih-Jen Lin
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Wijesena HR, Keel BN, Nonneman DJ, Cushman RA, Lents CA. Clustering of multi-tissue transcriptomes in gilts with normal cyclicity or delayed puberty reveals genes related to pubertal development†. Biol Reprod 2024; 110:261-274. [PMID: 37870496 DOI: 10.1093/biolre/ioad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023] Open
Abstract
In gilts, puberty is marked by standing estrus in the presence of a boar. Delayed puberty (DP; failure to display pubertal estrus) is a major reason for gilt removal. To investigate the physiological determinants underlying DP in gilts, transcriptomic data from tissues relevant to estrus and puberty, such as mediobasal hypothalamus, anterior pituitary gland, ovarian cortex, olfactory bulb, amygdala, and hippocampus, were obtained from age-matched DP (n = 8) and cyclic control gilts at follicular phase (n = 8) and luteal phase (n = 8) of the estrous cycle. A gene expression module analysis via three-way gene × individual × tissue clustering using tensor decomposition identified pituitary and ovary gene modules contributing to regulation of pubertal development. Analysis of gene expression in the hypothalamic-pituitary-ovary axis identified reduced expression of hypothalamic genes critical for stimulating gonadotropin secretion (KISS1 and TAC3) and reduced expression of LHB in the anterior pituitary of DP gilts compared with their cyclic counterparts. Consequently, luteinizing hormone-induced genes in the ovary important for folliculogenesis (OXTR, RUNX2, and PTX3) were less expressed in DP gilts. Other intrafollicular genes (AHR, PTGS2, PTGFR, and IGFBP7) and genes in the steroidogenesis pathways (STAR and CYP11A1) necessary to complete the ovulatory cascade were also less expressed in DP gilts. This is the first clustering of multi-tissue expression data from DP and cyclic gilts to identify genes differentially expressed in gilts of similar ages but at different levels of sexual development. A critical lack of gonadotropin support and reduced ovarian responsiveness underlie DP in gilts.
Collapse
Affiliation(s)
| | - Brittney N Keel
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE, USA
| | - Dan J Nonneman
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE, USA
| | | | - Clay A Lents
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
5
|
Mantri M, Zhang HH, Spanos E, Ren YA, De Vlaminck I. A spatiotemporal molecular atlas of the ovulating mouse ovary. Proc Natl Acad Sci U S A 2024; 121:e2317418121. [PMID: 38252830 PMCID: PMC10835069 DOI: 10.1073/pnas.2317418121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Ovulation is essential for reproductive success, yet the underlying cellular and molecular mechanisms are far from clear. Here, we applied high-resolution spatiotemporal transcriptomics to map out cell type- and ovulation stage-specific molecular programs as function of time during follicle maturation and ovulation in mice. Our analysis revealed dynamic molecular transitions within granulosa cell types that occur in tight coordination with mesenchymal cell proliferation. We identified molecular markers for the emerging cumulus cell fate during the preantral-to-antral transition. We describe transcriptional programs that respond rapidly to ovulation stimulation and those associated with follicle rupture, highlighting the prominent roles of apoptotic and metabolic pathways during the final stages of follicle maturation. We further report stage-specific oocyte-cumulus cell interactions and diverging molecular differentiation in follicles approaching ovulation. Collectively, this study provides insights into the cellular and molecular processes that regulate mouse ovarian follicle maturation and ovulation with important implications for advancing therapeutic strategies in reproductive medicine.
Collapse
Affiliation(s)
- Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14850
| | | | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14850
| | - Yi A. Ren
- Department of Animal Science, Cornell University, Ithaca, NY14850
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14850
| |
Collapse
|
6
|
Liu X, Zhang J, Wang X, Zhang Z. Transcriptomic analysis identifies diagnostic genes in polycystic ovary syndrome and periodontitis. Eur J Med Res 2024; 29:3. [PMID: 38167332 PMCID: PMC10762819 DOI: 10.1186/s40001-023-01499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE To investigate underlying co-mechanisms of PCOS and periodontitis through transcriptomic approach. METHODS PCOS and periodontitis gene expression data were downloaded from the GEO database to identify differentially expressed genes. GO and KEGG pathway enrichment analysis and random forest algorithm were used to screen hub genes. GSEA analyzed the functions of hub genes. Correlations between hub genes and immune infiltration in two diseases were examined, constructing a TF-ceRNA regulatory network. Clinical samples were gathered from PCOS and periodontitis patients and RT-qPCR was performed to verify the connection. RESULTS There were 1661 DEGs in PCOS and 701 DEGs in periodontitis. 66 intersected genes were involved and were enriched in immune and inflammation-related biological pathways. 40 common genes were selected from the PPI network. RF algorithm demonstrated that ACSL5, NLRP12, CCRL2, and CEACAM3 were hub genes, and GSEA results revealed their close relationship with antigen processing and presentation, and chemokine signaling pathway. RT-qPCR results confirmed the upregulated gene expression in both PCOS and periodontitis. CONCLUSION The 4 hub genes ACSL5, NLRP12, CCRL2, and CEACAM3 may be diagnostic genes for PCOS and periodontitis. The created ceRNA network could provide a molecular basis for future studies on the association between PCOS and periodontitis.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Stomatology, Peking University Third Hospital, Beijing, China.
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Jingran Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiao Wang
- Department of Stomatology, Peking University Third Hospital, Beijing, China
| | - Zhihui Zhang
- Department of Stomatology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
7
|
Rozen EJ, Ozeroff CD, Allen MA. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome. Hum Genomics 2023; 17:83. [PMID: 37670378 PMCID: PMC10481493 DOI: 10.1186/s40246-023-00531-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Christopher D Ozeroff
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave., Boulder, CO, 80309, USA
| | - Mary Ann Allen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Mantri M, Zhang HH, Spanos E, Ren YA, Vlaminck ID. A Spatiotemporal Molecular Atlas of the Ovulating Mouse Ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554210. [PMID: 37662215 PMCID: PMC10473623 DOI: 10.1101/2023.08.21.554210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Ovulation is essential for reproductive success, yet the underlying cellular and molecular mechanisms are far from clear. Here, we applied high-resolution spatiotemporal transcriptomics to map out cell-type- and ovulation-stage-specific molecular programs as function of time during follicle maturation and ovulation in mice. Our analysis revealed dynamic molecular transitions within granulosa cell types that occur in tight coordination with mesenchymal cell proliferation. We identified new molecular markers for the emerging cumulus cell fate during the preantral-to-antral transition. We describe transcriptional programs that respond rapidly to ovulation stimulation and those associated with follicle rupture, highlighting the prominent roles of apoptotic and metabolic pathways during the final stages of follicle maturation. We further report stage-specific oocyte-cumulus cell interactions and diverging molecular differentiation in follicles approaching ovulation. Collectively, this study provides insights into the cellular and molecular processes that regulate mouse ovarian follicle maturation and ovulation with important implications for advancing therapeutic strategies in reproductive medicine.
Collapse
Affiliation(s)
- Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Yi A Ren
- Department of Animal Science, Cornell University, Ithaca, New York
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
9
|
Chen Y, Zhou J, Wu S, Wang L, Chen G, Chen D, Peng X, Miao YL, Mei S, Li F. ISG15 suppresses ovulation and female fertility by ISGylating ADAMTS1. Cell Biosci 2023; 13:84. [PMID: 37170317 PMCID: PMC10176748 DOI: 10.1186/s13578-023-01024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND ISGylation is a post-translational protein modification that regulates many life activities, including immunomodulation, antiviral responses, and embryo implantation. The exact contribution of ISGylation to folliculogenesis remains largely undefined. RESULTS Here, Isg15 knockout in mice causes hyperfertility along with sensitive ovarian responses to gonadotropin, such as increases in cumulus expansion and ovulation rate. Moreover, ISG15 represses the expression of ovulation-related genes in an ISGylation-dependent manner. Mechanistically, ISG15 binds to ADAMTS1 via the ISG15-conjugating system (UBA7, UBE2L6, and HERC6), ISGylating ADAMTS1 at the binding sites Lys309, Lys593, Lys597, and Lys602, resulting in ADAMTS1 degradation via a 20S proteasome-dependent pathway. CONCLUSION Taken together, the present study demonstrates that covalent ISG15 conjugation produces a novel regulatory axis of ISG15-ADAMTS1 that enhances the degradation of ADAMTS1, thereby compromising ovulation and female fertility.
Collapse
Affiliation(s)
- Yaru Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawei Zhou
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Shang Wu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaogui Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dake Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yi-Liang Miao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Fenge Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
10
|
Workman S, Wilson MJ. RNA sequencing and expression analysis reveal a role for Lhx9 in the haploinsufficient adult mouse ovary. Mol Reprod Dev 2023; 90:295-309. [PMID: 37084273 DOI: 10.1002/mrd.23686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
Understanding the molecular pathways that underpin ovarian development and function is vital for improving the research approaches to investigating fertility. Despite a significant improvement in our knowledge of molecular activity in the ovary, many questions remain unanswered in the quest to understand factors influencing fertility and ovarian pathologies such as cancer. Here, we present an investigation into the expression and function of the developmental transcription factor LIM Homeobox 9 (LHX9) in the adult mouse ovary. We have characterized Lhx9 expression in several cell types of the mature ovary across follicle stages. To evaluate possible LHX9 function in the adult ovary, we investigated ovarian anatomy and transcription in an Lhx9+/- knockout mouse model displaying subfertility. Despite a lack of gross anatomical differences between genotypes, RNA-sequencing found that 90 differentially expressed genes between Lhx9+/ - and Lhx9+/+ mice. Gene ontology analyses revealed a reduced expression of genes with major roles in ovarian steroidogenesis and an increased expression of genes associated with ovarian cancer. Analysis of the ovarian epithelium revealed Lhx9+/ - mice have a disorganized epithelial phenotype, corresponding to a significant increase in epithelial marker gene expression. These results provide an analysis of Lhx9 in the adult mouse ovary, suggesting a role in fertility and ovarian epithelial cancer.
Collapse
Affiliation(s)
- Stephanie Workman
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Megan J Wilson
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Li XL, Zhu HJ, Zhang Q, Li YS, Li YC, Feng X, Yuan RY, Sha QQ, Ma JY, Luo SM, Sun QY, Chen LN, Ou XH. Continuous light exposure influences luteinization and luteal function of ovary in ICR mice. J Pineal Res 2023; 74:e12846. [PMID: 36428267 DOI: 10.1111/jpi.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
With the rapid change of people's lifestyle, more childbearing couples live with irregular schedules (i.e., staying up late) and suffer from decreased fertility and abortion, which can be caused by luteal phase defect (LPD). We used continuous light-exposed mice as a model to observe whether continuous light exposure may affect luteinization and luteal function. We showed that the level of progesterone in serum reduced (p < .001), the number of corpus luteum (CL) decreased (p < .01), and the expressions of luteinization-related genes (Lhcgr, Star, Ptgfr, and Runx2), clock genes (Clock and Per1), and Mt1 were downregulated (p < .05) in the ovaries of mice exposed to continuous light, suggesting that continuous light exposure induces defects in luteinization and luteal functions. Strikingly, injection of melatonin (3 mg/kg) could improve luteal functions in continuous light-exposed mice. Moreover, we found that, after 2 h of hCG injection, the level of pERK1/2 in the ovary decreased in the continuous light group, but increased in the melatonin administration group, suggesting that melatonin can improve LPD caused by continuous light exposure through activating the ERK1/2 pathway. In summary, our data demonstrate that continuous light exposure affects ovary luteinization and luteal function, which can be rescued by melatonin.
Collapse
Affiliation(s)
- Xiao-Long Li
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hai-Jing Zhu
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qin Zhang
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yong-Shi Li
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yan-Chu Li
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Rui-Ying Yuan
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qian-Qian Sha
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jun-Yu Ma
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shi-Ming Luo
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei-Ning Chen
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
AM22, a novel synthetic microRNA, inhibits the proliferation of colorectal cancer cells by targeting core binding factor subunit β (CBFB). Invest New Drugs 2022; 40:469-477. [PMID: 34985594 DOI: 10.1007/s10637-021-01208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
Our previous studies have revealed the important roles of the nonseed regions of microRNAs (miRNAs) in gene regulation, which provided novel insight into the development of miRNA analogs for cancer therapy. Here, we altered each nucleotide in the nonseed region of miR-34a and obtained novel synthetic miRNA analogs. Among them, AM22, with a base alteration from G to C at the 17th nucleotide of miR-34a, showed extensive antiproliferative activity against several colorectal tumor cell lines and achieved effective inhibition of core binding factor subunit β (CBFB) expression. Subsequent investigations demonstrated that AM22 directly targeted CBFB by binding to its 3'-untranslated region (3'-UTR). Inhibition of CBFB showed obvious antiproliferative activity on HCT-116 and SW620 cells. Furthermore, the antiproliferative effects of AM22 on these cells were also measured in xenograft mouse models. In conclusion, this study identified AM22 as a potential antitumor miRNA by targeting CBFB and provided a new design approach for miRNA-based cancer treatment by changing the nonseed region of miRNA.
Collapse
|
13
|
Chermuła B, Kranc W, Celichowski P, Stelmach B, Piotrowska-Kempisty H, Mozdziak P, Pawelczyk L, Spaczyński RZ, Kempisty B. Cellular Processes in Human Ovarian Follicles Are Regulated by Expression Profile of New Gene Markers—Clinical Approach. J Clin Med 2021; 11:jcm11010073. [PMID: 35011815 PMCID: PMC8745700 DOI: 10.3390/jcm11010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
In the growing ovarian follicle, the maturing oocyte is accompanied by cumulus (CCs) and granulosa (GCs) cells. Currently, there remain many unanswered questions about the epithelial origin of these cells. Global and targeted gene transcript levels were assessed on 1, 7, 15, 30 days of culture for CCs and GCs. Detailed analysis of the genes belonging to epithelial cell-associated ontological groups allowed us to assess a total of 168 genes expressed in CCs (97 genes) and GCs (71 genes) during long-term in vitro culture. Expression changes of the analyzed genes allowed the identification of the group of genes: TGFBR3, PTGS2, PRKX, AHI1, and IL11, whose expression decreased the most and the group of ANXA3, DKK1, CCND1, STC1, CAV1, and SFRP4 genes, whose expression significantly increased. These genes’ expression indicates CCs and GCs epithelialization processes and their epithelial origin. Expression change analysis of genes involved in epithelization processes in GCs and CCs during their in vitro culture made it possible to describe the most significantly altered of the 11 genes. Detailed analysis of gene expression in these two cell populations at different time intervals confirms their ovarian surface epithelial origin. Furthermore, some gene expression profiles appear to have tumorigenic properties, suggesting that granulosa cells may play a role in cancerogenesis.
Collapse
Affiliation(s)
- Błażej Chermuła
- Department of Gynecology, Division of Infertility and Reproductive Endocrinology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
| | - Bogusława Stelmach
- Department of Gynecology, Division of Infertility and Reproductive Endocrinology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Leszek Pawelczyk
- Department of Gynecology, Division of Infertility and Reproductive Endocrinology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Robert Zygmunt Spaczyński
- Department of Gynecology, Division of Infertility and Reproductive Endocrinology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61-854-6418; Fax: +48-61-854-6440
| |
Collapse
|
14
|
Andersen CL, Byun H, Li Y, Xiao S, Miller DM, Wang Z, Viswanathan S, Hancock JM, Bromfield J, Ye X. Varied effects of doxorubicin (DOX) on the corpus luteum of C57BL/6 mice during early pregnancy†. Biol Reprod 2021; 105:1521-1532. [PMID: 34554181 PMCID: PMC8689115 DOI: 10.1093/biolre/ioab180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/22/2021] [Indexed: 11/14/2022] Open
Abstract
Certain chemotherapeutic drugs are toxic to ovarian follicles. The corpus luteum (CL) is normally developed from an ovulated follicle for producing progesterone (P4) to support early pregnancy. To fill in the knowledge gap about effects of chemotherapy on the CL, we tested the hypothesis that chemotherapy may target endothelial cells and/or luteal cells in the CL to impair CL function in P4 steroidogenesis using doxorubicin (DOX) as a representative chemotherapeutic drug in mice. In both mixed background mice and C57BL/6 mice, a single intraperitoneal injection of DOX (10 mg/kg) on 0.5-day postcoitum (D0.5, postovulation) led to ~58% D3.5 mice with serum P4 levels lower than the serum P4 range in the phosphate buffer saline-treated control mice. Further studies in the C57BL/6 ovaries revealed that CLs from DOX-treated mice with low P4 levels had less defined luteal cords and disrupted collagen IV expression pattern, indicating disrupted capillary, accompanied with less differentiated luteal cells that had smaller cytoplasm and reduced StAR expression. DOX-treated ovaries had increased granulosa cell death in the growing follicles, reduced proliferating cell nuclear antigen-positive endothelial cells in the CLs, enlarged lipid droplets, and disrupted F-actin in the luteal cells. These novel data suggest that the proliferating endothelial cells in the developing CL may be the primary target of DOX to impair the vascular support for luteal cell differentiation and subsequently P4 steroidogenesis. This study fills in the knowledge gap about the toxic effects of chemotherapy on the CL and provides critical information for risk assessment of chemotherapy in premenopausal patients.
Collapse
Affiliation(s)
- Christian Lee Andersen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Haeyeun Byun
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Yuehuan Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Doris M Miller
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zidao Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Suvitha Viswanathan
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jonathan Matthew Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Jaymie Bromfield
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Chakravarthi VP, Ratri A, Masumi S, Borosha S, Ghosh S, Christenson LK, Roby KF, Wolfe MW, Rumi MAK. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: The role of estrogen receptor β. Mol Cell Endocrinol 2021; 528:111212. [PMID: 33676987 PMCID: PMC8916094 DOI: 10.1016/j.mce.2021.111212] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Follicle development beyond the preantral stage is dependent on gonadotropins. FSH signaling is crucial for the advancement of preantral follicles to the antral stage, and LH signaling is essential for further maturation of preovulatory follicles. Estrogen is intricately tied to gonadotropin signaling during the advanced stages of folliculogenesis. We observed that Erβnull ovarian follicles fail to develop beyond the antral stage, even after exogenous gonadotropin stimulation. As ERβ is primarily expressed in the granulosa cells (GCs), we explored the gonadotropin-regulated GC genes that induce maturation of antral follicles. Synchronized follicle development was induced by administration of exogenous gonadotropins to wildtype 4-wk-old female rats. The GC transcriptome was analyzed via RNA-sequencing before and after gonadotropin stimulation. An Erβnull mutant model that fails to show follicle maturation was also included in order to identify the ERβ-regulated genes involved at this step. We observed that specific groups of genes were differentially expressed in response to PMSG or hCG administration in wildtype rats. While some of the PMSG or hCG-induced genes showed a similar expression pattern in Erβnull GCs, a subset of PMSG- or hCG-induced genes showed a differential expression pattern in Erβnull GCs. These latter ERβ-regulated genes included previously known FSH or LH target genes including Lhcgr, Cyp11a1, Cyp19a1, Pgr, Runx2, Egfr, Kiss1, and Ptgs2, which are involved in follicle development, oocyte maturation, and ovulation. We also identified novel ERβ-regulated genes including Jaml, Galnt6, Znf750, Dusp9, Wnt16, and Mageb16 that failed to respond to gonadotropin stimulation in Erβnull GCs. Our findings indicate that the gonadotropin-induced spatiotemporal pattern of gene expression is essential for ovarian follicle maturation beyond the antral stage. However, expression of a subset of those gonadotropin-induced genes is dependent on transcriptional regulation by ERβ.
Collapse
Affiliation(s)
| | - Anamika Ratri
- Department of Molecular and Integrative Physiology, Kansas City, KS, USA
| | - Saeed Masumi
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - Katherine F Roby
- Department of Anatomy and Cell Biology, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
16
|
Guo T, Xing Y, Chen Z, Wang X, Zhu H, Yang L, Yan Y. Core-binding factor beta is required for osteoblast differentiation during fibula fracture healing. J Orthop Surg Res 2021; 16:313. [PMID: 33990210 PMCID: PMC8120848 DOI: 10.1186/s13018-021-02410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Growing evidence has implicated core-binding factor beta (Cbfb) as a contributor to osteoblast differentiation, which plays a key role in fracture healing. Herein, we aimed to assess whether Cbfb affects osteoblast differentiation after fibula fracture. Methods Initially, we established a Cbfb conditional knockout mouse model for subsequent studies. Immunohistochemical staining was conducted to detect the expression of proliferating cell nuclear antigen (PCNA) and collagen II in the fracture end. Next, we isolated and cultured osteoblasts from specific Cbfb conditional knockout mice for BrdU analysis, alkaline phosphatase (ALP) staining, and von Kossa staining to detect osteoblast viability, differentiation, and mineralization, respectively. Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect the expression of osteoblast differentiation-related genes. Results The Cbfb conditional knockout mice exhibited downregulated expression of PCNA and collagen II, reduced ALP activity, and mineralization, as well as diminished expression of osteoblast differentiation-related genes. Further, Cbfb knockout exerted no obvious effects on osteoblast proliferation. Conclusions Overall, these results substantiated that Cbfb could promote fibula fracture healing and osteoblast differentiation and thus provided a promising therapeutic target for clinical treatment of fibula fracture. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02410-9.
Collapse
Affiliation(s)
- Tuanmao Guo
- The Second Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Yanli Xing
- The Pharmacy Department, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China.
| | - Zhongning Chen
- The Second Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Xianhong Wang
- The Second Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Haiyun Zhu
- The Second Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Lan Yang
- The Second Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Yong Yan
- The Second Department of Orthopedics, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, 710003, People's Republic of China
| |
Collapse
|
17
|
Guo L, Chen B, Zhang G, Wang Y, Cao L, Ren C, Wen L, Lin J, Wei G, Liao N. The transcription factor CBFB mutations indicate an improved survival in HR+/HER2- breast cancer. Gene 2020; 759:144970. [PMID: 32711101 DOI: 10.1016/j.gene.2020.144970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND As a critical transcription factor, CBFB (core binding factor subunit β) is frequently mutated in breast cancer and considered to be of significance in the pathogenesis of cancer. The objective of this study was to investigate CBFB mutation profiles and the relationship between CBFB mutations and clinicopathologic characteristics in breast cancer. METHODS A total of 671 treatment-naive Chinese patients with invasive breast cancer at Guangdong Provincial People's Hospital (GDPH) were recruited in this study. CBFB mutation status were detected using the method of capture-based targeted sequencing. Correlation between CBFB mutations and clinicopathologic features were analyzed. Then, we compared the results between Chinese and western population by using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort (n = 1979) and The Cancer Genome Atlas (TCGA) cohort (n = 925). RESULTS The prevalence of CBFB mutation in GDPH cohort, METABRIC cohort, and TCGA cohort was 4.6% (31/671), 4.6% (92/1979), 2.5% (23/925), respectively. A hotspot mutation due to nucleotide thymine duplication or deletion occurring at the exon2/3 junction was detected in the GDPH and METABRIC cohorts. CBFB mutations were found to be significantly associated with the subtype of HR+/HER2- breast cancer (P = 0.008 in GDPH cohort and P<0.001 in METABRIC cohort), lower tumor grade (P = 0.004 in GDPH cohort and P<0.001 in METABRIC cohort), lower expression of Ki-67 protein (P<0.001 in GDPH cohort), but we didn't find similar results in TCGA cohort. In addition, CBFB in GDPH cohort was observed at a rather high mutation rate in invasive lobular carcinomas (4/18, 22.2%). Further, cox multivariate analysis demonstrated that CBFB was of independent prognosis significance in HR+/HER2- subgroup in METABRIC cohort (HR, 0.562; 95% CI, 0.399-0.790; P = 0.001). CONCLUSION This study reveals race diversity of CBFB mutation spectrum in breast cancers. CBFB mutations mainly occur in HR+/HER2- breast cancer, and it may be a promising prognostic biomarker in HR+/HER2- subgroup.
Collapse
Affiliation(s)
- Liping Guo
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; Breast Disease Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Guochun Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Yulei Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Li Cao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chongyang Ren
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lingzhu Wen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiali Lin
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guangnan Wei
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
18
|
Lee-Thacker S, Jeon H, Choi Y, Taniuchi I, Takarada T, Yoneda Y, Ko C, Jo M. Core Binding Factors are essential for ovulation, luteinization, and female fertility in mice. Sci Rep 2020; 10:9921. [PMID: 32555437 PMCID: PMC7303197 DOI: 10.1038/s41598-020-64257-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Core Binding Factors (CBFs) are a small group of heterodimeric transcription factor complexes composed of DNA binding proteins, RUNXs, and a non-DNA binding protein, CBFB. The LH surge increases the expression of Runx1 and Runx2 in ovulatory follicles, while Cbfb is constitutively expressed. To investigate the physiological significance of CBFs, we generated a conditional mutant mouse model in which granulosa cell expression of Runx2 and Cbfb was deleted by the Esr2Cre. Female Cbfbflox/flox;Esr2cre/+;Runx2flox/flox mice were infertile; follicles developed to the preovulatory follicle stage but failed to ovulate. RNA-seq analysis of mutant mouse ovaries collected at 11 h post-hCG unveiled numerous CBFs-downstream genes that are associated with inflammation, matrix remodeling, wnt signaling, and steroid metabolism. Mutant mice also failed to develop corpora lutea, as evident by the lack of luteal marker gene expression, marked reduction of vascularization, and excessive apoptotic staining in unruptured poorly luteinized follicles, consistent with dramatic reduction of progesterone by 24 h after hCG administration. The present study provides in vivo evidence that CBFs act as essential transcriptional regulators of both ovulation and luteinization by regulating the expression of key genes that are involved in inflammation, matrix remodeling, cell differentiation, vascularization, and steroid metabolisms in mice.
Collapse
Affiliation(s)
- Somang Lee-Thacker
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Yohan Choi
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University, Venture Business Laboratory 402, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, 2001 South Lincoln Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61802, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
19
|
Zou X, Lu T, Zhao Z, Liu G, Lian Z, Guo Y, Sun B, Liu D, Li Y. Comprehensive analysis of mRNAs and miRNAs in the ovarian follicles of uniparous and multiple goats at estrus phase. BMC Genomics 2020; 21:267. [PMID: 32228439 PMCID: PMC7106838 DOI: 10.1186/s12864-020-6671-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Fertility is an important economic trait in the production of meat goat, and follicular development plays an important role in fertility. Although many mRNAs and microRNAs (miRNAs) have been found to play critical roles in ovarian biological processes, the interaction between mRNAs and miRNAs in follicular development is not yet completely understood. In addition, less attention has been given to the study of single follicle (dominant or atretic follicle) in goats. This study aimed to identify mRNAs, miRNAs, and signaling pathways as well as their interaction networks in the ovarian follicles (large follicles and small follicles) of uniparous and multiple Chuanzhong black goats at estrus phase using RNA-sequencing (RNA-seq) technique. Results The results showed that there was a significant difference in the number of large follicles between uniparous and multiple goats (P < 0.05), but no difference in the number of small follicles was observed (P > 0.05). For the small follicles of uniparous and multiple goats at estrus phase, 289 differentially expressed mRNAs (DEmRNAs) and 16 DEmiRNAs were identified; and for the large follicles, 195 DEmRNAs and 7 DEmiRNAs were identified. The functional enrichment analysis showed that DE genes in small follicles were significantly enriched in ovarian steroidogenesis and steroid hormone biosynthesis, while in large follicles were significantly enriched in ABC transporters and steroid hormone biosynthesis. The results of quantitative real-time polymerase chain reaction were consistent with those of RNA-seq. Analysis of the mRNA-miRNA interaction network suggested that CD36 (miR-122, miR-200a, miR-141), TNFAIP6 (miR-141, miR-200a, miR-182), CYP11A1 (miR-122), SERPINA5 (miR-1, miR-206, miR-133a-3p, miR-133b), and PTGFR (miR-182, miR-122) might be related to fertility, but requires further research on follicular somatic cells. Conclusions This study was used for the first time to reveal the DEmRNAs and DEmiRNAs as well as their interaction in the follicles of uniparous and multiple goats at estrus phase using RNA-seq technology. Our findings provide new clues to uncover the molecular mechanisms and signaling networks of goat reproduction that could be potentially used to increase ovulation rate and kidding rate in goat.
Collapse
Affiliation(s)
- Xian Zou
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tingting Lu
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Zhifeng Zhao
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Zhiquan Lian
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China.
| |
Collapse
|
20
|
Jiang E, Kang Z, Wang X, Liu Y, Liu X, Wang Z, Li X, Lan X. Detection of insertions/deletions (InDels) within the goat Runx2 gene and their association with litter size and growth traits. Anim Biotechnol 2019; 32:169-177. [PMID: 31591922 DOI: 10.1080/10495398.2019.1671858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Runt-related transcription factor 2 (Runx2) is characterized by its critical functions in osteoblastic and ovulatory processes. The goal of this study was to explore the insertion/deletion (indel) variants of this gene and to evaluate their association with productive traits. Herein, a 12 bp and 6 bp insertion within the Runx2 gene was uncovered in Shaanbei white cashmere goats (SBWC; n = 1200). Chi-square analysis revealed that the 12 bp insertion was related to litter size (p < 0.01). Further association analysis also found this insertion was significantly associated with litter size (p = 1.1E-5). Interestingly, this insertion was also significantly associated with chest circumference (p = 0.018). Additionally, the 6 bp insertion was associated with body length (p = 0.003), chest width (p = 0.011), and chest circumference (p = 0.005). Furthermore, diplotype associations also uncovered that the combined genotypes of these two indels also significantly affected litter size and growth traits (p < 0.05). These findings suggested that these two insertions within the Runx2 gene were significantly associated with reproduction and growth traits, which would make them beneficial functional DNA markers that can be used in goat breeding.
Collapse
Affiliation(s)
- Enhui Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zihong Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Liu
- College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xinfeng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangchen Li
- College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Dinh DT, Breen J, Akison LK, DeMayo FJ, Brown HM, Robker RL, Russell DL. Tissue-specific progesterone receptor-chromatin binding and the regulation of progesterone-dependent gene expression. Sci Rep 2019; 9:11966. [PMID: 31427604 PMCID: PMC6700090 DOI: 10.1038/s41598-019-48333-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/08/2019] [Indexed: 02/08/2023] Open
Abstract
Progesterone receptor (PGR) co-ordinately regulates ovulation, fertilisation and embryo implantation through tissue-specific actions, but the mechanisms for divergent PGR action are poorly understood. Here we characterised PGR activity in mouse granulosa cells using combined ChIP-seq for PGR and H3K27ac and gene expression microarray. Comparison of granulosa, uterus and oviduct PGR-dependent genes showed almost complete tissue specificity in PGR target gene profiles. In granulosa cells 82% of identified PGR-regulated genes bound PGR within 3 kb of the gene and PGR binding sites were highly enriched in proximal promoter regions in close proximity to H3K27ac-modified active chromatin. Motif analysis showed highly enriched PGR binding to the PGR response element (GnACAnnnTGTnC), but PGR also interacted significantly with other transcription factor binding motifs. In uterus PGR showed far more tendency to bind intergenic chromatin regions and low evidence of interaction with other transcription factors. This is the first genome-wide description of PGR action in granulosa cells and systematic comparison of diverse PGR action in different reproductive tissues. It clarifies finely-tuned contextual PGR-chromatin interactions with implications for more targeted reproductive medicine.
Collapse
Affiliation(s)
- D T Dinh
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - J Breen
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, Australia.,University of Adelaide Bioinformatics Hub, University of Adelaide, Adelaide, Australia
| | - L K Akison
- Child Health Research Centre, Centre for Children's Health Research, The University of Queensland, South Brisbane, Qld, 4101, Australia
| | - F J DeMayo
- Pregnancy and Female Reproduction Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - H M Brown
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Australian Research Council (ARC) Centre for Nanoscale Biophotonics, University of Adelaide, Adelaide, Australia
| | - R L Robker
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - D L Russell
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
22
|
Chen H, Crosley P, Azad AK, Gupta N, Gokul N, Xu Z, Weinfeld M, Postovit LM, Pangas SA, Hitt MM, Fu Y. RUNX3 Promotes the Tumorigenic Phenotype in KGN, a Human Granulosa Cell Tumor-Derived Cell Line. Int J Mol Sci 2019; 20:ijms20143471. [PMID: 31311113 PMCID: PMC6678151 DOI: 10.3390/ijms20143471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
Granulosa cell tumors of the ovary (GCT) are the predominant type of ovarian sex cord/stromal tumor. Although prognosis is generally favorable, the outcome for advanced and recurrent GCT is poor. A better understanding of the molecular pathogenesis of GCT is critical to developing effective therapeutic strategies. Here we have examined the potential role of the runt-related transcription factor RUNX3. There are only two GCT cell lines available. While RUNX3 is silenced in the GCT cell line KGN cells, it is highly expressed in another GCT cell line, COV434 cells. Re-expression of RUNX3 promotes proliferation, anchorage-independent growth, and motility in KGN cells in vitro and tumor formation in mice in vivo. Furthermore, expression of a dominant negative form of RUNX3 decreases proliferation of COV434 cells. To address a potential mechanism of action, we examined expression of cyclin D2 and the CDK inhibitor p27Kip1, two cell cycle regulators known to be critical determinants of GCT cell proliferation. We found that RUNX3 upregulates the expression of cyclin D2 at the mRNA and protein level, and decreases the level of the p27Kip1 protein, but not p27Kip1 mRNA. In conclusion, we demonstrate that RUNX proteins are expressed in GCT cell lines and human GCT specimens, albeit at variable levels, and RUNX3 may play an oncogenic role in a subset of GCTs.
Collapse
Affiliation(s)
- Huachen Chen
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Powel Crosley
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Abul K Azad
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nidhi Gupta
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Nisha Gokul
- Department of Pathology & Immunology and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Stephanie A Pangas
- Department of Pathology & Immunology and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary M Hitt
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
23
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
24
|
Choi Y, Rosewell KL, Brännström M, Akin JW, Curry TE, Jo M. FOS, a Critical Downstream Mediator of PGR and EGF Signaling Necessary for Ovulatory Prostaglandins in the Human Ovary. J Clin Endocrinol Metab 2018; 103:4241-4252. [PMID: 30124866 PMCID: PMC6194814 DOI: 10.1210/jc.2017-02532] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
Context Fos null mice failed to ovulate and form a corpus luteum (CL) even when given exogenous gonadotropins, suggesting that ovarian Fos expression is critical for successful ovulation and CL formation. However, little is known about FOS in the human ovary. Objectives To determine the expression, regulation, and function of FOS in human periovulatory follicles. Design/Participants Timed periovulatory follicles were obtained from normally cycling women. Granulosa/lutein cells were collected from in vitro fertilization patients. Main Outcome Measures The in vivo expression after human chorionic gonadotropin (hCG) administration and in vitro regulation of FOS, JUN, JUNB, and JUND was evaluated at the mRNA and protein level. Binding of progesterone receptor (PGR) and FOS to their target genes was assessed by chromatin immunoprecipitation analyses. Prostaglandin E2 (PGE2) and progesterone were measured. Results The expression of FOS, JUNB, and JUND drastically increased in ovulatory follicles after hCG administration. In human granulosa/lutein cell cultures, hCG increased the expression of FOS and JUN proteins. Inhibitors of PGR and epidermal growth factor (EGF) receptors reduced hCG-induced increases in the expression and phosphorylation of FOS. PGR bound to the FOS gene. A selective FOS inhibitor blocked hCG-induced increases in PGE2 and the expression of prostaglandin (PG) synthases and transporters (PTGES, SLCO2A1, and ABCC1). FOS bound to the promoter regions of these genes. Conclusions The increase of FOS/activator protein 1 in human periovulatory follicles after hCG administration is mediated by collaborative actions of PGR and EGF signaling and critical for the upregulated expression of key ovulatory genes required for the rise in ovulatory PG in human granulosa cells.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
25
|
Zhao WP, Wang HW, Liu J, Tan PP, Lin L, Zhou BH. JNK/STAT signalling pathway is involved in fluoride-induced follicular developmental dysplasia in female mice. CHEMOSPHERE 2018; 209:88-95. [PMID: 29913403 DOI: 10.1016/j.chemosphere.2018.06.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Excessive fluoride (F) intake decreases the development of potential oocytes by inducing oxidative stress and apoptosis in female mice in our previous study. This study aims to investigate the underlying mechanisms of F-induced follicular developmental dysplasia. Pathomorphological changes in the ovary tissues were observed under light and transmission electron microscopes. DNA damage and proliferation in granulosa cells were analysed by TUNEL staining and BrdU measurement. The protein expression of cell proliferation related regulatory factors including JNK, STAT3, STAT5, CDK2, CDK4, PCNA and Ki67 in the ovary tissues was measured by immunohistochemistry and Western blot analyses. Results indicated that the structure of granulosa cells in the ovary was seriously damaged by excessive F, evident by the swollen endoplasmic reticulum, mitochondria with vacuoles and nucleus shrinkage. F treatment also considerably enhanced the apoptosis and inhibited the proliferation of granulosa cells. The number of granulosa cells around the oocyte decreased after F treatment. The expression levels of STAT3, CDK2, CDK4 and Ki67 in the ovary tissues were up-regulated, and STAT5 and PCNA did not change significantly after F treatment, whereas JNK expression was down-regulated with increasing F dose. In summary, changes in the expression levels of JNK, STAT3, STAT5, CDK2, CDK4, PCNA and Ki67 in the JNK/STAT signalling pathway are involved in F-induced follicular dysplasia in the ovary.
Collapse
Affiliation(s)
- Wen-Peng Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, PR China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, PR China.
| | - Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, PR China
| | - Pan-Pan Tan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, PR China
| | - Lin Lin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, PR China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, PR China.
| |
Collapse
|