1
|
Li X, Zhao Y, Huang J. Effects of fermented wheat germ on the placenta of high-fat diet-induced obese maternal rats: morphology, metabolism, and nutrient transport. Food Funct 2025; 16:2303-2315. [PMID: 39981968 DOI: 10.1039/d4fo05828c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Maternal obesity impairs placental function, affecting fetal growth and long-term health. Although fermented wheat germ (FWG) provides health benefits, its impact on maternal obesity-related metabolic disorders and placental function remains unclear. This study investigated FWG's effects on placental morphology, metabolism, and nutrient transport in high-fat diet (HFD)-induced obese maternal rats. Wheat germ (WG) and FWG were administered from model induction, with a 45% HFD-fed for 10 weeks before conception and continued until gestational day 19.5. Results revealed that WG and FWG supplementation alleviated maternal metabolic abnormalities and mitigated placental structural damage. Additionally, this supplementation reduced placental lipid accumulation, oxidative stress, and inflammation while regulating nutrient transporter mRNA expression and inhibiting mTOR signaling activation. Compared with WG, FWG more effectively reduced maternal obesity and optimized placental nutrient transport. These findings suggest that FWG is a promising dietary intervention for disrupting the maternal obesity cycle and enhancing maternal-fetal health by alleviating obesity, mitigating metabolic dysfunction, and modulating placental morphology and function.
Collapse
Affiliation(s)
- Xiaolin Li
- College of Grain and Food Science, Henan University of Technology, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou 450001, China
| | - Yingyu Zhao
- College of Grain and Food Science, Henan University of Technology, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou 450001, China
| | - Jihong Huang
- College of Grain and Food Science, Henan University of Technology, Zhengzhou 450001, China.
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Pharmacy, Xuchang University, Xuchang 461000, China
| |
Collapse
|
2
|
Fischer F, Kretschmer T, Seifert P, Howanski J, Krieger E, Rödiger J, Fink B, Yin Z, Bauer M, Zenclussen ML, Meyer N, Schumacher A, Zenclussen AC. Single and combined exposures to bisphenol A and benzophenone-3 during early mouse pregnancy have differential effects on fetal and placental development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171386. [PMID: 38431166 DOI: 10.1016/j.scitotenv.2024.171386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Endocrine disrupting chemicals (EDCs) possess the capability to interfere with the endocrine system by binding to hormone receptors, for example on immune cells. Specific effects have already been described for individual substances, but the impact of exposure to chemical mixtures during pregnancy on maternal immune regulation, placentation and fetal development is not known. In this study, we aimed to investigate the combined effects of two widespread EDCs, bisphenol A (BPA) and benzophenone-3 (BP-3), at allowed concentrations on crucial pregnancy processes such as implantation, placentation, uterine immune cell populations and fetal growth. From gestation day (gd) 0 to gd10, female mice were exposed to 4 μg/kg/d BPA, 50 mg/kg/d BP-3 or a BPA/BP-3 mixture. High frequency ultrasound and Doppler measurements were used to determine intrauterine fetal development and hemodynamic parameters. Furthermore, uterine spiral artery remodeling and placental mRNA expression were studied via histology and CHIP-RT-PCR, respectively. Effects of EDC exposure on multiple uterine immune cell populations were investigated using flow cytometry. We found that exposure to BP-3 caused intrauterine growth restriction in offspring at gd14, while BPA and BPA/BP-3 mixture caused varying effects. Moreover, placental morphology at gd12 and placental efficiency at gd14 were altered upon BP-3 exposure. Placental gene transcription was altered particularly in female offspring after in utero exposure to BP-3. Flow cytometry analyses revealed an increase in uterine T cells and NK cells in BPA and BPA/BP-3-treated dams at gd14. Doppler measurements revealed no effect on uterine hemodynamic parameters and spiral artery remodeling was not affected following EDC exposure. Our results provide evidence that exposure to BPA and BP-3 during early gestation affects fetal development in a sex-dependent manner, placental function and immune cell frequencies at the feto-maternal interface. These results call for inclusion of studies addressing pregnancy in the risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Florence Fischer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany; Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Tobias Kretschmer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Paulina Seifert
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Julia Howanski
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Elisabeth Krieger
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Jonas Rödiger
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Beate Fink
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ziran Yin
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - María Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (UNL-CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana (FBCB-UNL), Santa Fe, Argentina
| | - Nicole Meyer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Anne Schumacher
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
3
|
Sferruzzi‐Perri AN, Lopez‐Tello J, Salazar‐Petres E. Placental adaptations supporting fetal growth during normal and adverse gestational environments. Exp Physiol 2023; 108:371-397. [PMID: 36484327 PMCID: PMC10103877 DOI: 10.1113/ep090442] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? How the placenta, which transports nutrients and oxygen to the fetus, may alter its support of fetal growth developmentally and with adverse gestational conditions. What advances does it highlight? Placental formation and function alter with the needs of the fetus for substrates for growth during normal gestation and when there is enhanced competition for substrates in species with multiple gestations or adverse gestational environments, and this is mediated by imprinted genes, signalling pathways, mitochondria and fetal sexomes. ABSTRACT The placenta is vital for mammalian development and a key determinant of life-long health. It is the interface between the mother and fetus and is responsible for transporting the nutrients and oxygen a fetus needs to develop and grow. Alterations in placental formation and function, therefore, have consequences for fetal growth and birthweight, which in turn determine perinatal survival and risk of non-communicable diseases for the offspring in later postnatal life. However, the placenta is not a static organ. As this review summarizes, research from multiple species has demonstrated that placental formation and function alter developmentally to the needs of the fetus for substrates for growth during normal gestation, as well as when there is greater competition for substrates in polytocous species and monotocous species with multiple gestations. The placenta also adapts in response to the gestational environment, integrating information about the ability of the mother to provide nutrients and oxygen with the needs of the fetus in that prevailing environment. In particular, placental structure (e.g. vascularity, surface area, blood flow, diffusion distance) and transport capacity (e.g. nutrient transporter levels and activity) respond to suboptimal gestational environments, namely malnutrition, obesity, hypoxia and maternal ageing. Mechanisms mediating developmentally and environmentally induced homeostatic responses of the placenta that help support normal fetal growth include imprinted genes, signalling pathways, subcellular constituents and fetal sexomes. Identification of these placental strategies may inform the development of therapies for complicated human pregnancies and advance understanding of the pathways underlying poor fetal outcomes and their consequences for health and disease risk.
Collapse
Affiliation(s)
- Amanda Nancy Sferruzzi‐Perri
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jorge Lopez‐Tello
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Esteban Salazar‐Petres
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Facultad de CienciasDepartamento de Ciencias Básicas, Universidad Santo TomásValdiviaChile
| |
Collapse
|
4
|
Janoschek R, Handwerk M, Hucklenbruch-Rother E, Schmitz L, Bae-Gartz I, Kasper P, Lackmann JW, Kretschmer T, Vohlen C, Mesaros A, Purrio M, Quaas A, Dötsch J, Appel S. Heterogeneous effects of individual high-fat diet compositions on phenotype, metabolic outcome, and hepatic proteome signature in BL/6 male mice. Nutr Metab (Lond) 2023; 20:8. [PMID: 36755289 PMCID: PMC9909936 DOI: 10.1186/s12986-023-00729-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
The multitude of obesogenic diets used in rodent studies can hardly be overviewed. Since standardization is missing and assuming that individual compositions provoke individual effects, the choice of quality, quantity and combination of diet ingredients seems to be crucial for the outcome and interpretation of obesity studies. Therefore, the present study was conducted to compare the individual effects of three commonly used obesogenic diets, mainly differing in sugar and fat content. Besides basic phenotypic and metabolic characterization, one main aspect was a comparative liver proteome analysis. As expected, the obtained results picture differentiated consequences mainly depending on fat source and/or fat- and sugar quantity. By confirming the general presumption that the choice of nutritional composition is a pivotal factor, the present findings demonstrate that a conscious selection is indispensable for obtaining reliable and sound results in obesity research. In conclusion, we strongly recommend a careful selection of the appropriate diet in advance of a new experiment, taking into account the specific research question.
Collapse
Affiliation(s)
- Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Marion Handwerk
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Eva Hucklenbruch-Rother
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Lisa Schmitz
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Inga Bae-Gartz
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Philipp Kasper
- grid.6190.e0000 0000 8580 3777Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Jan-Wilm Lackmann
- grid.6190.e0000 0000 8580 3777Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Tobias Kretschmer
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christina Vohlen
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Andrea Mesaros
- grid.6190.e0000 0000 8580 3777Phenotyping Core Facility, Max-Planck Institute for Biology of Aging, University of Cologne, 50931 Cologne, Germany
| | - Martin Purrio
- grid.6190.e0000 0000 8580 3777Phenotyping Core Facility, Max-Planck Institute for Biology of Aging, University of Cologne, 50931 Cologne, Germany
| | - Alexander Quaas
- grid.6190.e0000 0000 8580 3777Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Jörg Dötsch
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sarah Appel
- grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
5
|
Brombach C, Tong W, Giussani DA. Maternal obesity: new placental paradigms unfolded. Trends Mol Med 2022; 28:823-835. [PMID: 35760668 DOI: 10.1016/j.molmed.2022.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/24/2023]
Abstract
The prevalence of maternal obesity is increasing at an alarming rate, and is providing a major challenge for obstetric practice. Adverse effects on maternal and fetal health are mediated by complex interactions between metabolic, inflammatory, and oxidative stress signaling in the placenta. Endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) are common downstream pathways of cell stress, and there is evidence that this conserved homeostatic response may be a key mediator in the pathogenesis of placental dysfunction. We summarize the current literature on the placental cellular and molecular changes that occur in obese women. A special focus is cast onto placental ER stress in obese pregnancy, which may provide a novel link for future investigation.
Collapse
Affiliation(s)
| | - Wen Tong
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge CB2 3EL, Cambridge UK.
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge CB2 3EL, Cambridge UK; Cambridge Cardiovascular Centre for Research Excellence, Cambridge CB2 0QQ, UK.
| |
Collapse
|
6
|
Schmitz K, Turnwald EM, Kretschmer T, Janoschek R, Bae-Gartz I, Voßbrecher K, Kammerer MD, Köninger A, Gellhaus A, Handwerk M, Wohlfarth M, Gründemann D, Hucklenbruch-Rother E, Dötsch J, Appel S. Metformin Prevents Key Mechanisms of Obesity-Related Complications in Visceral White Adipose Tissue of Obese Pregnant Mice. Nutrients 2022; 14:nu14112288. [PMID: 35684088 PMCID: PMC9182976 DOI: 10.3390/nu14112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
With the gaining prevalence of obesity, related risks during pregnancy are rising. Inflammation and oxidative stress are considered key mechanisms arising in white adipose tissue (WAT) sparking obesity-associated complications and diseases. The established anti-diabetic drug metformin reduces both on a systemic level, but only little is known about such effects on WAT. Because inhibiting these mechanisms in WAT might prevent obesity-related adverse effects, we investigated metformin treatment during pregnancy using a mouse model of diet-induced maternal obesity. After mating, obese mice were randomised to metformin administration. On gestational day G15.5, phenotypic data were collected and perigonadal WAT (pgWAT) morphology and proteome were examined. Metformin treatment reduced weight gain and visceral fat accumulation. We detected downregulation of perilipin-1 as a correlate and observed indications of recovering respiratory capacity and adipocyte metabolism under metformin treatment. By regulating four newly discovered potential adipokines (alpha-1 antitrypsin, Apoa4, Lrg1 and Selenbp1), metformin could mediate anti-diabetic, anti-inflammatory and oxidative stress-modulating effects on local and systemic levels. Our study provides an insight into obesity-specific proteome alterations and shows novel modulating effects of metformin in pgWAT of obese dams. Accordingly, metformin therapy appears suitable to prevent some of obesity’s key mechanisms in WAT.
Collapse
Affiliation(s)
- Katrin Schmitz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Eva-Maria Turnwald
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Tobias Kretschmer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- UFZ-Helmholtz Centre for Environmental Research, Department Environmental Immunology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ruth Janoschek
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Inga Bae-Gartz
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Kathrin Voßbrecher
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Merlin D. Kammerer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Angela Köninger
- Department of Obstetrics and Gynecology, University of Regensburg, St. Hedwigs Clinic of the Order of St. John, Steinmetzstrasse 1-3, 93049 Regensburg, Germany;
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany;
| | - Marion Handwerk
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Maria Wohlfarth
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Dirk Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany;
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
| | - Sarah Appel
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 16, 50931 Cologne, Germany; (K.S.); (E.-M.T.); (T.K.); (R.J.); (I.B.-G.); (K.V.); (M.D.K.); (M.H.); (M.W.); (E.H.-R.); (J.D.)
- Correspondence: ; Tel.: +49-221-478-96890
| |
Collapse
|
7
|
Kretschmer T, Turnwald EM, Janoschek R, Wohlfarth M, Handwerk M, Dötsch J, Hucklenbruch-Rother E, Appel S. Treatment of high fat diet-induced obese pregnant mice with IL-6 receptor antibody does not ameliorate placental function and fetal growth restriction. Am J Reprod Immunol 2022; 88:e13564. [PMID: 35535415 DOI: 10.1111/aji.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Pregnancy complications and adverse birth outcomes are in part fueled by the rise in obesity and its associated co-morbidities in western societies. Fetal healthy development and placental function are disturbed by an obese, inflammatory environment associated with cytokines, such as interleukin-6, causing inadequate supply of nutrients to the fetus and perinatal programming with severe health consequences. METHOD OF STUDY Mice received high fat diet (HFD) before and during gestation to induce obesity. We performed an IL-6 receptor antibody (MR16-1) treatment in pregnant obese mice at embryonic days E0.5, E7.5 and E14.5 to investigate whether this could ameliorate HFD-induced and obesity-associated placental dysfunction, evaluated by stereology and western blot, and improve offspring outcome at E15.5 in obese dams. RESULTS We observed fewer fetuses below the 10th percentile and placental vascularization was less aggravated following MR16-1 treatment of obese dams, showing slight improvements in labyrinth zone (Lz) vascularization. However, placental dysfunction and fetal growth restriction were still apparent in MR16-1 dams compared to lean control dams. Molecular analysis showed significantly elevated IL-6 level in placentas of MR16-1 treated dams. CONCLUSION Treatment with MR16-1 blocks IL-6 signaling in the placenta, but has only limited effects on preventing HFD-associated placental dysfunction and offspring outcomes in mice, suggesting further mechanisms in the deterioration of placental vascularization and fetal nutrient supply as a consequence of maternal obesity.
Collapse
Affiliation(s)
- Tobias Kretschmer
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany.,Department Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Eva-Maria Turnwald
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| | - Maria Wohlfarth
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| | - Marion Handwerk
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sarah Appel
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Joshi NP, Mane AR, Sahay AS, Sundrani DP, Joshi SR, Yajnik CS. Role of Placental Glucose Transporters in Determining Fetal Growth. Reprod Sci 2021; 29:2744-2759. [PMID: 34339038 DOI: 10.1007/s43032-021-00699-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
Maternal nutrient availability and its transport through the placenta are crucial for fetal development. Nutrients are transported to the fetus via specific transporters present on the microvillous (MVM) and basal membrane (BM) of the placenta. Glucose is the most abundant nutrient transferred to the fetus and plays a key role in the fetal growth and development. The transfer of glucose across the human placenta is directly proportional to maternal glucose concentrations, and is mediated by glucose transporter family proteins (GLUTs). Maternal glucose concentration influences expression and activity of GLUTs in the MVM (glucose uptake) and BM (glucose delivery). Alteration in the number and function of these transporters may affect the growth and body composition of the fetus. The thin-fat phenotype of the Indian baby (low ponderal index, high adiposity) is proposed as a harbinger of future metabolic risk. We propose that placental function mediated through nutrient transporters contributes to the phenotype of the baby, specifically that glucose transporters will influence neonatal fat. This review discusses the role of various glucose transporters in the placenta in determining fetal growth and body composition, in light of the above hypothesis.
Collapse
Affiliation(s)
- Nikita P Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Aditi R Mane
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Akriti S Sahay
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India.
| | | |
Collapse
|
9
|
Fowden AL, Camm EJ, Sferruzzi-Perri AN. Effects of Maternal Obesity On Placental Phenotype. Curr Vasc Pharmacol 2021; 19:113-131. [PMID: 32400334 DOI: 10.2174/1570161118666200513115316] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
The incidence of obesity is rising rapidly worldwide with the consequence that more women are entering pregnancy overweight or obese. This leads to an increased incidence of clinical complications during pregnancy and of poor obstetric outcomes. The offspring of obese pregnancies are often macrosomic at birth although there is also a subset of the progeny that are growth-restricted at term. Maternal obesity during pregnancy is also associated with cardiovascular, metabolic and endocrine dysfunction in the offspring later in life. As the interface between the mother and fetus, the placenta has a central role in programming intrauterine development and is known to adapt its phenotype in response to environmental conditions such as maternal undernutrition and hypoxia. However, less is known about placental function in the abnormal metabolic and endocrine environment associated with maternal obesity during pregnancy. This review discusses the placental consequences of maternal obesity induced either naturally or experimentally by increasing maternal nutritional intake and/or changing the dietary composition. It takes a comparative, multi-species approach and focusses on placental size, morphology, nutrient transport, metabolism and endocrine function during the later stages of obese pregnancy. It also examines the interventions that have been made during pregnancy in an attempt to alleviate the more adverse impacts of maternal obesity on placental phenotype. The review highlights the potential role of adaptations in placental phenotype as a contributory factor to the pregnancy complications and changes in fetal growth and development that are associated with maternal obesity.
Collapse
Affiliation(s)
- A L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - E J Camm
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| |
Collapse
|
10
|
Kretschmer T, Turnwald EM, Janoschek R, Zentis P, Bae-Gartz I, Beers T, Handwerk M, Wohlfarth M, Ghilav M, Bloch W, Hucklenbruch-Rother E, Dötsch J, Appel S. Maternal high fat diet-induced obesity affects trophoblast differentiation and placental function in mice†. Biol Reprod 2020; 103:1260-1274. [PMID: 32915209 DOI: 10.1093/biolre/ioaa166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that maternal obesity (MO) can aggravate placental function causing severe pathologies during the perinatal window. However, molecular changes and mechanisms of placental dysfunction remain largely unknown. This work aimed to decipher structural and molecular alterations of the placental transfer zone associated with MO. To this end, mice were fed a high fat diet (HFD) to induce obesity before mating, and pregnant dams were sacrificed at E15.5 to receive placentas for molecular, histological, and ultrastructural analysis and to assess unidirectional materno-fetal transfer capacity. Laser-capture microdissection was used to collect specifically placental cells of the labyrinth zone for proteomics profiling. Using BeWo cells, fatty acid-mediated mechanisms of adherens junction stability, cell layer permeability, and lipid accumulation were deciphered. Proteomics profiling revealed downregulation of cell adhesion markers in the labyrinth zone of obese dams, and disturbed syncytial fusion and detachment of the basement membrane (BM) within this zone was observed, next to an increase in materno-fetal transfer in vivo across the placenta. We found that fetuses of obese dams develop a growth restriction and in those placentas, labyrinth zone volume-fraction was significantly reduced. Linoleic acid was shown to mediate beta-catenin level and increase cell layer permeability in vitro. Thus, MO causes fetal growth restriction, molecular and structural changes in the transfer zone leading to impaired trophoblast differentiation, BM disruption, and placental dysfunction despite increased materno-fetal transfer capacity. These adverse effects are probably mediated by fatty acids found in HFD demonstrating the need for obesity treatment to mitigate placental dysfunction and prevent offspring pathologies.
Collapse
Affiliation(s)
- Tobias Kretschmer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva-Maria Turnwald
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Core Facility Imaging, University of Cologne, Cologne, Germany
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tim Beers
- Department of Anatomy I, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marion Handwerk
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria Wohlfarth
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mojgan Ghilav
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Dinger K, Koningsbruggen-Rietschel SV, Dötsch J, Alejandre Alcazar MA. Identification of Critical Windows of Metabolic Programming of Metabolism and Lung Function in Male Offspring of Obese Dams. Clin Transl Sci 2020; 13:1065-1070. [PMID: 32598577 PMCID: PMC7719392 DOI: 10.1111/cts.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/14/2020] [Indexed: 12/02/2022] Open
Abstract
Perinatal nutritional determinants known as metabolic programming could be either detrimental or protective. Maternal obesity in the perinatal period determines susceptibility for diseases, such as obesity, metabolic disorders, and lung disease. Although this adverse metabolic programming is well‐recognized, the critical developmental window for susceptibility risk remains elusive. Thus, we aimed to define the vulnerable window for impaired lung function after maternal obesity; and to test if dietary intervention protects. First, we studied the impact of high‐fat diet (HFD)‐induced maternal obesity during intrauterine (HFDiu), postnatal (HFDpost), or perinatal (i.e., intrauterine and postnatal (HFDperi) phase on body weight, white adipose tissue (WAT), glucose tolerance, and airway resistance. Although HFDiu, HFDpost, and HFDperi induced overweight in the offspring, only HFDperi and HFDiu led to increased WAT in the offspring early in life. This early‐onset adiposity was linked to impaired glucose tolerance in HFDperi‐offspring. Interestingly, these metabolic findings in HFDperi‐offspring, but not in HFDiu‐offspring and HFDpost‐offspring, were linked to persistent adiposity and increased airway resistance later in life. Second, we tested if the withdrawal of a HFD immediately after conception protects from early‐onset metabolic changes by maternal obesity. Indeed, we found a protection from early‐onset overweight, but not from impaired glucose tolerance and increased airway resistance. Our study identified critical windows for metabolic programming of susceptibility to impaired lung function, highlighting thereby windows of opportunity for prevention.
Collapse
Affiliation(s)
- Katharina Dinger
- Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Silke V Koningsbruggen-Rietschel
- Pediatric Pulmonology, Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Kretschmer T, Schulze-Edinghausen M, Turnwald EM, Janoschek R, Bae-Gartz I, Zentis P, Handwerk M, Wohlfarth M, Schauss A, Hucklenbruch-Rother E, Dötsch J, Appel S. Effect of Maternal Obesity in Mice on IL-6 Levels and Placental Endothelial Cell Homeostasis. Nutrients 2020; 12:nu12020296. [PMID: 31979004 PMCID: PMC7071123 DOI: 10.3390/nu12020296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Obesity during pregnancy is a known health risk for mother and child. Since obesity is associated with increased inflammatory markers, our objectives were to determine interleukin-6 (IL-6) levels in obese mice and to examine the effect of IL-6 on placental endothelial cells. Placentas, blood, and adipose tissue of C57BL/6N mice, kept on high fat diet before and during pregnancy, were harvested at E15.5. Serum IL-6 levels were determined and endothelial cell markers and IL-6 expression were measured by qRT-PCR and western blot. Immunostaining was used to determine surface and length densities of fetal capillary profiles and placental endothelial cell homeostasis. Human placental vein endothelial cells were cultured and subjected to proliferation, apoptosis, senescence, and tube formation assays after stimulation with hyperIL-6. Placental endothelial cell markers were downregulated and the percentage of senescent endothelial cells was higher in the placental exchange zone of obese dams and placental vascularization was strongly reduced. Additionally, maternal IL-6 serum levels and IL-6 protein levels in adipose tissue were increased. Stimulation with hyperIL-6 provoked a dose dependent increase of senescence in cultured endothelial cells without any effects on proliferation or apoptosis. Diet-induced maternal obesity led to an IUGR phenotype accompanied by increased maternal IL-6 serum levels. In the placenta of obese dams, this may result in a disturbed endothelial cell homeostasis and impaired fetal vasculature. Cell culture experiments confirmed that IL-6 is capable of inducing endothelial cell senescence.
Collapse
Affiliation(s)
- Tobias Kretschmer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-89672
| | - Merle Schulze-Edinghausen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Eva-Maria Turnwald
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Core Facility Imaging, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; (P.Z.); (A.S.)
| | - Marion Handwerk
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Maria Wohlfarth
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Core Facility Imaging, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; (P.Z.); (A.S.)
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (M.S.-E.); (E.-M.T.); (R.J.); (I.B.-G.); (M.H.); (M.W.); (E.H.-R.); (J.D.); (S.A.)
| |
Collapse
|
13
|
Maternal High Fat Diet and in-Utero Metformin Exposure Significantly Impact upon the Fetal Renal Proteome of Male Mice. J Clin Med 2019; 8:jcm8050663. [PMID: 31083566 PMCID: PMC6571731 DOI: 10.3390/jcm8050663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
There is accumulating evidence for fetal programming of later kidney disease by maternal obesity or associated conditions. We performed a hypothesis-generating study to identify potentially underlying mechanisms. Female mice were randomly split in two groups and fed either a standard diet (SD) or high fat diet (HFD) from weaning until mating and during pregnancy. Half of the dams from both groups were treated with metformin ((M), 380 mg/kg), resulting in four experimental groups (SD, SD-M, HFD, HFD-M). Caesarean section was performed on gestational day 18.5. Fetal kidney tissue was isolated from cryo-slices using laser microdissection methods and a proteomic screen was performed. For single proteins, a fold change ≥1.5 and q-value <0.05 were considered to be statistically significant. Interestingly, HFD versus SD had a larger effect on the proteome of fetal kidneys (56 proteins affected; interaction clusters shown for proteins concerning transcription/translation, mitochondrial processes, eicosanoid metabolism, H2S-synthesis and membrane remodeling) than metformin exposure in either SD (29 proteins affected; clusters shown for proteins involved in transcription/translation) or HFD (6 proteins affected; no cluster). By further analysis, ATP6V1G1, THY1, PRKCA and NDUFB3 were identified as the most promising candidates potentially mediating reprogramming effects of metformin in a maternal high fat diet.
Collapse
|