1
|
Then AA, Goenawan H, Lesmana R, Christoper A, Sylviana N, Gunadi JW. Exploring the potential regulation of DUOX in thyroid hormone‑autophagy signaling via IGF‑1 in the skeletal muscle (Review). Biomed Rep 2025; 22:39. [PMID: 39781041 PMCID: PMC11704872 DOI: 10.3892/br.2024.1917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 01/11/2025] Open
Abstract
Dual oxidases (DUOX) are enzymes that have the main function in producing reactive oxygen species (ROS) in various tissues. DUOX also play an important role in the synthesis of H2O2, which is essential for the production of thyroid hormone. Thyroid hormones can influence the process of muscle development through direct stimulation of ROS, 5' AMP-activated protein kinase (AMPK) and mTOR and indirect effect autophagy and the insulin-like growth factor 1 (IGF-1) pathway. IGF-1 signaling controls autophagy in two ways: Inhibiting autophagy through activation of the PI3K/AKT/mTOR/MAPK pathway and promoting mitophagy through the nuclear factor erythroid 2-related factor 2-binding receptor Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3. Thyroid hormone deficiency caused by the absence of DUOX should be considered because it might have a significant effect on the growth of skeletal muscle. The effect of DUOX regulation on thyroid hormone autophagy via IGF-1 in skeletal muscle has not been well investigated. The present review discussed the regulatory interactions between DUOX, thyroid hormone, IGF-1 and autophagy, which can influence skeletal muscle development.
Collapse
Affiliation(s)
- Andreas Adiwinata Then
- Master's Program in Basic Biomedical Sciences, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Andreas Christoper
- Doctoral Program in Medical Science, PMDSU Program Batch VI, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia
| |
Collapse
|
2
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
3
|
Nadolnik LI, Niatsetskaya ZV, Basinsky VA, Vinogradov VV. Morphological and functional changes in rat thyroid gland after a year following chronic exposure to low and intermediate doses of γ-radiation. Int J Radiat Biol 2023; 100:343-352. [PMID: 37934053 DOI: 10.1080/09553002.2023.2280012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Thyroid function depends on iodine uptake by the body as well as on exposure to various harmful environmental hazards (stress, ionizing radiation). AIM The aim of the work was to assess the effect of exposure to low and intermediate doses of external γ-radiation on the thyroid structure and function in young female rats at remote periods after radiation. MATERIALS AND METHODS Forty female rats were used to study remote effects of external γ-radiation exposure during 20 d (at daily doses of 0.1, 0.25 and 0.5 Gy) on the functional activity (levels of thyroid hormones, iodine metabolism) and the morphological structure of the rat thyroid) after 12 months following the radiation exposure. RESULTS An increase in thyroid mass and a decrease in total thyroid protein concentration along with a reduction of blood T3 and T4 was shown only in rat groups exposed to 0.25 and 0.5 Gy. Both the concentration of total iodine and its protein-bound fraction (1.2-1.4 fold, p < .01) and the protein-bound to total iodine ratio were decreased in the thyroids of all irradiated animals. The 0.1-Gy group showed elevated thyroperoxidase (TPO) activity along with increased catalase activity, which may indicate the activation of iodine oxidation by thyrocytes. Only the 0.5-Gy group demonstrated reduced urinary excretion of iodine (2.1 fold, p < .01).The reduction of thyroid function at radiation doses of 0.25 and 0.5 Gy was characterized by a microfollicular structure and the development of atrophic changes in the parenchyma, desquamation of thyroid epithelium and an increase in epithelium proliferation. The diameter of the thyrocyte nuclei was increased in rats exposed to 0.25 and 0.5 Gy, which indicates functional tension of thyrocytes. CONCLUSION Our research shows that after a year, the exposure to external γ-radiation of 0.1, 0.25 and 0.5-Gy caused changes in the structure and function of the rat thyroid which are manifested by the development of hypothyroiditis (0.5 Gy), 'subclinical' hypothyroiditis (0.25 Gy) and functional tension of thyrocytes. The mechanisms of thyroid dysfunction - impaired- uptake of iodine and its organification against the background of activation of free radical processes - suggest disturbances in the function of the sodium/iodide symporter (NIS), TPO and thyroglobulin synthesis. In contrast to the intermediate doses, the effects of the 0.1-Gy dose were mostly found at the remote periods compared to the earlier periods (180 days).
Collapse
Affiliation(s)
- Liliya I Nadolnik
- Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus, Grodno, Belarus
| | - Zoya V Niatsetskaya
- Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus, Grodno, Belarus
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Vladimir V Vinogradov
- Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus, Grodno, Belarus
| |
Collapse
|
4
|
Yaglova NV, Obernikhin SS, Timokhina EP, Yaglov VV, Tsomartova DA, Nazimova SV, Tsomartova ES, Ivanova MY, Chereshneva EV, Lomanovskaya TA. Bilateral Shifts in Deuterium Supply Similarly Change Physiology of the Pituitary–Thyroid Axis, but Differentially Influence Na+/I− Symporter Production. Int J Mol Sci 2023; 24:ijms24076803. [PMID: 37047776 PMCID: PMC10095216 DOI: 10.3390/ijms24076803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Deuterium, a stable isotope of hydrogen, is abundant in organisms. It is known to produce various biological effects. However, its impact in thyroid hormone synthesis and secretion is poorly studied. The aim of this investigation was to evaluate the dynamics of thyroid hormones and pituitary thyroid-stimulating hormone secretion during bilateral shifts in deuterium supply and assess a possible role of the Na+/I− symporter (NIS), the main iodide transporter, in altered thyroid function. The experiment was performed on adult male Wistar rats, which consumed deuterium-depleted ([D] = 10 ppm) and deuterium-enriched ([D] = 500,000 ppm) water for 21 days. The assessment of total thyroxine and triiodothyronine and their free fractions, as well as thyroid-stimulating hormone in blood serum, revealed the rapid response of the thyroid gland to shifts in the deuterium/protium balance. The present investigation shows that the bilateral changes in the deuterium body content similarly modulate thyroid hormone production and functional activity of the pituitary gland, but the responses of the thyroid and pituitary glands differ. The response of the thyroid cells was to increase the synthesis of the hormones and the pituitary thyrotropes, in order to reduce the production of the thyroid-stimulating hormone. The evaluation of NIS serum levels found a gradual increase in the rats that consumed deuterium-enriched water and no differences in the group exposed to deuterium depletion. NIS levels in both groups did not correlate with thyroid hormones and pituitary thyroid-stimulating hormone production. The data obtained show that thyroid gland has a higher sensitivity to shifts in the deuterium body content than the hypothalamic–pituitary complex, which responded later but similarly in the case of deuteration or deuterium depletion. It indicates a different sensitivity of the endocrine glands to alterations in deuterium content. It suggests that thyroid hormone production rate may depend on deuterium blood/tissue and cytosol/organelle gradients, which possibly disturb the secretory process independently of the NIS.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Ekaterina P. Timokhina
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Marina Y. Ivanova
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Elizaveta V. Chereshneva
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Tatiana A. Lomanovskaya
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
5
|
Karbownik-Lewińska M, Stępniak J, Iwan P, Lewiński A. Iodine as a potential endocrine disruptor-a role of oxidative stress. Endocrine 2022; 78:219-240. [PMID: 35726078 PMCID: PMC9584999 DOI: 10.1007/s12020-022-03107-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Iodine is an essential micronutrient required for thyroid hormone biosynthesis. However, overtreatment with iodine can unfavorably affect thyroid physiology. The aim of this review is to present the evidence that iodine-when in excess-can interfere with thyroid hormone synthesis and, therefore, can act as a potential endocrine-disrupting chemical (EDC), and that this action, as well as other abnormalities in the thyroid, occurs-at least partially-via oxidative stress. METHODS We reviewed published studies on iodine as a potential EDC, with particular emphasis on the phenomenon of oxidative stress. RESULTS This paper summarizes current knowledge on iodine excess in the context of its properties as an EDC and its effects on oxidative processes. CONCLUSION Iodine does fulfill the criteria of an EDC because it is an exogenous chemical that interferes-when in excess-with thyroid hormone synthesis. However, this statement cannot change general rules regarding iodine supply, which means that iodine deficiency should be still eliminated worldwide and, at the same time, iodine excess should be avoided. Universal awareness that iodine is a potential EDC would make consumers more careful regarding their diet and what they supplement in tablets, and-what is of great importance-it would make caregivers choose iodine-containing medications (or other chemicals) more prudently. It should be stressed that compared to iodine deficiency, iodine in excess (acting either as a potential EDC or via other mechanisms) is much less harmful in such a sense that it affects only a small percentage of sensitive individuals, whereas the former affects whole populations; therefore, it causes endemic consequences.
Collapse
Affiliation(s)
- Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland.
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland.
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338, Lodz, Poland
| |
Collapse
|
6
|
H 2O 2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel) 2019; 8:antiox8050126. [PMID: 31083324 PMCID: PMC6563055 DOI: 10.3390/antiox8050126] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormone synthesis requires adequate hydrogen peroxide (H2O2) production that is utilized as an oxidative agent during the synthesis of thyroxin (T4) and triiodothyronine (T3). Thyroid H2O2 is generated by a member of the family of NADPH oxidase enzymes (NOX-es), termed dual oxidase 2 (DUOX2). NOX/DUOX enzymes produce reactive oxygen species (ROS) as their unique enzymatic activity in a timely and spatially regulated manner and therefore, are important regulators of diverse physiological processes. By contrast, dysfunctional NOX/DUOX-derived ROS production is associated with pathological conditions. Inappropriate DUOX2-generated H2O2 production results in thyroid hypofunction in rodent models. Recent studies also indicate that ROS improperly released by NOX4, another member of the NOX family, are involved in thyroid carcinogenesis. This review focuses on the current knowledge concerning the redox regulation of thyroid hormonogenesis and cancer development with a specific emphasis on the NOX and DUOX enzymes in these processes.
Collapse
|
7
|
Abstract
Extracellular hydrogen peroxide is required for thyroperoxidase-mediated thyroid hormone synthesis in the follicular lumen of the thyroid gland. Among the NADPH oxidases, dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially identified as thyroid oxidases, based on their level of expression in the thyroid. Despite their high sequence similarity, the two isoforms present distinct regulations, tissue expression, and catalytic functions. Inactivating mutations in many of the genes involved in thyroid hormone synthesis cause thyroid dyshormonogenesis associated with iodide organification defect. This chapter provides an overview of the genetic alterations in DUOX2 and its maturation factor, DUOXA2, causing inherited severe hypothyroidism that clearly demonstrate the physiological implication of this oxidase in thyroid hormonogenesis. Mutations in the DUOX2 gene have been described in permanent but also in transient forms of congenital hypothyroidism. Moreover, accumulating evidence demonstrates that the high phenotypic variability associated with altered DUOX2 function is not directly related to the number of inactivated DUOX2 alleles, suggesting the existence of other pathophysiological factors. The presence of two DUOX isoforms and their corresponding maturation factors in the same organ could certainly constitute an efficient redundant mechanism to maintain sufficient H2O2 supply for iodide organification. Many of the reported DUOX2 missense variants have not been functionally characterized, their clinical impact in the observed phenotype remaining unresolved, especially in mild transient congenital hypothyroidism. DUOX2 function should be carefully evaluated using an in vitro assay wherein (1) DUOXA2 is co-expressed, (2) H2O2 production is activated, (3) and DUOX2 membrane expression is precisely analyzed.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium.
| | - Françoise Miot
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
| |
Collapse
|
8
|
Carvalho DP, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol 2017; 458:6-15. [PMID: 28153798 DOI: 10.1016/j.mce.2017.01.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/07/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (TH) 3,5,3',5'- tetraiodothyronine or thyroxine (T4) and 3,5,3'- triiodothyronine (T3) contain iodine atoms as part of their structure, and their synthesis occur in the unique structures called thyroid follicles. Iodide reaches thyroid cells through the bloodstream that supplies the basolateral plasma membrane of thyrocytes, where it is avidly taken up through the sodium/iodide symporter (NIS). Thyrocytes are also specialized in the secretion of the high molecular weight protein thyroglobulin (TG) in the follicular lumen. The iodination of the tyrosyl residues of TG preceeds TH biosynthesis, which depends on the interaction of iodide, TG, hydrogen peroxide (H2O2) and thyroid peroxidase (TPO) at the apical plasma membrane of thyrocytes. Thyroid hormone biosynthesis is under the tonic control of thyrotropin (TSH), while the iodide recycling ability is very important for normal thyroid function. We discuss herein the biochemical aspects of TH biosynthesis and release, highlighting the novel molecules involved in the process.
Collapse
Affiliation(s)
- Denise P Carvalho
- Biophysics Institute of Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Corinne Dupuy
- Université Paris-Saclay, Orsay, France; UMR 8200 CNRS, Villejuif, France; Institut de Cancérologie Gustave Roussy, Villejuif, Ile-de-France, France
| |
Collapse
|
9
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
10
|
Cardoso-Weide L, Cardoso-Penha R, Costa M, Ferreira A, Carvalho D, Santisteban P. DuOx2 Promoter Regulation by Hormones, Transcriptional Factors and the Coactivator TAZ. Eur Thyroid J 2015; 4:6-13. [PMID: 25960956 PMCID: PMC4404926 DOI: 10.1159/000379749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 02/06/2015] [Indexed: 01/13/2023] Open
Abstract
The production of H2O2, which is essential to thyroid hormone synthesis, involves two NADPH oxidases: dual oxidases 1 and 2 (DuOx1 and DuOx2). A functional study with human DuOx genes and their 5'-flanking regions showed that DuOx1 and -2 promoters are different from thyroid-specific gene promoters. Furthermore, their transcriptional activities are not restricted to thyroid cells. While regulation of Tg (thyroglobulin) and TPO (thyroperoxidase) expression have been extensively studied, DuOx2 promoter regulation by hormones and transcriptional factors need to be more explored. Herein we investigated the role of TSH, insulin and insulin-like growth factor 1 (IGF-1), as well as the cAMP effect on DuOx2 promoter (ptx41) activity in transfected rat thyroid cell lines (PCCL3). We also assessed DuOx2 promoter activity in the presence of transcriptional factors crucial to thyroid development such as TTF-1 (thyroid transcription factor 1), PAX8, CREB, DREAM, Nkx2.5 and the coactivator TAZ in HeLa and HEK 293T-transfected cells. Our results show that TSH and forskolin, which increase cAMP in thyroid cells, stimulated DuOx2 promoter activity. IGF-1 led to pronounced stimulation, while insulin induction was not statistically different from DuOx2 promoter basal activity. All transcriptional factors selected for this work and coactivator TAZ, except DREAM, stimulated DuOx2 promoter activity. Moreover, Nkx2.5 and TAZ synergistically increased DuOx2 promoter activity. In conclusion, we show that DuOx2 expression is regulated by hormones and transcription factors involved in thyroid organogenesis and carcinogenesis, reinforcing the importance of the control of H2O2 generation in the thyroid.
Collapse
Affiliation(s)
- L.C. Cardoso-Weide
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense (UFF), Niterói, Brazil
- *L.C. Cardoso-Weide, Departamento de Patologia, 4° andar, sala 4, Faculdade de Medicina, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense (UFF), Rua Marques do Paraná, 303, Niterói, RJ 24033-900 (Brazil), E-Mail
| | - R.C. Cardoso-Penha
- Laboratório de Fisiologia Endócrina Doris Rosenthal, IBCCF, Rio de Janeiro, Brazil
| | - M.W. Costa
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Vic., Australia
| | - A.C.F. Ferreira
- NUMPEX, Polo de Xerém, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - D.P. Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, IBCCF, Rio de Janeiro, Brazil
| | - P.S. Santisteban
- Instituto de Investigaciones Biomédicas Alberto Sols, Spanish Council of Research-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Carvalho DP, Dupuy C. Role of the NADPH Oxidases DUOX and NOX4 in Thyroid Oxidative Stress. Eur Thyroid J 2013; 2:160-7. [PMID: 24847449 PMCID: PMC4017742 DOI: 10.1159/000354745] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/31/2013] [Indexed: 01/18/2023] Open
Abstract
Somatic mutations are present at high levels in the rat thyroid gland, indicating that the thyrocyte is under oxidative stress, a state in which cellular oxidant levels are high. The most important class of free radicals, or reactive metabolites, is reactive oxygen species (ROS), such as superoxide anion (O2 (-)), hydroxyl radical (OH) and hydrogen peroxide (H2O2). The main source of ROS in every cell type seems to be mitochondrial respiration; however, recent data support the idea that NADPH:O(2) oxidoreductase flavoproteins or simply NADPH oxidases (NOX) are enzymes specialized in controlled ROS generation at the subcellular level. Several decades ago, high concentrations of H2O2 were detected at the apical surface of thyrocytes, where thyroid hormone biosynthesis takes place. Only in the last decade has the enzymatic source of H2O2 involved in thyroid hormone biosynthesis been well characterized. The cloning of two thyroid genes encoding NADPH oxidases dual oxidases 1 and 2 (DUOX1 and DUOX2) revealed that DUOX2 mutations lead to hereditary hypothyroidism in humans. Recent reports have also described the presence of NOX4 in the thyroid gland and have suggested a pathophysiological role of this member of the NOX family. In the present review, we describe the participation of NADPH oxidases not only in thyroid physiology but also in gland pathophysiology, particularly the involvement of these enzymes in the regulation of thyroid oxidative stress.
Collapse
Affiliation(s)
- Denise P. Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Denise P. Carvalho, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, 373, CCS, Bloco G, Cidade Universitária Rio de Janeiro, Rio de Janeiro, RJ 21941902 (Brazil), E-Mail
| | - Corinne Dupuy
- Université Paris-Sud, UMR 8200 CNRS, Institute Gustave Roussy, Villejuif, France
| |
Collapse
|
12
|
Santos MCS, Louzada RAN, Souza ECL, Fortunato RS, Vasconcelos AL, Souza KLA, Castro JPSW, Carvalho DP, Ferreira ACF. Diabetes mellitus increases reactive oxygen species production in the thyroid of male rats. Endocrinology 2013; 154:1361-72. [PMID: 23407453 DOI: 10.1210/en.2012-1930] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diabetes mellitus (DM) disrupts the pituitary-thyroid axis and leads to a higher prevalence of thyroid disease. However, the role of reactive oxygen species in DM thyroid disease pathogenesis is unknown. Dual oxidases (DUOX) is responsible for H(2)O(2) production, which is a cosubstrate for thyroperoxidase, but the accumulation of H(2)O(2) also causes cellular deleterious effects. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is another member of the nicotinamide adenine dinucleotide phosphate oxidase family expressed in the thyroid. Therefore, we aimed to evaluate the thyroid DUOX activity and expression in DM rats in addition to NOX4 expression. In the thyroids of the DM rats, we found increased H(2)O(2) generation due to higher DUOX protein content and DUOX1, DUOX2, and NOX4 mRNA expressions. In rat thyroid PCCL3 cells, both TSH and insulin decreased DUOX activity and DUOX1 mRNA levels, an effect partially reversed by protein kinase A inhibition. Most antioxidant enzymes remained unchanged or decreased in the thyroid of DM rats, whereas only glutathione peroxidase 3 was increased. DUOX1 and NOX4 expression and H(2)O(2) production were significantly higher in cells cultivated with high glucose, which was reversed by protein kinase C inhibition. We conclude that thyroid reactive oxygen species is elevated in experimental rat DM, which is a consequence of low-serum TSH and insulin but is also related to hyperglycemia per se.
Collapse
Affiliation(s)
- Maria C S Santos
- Instituto de Biofísica Carlos Chagas Filho, CCS-Bloco G-Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21949-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Gouriprasanna Roy
- a epartment of Inorganic & Physical Chemistry , Indian Institute of Science , Bangalore, India
| | - Govindasamy Mugesh
- a epartment of Inorganic & Physical Chemistry , Indian Institute of Science , Bangalore, India
| |
Collapse
|
14
|
Nadolnik LI, Niatsetskaya ZV, Lupachyk SV. Effect of oxidative stress on rat thyrocyte iodide metabolism. Cell Biochem Funct 2008; 26:366-73. [DOI: 10.1002/cbf.1452] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Ruf J, Carayon P. Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 2005; 445:269-77. [PMID: 16098474 DOI: 10.1016/j.abb.2005.06.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/16/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Thyroperoxidase (TPO) is the enzyme involved in thyroid hormone synthesis. Although many studies have been carried out on TPO since it was first identified as being the thyroid microsomal antigen involved in autoimmune thyroid disease, previous authors have focused more on the immunological than on the biochemical aspects of TPO during the last few years. Here, we review the latest contributions in the field of TPO research and provide a large reference list of original publications. Given this promising background, scientists and clinicians will certainly continue in the future to investigate the mechanisms whereby TPO contributes to hormone synthesis and constitutes an important autoantigen involved in autoimmune thyroid disease, and the circumstances under which the normal physiological function of this enzyme takes on a pathological role.
Collapse
Affiliation(s)
- Jean Ruf
- INSERM Unit U555, Faculté de Médecine Timone, Université de la Méditerranée, Marseille, France.
| | | |
Collapse
|
16
|
Abstract
Thyroid hormone biosynthesis depends on iodide uptake and its incorporation into the acceptor protein thyroglobulin (Tg), a high molecular weight protein secreted into the follicular lumen. The sodium-iodide symporter (NIS) is responsible for thyroid iodide uptake, the first step in thyroid hormonogenesis. Iodide is subsequently transported through the cellular membrane by pendrin (PDS) and then incorporated into Tg. Iodide oxidation and organification occur mainly in the thyrocyte apical surface and these reactions are catalyzed by thyroperoxidase (TPO) in the presence of hydrogen peroxide. Thus, thyroid iodide organification depends on TPO activity, which is modulated by the concentration of substrates (thyroglobulin and iodide) and cofactor (hydrogen peroxide). Hydrogen peroxide generation is catalyzed by the thyroid NADPH oxidase (ThOx), which is present in the apical pole of thyrocytes, is stimulated by thyrotropin and is inhibited by iodide. Hydrogen peroxide generation is the limiting step in thyroid hormone biosynthesis under iodine sufficiency conditions.
Collapse
Affiliation(s)
- Mário Vaisman
- Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ
| | | | | |
Collapse
|
17
|
Morand S, Chaaraoui M, Kaniewski J, Dème D, Ohayon R, Noel-Hudson MS, Virion A, Dupuy C. Effect of iodide on nicotinamide adenine dinucleotide phosphate oxidase activity and Duox2 protein expression in isolated porcine thyroid follicles. Endocrinology 2003; 144:1241-8. [PMID: 12639906 DOI: 10.1210/en.2002-220981] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroperoxidase requires H(2)O(2) to catalyze the biosynthesis of thyroxine residues on thyroglobulin. Iodide inhibits the generation of H(2)O(2), and consequently the synthesis of thyroid hormones (Wolff-Chaikoff effect). The H(2)O(2) generator is a calcium-dependent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase involving the flavoprotein Duox2. NADPH oxidase activity and Duox2 require cAMP to be expressed in pig thyrocytes. We studied the effect of iodide on NADPH oxidase activity, the DUOX2 gene, and Duox2 protein expression in pig thyroid follicles cultured for 48 h with forskolin or a cAMP analog. Iodide inhibited the cellular release of H(2)O(2) and NADPH oxidase activity, effects prevented by methimazole. Northern blot studies showed that iodide did not reduce DUOX2 mRNA levels but did reduce those of TPO and NIS. Western blot analyses using a Duox2-specific antipeptide showed that Duox2 has two N-glycosylation states, which have oligosaccharide motifs accounting for about 15 kDa and 25 kDa, respectively, of the apparent molecular mass. Cyclic AMP increased the amount of the highly glycosylated form of Duox2, an effect antagonized by iodide in a methimazole-dependent manner. These data suggest that an oxidized form of iodide inhibits the H(2)O(2) generator at a posttranscriptional level by reducing the availability of the mature Duox2 protein.
Collapse
Affiliation(s)
- Stanislas Morand
- Unité 486, Institut National de la Santé et de la Recherche Médicale, Université Paris 11, Faculté de Pharmacie, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The role played in thyroid hormonogenesis by iodide oxidation to iodine (organification) is well established. Iodine deficiency may produce conditions of oxidative stress with high TSH producing a level of H_2O_2, which because of lack of iodide is not being used to form thyroid hormones. The cytotoxic actions of excess iodide in thyroid cells may depend on the formation of free radicals and can be attributed to both necrotic and apoptotic mechanisms with necrosis predominating in goiter development and apoptosis during iodide induced involution. These cytotoxic effects appear to depend on the status of antioxidative enzymes and may only be evident in conditions of selenium deficiency where the activity of selenium containing antioxidative enzymes is impaired. Less compelling evidence exists of a role for iodide as an antioxidant in the breast. However the Japanese experience may indicate a protective effect against breast cancer for an iodine rich seaweed containing diet. Similarly thyroid autoimmunity may also be associated with improved prognosis. Whether this phenomenon is breast specific and its possible relationship to iodine or selenium status awaits resolution.
Collapse
Affiliation(s)
- Peter P A Smyth
- Iodine Study Unit, Department of Medicine and Therapeutics, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland.
| |
Collapse
|
19
|
Tell G, Pines A, Paron I, D'Elia A, Bisca A, Kelley MR, Manzini G, Damante G. Redox effector factor-1 regulates the activity of thyroid transcription factor 1 by controlling the redox state of the N transcriptional activation domain. J Biol Chem 2002; 277:14564-74. [PMID: 11834746 DOI: 10.1074/jbc.m200582200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroid transcription factor 1 (TTF-1) is a homeodomain-containing transcriptional regulator responsible for the activation of thyroid- and lung-specific genes. It has been demonstrated that its DNA binding activity is redox-regulated in vitro through the formation of dimers and oligomeric species. In this paper, we demonstrate that the redox regulation mainly involves a Cys residue (Cys(87)), which resides out of the DNA binding domain, belonging to the N-transactivation domain. In fact, the oxidized form of a truncated TTF-1 (containing the N-transactivation domain and the DNA-binding domain, here called TTF-1N-HD) looses specific DNA binding activity. Since most of the oxidized TTF-1N-HD is in a monomeric form, these data indicate that the redox state of Cys(87) may control the DNA-binding function of the homeodomain, suggesting that Cys(87) could play an important role in determining the correct folding of the homeodomain. By using gel retardation and transient transfection assays, we demonstrate that the redox effector factor-1 (Ref-1) mediates the redox effects on TTF-1N-HD binding and that it is able to modulate the TTF-1 transcriptional activity. Glutathione S-transferase pull-down experiments demonstrate the occurrence of interaction between Ref-1 and TTF-1N-HD. Having previously demonstrated that Ref-1 is able to modulate the transcriptional activity of another thyroid-specific transcription factor (Pax-8), our data suggest that Ref-1 plays a central role in the regulation of thyroid cells.
Collapse
Affiliation(s)
- Gianluca Tell
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, via Giorgieri 1, Università degli Studi di Trieste, Trieste 34127, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cardoso LC, Martins DC, Figueiredo MD, Rosenthal D, Vaisman M, Violante AH, Carvalho DP. Ca(2+)/nicotinamide adenine dinucleotide phosphate-dependent H(2)O(2) generation is inhibited by iodide in human thyroids. J Clin Endocrinol Metab 2001; 86:4339-43. [PMID: 11549671 DOI: 10.1210/jcem.86.9.7823] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A calcium and NAD(P)H-dependent H(2)O(2)-generating activity has been studied in paranodular thyroid tissues from four patients with cold thyroid nodules and from nine diffuse toxic goiters. H(2)O(2) generation was detected both in the particulate (P 3,000 g) and in the microsomal (P 100,000 g) fractions of paranodular tissue surrounding cold thyroid nodules (PN), with the same biochemical properties described for NADPH oxidase found in porcine and human thyroids. In PN tissues, the particulate NADPH oxidase activity (224 +/- 38 nmol H(2)O(2) x h(-1) x mg(-1) protein) was similar to that described for the porcine thyroid enzyme. However, no NADPH oxidase activity was detectable in the particulate fractions from eight diffuse toxic goiter patients treated with iodine before surgery; all but one also received propylthiouracil or methimazole in the preoperative period. Thyroid cytochrome c reductase (diffuse toxic goiters = 438 +/- 104 nmol NADP(+) x h(-1) x mg(-1) protein; PN = 78 +/- 10 nmol NADP(+) x h(-1) x mg(-1) protein) and thyroperoxidase (diffuse toxic goiters = 621 +/- 179 U x g(-1) protein; PN = 232 +/- 121 U x g(-1) protein) activities were unaffected by iodide. Thus, the human NADPH oxidase seems to be inhibited by iodinated compounds in vivo and probably is an enzyme involved in the Wolff-Chaikoff effect. Our findings reinforce the hypothesis that thyroid NADPH oxidase is responsible for the production of H(2)O(2) necessary for thyroid hormone biosynthesis.
Collapse
Affiliation(s)
- L C Cardoso
- Instituto de Biofísica Carlos Chagas Filho, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Kim H, Lee TH, Park ES, Suh JM, Park SJ, Chung HK, Kwon OY, Kim YK, Ro HK, Shong M. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells. J Biol Chem 2000; 275:18266-70. [PMID: 10849441 DOI: 10.1074/jbc.275.24.18266] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxins (Prxs) play an important role in regulating cellular differentiation and proliferation in several types of mammalian cells. One mechanism for this action involves modulation of hydrogen peroxide (H(2)O(2))-mediated cellular responses. This report examines the expression of Prx I and Prx II in thyroid cells and their roles in eliminating H(2)O(2) produced in response to thyrotropin (TSH). Prx I and Prx II are constitutively expressed in FRTL-5 thyroid cells. Prx I expression, but not Prx II expression, is stimulated by exposure to TSH and H(2)O(2). In addition, methimazole induces a high level of Prx I mRNA and protein in these cells. Overexpression of Prx I and Prx II enhances the elimination of H(2)O(2) produced by TSH in FRTL-5 cells. Treatment with 500 micrometer H(2)O(2) causes apoptosis in FRTL-5 cells as evidenced by standard assays of apoptosis (i.e. terminal deoxynucleotidyl transferase deoxyuridine triphosphate-biotin nick end labeling, BAX expression, and poly(ADP-ribose) polymerase cleavage. Overexpression of Prx I and Prx II reduces the amount of H(2)O(2)-induced apoptosis measured by these assays. These results suggest that Prx I and Prx II are involved in the removal of H(2)O(2) in thyroid cells and can protect these cells from undergoing apoptosis. These proteins are likely to be involved in the normal physiological response to TSH-induced production of H(2)O(2) in thyroid cells.
Collapse
Affiliation(s)
- H Kim
- Departments of Internal Medicine and Anatomy, Chungnam National University, 640 Daesadong Chungku Taejon 301-721, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Carvalho DP, Ferreira AC, Coelho SM, Moraes JM, Camacho MA, Rosenthal D. Thyroid peroxidase activity is inhibited by amino acids. Braz J Med Biol Res 2000; 33:355-61. [PMID: 10719389 DOI: 10.1590/s0100-879x2000000300015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 microM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 microM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 microM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 microM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.
Collapse
Affiliation(s)
- D P Carvalho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | |
Collapse
|
23
|
Dupuy C, Ohayon R, Valent A, Noël-Hudson MS, Dème D, Virion A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J Biol Chem 1999; 274:37265-9. [PMID: 10601291 DOI: 10.1074/jbc.274.52.37265] [Citation(s) in RCA: 330] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hydrogen peroxide is the final electron acceptor for the biosynthesis of thyroid hormone catalyzed by thyroperoxidase at the apical surface of thyrocytes. Pig and human thyroid plasma membrane contain a Ca(2+)-dependent NAD(P)H oxidase that generates H(2)O(2) by transferring electrons from NAD(P)H to molecular oxygen. We purified from pig thyroid plasma membrane a flavoprotein which constitutes the main, if not the sole, component of the thyroid NAD(P)H oxidase. Microsequences permitted the cloning of porcine and human full-length cDNAs encoding, respectively, 1207- and 1210-amino acid proteins with a predicted molecular mass of 138 kDa (p138(Tox)). Human and porcine p138(Tox) have 86.7% identity. The strongest similarity was to a predicted polypeptide encoded by a Caenorhabditis cDNA and with rbohA, a protein involved in the Arabidopsis NADPH oxidase. p138(Tox) shows also similarity to the p65(Mox) and to the gp91(Phox) in their C-terminal region and have consensus sequences for FAD- and NADPH-binding sites. Compared with gp91(Phox), p138(Tox) shows an extended N-terminal containing two EF-hand motifs that may account for its calcium-dependent activity, whereas three of four sequences implicated in the interaction of gp91(Phox) with the p47(Phox) cytosolic factor are absent in p138(Tox). The expression of porcine p138(Tox) mRNA analyzed by Northern blot is specific of thyroid tissue and induced by cyclic AMP showing that p138(Tox) is a differentiation marker of thyrocytes. The gene of human p138(Tox) has been localized on chromosome 15q15.
Collapse
Affiliation(s)
- C Dupuy
- INSERM Unité 486, Institut de Signalisation et Innovation Thérapeutique, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | | | | | | | | | | |
Collapse
|
24
|
Masini-Repiso AM, Orgnero-Gaisán E, Bonaterra M, Cabanillas AM, Coleoni AH. Biochemical and functional changes during the bovine fetal thyroid development. Thyroid 1998; 8:71-80. [PMID: 9492157 DOI: 10.1089/thy.1998.8.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To establish biochemical and functional relations during thyroid development, the activity of thyroid peroxidase (TPO), nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome c reductase and monoamine oxidase (MAO) in a particulate fraction and the iodide transport and organification in slices of bovine fetal thyroid were examined throughout gestation. The cytochemical localization of TPO, H2O2 generating sites and MAO was also studied. Fetal glands were grouped in stages I to V according to increasing developmental features; adult tissues were also analyzed. TPO activity in each of the fetal stages was higher than in the adult; a marked increase was observed in stages IV and V. Iodide transport (T/M) was similar in stages I to V and the adult. Iodide organification in fetal thyroids showed a similar pattern to that of TPO activity. When compared with the adult, at midgestation (stages II to III), a lower iodination coexisted with a higher TPO activity. The activity of NADPH-cytochrome c reductase and MAO, two enzymes previously proposed to participate in thyroid H2O2 generation, did not parallel the level of iodide organification. Cells from stages II to V exhibited a positive cytochemical reaction for TPO in the rough endoplasmic reticulum (RER) and the perinuclear cisternae (PC). In stages IV, V, and adult, TPO was occasionally found in apical vesicles and microvilli, whereas H2O2 was detected within the RER and the PC. MAO reaction was positive in adult, but not in fetal thyroid. These results indicate that a high TPO activity accompanied the onset of the organification process during fetal thyroid development. The level of iodination was associated with the presence of TPO at a proper site rather than to the level of TPO activity. Evidence against a role of NADPH-cytochrome c reductase and MAO in the iodide organification was obtained.
Collapse
Affiliation(s)
- A M Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | | | |
Collapse
|
25
|
Gorin Y, Leseney AM, Ohayon R, Dupuy C, Pommier J, Virion A, Dème D. Regulation of the thyroid NADPH-dependent H2O2 generator by Ca2+: studies with phenylarsine oxide in thyroid plasma membrane. Biochem J 1997; 321 ( Pt 2):383-8. [PMID: 9020870 PMCID: PMC1218080 DOI: 10.1042/bj3210383] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pig thyroid plasma membranes contain a Ca(2+)-dependent NADPH:O2 oxidoreductase, the thyroid NADPH-dependent H2O2 generator. This provided the H2O2 for the peroxidase-catalysed synthesis of thyroid hormones. The effect of the tervalent arsenical, phenylarsine oxide (PAO), on the NADPH oxidase was studied. PAO caused two directly related dose-dependent effects with similar half-effect concentrations of PAO (3 nmol of PAO/mg of protein): (i) partial inactivation of H2O2 formation by the Ca(2+)-stimulated enzyme, and (ii) desensitization of the enzyme activity to Ca2+. PAO had no effect on membranes that had been Ca(2+)-desensitized by alpha-chymotrypsin treatment. The NADPH oxidase in membranes treated with excess PAO had the same Vmax with and without Ca2+. This value was half the Vmax of the native enzyme. However, the K(m) for NADPH determined with Ca2+ (18 microM, identical with that of the native enzyme) was approx, one-third of the K(m) measured without Ca2+, showing the direct action of Ca2+ on the PAO-enzyme complex. PAO had the same effects, partial inactivation and Ca2+ desensitization, on the NADPH: ferricyanide oxidoreductase activity of the NADPH oxidase, suggesting that PAO acts on the flavodehydrogenase entity of the enzyme. Both partial inactivation and Ca2+ desensitization were completely and specifically reversed by 2.3-dimercaptopropanol, partly reversed by dithiothreitol and not reversed by 2-mercaptoethanol, indicating that PAO binds to vicinal thiol groups. These results suggest that thiol groups are involved in the control of thyroid NADPH oxidase by Ca2+; PAO bound to vicinal thiols might alter the structure of the enzyme so that electron transfer occurs without Ca2+ but more slowly.
Collapse
Affiliation(s)
- Y Gorin
- INSERM Unité 96, Le Kremlin-Bicĕtre, France
| | | | | | | | | | | | | |
Collapse
|