1
|
López-Márquez A, Carrasco-López C, Fernández-Méndez C, Santisteban P. Unraveling the Complex Interplay Between Transcription Factors and Signaling Molecules in Thyroid Differentiation and Function, From Embryos to Adults. Front Endocrinol (Lausanne) 2021; 12:654569. [PMID: 33959098 PMCID: PMC8095082 DOI: 10.3389/fendo.2021.654569] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Thyroid differentiation of progenitor cells occurs during embryonic development and in the adult thyroid gland, and the molecular bases of these complex and finely regulated processes are becoming ever more clear. In this Review, we describe the most recent advances in the study of transcription factors, signaling molecules and regulatory pathways controlling thyroid differentiation and development in the mammalian embryo. We also discuss the maintenance of the adult differentiated phenotype to ensure the biosynthesis of thyroid hormones. We will focus on endoderm-derived thyroid epithelial cells, which are responsible for the formation of the thyroid follicle, the functional unit of the thyroid gland. The use of animal models and pluripotent stem cells has greatly aided in providing clues to the complicated puzzle of thyroid development and function in adults. The so-called thyroid transcription factors - Nkx2-1, Foxe1, Pax8 and Hhex - were the first pieces of the puzzle identified in mice. Other transcription factors, either acting upstream of or directly with the thyroid transcription factors, were subsequently identified to, almost, complete the puzzle. Among them, the transcription factors Glis3, Sox9 and the cofactor of the Hippo pathway Taz, have emerged as important players in thyroid differentiation and development. The involvement of signaling molecules increases the complexity of the puzzle. In this context, the importance of Bmps, Fgfs and Shh signaling at the onset of development, and of TSH, IGF1 and TGFβ both at the end of terminal differentiation in embryos and in the adult thyroid, are well recognized. All of these aspects are covered herein. Thus, readers will be able to visualize the puzzle of thyroid differentiation with most - if not all - of the pieces in place.
Collapse
Affiliation(s)
- Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Pilar Santisteban,
| |
Collapse
|
2
|
Nakayama A, Aoki S, Uchihashi K, Nishijima-Matsunobu A, Yamamoto M, Kakihara N, Iwakiri R, Fujimoto K, Toda S. Interaction between Esophageal Squamous Cell Carcinoma and Adipose Tissue in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1180-94. [PMID: 26952643 DOI: 10.1016/j.ajpath.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) develops within the squamous epithelial layer and invades the submucosa to the subadventitia that has adipose tissue (AT). AT seems critical to ESCC progression, but the underlying mechanism is unknown. We aimed to address the association between ESCC and AT in vitro. ESCC cells were cultured on rat or human subcutaneous AT-embedded or -non-embedded collagen gel. AT promoted the growth of ESCC cells and inhibited their apoptosis. AT promoted the expression of the squamous differentiation marker involucrin in ESCC cells. AT accelerated the expression of invasion-related factors in poorly differentiated ESCC cells only. AT promoted the expression of phosphorylated-insulin-like growth factor-1 receptor in ESCC cells, whereas it inhibited that of the human epidermal growth factor receptor 2. Insulin-like growth factor-1, but not leptin, adiponectin, or resistin, promoted and inhibited the growth and apoptosis of ESCC cells, respectively. In turn, ESCC cells decreased the production of these adipokines in AT and the number of preadipocytes and mesenchymal stem cell-like cells, which developed from AT. These results suggest that i) AT may influence the progression of ESCC with increased growth or invasion and decreased apoptosis through insulin-like growth factor-1/insulin-like growth factor-1 receptor signaling, ii) AT may affect human epidermal growth factor receptor 2-targeted therapy; and iii) the cancer cells may affect adipokine production in AT.
Collapse
Affiliation(s)
- Atsushi Nakayama
- Department of Internal Medicine and Gastrointestinal Endoscopy, Faculty of Medicine, Saga University, Saga, Japan; Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.
| | - Shigehisa Aoki
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuyoshi Uchihashi
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Mihoko Yamamoto
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Nahoko Kakihara
- Department of Basic Science of Nursing, Faculty of Medicine, Saga University, Saga, Japan
| | - Ryuichi Iwakiri
- Department of Internal Medicine and Gastrointestinal Endoscopy, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuma Fujimoto
- Department of Internal Medicine and Gastrointestinal Endoscopy, Faculty of Medicine, Saga University, Saga, Japan
| | - Shuji Toda
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.
| |
Collapse
|
3
|
Rupik W, Kowalska M, Swadźba E, Maślak R. Ultrastructural features of the differentiating thyroid primordium in the sand lizard (Lacerta agilis L.) from the differentiation of the cellular cords to the formation of the follicular lumen. ZOOLOGY 2016; 119:97-112. [DOI: 10.1016/j.zool.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/03/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022]
|
4
|
Yamamoto M, Uchihashi K, Aoki S, Koike E, Kakihara N, Toda S. Interaction between thyrocytes and adipose tissue in vitro. Pathol Int 2016; 66:148-157. [DOI: 10.1111/pin.12387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Mihoko Yamamoto
- Department of Pathology & Microbiology; Faculty of Medicine; Saga University; Saga Japan
| | - Kazuyoshi Uchihashi
- Department of Pathology & Microbiology; Faculty of Medicine; Saga University; Saga Japan
| | - Shigehisa Aoki
- Department of Pathology & Microbiology; Faculty of Medicine; Saga University; Saga Japan
| | | | - Nahoko Kakihara
- Division of Function & Morphology for Nursing; Department of Basic Science of Nursing; Faculty of Medicine; Saga University; Saga Japan
| | - Shuji Toda
- Department of Pathology & Microbiology; Faculty of Medicine; Saga University; Saga Japan
| |
Collapse
|
5
|
Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, Sun B, Zhang B, Cao W. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med 2015; 36:113-22. [PMID: 26005723 PMCID: PMC4494581 DOI: 10.3892/ijmm.2015.2222] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/15/2015] [Indexed: 01/03/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a process closely related to tumor development, is regulated by a variety of signaling pathways and growth factors, such as transforming growth factor-β1 (TGF-β1) and epidermal growth factor (EGF). Hyaluronan (HA) has been shown to induce EMT through either TGF-β1 or EGF signaling and to be a regulator of the crosstalk between these two pathways in fibroblasts. In this study, in order to clarify whether HA has the same effect in tumor cells, we utilized the lung cancer cell line, A549, and the breast cancer cell line, MCF-7, and found that the effects of stimulation with TGF-β1 were more potent than those of EGF in regulating the expression of EMT-associated proteins and in enhancing cell migration and invasion. In addition, we observed that TGF-β1 activated EGF receptor (EGFR) and its downstream AKT and extracellular signal-regulated kinase (ERK) pathways. Furthermore, we found that TGF-β1 upregulated the expression of hyaluronan synthases (HAS1, HAS2 and HAS3) and promoted the expression of CD44, a cell surface receptor for HA, which interacts with EGFR, resulting in the activation of the downstream AKT and ERK pathways. Conversely, treatment with 4-methylumbelliferone (4-MU; an inhibitor of HAS) prior to stimulation with TGF-β1, inhibited the expression of CD44 and EGFR, abolished the interaction between CD44 and EGFR. Furthermore, the use of shRNA targeting CD44 impaired the expression of EGFR, deactivated the AKT and ERK pathways, reversed EMT and decreased the migration and invasion ability of cells. In conclusion, our data demonstrate that TGF-β1 induces EMT by the transactivation of EGF signaling through HA/CD44 in lung and breast cancer cells.
Collapse
Affiliation(s)
- Lingmei Li
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhijie Liang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wangzhao Song
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yanxue Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Bin Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
6
|
Uchihashi K, Aoki S, Matsunobu A, Toda S. Osteoblast migration into type I collagen gel and differentiation to osteocyte-like cells within a self-produced mineralized matrix: a novel system for analyzing differentiation from osteoblast to osteocyte. Bone 2013; 52:102-10. [PMID: 22985890 DOI: 10.1016/j.bone.2012.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/07/2012] [Accepted: 09/06/2012] [Indexed: 12/29/2022]
Abstract
Osteoblasts are believed to differentiate into osteocytes, becoming embedded in bone, or to undergo apoptosis after the bone formation phase. The regulation of this terminal differentiation seems to be critical for bone homeostasis. However the mechanism remains unclear and there is no assay system currently available to analyze this process. To address this issue, we developed a new model in which osteoblasts are cultured on a type I collagen gel layer with osteogenic supplements β-glycerophosphate and ascorbic acid. Cellular behavior was analyzed by electron microscopy, immunohistochemistry and real-time RT-PCR. Osteoblasts gradually migrated into the gel, produced collagen fibrils, and differentiated to osteocytic cells with bone lacunae- and canaliculi-like mineralization. Osteocalcin, DMP-1 and SOST protein expression was mainly expressed in the migrated cells within the mid-layer of the gel. Osteoblastic (ALP and osteocalcin) and osteocytic (PHEX, DMP-1 and SOST) mRNA expression was significantly increased compared with those of the cells cultured on plastic dishes alone after 21 days. The number of TUNEL-positive apoptotic cells gradually increased, reaching a maximum at 28 days. The cells were distributed at the surface and in the mid-layer of the gel at 7 days and after 14 days of culture, respectively. These data indicate that our model reproduces transition from osteoblasts to osteocytes, suggesting the following: 1) migration of osteoblasts into collagen gel may play a critical role in osteocytic differentiation; and 2) spatiotemporal gene expression and apoptosis may be involved in the terminal differentiation of osteoblasts. Our model will make it possible to study the mechanism of transition from osteoblast to osteocyte, and both cell type-related diseases including osteoporosis and osteonecrosis.
Collapse
Affiliation(s)
- Kazuyoshi Uchihashi
- Department of Pathology & Microbiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
| | | | | | | |
Collapse
|
7
|
Iovino S, Oriente F, Botta G, Cabaro S, Iovane V, Paciello O, Viggiano D, Perruolo G, Formisano P, Beguinot F. PED/PEA-15 induces autophagy and mediates TGF-beta1 effect on muscle cell differentiation. Cell Death Differ 2012; 19:1127-38. [PMID: 22281705 PMCID: PMC3374077 DOI: 10.1038/cdd.2011.201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TGF-beta1 has been shown to induce autophagy in certain cells but whether and how this action is exerted in muscle and whether this activity relates to TGF-beta1 control of muscle cell differentiation remains unknown. Here, we show that expression of the autophagy-promoting protein phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) progressively declines during L6 and C2C12 skeletal muscle cell differentiation. PED/PEA-15 underwent rapid induction upon TGF-beta1 exposure of L6 and C2C12 myoblasts, accompanied by impaired differentiation into mature myotubes. TGF-beta1 also induced autophagy in the L6 and C2C12 cells through a PP2A/FoxO1-mediated mechanism. Both the TGF-beta1 effect on differentiation and that on autophagy were blocked by specific PED/PEA-15 ShRNAs. Myoblasts stably overexpressing PED/PEA-15 did not differentiate and showed markedly enhanced autophagy. In these same cells, the autophagy inhibitor 3-methyladenine rescued TGF-beta1 effect on both autophagy and myogenesis, indicating that PED/PEA-15 mediates TGF-beta1 effects in muscle. Muscles from transgenic mice overexpressing PED/PEA-15 featured a significant number of atrophic fibers, accompanied by increased light chain 3 (LC3)II to LC3I ratio and reduced PP2A/FoxO1 phosphorylation. Interestingly, these mice showed significantly impaired locomotor activity compared with their non-transgenic littermates. TGF-beta1 causes transcriptional upregulation of the autophagy-promoting gene PED/PEA-15, which in turn is capable to induce atrophic responses in skeletal muscle in vivo.
Collapse
Affiliation(s)
- S Iovino
- Department of Cellular and Molecular Biology and Pathology, University of Naples Federico II, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Anan M, Uchihashi K, Aoki S, Matsunobu A, Ootani A, Node K, Toda S. A promising culture model for analyzing the interaction between adipose tissue and cardiomyocytes. Endocrinology 2011; 152:1599-605. [PMID: 21303960 DOI: 10.1210/en.2010-1106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The heart has epicardial adipose tissue that produces adipokines and mesenchymal stem cells. Systemic adipose tissue is involved in the pathophysiology of obesity-related heart diseases. However, the method for analyzing the direct interaction between adipose tissue and cardiomyocytes has not been established. Here we show the novel model, using collagen gel coculture of adipose tissue fragments (ATFs) and HL-1 cardiomyocytes, and electron microscopy, immunohistochemistry, real-time RT-PCR, and ELISA. HL-1 cells formed a stratified layer on ATF-nonembedded gel, whereas they formed almost a monolayer on ATF-embedded gel. ATFs promoted the apoptosis, lipid accumulation, and fatty acid transport protein (FATP) expression of FATP4 and CD36 in HL-1 cells, whereas ATFs inhibited the growth and mRNA expression of myosin, troponin T, and atrial natriuretic peptide. Treatment of leptin (100 ng/ml) and adiponectin (10 μg/ml) neither replicated nor abolished the ATF-induced morphology of HL-1 cells, whereas that of FATP4 and CD36 antibodies (25 μg/ml) never abolished it. HL-1 cells prohibited the development of CD44+/CD105+ mesenchymal stem cell-like cells and lipid-laden preadipocytes from ATFs. HL-1 cells increased the production of adiponectin in ATFs, whereas they decreased that of leptin. The data indicate that our model actively creates adipose tissue-HL-1 cardiomyocyte interaction, suggesting first that ATFs may be related to the lipotoxiciy of HL-1 cells via unknown factors plus FATP4 and CD36 and second that HL-1 cells may help to retain the static state of ATFs, affecting adipokine secretion. Our model will serve to study adipose tissue-cardiomyocyte interaction and mechanisms of obesity-related lipotoxicity and heart diseases.
Collapse
Affiliation(s)
- Mayumi Anan
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhu Y, Nilsson M, Sundfeldt K. Phenotypic plasticity of the ovarian surface epithelium: TGF-beta 1 induction of epithelial to mesenchymal transition (EMT) in vitro. Endocrinology 2010; 151:5497-505. [PMID: 20844000 DOI: 10.1210/en.2010-0486] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ovarian surface epithelium (OSE) is the most conceivable cell origin of epithelial ovarian carcinomas. Unlike many other epithelial tumors, the precancerous lesion acquires expression of epithelial markers, e.g. E-cadherin and claudins, suggesting that OSE cells undergo mesenchymal to epithelial transition (MET) during transformation. Recent findings indicate that TGF-β1, a prototypic stimulus of epithelial to mesenchymal transition (EMT), i.e. reverse to MET, is produced at significant amounts in the intact ovary. In the present study, we therefore investigated whether TGF-β1 changes the OSE phenotype accordingly, focusing on epithelial junction proteins and transcriptional EMT regulators quantified by real-time RT-PCR and Western blotting in cultured normal human OSE. Early OSE passages were found to paradoxically express de novo E-cadherin and also establish tight junctions exhibiting claudin-1 (but not claudin-3 and -4) and occludin. Stimulation with TGF-β1 (100 ng/ml) for 3-5 d down-regulated all these epithelial markers including Crumbs3 and also prevented the formation of an epithelial barrier This was accompanied by sustained expression of Snail and N-cadherin and transient expression of Slug, whereas Zeb1 (zinc finger E-box binding homeobox 1) and Twist mRNA levels were not significantly changed. In conclusion, TGF-β1 enforces the mesenchymal phenotype of OSE cells in vitro by an EMT-like process, leading to an altered molecular composition of the epithelial junction complex that partly coincides with the expression pattern of the native OSE. This suggests a potential role of TGF-β1-induced EMT in OSE under physiological conditions and possibly also in epithelial ovarian tumorigenesis.
Collapse
Affiliation(s)
- Yihong Zhu
- Institute of Clinical Sciences, Department of Obstetrics and Gynaecology, Sahlgrenska Academy at Gothenburg University, SE-413 45 Gothenburg, Sweden
| | | | | |
Collapse
|
10
|
Uchihashi K, Aoki S, Shigematsu M, Kamochi N, Sonoda E, Soejima H, Fukudome K, Sugihara H, Hotokebuchi T, Toda S. Organotypic culture of human bone marrow adipose tissue. Pathol Int 2010; 60:259-67. [DOI: 10.1111/j.1440-1827.2010.02511.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Udo K, Aoki S, Uchihashi K, Kawasaki M, Matsunobu A, Tokuda Y, Ootani A, Toda S, Uozumi J. Adipose tissue explants and MDCK cells reciprocally regulate their morphogenesis in coculture. Kidney Int 2010; 78:60-8. [PMID: 20336056 DOI: 10.1038/ki.2010.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adipokine-producing fatty tissues, composed of preadipocytes, adipocytes, and mesenchymal stem cells, surround the kidney. To study the interaction between renal tubular cells and adipose tissue, we cocultured adipose tissue fragments and MDCK cells. MDCK cells in the coculture showed a taller columnar shape with improved organization of their microvilli and basal lamina than that seen in MDCK cell monoculture. The adipose tissue-induced change in morphology was replicated when we added leptin to MDCK cells cultured alone. Adiponectin abolished the leptin effect. Adipose tissue fragments inhibited MDCK cell division and also the formation of single-stranded DNA, an indicator of apoptosis. The fragments promoted the expression of polarity-associated proteins, including the tight junction molecules, ZO-1, atypical protein kinase C, and Cdc42. Further, the fragments also accelerated the expression of pendrin, the chloride/iodide transporter in the MDCK cells. In turn, MDCK cells decreased the number of preadipocytes and CD44+/CD105+ mesenchymal stem cells in the fragments, and promoted adiponectin production from the fragments. Thus, our study shows that adipose tissue fragments promote the hypertrophy, polarization, and differentiation of MDCK cells by attenuating their growth and apoptosis through opposing endocrine or paracrine effects of leptin and adiponectin. Further, MDCK cells inhibit the regeneration of preadipocytes and mesenchymal stem cells in adipose tissue.
Collapse
Affiliation(s)
- Kazuma Udo
- Department of Pathology & Biodefense, Faculty of Medicine, Saga University, Saga, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nagase K, Aoki S, Uchihashi K, Misago N, Shimohira-Yamasaki M, Toda S, Narisawa Y. An organotypic culture system of Merkel cells using isolated epidermal sheets. Br J Dermatol 2009; 161:1239-47. [PMID: 19796180 DOI: 10.1111/j.1365-2133.2009.09422.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Merkel cells (MCs) exist in the epidermal basal layer, in contact with keratinocytes. This direct contact seems critical for maintaining MCs in vitro. OBJECTIVES To estimate the effects of nerve cells on the maintenance of MCs within epidermal sheets in a new organotypic culture system of MCs. METHODS We developed a new organotypic culture system of MCs, using MC-containing epidermal sheets embedded in collagen gel. To estimate the effects of nerve cells on the maintenance of MCs within the epidermal sheets, we cocultured nerve cells and MC-containing epidermal sheets. In these culture assemblies, cellular behaviour was analysed by histochemistry, immunohistochemistry, electron microscopy and enzyme-linked immunosorbent assay. RESULTS This culture, even in the absence of neurotrophin (NT)-3 and nerve growth factor (NGF) (which are crucial for MC biology), retained cytokeratin (CK)-20-positive and neuroendocrine granule-containing MCs within the sheets for over 2 weeks. Coculture of MCs with PC-12 nerve cells significantly increased the number of MCs within the epidermal sheets, and the keratinocytes had almost identical expression levels of CK1, CK10, CK14 and the progenitor marker p63 to those produced by keratinocytes in vivo. Uptake of the growth marker bromodeoxyuridine by MCs and levels of NT-3 and NGF in the culture supernatants were undetectable in this system, regardless of the presence or absence of PC-12. CONCLUSIONS The data suggest, first, that direct contact between MCs and keratinocytes may be critical for retaining MCs in vitro; second, that nerve cell-affected maintenance of keratinocyte differentiation, but not NT-3 and NGF, may contribute to MC maintenance; and third, that MCs are not able to grow, at least in our system. Our method would be useful for studying MC biology.
Collapse
Affiliation(s)
- K Nagase
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sonoda E, Aoki S, Uchihashi K, Soejima H, Kanaji S, Izuhara K, Satoh S, Fujitani N, Sugihara H, Toda S. A new organotypic culture of adipose tissue fragments maintains viable mature adipocytes for a long term, together with development of immature adipocytes and mesenchymal stem cell-like cells. Endocrinology 2008; 149:4794-8. [PMID: 18535101 DOI: 10.1210/en.2008-0525] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adipose tissue that consists of mature and immature adipocytes is suggested to contain mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. Here we show that three-dimensional collagen gel culture of rat sc adipose tissue fragments maintained viable mature adipocytes for a long term, producing immature adipocytes and MSC-like cells from the fragments, using immunohistochemistry, ELISA, and real time RT-PCR. Bromodeoxyuridine uptake of mature adipocytes was detected. Adiponectin and leptin, and adipocyte-specific genes of adiponectin, leptin, and PPAR-gamma were detected in culture assembly, whereas the lipogenesis factor insulin (20 mU/ml) and inflammation-related agent TNF-alpha (2 nm) increased and decreased, respectively, all of their displays. Both spindle-shaped cell types with oil red O-positive lipid droplets and those with expression of MSC markers (CD105 and CD44) developed around the fragments. The data indicate that adipose tissue-organotypic culture retains unilocular structure, proliferative ability, and some functions of mature adipocytes, generating both immature adipocytes and CD105+/CD44+ MSC-like cells. This suggests that our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Emiko Sonoda
- Department of Pathology and Biodefense, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hashimoto's Thyroiditis, but not Treatment of Hypothyroidism, Is Associated with Altered TGF-β1 Levels. Arch Med Res 2008; 39:397-401. [DOI: 10.1016/j.arcmed.2007.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 12/10/2007] [Indexed: 11/21/2022]
|
15
|
Koike E, Toda S, Yokoi F, Izuhara K, Koike N, Itoh K, Miyazaki K, Sugihara H. Expression of new human inorganic pyrophosphatase in thyroid diseases: its intimate association with hyperthyroidism. Biochem Biophys Res Commun 2006; 341:691-6. [PMID: 16430861 DOI: 10.1016/j.bbrc.2006.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 01/06/2006] [Indexed: 11/30/2022]
Abstract
Inorganic pyrophosphatase (PPase) controls the level of inorganic pyrophosphate produced by biosynthesis of protein, RNA, and DNA. Thus, PPase is essential for life. PPase expression is unclear in the thyroid. We cloned a new human PPase, phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPPase), and established a rabbit polyclonal anti-LHPPase antibody. This is the first study to determine the PPase expression by immunohistochemistry and Western blot. Intranuclear LHPPase expression of thyrocytes was enhanced most prominently in Graves' disease and autonomously functional thyroid nodule. To estimate a regulating factor of subcellular localization of LHPPase, we examined its expression of Graves' disease-derived thyrocytes in vitro with the disease-originated serum. Nuclear expression of LHPPase was lost in cultured thyrocytes even with the serum, while its cytoplasmic expression was retained. The data suggest that increased expression of LHPPase is associated with hyperthyroidism. Intranuclear expression of LHPPase may not be regulated by Graves' disease-derived serum factors.
Collapse
Affiliation(s)
- Eisuke Koike
- Department of Pathology and Biodefence, Faculty of Medicine, Saga University, Saga, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shimohira-Yamasaki M, Toda S, Narisawa Y, Sugihara H. Merkel Cell-Nerve Cell Interaction Undergoes Formation of a Synapse-like Structure in a Primary Culture. Cell Struct Funct 2006; 31:39-45. [PMID: 16648663 DOI: 10.1247/csf.31.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Merkel cells have been assumed to guide nerve fibers to the skin. However, there has been little in vitro evidence that supports this hypothesis, because there is no suitable established culture system of Merkel cells. Here we show that Merkel cells isolated from rat footpad skin were successfully cultured in a monolayer with keratinocytes. Keratinocytes did not affect any structural changes in Merkel cells. When nerve cells (NG108-15 or PC12) were added to the culture system, both nerve fibers and cytoplasmic processes of Merkel cells outgrew and cooperatively organized synapse-like structures at their contact points. Nerve cells promoted Merkel cell survival, compared with keratinocytes only. Merkel cell proliferation was not detected in all conditions, even with nerve growth factor, neurotrophin-3, interleukin-6 and tumor necrosis factor-alpha. The data suggest, firstly, that Merkel cells may guide nerve fibers to the skin by interacting with nerve cells; and, secondly, that nerve cells, but not keratinocytes, may produce some survival factors other than the cytokines above for Merkel cells, although Merkel cells may be a terminally differentiated cell type. Our method could open a way to study Merkel cell biology.
Collapse
|
17
|
Toda S, Yamada S, Aoki S, Inokuchi A, Sugihara H. Air–liquid interface promotes invasive growth of laryngeal squamous cell carcinoma with or without hypoxia. Biochem Biophys Res Commun 2005; 326:866-72. [PMID: 15607749 DOI: 10.1016/j.bbrc.2004.11.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Indexed: 10/26/2022]
Abstract
Air-liquid interface (ALI) is a microenvironment of aerodigestive tract. In our previous study, ALI promoted invasive growth of laryngeal squamous cell carcinoma (SCC); but its mechanism was unclear. Hypoxia is also related to cancer spread. Here we show that ALI with or without hypoxia accelerated invasive growth of laryngeal SCC cells, using collagen gel invasion assay. Submerged condition (SMC) without ALI did not induce the invasion with or without hypoxia. ALI enhanced expression of the following growth-, invasion-, and motility-related molecules in the cells with or without hypoxia more greatly than SMC: c-Met, Ras, mitogen-activated protein kinase cascade proteins (Raf-1, MEK-1, and ERK-1/2), matrix metalloproteinase-1, and filamin A. The data indicate that ALI promotes invasive growth of SCC cells by enhancement of the invasive growth-related molecules above, through mechanisms that differ from hypoxia, suggesting that ALI microenvironment should be taken into account for the study of cancer biology.
Collapse
Affiliation(s)
- Shuji Toda
- Department of Pathology and Biodefence, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
| | | | | | | | | |
Collapse
|
18
|
Yasunaga S, Yuyama N, Arima K, Tanaka H, Toda S, Maeda M, Matsui K, Goda C, Yang Q, Sugita Y, Nagai H, Izuhara K. The negative-feedback regulation of the IL-13 signal by the IL-13 receptor alpha2 chain in bronchial epithelial cells. Cytokine 2004; 24:293-303. [PMID: 14609571 DOI: 10.1016/j.cyto.2003.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bronchial asthma is a complex disease characterized by airway inflammation involving Th2 cytokines. Among Th2 cytokines, the significance of IL-13 in the pathogenesis of bronchial asthma has recently emerged. Particularly, the direct action of IL-13 on bronchial epithelial cells (BECs) is critical for generation of airway hyperresponsiveness. IL-13 has two binding units; the IL-13 receptor alpha1 chain transduces the IL-13 signal comprising a heterodimer with the IL-4R alpha chain, whereas the IL-13 receptor alpha2 chain (IL-13Ralpha2) is thought to act as a decoy receptor. However, it remains obscure how expression of these molecules is regulated in each cell. In this article, we analyzed the expression of these components in BECs. Either IL-4 or IL-13 induced intracellular expression of IL-13Ralpha2 in BECs, which was STAT6-dependent and required de novo protein synthesis. IL-13Ralpha2 expressed on the cell surface as a monomer inhibited the STAT6-dependent IL-13 signal. Furthermore, expression of IL-13Ralpha2 was induced in lung tissues of ovalbumin-induced asthma model mice. Taken together, our results suggested the possibility that IL-13Ralpha2 induced by its ligand is transferred to the cell surface by an unknown mechanism, and it down-regulates the IL-13 signal in BECs, which functions as a unique negative-feedback system for the cytokine signal.
Collapse
Affiliation(s)
- Shin'ichiro Yasunaga
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Grände M, Franzen A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M. Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci 2002; 115:4227-36. [PMID: 12376555 DOI: 10.1242/jcs.00091] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhancement of tumor cell growth and invasiveness by transforming growth factor-beta (TGF-beta) requires constitutive activation of the ras/MAPK pathway. Here we have investigated how MEK activation by epidermal growth factor (EGF) influences the response of fully differentiated and growth-arrested pig thyroid epithelial cells in primary culture to TGF-beta1. The epithelial tightness was maintained after single stimulation with EGF or TGF-beta1 (both 10 ng/ml) for 48 hours. In contrast, co-stimulation abolished the transepithelial resistance and increased the paracellular flux of [(3)H]inulin within 24 hours. Reduced levels of the tight junction proteins claudin-1 and occludin accompanied the loss of barrier function. N-cadherin, expressed only in few cells of untreated or single-stimulated cultures, was at the same time increased 30-fold and co-localised with E-cadherin at adherens junctions in all cells. After 48 hours of co-stimulation, both E- and N-cadherin were downregulated and the cells attained a fibroblast-like morphology and formed multilayers. TGF-beta1 only partially inhibited EGF-induced Erk phosphorylation. The MEK inhibitor U0126 prevented residual Erk phosphorylation and abrogated the synergistic responses to TGF-beta1 and EGF. The observations indicate that concomitant growth factor-induced MEK activation is necessary for TGF-beta1 to convert normal thyroid epithelial cells to a mesenchymal phenotype.
Collapse
Affiliation(s)
- Mats Grände
- Institute of Anatomy and Cell Biology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Toda S, Watanabe K, Yokoi F, Matsumura S, Suzuki K, Ootani A, Aoki S, Koike N, Sugihara H. A new organotypic culture of thyroid tissue maintains three-dimensional follicles with C cells for a long term. Biochem Biophys Res Commun 2002; 294:906-11. [PMID: 12061793 DOI: 10.1016/s0006-291x(02)00561-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thyroid follicles embedded in extracellular matrix (ECM) seem to be supplied enough oxygen by a dense network of capillaries in vivo. Air exposure (AE) causes cells to increase oxygen availability in vitro. We speculated that three-dimensional (3D) environment of ECM together with AE may be applied to a thyroid tissue-organotypic culture, simply simulating such a microenvironment of follicles. To address the issue, we performed 3D collagen gel culture of minced thyroid tissues with or without AE. Most follicles in the tissues without AE died within 7 days. In culture with AE, most of the follicles with calcitonin-positive C cells were kept for over one month. Immunohistochemistry showed that thyrocytes displayed thyroglobulin, thyrotropin receptor, thyroid transcription factor-1 (TTF-1), and pendrin, which are all crucial for thyroid function. C cells expressed calcitonin gene-related peptide and TTF-1. Our study is the first demonstration that 3D collagen gel culture with AE retains 3D thyroid follicles with C cells for a long term. This suggests that ECM and oxygen supply together may be crucial for maintenance of 3D follicle structure and function. Our method will possibly open a new path to the study of thyrocyte-C cell interaction and thyroid biology.
Collapse
Affiliation(s)
- Shuji Toda
- Department of Pathology, Saga Medical School, Nabeshima 5-1-1, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Toda S, Koike N, Sugihara H. Thyrocyte integration, and thyroid folliculogenesis and tissue regeneration: perspective for thyroid tissue engineering. Pathol Int 2001; 51:403-17. [PMID: 11422801 DOI: 10.1046/j.1440-1827.2001.01218.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thyroid gland is composed of many ball-like structures called thyroid follicles, which are supported by the interfollicular extracellular matrix (ECM) and a capillary network. The component thyrocytes are highly integrated in their specific structural and functional polarization. In conventional monolayer and floating culture systems, thyrocytes cannot organize themselves into follicles with normal polarity. In contrast, in 3-D collagen gel culture, thyrocytes easily form stable follicles with physiological polarity. Integration of thyrocyte growth and differentiation results ultimately in thyroid folliculogenesis. This culture method and subacute thyroiditis are two promising models for addressing mechanisms of folliculogenesis, because thyroid-follicle formation actively occurs both in the culture system and at the regenerative phase of the disorder. The understanding of the mechanistic basis of folliculogenesis is prerequisite for generation of artificial thyroid tissue, which would enable a more physiological strategy to the treatment of hypothyroidism caused by various diseases and surgical processes than conventional hormone replacement therapy. We review here thyrocyte integration, and thyroid folliculogenesis and tissue regeneration. We also briefly discuss a perspective for thyroid tissue regeneration and engineering.
Collapse
Affiliation(s)
- S Toda
- Department of Pathology, Saga Medical School and; Koike Thyroid Hospital, Saga, Japan.
| | | | | |
Collapse
|
22
|
Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001; 22:255-88. [PMID: 11294827 DOI: 10.1210/edrv.22.2.0422] [Citation(s) in RCA: 378] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The epithelial ovarian carcinomas, which make up more than 85% of human ovarian cancer, arise in the ovarian surface epithelium (OSE). The etiology and early events in the progression of these carcinomas are among the least understood of all major human malignancies because there are no appropriate animal models, and because methods to culture OSE have become available only recently. The objective of this article is to review the cellular and molecular mechanisms that underlie the control of normal and neoplastic OSE cell growth, differentiation, and expression of indicators of neoplastic progression. We begin with a brief discussion of the development of OSE, from embryonic to the adult. The pathological and genetic changes of OSE during neoplastic progression are next summarized. The histological characteristics of OSE cells in culture are also described. Finally, the potential involvement of hormones, growth factors, and cytokines is discussed in terms of their contribution to our understanding of the physiology of normal OSE and ovarian cancer development.
Collapse
Affiliation(s)
- N Auersperg
- Department of Obstetrics and Gynaecology, British Columbia Women's Hospital, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | | | | | | | | |
Collapse
|
23
|
Toda S, Yokoi F, Yamada S, Yonemitsu N, Nishimura T, Watanabe K, Sugihara H. Air exposure promotes fibroblast growth with increased expression of mitogen-activated protein kinase cascade. Biochem Biophys Res Commun 2000; 270:961-6. [PMID: 10772933 DOI: 10.1006/bbrc.2000.2466] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subepithelial tissue cell types in vivo are separated from air by the surface-covering epithelial layer of various organs, e.g., the skin, cornea, and respiratory and upper alimentary tracts. The epithelial defect caused by inflammatory, traumatic or surgical injury would be expected to expose the subepithelial tissue-localized fibroblasts to influx air. However, it is unclear what effects air stimulation elicits in fibroblast growth, which is critical for wound healing. To address this question, we examined the proliferation of 3T3 fibroblasts with bromodeoxyuridine (BrdU) uptake, using fibroblast-embedded collagen gel culture with or without air exposure. The BrdU intake of air-exposed fibroblasts was about 6 times that of air-nonexposed cells. To further characterize this fibroblast growth, we examined the expression of mitogen-activated protein kinase (MAPK) cascade, which plays a key role in the growth-signaling pathway of various cell types. Immunohistochemistry and Western blotting showed that air exposure increased MAPK cascade expression of the cells more strongly than air nonexposure. The data indicate that air exposure promotes MAPK cascade-associated fibroblast growth, suggesting in turn that in wound repair air stimulation itself may be involved in the basic mechanisms of subepithelial fibroblast proliferation and that it may be related to the pathogenesis of excessive fibroplasia through fibroblast overgrowth.
Collapse
Affiliation(s)
- S Toda
- Department of Pathology, Saga Medical School, Saga, 849-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Tonoli H, Flachon V, Audebet C, Callé A, Jarry-Guichard T, Statuto M, Rousset B, Munari-Silem Y. Formation of three-dimensional thyroid follicle-like structures by polarized FRT cells made communication competent by transfection and stable expression of the connexin-32 gene. Endocrinology 2000; 141:1403-13. [PMID: 10746644 DOI: 10.1210/endo.141.4.7400] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pig thyrocytes, either in the intact gland or cultured under conditions leading to thyroid follicle reconstitution, coexpress two gap junction proteins, connexin-32 (Cx32) and connexin-43 (Cx43). As thyrocytes cultured in the form of a monolayer only express Cx43, we hypothesized that Cx32 could play a role in thyroid folliculogenesis. In the present work, we analyzed the ability of polarized FRT cells (that are gap junction deficient) to form follicle-like structures after stable transfection with either Cx32 or Cx43 genes. Wild-type and transfected FRT cells, while growing, showed the capacity to form three-dimensional structures corresponding to domes that result from the accumulation of fluid underneath limited areas of the cell layer. The number of domes formed by FRT cells expressing Cx32 (FRT-Cx32) was 2- to 3-fold higher than that obtained with either wild-type or Cx43-transfected FRT cells (FRT-Cx43). Domes generated by FRT-Cx32 cells were stable (beyond 3 weeks of culture), whereas those formed from wild-type or FRT-Cx43 cells were transient, disappearing when cells reached confluence. Inspection of the cell organization within domes formed from FRT-Cx32 cells by phase contrast and confocal microscopy revealed a progressive transition from domes toward closed structures with a lumen. The tightness of the lumen was demonstrated by the retention of a fluorescent probe, lucifer yellow, introduced by microinjection. Electron microscope examinations showed that the neoformed follicle-like structures had an inside-out polarity. Analyses of cell motion and division with time, by fluorescence video microscopy, indicated that the transformation of domes into inside-out follicles brings into play the migration of cells and, to a lesser extent, cell multiplication underneath the domes. In conclusion, FRT cells forced to express Cx32 give rise to domes that transform into closed inside-out follicles. This gain of function appears Cx specific, as FRT-Cx43 cells did not form similar structures. Our data suggest that the formation and/or functioning of Cx32 gap junctions might represent a key event in thyroid epithelium morphogenesis, i.e. formation of a lumen from a tight epithelial cell layer.
Collapse
Affiliation(s)
- H Tonoli
- INSERM, U-369, Faculté de Médecine Lyon-RTH Laennec, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Franzén A, Piek E, Westermark B, ten Dijke P, Heldin NE. Expression of transforming growth factor-beta1, activin A, and their receptors in thyroid follicle cells: negative regulation of thyrocyte growth and function. Endocrinology 1999; 140:4300-10. [PMID: 10465304 DOI: 10.1210/endo.140.9.6961] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid growth and function are intricately regulated by both positive and negative factors. In the present study, we have investigated the expression of transforming growth factor-beta (TGF-beta) super-family members and their receptors in normal porcine thyroid follicle cells. In tissue sections of porcine thyroids, we observed an expression of TGF-beta1, activin A, and bone morphogenetic protein (BMP)-7 proteins. The staining was localized to the follicular epithelium. In affinity cross-linking experiments, TGF-beta1 was found to bind to heteromeric complexes of TGF-beta type I and type II receptors, and activin A bound most efficiently to heteromeric complexes of activin type IB and type II receptors. We were unable to detect any BMP receptors (BMPRs) in attempts to perform affinity cross-linking with BMP-7. However, expression of BMPR-IA and BMPR-II messenger RNA (mRNA) was detected by Northern blot analysis. Both TGF-beta1 and activin A, but not BMP-7, increased the phosphorylation of Smad2, induced nuclear translocation of Smad2, Smad3, and Smad4, and inhibited thyrocyte cell growth as well as TSH-stimulated cAMP response. TGF-beta1 was more potent, compared with activin A, to induce these cellular responses. Taken together, our findings indicate a role for several members of the TGF-beta family in regulation of thyroid growth and function.
Collapse
Affiliation(s)
- A Franzén
- Department of Genetics and Pathology, University Hospital, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Toda S, Nishimura T, Yamada S, Koike N, Yonemitsu N, Watanabe K, Matsumura S, Gärtner R, Sugihara H. Immunohistochemical expression of growth factors in subacute thyroiditis and their effects on thyroid folliculogenesis and angiogenesis in collagen gel matrix culture. J Pathol 1999; 188:415-22. [PMID: 10440753 DOI: 10.1002/(sici)1096-9896(199908)188:4<415::aid-path380>3.0.co;2-h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The inflammatory-mechanistic basis of subacute thyroiditis remains unclear. To elucidate the roles of vascular endothelial cell growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor-BB (PDGF), transforming growth factor-beta1 (TGF-beta1) and epidermal growth factor (EGF) in the inflammatory process, their immunoexpression was examined in biopsy specimens of ten cases. At the granulomatous stage, all cases expressed VEGF, bFGF, PDGF, and TGF-beta1 in monocytes/macrophages infiltrating into follicle lumina, and in both epithelioid histiocytes and multinucleated giant cells of the granulomas. In fibroblasts and endothelial cells around the granulomas, all cases displayed VEGF, bFGF, and PDGF, but TGF-beta1 was detected only in fibroblasts in two cases. No cases expressed EGF in any of the above cell types. At the regenerative stage, all cases expressed VEGF, bFGF, and EGF in regenerating thyrocytes, whereas three and no cases displayed PDGF and TGF-beta1, respectively. Ten, seven and six cases expressed PDGF in fibroblasts, endothelial cells, and monocytes, respectively. In these cell types, all cases expressed VEGF and bFGF, whereas no cases displayed TGF-beta1 and EGF. To estimate the roles of these growth factors in thyroid tissue regeneration, their effects on thyroid folliculogenesis and angiogenesis were examined using collagen gel culture of thyrocytes and endothelial cells, respectively. Cell proliferation was also studied by bromodeoxyuridine (BrdU) uptake. EGF decreased follicle formation and TGF-beta1 drastically inhibited it, but the others had no effect. VEGF showed the greatest effect on vessel formation, although all of the others promoted it. EGF and VEGF or bFGF caused the highest BrdU uptake in thyrocytes and endothelial cells, respectively. The data suggest firstly, that at the granulomatous stage of subacute thyroiditis, growth factor-rich monocytes/macrophages infiltrating into follicle lumina trigger the granulomatous reaction, and VEGF, bFGF, PDGF, and TGF-beta1 produced by the stromal cell types tested mediate the reaction; secondly, that at the regenerative stage, EGF serves follicle regeneration through its mitogenic effect on thyrocytes, although some cofactors with EGF are involved in folliculogenesis and the decreased expression of TGF-beta1, a fibrogenic factor, contributes to thyroid tissue repair; and thirdly, that VEGF and bFGF are more responsible for the angiogenesis at both stages than the other factors studied.
Collapse
Affiliation(s)
- S Toda
- Department of Pathology, Saga Medical School, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Claisse D, Martiny I, Chaqour B, Wegrowski Y, Petitfrere E, Schneider C, Haye B, Bellon G. Influence of transforming growth factor beta1 (TGF-beta1) on the behaviour of porcine thyroid epithelial cells in primary culture through thrombospondin-1 synthesis. J Cell Sci 1999; 112 ( Pt 9):1405-16. [PMID: 10194419 DOI: 10.1242/jcs.112.9.1405] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta1 (TGF-beta1) is a secreted polypeptide that is thought to play a major role in the regulation of folliculogenesis and differentiation of thyroid cells. On porcine thyroid follicular cells cultured on plastic substratum, TGF-beta1, in a concentration-dependent way, promoted the disruption of follicles, cell spreading, migration and confluency by a mechanism that did not involve cell proliferation. TGF-beta1 strongly activated the production of thrombospondin-1 and (alpha)vbeta3 integrin in a concentration-dependent manner whereas the expression of thyroglobulin was unaffected. Anisomycin, an inhibitor of protein synthesis, inhibited the effect of TGF-beta1 on cell organization. Thrombospondin-1 reproduced the effect of TGF-beta1. In the presence of thrombospondin-1 cells did not organize in follicle-like structures but, in contrast, spreaded and reached confluency independently of cell proliferation. This effect is suppressed by an RGD-containing peptide. The adhesive properties of thrombospondin-1 for thyroid cells were shown to be mediated by both the amino-terminal heparin-binding domain and the RGD domain of thrombospondin-1. Adhesion was shown to involve (alpha)vbeta3 integrin. The results show that TGF-beta1 exerted an influence upon function and behaviour of follicle cells partly mediated by the synthesis of thrombospondin-1 and of its receptor (alpha)vbeta3 integrin.
Collapse
Affiliation(s)
- D Claisse
- Laboratoire de Biochimie, UPRES-A CNRS 6021, IFR 53-Biomolécules, Faculté Des Sciences, Moulin de la Housse, BP 1039, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wegrowski Y, Perreau C, Martiny L, Haye B, Maquart FX, Bellon G. Transforming growth factor beta-1 up-regulates clusterin synthesis in thyroid epithelial cells. Exp Cell Res 1999; 247:475-83. [PMID: 10066375 DOI: 10.1006/excr.1998.4378] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Porcine epithelial cells in primary culture seeded on plastic substratum form a monolayer containing pseudo-vesicles. When cultured in the presence of thyreotropin (TSH) thyrocytes adopted a follicular-like structure and formed clusters. Transforming growth factor beta-1 (TGFbeta1) induced a rapid spreading of the TSH-treated cells only. At the same time, TGFbeta1 enhanced clusterin protein and mRNA expression. The increase of clusterin synthesis was proportional to the TGFbeta1 concentration in the culture medium. Tunicamycin abolished the up-regulation of whole clusterin synthesis and morphological changes. The activator protein-1 binding site partly directed the TGFbeta1-stimulated clusterin expression. Phorbol ester caused rapid spreading of the cells with disappearance of vesicular and follicular structures. It decreased clusterin mRNA and protein expression, but increased Mr 45, 000 protein secretion in both TSH-treated and nontreated cells. Up-regulation of clusterin expression may be a marker of TGFbeta-mediated thyrocyte dedifferentiation.
Collapse
Affiliation(s)
- Y Wegrowski
- IFR 53-Biomolécules, UPRES-A CNRS 6021, Reims, France
| | | | | | | | | | | |
Collapse
|