1
|
Banks CM, Trott JF, Hovey RC. The prolactin receptor: A cross-species comparison of gene structure, transcriptional regulation, tissue-specificity, and genetic variation. J Neuroendocrinol 2024; 36:e13385. [PMID: 38586906 DOI: 10.1111/jne.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
The conserved and multifaceted functions of prolactin (PRL) are coordinated through varied distribution and expression of its cell-surface receptor (PRLR) across a range of tissues and physiological states. The resultant heterogeneous expression of PRLR mRNA and protein across different organs and cell types supports a wide range of PRL-regulated processes including reproduction, lactation, development, and homeostasis. Genetic variation within the PRLR gene also accounts for several phenotypes impacting agricultural production and human pathology. The goal of this review is to highlight the many elements that control differential expression of the PRLR across tissues, and the various phenotypes that exist across species due to variation in the PRLR gene.
Collapse
Affiliation(s)
- Carmen M Banks
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Abstract
In the majority of vertebrates, survival of offspring to sexual maturation is important for increasing population size, and parental investment in the young is important for reproductive success. Consequently, parental care is critical for the survival of offspring in many species, and many vertebrates have adapted this behavior to their social and ecological environments. Parental care is defined as any behavior that is performed in association with one's offspring (Rosenblatt, Mayer, Siegel. Maternal behavior among nonprimate mammals. In: Adler, Pfaff, Goy, editors. Handbook of behavioral neurobiology. New York: Plenum; 1985. p. 229-98) and is well characterized in mammals and birds. In birds (class Aves), this is due to the high level of diversity across species. Parental behavior in birds protects the young from intruders, and generally involves nest building, incubation, and broody behavior which protect their young from an intruder, and the offspring are reared to independence. Broodiness is complexly regulated by the central nervous system and is associated with multiple hormones and neurotransmitters produced by the hypothalamus and pituitary gland. The mechanism of this behavior has been extensively characterized in domestic chicken (Gallus domesticus), turkey (Meleagris gallopavo), and pigeons and doves (family Columbidae). This chapter summarizes broodiness in birds from a physiology, genetics, and molecular biology perspective.
Collapse
Affiliation(s)
- Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ibaraki, Japan.
| |
Collapse
|
3
|
Hiyama G, Mizushima S, Matsuzaki M, Ichikawa Y, Kansaku N, Sasanami T. Expression of Prolactin Receptor on the Surface of Quail Spermatozoa. J Poult Sci 2016; 53:157-164. [PMID: 32908379 PMCID: PMC7477281 DOI: 10.2141/jpsa.0150132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/01/2015] [Indexed: 12/04/2022] Open
Abstract
Prolactin receptor (PRLR) is expressed in a wide variety of tissues and mediates diverse biological actions of prolactin (PRL). In mammals, PRL signaling is thought to be involved not only in the process of spermatogenesis and steroidogenesis in the testis, but also in the survival of ejaculated sperm. In avian species, although the expression of PRLR with several variants in the testis was reported, the role of PRL in testicular function is still unclear. The aim of this study was to examine the expression of PRLR in the testis and mature sperm in quail. It is revealed that PRLR was mainly localized in the round- and elongated-spermatid by immunohistochemical analysis on the testis suggesting that PRL signaling may participate in the spermatogenesis. Western blot analysis confirmed the presence of PRLR in the plasma membrane of the ejaculated sperm (SPML), whereas the size of PRLR in the sperm was smaller than that in the hypothalamus. Moreover, PRLR was detected on the surface of the midpiece and flagellum of sperm by immunostaining. To evaluate the functionality of the sperm PRLR, the dot blot assay was performed to test the binding of pituitary PRL to PRLR in the SPML, and resulted in the detection of specific binding of PRL to the component of SPML, most likely to sperm PRLR. Furthermore, when the ejaculates were incubated with pituitary PRL to investigate the role of PRL on the sperm, the occurrence of spontaneous acrosome reaction was significantly decreased. In addition, the expression of PRL on the surface of utero-vaginal junction of oviduct was detected by immunohistochemistry. These results may suggest a novel system that the interaction between oviductal PRL and sperm PRLR is involved in the maintenance of the fertilizability of the spermatozoa through the prevention of the spontaneous acrosome reaction in Japanese quail.
Collapse
Affiliation(s)
- Gen Hiyama
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Shusei Mizushima
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Mei Matsuzaki
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshinobu Ichikawa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Norio Kansaku
- Laboratory of Animal Genetics and Breeding, Azabu University, Fuchinobe, Sagamihara 252-5201, Japan
| | - Tomohiro Sasanami
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
4
|
Gumułka M, Rozenboim I. Effect of breeding stage and photoperiod on gonadal and serotonergic axes in domestic ganders. Theriogenology 2015; 84:1332-41. [PMID: 26318228 DOI: 10.1016/j.theriogenology.2015.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/12/2015] [Accepted: 07/12/2015] [Indexed: 10/23/2022]
Abstract
Reduction in reproductive potential of ganders with progress in seasonal breeding is a known problem in commercial geese production. The role of changes in hypothalamic-pituitary-gondal axis and testis functions in this process is not clear. This article presents studies on the hypothalamic (GnRH-I, vasoactive intestinal peptide), pituitary (LHβ, prolactin [PRL], PRL receptor [PRLR]), testis (PRLR) axis messenger RNA (mRNA) expression during different stages of the breeding period and photoperiodic conditions. Testis mass; histologic and functional (testosterone [T]) parameters; and plasma concentrations of T, LH, and PRL were evaluated. We collected (six times) samples from 2-year-old ganders (n = 48) maintained in short day (10L:14D) during the period from November to July. Moreover, in the peak of sexual activity (March), an additional group was on exposure (6 weeks) to long day (LD; 16L:8D). During the first half of reproduction (January, March; photosensitive period), GnRH-I (1.9 vs. 0.3 relative quantity [RQ]) and LHβ (3.0 vs. 0.7 RQ) mRNA transcript expression and concentrations of T (1.9-2.9 vs. 0.3 ng/mL), LH (13.6-7.4 vs. 0.7 ng/mL) were found to be higher (P < 0.05) than at the end of breeding (July). With progress in breeding, marked elevation (P < 0.05) in PRL (22.0-387.1 ng/mL) concentration related to similar changes in vasoactive intestinal peptide (0.9-3.0 RQ) and PRL mRNA abundance (1.3-11.5 RQ; May, July) was observed. However, testis PRLR mRNA increased (P < 0.05) only at the end of reproduction (1.2 RQ) compared to the peak of sexual activity (0.4 RQ; March). Furthermore, changes in mRNA transcript expression of the lactotrophic axis were accompanied with reduction of testis weight (left: 11.1-5.8 g), spermatogenesis (spermatogenic index: 5.4-3.0), and steroidogenesis (T: 24.8-1.3 ng/g testis), which may suggest their pivotal inhibitory modulation role in the regression of seasonal reproductive activity in ganders. The LD conditions (similar to spring-summer) resulted in earlier peripheral changes in T (0.9 vs. 1.8 ng/mL), LH (1.1 vs. 3.8 ng/mL), and PRL (296.1 vs. 161.2 ng/mL) concentrations than in short day, and this may be related to the advance in the timing of the sexual activity failure observed under natural light regimes. The lack of differences in gonadal and lactotrophic axis mRNA expression after LD treatment suggested a regulation based on the posttranslational mechanisms or modification of transcript or protein.
Collapse
Affiliation(s)
- Małgorzata Gumułka
- Department of Swine and Small Animal Breeding, Institute of Animal Sciences, University of Agriculture in Krakow, Krakow, Poland.
| | - Israel Rozenboim
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
5
|
Bu G, Liang X, Li J, Wang Y. Extra-pituitary prolactin (PRL) and prolactin-like protein (PRL-L) in chickens and zebrafish. Gen Comp Endocrinol 2015; 220:143-53. [PMID: 25683198 DOI: 10.1016/j.ygcen.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 01/25/2023]
Abstract
It is generally believed that in vertebrates, prolactin (PRL) is predominantly synthesized and released by pituitary lactotrophs and plays important roles in many physiological processes via activation of PRL receptor (PRLR), including water and electrolyte balance, reproduction, growth and development, metabolism, immuno-modulation, and behavior. However, there is increasing evidence showing that PRL and the newly identified 'prolactin-like protein (PRL-L)', a novel ligand of PRL receptor, are also expressed in a variety of extra-pituitary tissues, such as the brain, skin, ovary, and testes in non-mammalian vertebrates. In this brief review, we summarize the recent research progress on the structure, biological activities, and extra-pituitary expression of PRL and PRL-L in chickens (Gallus gallus) and zebrafish (Danio rerio) from our and other laboratories and briefly discuss their potential paracrine/autocrine roles in non-mammalian vertebrates, which may promote us to rethink the broad spectrum of PRL actions previously attributed to pituitary PRL only.
Collapse
Affiliation(s)
- Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Xiaomeng Liang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
6
|
Neradugomma NK, Sainathan S, Baranda J, Subramaniam D, Anant S. Role of Prolactin and Its Receptor in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Bu G, Ying Wang C, Cai G, Leung FC, Xu M, Wang H, Huang G, Li J, Wang Y. Molecular characterization of prolactin receptor (cPRLR) gene in chickens: gene structure, tissue expression, promoter analysis, and its interaction with chicken prolactin (cPRL) and prolactin-like protein (cPRL-L). Mol Cell Endocrinol 2013; 370:149-62. [PMID: 23499864 DOI: 10.1016/j.mce.2013.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/21/2022]
Abstract
In this study, gene structure, tissue expression, and promoter usage of prolactin receptor (PRLR) and its interaction with prolactin (PRL) and the newly identified prolactin-like protein (PRL-L) were investigated in chickens. The results showed that (1) PRLR gene was found to consist of at least 25 exons by 5'-RACE and RT-PCR assays; (2) multiple PRLR 5'-UTR sequences different in exon composition were isolated from chicken liver or intestine by 5'-RACE and could be subdivided into type I and type II transcripts according to the first exon used (exon 1G or exon 1A); (3) PRLR Type I transcripts with exon 1G were detected to be predominantly expressed in adult kidney and small intestine by RT-PCR, implying their expression is likely controlled by a tissue-specific promoter (P1). By contrast, PRLR type II transcripts containing exon 1A are widely expressed in adult and embryonic tissues examined and their expression is controlled by a generic promoter (P2) near exon 1A, which was demonstrated to display promoter activities in cultured DF-1, HEK293 and LoVo cells by the dual-luciferase reporter assay; (4) Using a 5×STAT5-luciferase reporter system, cPRLR expressed in HepG2 cells was shown to be activated by recombinant cPRL and cPRL-L via interaction with PRLR membrane-proximal ligand-binding domain, suggesting that like cPRL, cPRL-L is also a functional ligand of cPRLR. Collectively, characterization of cPRLR gene helps to elucidate the roles of PRLR and its ligands in birds and provides insights into the regulatory mechanisms of PRLR expression conserved in birds and mammals.
Collapse
Affiliation(s)
- Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen J, Liu H, Cai Y, Wang G, Liu H, Li J. Mutations in the exon 10 of prolactin receptor gene change the egg production performance in Wanjiang white goose. Mol Biol Rep 2011; 39:475-83. [PMID: 21559838 DOI: 10.1007/s11033-011-0761-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 04/27/2011] [Indexed: 01/28/2023]
Abstract
To select the molecular genetic markers related to egg performance of Wanjiang white goose, prolactin receptor gene (PRLR) was adopted to be a candidate gene in our study. Five pairs of primers (P1-P5) were designed to detect the SNPs of PRLR gene by PCR-SSCP method. The results revealed that polymorphisms were discovered in the PCR products amplified with P4 primers in PRLR exon 10, three genotypes were found: AA, AB and AC. The sequence of AB genotype is the same as original sequence (DQ660982) in NCBI. There are five mutations in AA genotype: C→A at 840 bp, C→T at 862 bp, T→C at 875 bp, T→A at 963 bp, A→T at 989 bp, resulting in amino acid mutations: His→Asn, Thr→Ile, Asn→Lys, Thr→Ser, and synonymous mutation at 875 bp. Sequencing revealed five mutations in AC genotype: G→T at 816 bp, A→T at 861 bp, C→T at 862 bp, T→C at 875 bp, A→G at 948 bp, causing amino acid mutations of Val→Phe, Thr→Phe, synonymous mutations at 875 and 963 bp. Besides, there are an N-glycosylation site (NQSR), three casein kinase II phosphorylation sites including SIIE, SKTE, and SLMD in AA genotype; three casein kinase II phosphorylation sites including SIIE, SKTE, and TLMD in AB genotype; three casein kinase II phosphorylation sites including SIFE, SKTE, and TLMD in AC genotype. The annual egg yielding of AB genotype geese are significantly more than those of AA and AC genotype geese on the average (P<0.05). It is suggested for the first time that PRLR is a promising candidate gene that can affect egg performance in Wanjiang white goose.
Collapse
Affiliation(s)
- Jie Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | | | | | | | | | | |
Collapse
|
9
|
Wang J, Hou S, Huang W, Yang X, Zhu X, Liu X. Molecular cloning of prolactin receptor of the Peking duck. Poult Sci 2009; 88:1016-22. [DOI: 10.3382/ps.2008-00192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
10
|
Leclerc B, Zadworny D, Bédécarrats G, Kühnlein U. Ontogenesis of the Expression of Prolactin Receptor Messenger Ribonucleic Acid During Late Embryogenesis in Turkeys and Chickens. Poult Sci 2007; 86:1174-9. [PMID: 17495089 DOI: 10.1093/ps/86.6.1174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Changes in circulating levels of prolactin (PRL) and tissue content of PRL receptor (PRLR) messenger RNA (mRNA) in the liver, pancreas, kidney, and gonads (testis/ovary) were measured in turkey and chicken embryos from embryonic day (ED) 21 or ED15, respectively, to 1 d after hatch by real-time PCR. There were no differences between the sexes in chickens or turkeys. Both species had very similar patterns of PRL release and expression of PRLR mRNA, and no major differences were observed between turkey or chicken embryos. Plasma levels of PRL increased from low levels during the last week of embryonic development and were at significantly higher levels (about 4-fold) by 1 d after hatch. Similarly, in all tissues the content of PRLR mRNA was minimal at the outset and increased to reach maxima about the time of hatch. In both species, the highest levels of transcript were observed in the kidney followed by the gonad, liver, and pancreas. The tissue content of PRLR was correlated (0.6 to 0.8 dependent on the tissue) to circulating levels of PRL, which suggested that PRL may be associated with an increase in its receptor number around the time of hatch. Because levels of PRL and tissue content of PRLR mRNA increased around the time of hatch, this suggests that these tissues may be targets for PRL and may be involved in the physiologic changes occurring in embryos around the time of hatching.
Collapse
Affiliation(s)
- B Leclerc
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada H9X 3V9
| | | | | | | |
Collapse
|
11
|
Cavaco JEB, Santos CRA, Ingleton PM, Canario AVM, Power DM. Quantification of prolactin (PRL) and PRL receptor messenger RNA in gilthead seabream (Sparus aurata) after treatment with estradiol-17beta. Biol Reprod 2003; 68:588-94. [PMID: 12533423 DOI: 10.1095/biolreprod.102.009209] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prolactin (PRL) in fish is considered to be an osmoregulatory hormone, although some studies suggest that it may influence the production of steroid hormones in the gonads. The objective of the present study was to establish if PRL is involved in reproduction of the gilthead seabream-a protandrous hermaphrodite. Adult and juvenile gilthead seabream received implants of estradiol-17beta (E(2)) for 1 wk during the breeding season, and the mRNA expressions of PRL and PRL receptor (sbPRLR) were determined. Northern blot analysis revealed a single pituitary PRL transcript, the expression of which was significantly reduced by E(2) treatment in adults but significantly increased in juvenile fish. In adult gonads, four sbPRLR transcripts of 1.1, 1.3, 1.9, and 2.8 kilobases were observed. A competitive reverse transcription-polymerase chain reaction was developed and used to determine how E(2) treatment alters expression of the gonadal sbPRLR gene. Seabream PRLR was detectable in all samples analyzed by this assay. Levels of sbPRLR mRNA increased significantly (50-fold) after E(2) treatment in adults, but a 24-fold decrease was measured in juveniles. Immunohistochemistry using specific polyclonal antibodies raised against an oligopeptide from the extracellular domain of sbPRLR detected the receptor in spermatogonia and oocytes. Taken together, the preceding results suggest that in the seabream, PRL may act on both testis and ovary via its receptor and that the stage of maturity influences this process. The full characterization and relative importance of the different transcripts of sbPRLR in eliciting the action of PRL in the gonads remain to be elucidated.
Collapse
Affiliation(s)
- J Eduardo B Cavaco
- Centro de Ciências do MAR (CCMAR), Universidade do Algarve, Campus de Gambelas, 8000-117 Faro, Portugal
| | | | | | | | | |
Collapse
|
12
|
Abstract
The contribution of prolactin (PRL) to the pathogenesis and progression of human breast cancer at the cellular, transgenic, and epidemiological levels is increasingly appreciated. Acting at the endocrine and autocrine/paracrine levels, PRL functions to stimulate the growth and motility of human breast cancer cells. The actions of this ligand are mediated by at least six recognized PRL receptor isoforms found on, or secreted by, human breast epithelium. The PRL/PRL receptor complex associates with and activates several signaling networks that are shared with other members of the cytokine receptor superfamily. Coupled with the recently identified intranuclear function of PRL, these networks are integrated into the in vitro and in vivo actions induced by ligand. These findings indicate that antagonists of PRL/PRL receptor interaction or PRL receptor-associated signal transduction may be of considerable utility in the treatment of human breast cancer.
Collapse
Key Words
- cis, cytokine-inducible inhibitor of signaling
- cypb, cyclophilin b
- ecd, extracellular domain
- egf, epidermal growth factor
- ghr, gh receptor
- hprlr, human prlr
- icd, intracellular domain
- jak, janus kinase 2
- jnk, c-jun n-terminal kinase
- pias, peptide inhibitor of activated stat
- pi3k, phosphatidylinositol 3′-kinase
- prl, prolactin
- ptdins, phosphatidylinositol
- prlbp, prl binding protein
- prlr, prl receptor
- shp-2, sh2-containing protein tyrosine phosphatase
- socs, suppressor of cytokine signaling
- stat, signal transducer and activator of transcription
Collapse
Affiliation(s)
- Charles V Clevenger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
13
|
Yamamoto I, Wakita M, Tanaka M. Tissue distribution of prolactin receptor mRNA during late stage embryogenesis of the chick. Poult Sci 2003; 82:155-7. [PMID: 12580259 DOI: 10.1093/ps/82.1.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Serum prolactin increases during late embryogenesis. In order to elucidate the function of prolactin at this period, tissue distribution of prolactin receptor mRNA was examined by RNase protection assay. The mRNA was detected strongly in the kidney, intestine, and allantoic membrane; weakly detected in the brain; but not detected in the liver. The expression levels of the prolactin receptor mRNA in the kidney, intestine, and allantoic membrane were retained at constant levels during later stages of embryogenesis (Days 17 and 19) and posthatch periods (2 and 28 d after hatching). These results suggest that prolactin is mainly involved in the osmoregulation during the later stage of embryogenesis and that the expression of prolactin receptor mRNA in the kidney, intestine, and allantoic membrane is regulated by a serum prolactin-independent manner.
Collapse
Affiliation(s)
- I Yamamoto
- Department of Animal Science, Faculty of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | | | | |
Collapse
|
14
|
Abstract
Within the immune system, multiple isoforms of the human prolactin receptor (PRLr) serve to mediate the effects of its ligand (PRL). Now numbering four, these isoforms are structurally and functionally distinct, demonstrating significant differences in ligand affinities, kinetics of transduction and the transduction proteins activated. The proximal transduction pathways activated during PRLr-associated signaling include the tyrosine kinases Jak2, Fyn and Tec, the phosphatase SHP-2, the guanine nucleotide exchange factor Vav, and the signaling suppressor SOCS. Differential activation of these pathways may contribute to the pleiotropism of PRL action in tissues of the immune system.
Collapse
Affiliation(s)
- C V Clevenger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19066, USA.
| | | |
Collapse
|
15
|
Kline JB, Roehrs H, Clevenger CV. Functional characterization of the intermediate isoform of the human prolactin receptor. J Biol Chem 1999; 274:35461-8. [PMID: 10585417 DOI: 10.1074/jbc.274.50.35461] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolactin-dependent signaling occurs as the result of ligand-induced dimerization of the prolactin receptor (PRLr). While three PRLr isoforms have been characterized in the rat, studies have suggested the existence of several human isoforms in breast carcinoma species and normal tissues. Reverse transcription polymerase chain reaction was performed on mRNA isolated from the breast carcinoma cell line T47D, revealing two predominant receptor isoforms: the previously described long PRLr and a novel human intermediate PRLr. The nucleotide sequence of the intermediate isoform was found to be identical to the long isoform except for a 573-base pair deletion occurring at a consensus splice site, resulting in a frameshift and truncated intracytoplasmic domain. Scatchard analysis of the intermediate PRLr revealed an affinity for PRL comparable with the long PRLr. While Ba/F3 transfectants expressing the long PRLr proliferated in response to PRL, intermediate PRLr transfectants exhibited modest incorporation of [(3)H]thymidine. Significantly, however, both the long and intermediate PRLr were equivalent in their inhibition of apoptosis of the Ba/F3 transfectants after PRL treatment. The activation of proximal signaling molecules also differed between isoforms. Upon ligand binding, Jak2 and Fyn were activated in CHO-K1 cells transiently transfected with the long PRLr. In contrast, the intermediate PRLr transfectants showed equivalent levels of Jak2 activation but only minimal activation of Fyn. Last, Northern analysis revealed variable tissue expression of intermediate PRLr transcript that differed from that of the long PRLr. Taken together, differences in signaling and tissue expression suggest that the human intermediate PRLr differs from the long PRLr in physiological function.
Collapse
Affiliation(s)
- J B Kline
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|