1
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Hartery SA, Kirby BJ, Walker EC, Kaufmann M, Jones G, St-Arnaud R, Sims NA, Kovacs CS. Loss of maternal calcitriol reversibly alters early offspring growth and skeletal development in mice. J Bone Miner Res 2024; 39:595-610. [PMID: 38477809 PMCID: PMC11206081 DOI: 10.1093/jbmr/zjae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Ablation of Cyp27b1 eliminates calcitriol but does not disturb fetal mineral homeostasis or skeletal development. However, independent of fetal genotypes, maternal loss of Cyp27b1 altered fetal mineral and hormonal levels compared to offspring of WT dams. We hypothesized that these maternal influences would alter postnatal skeletal development. Cyp27b1 null and WT females were mated to bear only Cyp27b1+/- offspring. Forty-eight hours after birth, pups were cross-fostered to dams of the same or opposite genotype that bore them. Maternal and offspring samples were collected on days 21 (weaning) and 42. Offspring measurements included minerals and hormones, BMC by DXA, ash weight and mineral content, gene expression, 3-point bending tests, and microCT. Maternal lactational behavior was evaluated. Milk was analyzed for nutritional content. At day 21, offspring fostered by nulls, independent of birth dam, had ~20% lower weight, BMC, ash weight, and ash calcium than pups fostered by WT dams. Adjustment for body weight accounted for the lower BMC but not the lower ash weight and ash calcium. Hormones and serum/urine minerals did not differ across offspring groups. Offspring fostered by nulls had shorter femurs and lower cortical thickness, mean polar moment of inertia, cortical area, trabecular bone volume, and trabecular number. Dam lactational behaviors and milk nutritional content did not differ between groups. At day 42, body weight, ash weight, lengths, BMC, and tibial bone strength were no longer different between pups fostered by null vs WT dams. In summary, pups fostered by Cyp27b1 nulls, regardless of birth dam, have proportionately smaller skeletons at 21 d, impaired microstructure, but normal mineral homeostasis. The skeletal effects are largely recovered by day 42 (3 wk after weaning). In conclusion, maternal loss of calcitriol impairs early postnatal cortical bone growth and trabecular bone mass, but affected offspring catch up after weaning.
Collapse
Affiliation(s)
- Sarah A Hartery
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Beth J Kirby
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Emma C Walker
- St. Vincent’s Institute of Medical Research, the University of Melbourne, Melbourne, 3065, Australia
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - René St-Arnaud
- Shriners Hospitals for Children – Canada and McGill University, Montréal, Quebec, H4A 0A9, Canada
| | - Natalie A Sims
- St. Vincent’s Institute of Medical Research, the University of Melbourne, Melbourne, 3065, Australia
| | - Christopher S Kovacs
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| |
Collapse
|
3
|
Bennin D, Hartery SA, Kirby BJ, Maekawa AS, St-Arnaud R, Kovacs CS. Loss of 24-hydroxylated catabolism increases calcitriol and fibroblast growth factor 23 and alters calcium and phosphate metabolism in fetal mice. JBMR Plus 2024; 8:ziae012. [PMID: 38577520 PMCID: PMC10993470 DOI: 10.1093/jbmrpl/ziae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/23/2024] [Accepted: 01/18/2024] [Indexed: 04/06/2024] Open
Abstract
Calcitriol circulates at low levels in normal human and rodent fetuses, in part due to increased 24-hydroxylation of calcitriol and 25-hydroxyvitamin D by 24-hydroxylase (CYP24A1). Inactivating mutations of CYP24A1 cause high postnatal levels of calcitriol and the human condition of infantile hypercalcemia type 1, but whether the fetus is disturbed by the loss of CYP24A1 is unknown. We hypothesized that loss of Cyp24a1 in fetal mice will cause high calcitriol, hypercalcemia, and increased placental calcium transport. The Cyp24a1+/- mice were mated to create pregnancies with wildtype, Cyp24a1+/-, and Cyp24a1 null fetuses. The null fetuses were hypercalcemic, modestly hypophosphatemic (compared to Cyp24a1+/- fetuses only), with 3.5-fold increased calcitriol, 4-fold increased fibroblast growth factor 23 (FGF23), and unchanged parathyroid hormone. The quantitative RT-PCR confirmed the absence of Cyp24a1 and 2-fold increases in S100g, sodium-calcium exchanger type 1, and calcium-sensing receptor in null placentas but not in fetal kidneys; these changes predicted an increase in placental calcium transport. However, placental 45Ca and 32P transport were unchanged in null fetuses. Fetal ash weight and mineral content, placental weight, crown-rump length, and skeletal morphology did not differ among the genotypes. Serum procollagen 1 intact N-terminal propeptide and bone expression of sclerostin and Blgap were reduced while calcitonin receptor was increased in nulls. In conclusion, loss of Cyp24a1 in fetal mice causes hypercalcemia, modest hypophosphatemia, and increased FGF23, but no alteration in skeletal development. Reduced incorporation of calcium into bone may contribute to the hypercalcemia without causing a detectable decrease in the skeletal mineral content. The results predict that human fetuses bearing homozygous or compound heterozygous inactivating mutations of CYP24A1 will also be hypercalcemic in utero but with normal skeletal development.
Collapse
Affiliation(s)
- David Bennin
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| | - Sarah A Hartery
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| | - Beth J Kirby
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| | - Alexandre S Maekawa
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| | - René St-Arnaud
- Shriners Hospitals for Children–Canada and McGill University, Montréal, Quebec, H4A 0A9, Canada
| | - Christopher S Kovacs
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| |
Collapse
|
4
|
Maroudias G, Vrachnis D, Fotiou A, Loukas N, Mantzou A, Pergialiotis V, Valsamakis G, Machairiotis N, Stavros S, Panagopoulos P, Vakas P, Kanaka-Gantenbein C, Drakakis P, Vrachnis N. Measurement of Calprotectin and PTH in the Amniotic Fluid of Early Second Trimester Pregnancies and Their Impact on Fetuses with Growth Disorders: Are Their Levels Related to Oxidative Stress? J Clin Med 2024; 13:855. [PMID: 38337548 PMCID: PMC10856459 DOI: 10.3390/jcm13030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Background: During the early stages of human fetal development, the fetal skeleton system is chiefly made up of cartilage, which is gradually replaced by bone. Fetal bone development is mainly regulated by the parathyroid hormone parathormone (PTH) and PTH-related protein, with specific calprotectin playing a substantial role in cell adhesion and chemotaxis while exhibiting antimicrobial activity during the inflammatory osteogenesis process. The aim of our study was to measure the levels of PTH and calprotectin in early second trimester amniotic fluid and to carry out a comparison between the levels observed among normal full-term pregnancies (control group) and those of the groups of embryos exhibiting impaired or enhanced growth. Methods: For the present prospective study, we collected amniotic fluid samples from pregnancies that underwent amniocentesis at 15 to 22 weeks of gestational age during the period 2021-2023. Subsequently, we followed up on all pregnancies closely until delivery. Having recorded fetal birthweights, we then divided the neonates into three groups: small for gestational age (SGA), appropriate for gestational age (AGA), and large for gestational age (LGA). Results: In total, 64 pregnancies, including 14 SGA, 10 LGA, and 40 AGA fetuses, were included in our study. Both substances were detected in early second trimester amniotic fluid in both groups. Concentrations of calprotectin differed significantly among the three groups (p = 0.033). AGA fetuses had a lower mean value of 4.195 (2.415-6.425) IU/mL, whereas LGA fetuses had a higher mean value of 6.055 (4.887-13.950) IU/mL, while SGA fetuses had a mean value of 5.475 (3.400-9.177) IU/mL. Further analysis revealed that only LGA fetuses had significantly higher calprotectin concentrations compared to AGA fetuses (p = 0.018). PTH concentration was similar between the groups, with LGA fetuses having a mean value of 13.18 (9.51-15.52) IU/mL, while SGA fetuses had a mean value of 14.18 (9.02-16.00) IU/mL, and AGA fetuses had similar concentrations of 13.35 (9.05-15.81) IU/mL. The differences in PTH concentration among the three groups were not statistically significant (p = 0.513). Conclusions: Calprotectin values in the amniotic fluid in the early second trimester were higher in LGA fetuses compared to those in the SGA and AGA categories. LGA fetuses can possibly be in a state of low-grade chronic inflammation due to excessive fat deposition, causing oxidative stress in LGA fetuses and, eventually, the release of calprotectin. Moreover, PTH concentrations in the amniotic fluid of early second trimester pregnancies were not found to be statistically correlated with fetal growth abnormalities in either LGA or SGA fetuses. However, the early time of collection and the small number of patients in our study should be taken into account.
Collapse
Affiliation(s)
- George Maroudias
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 18536 Athens, Greece
| | - Dionysios Vrachnis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.V.); (A.F.)
| | - Alexandros Fotiou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.V.); (A.F.)
| | - Nikolaos Loukas
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 18536 Athens, Greece
| | - Aimilia Mantzou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece (C.K.-G.)
| | - Vasileiοs Pergialiotis
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece;
| | - George Valsamakis
- Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Aretaieion Hospital, 11528 Athens, Greece; (G.V.)
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
| | - Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
| | - Panagiotis Vakas
- Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Aretaieion Hospital, 11528 Athens, Greece; (G.V.)
| | - Christina Kanaka-Gantenbein
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece (C.K.-G.)
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17, UK
| |
Collapse
|
5
|
Stenhouse C, Suva LJ, Gaddy D, Wu G, Bazer FW. Phosphate, Calcium, and Vitamin D: Key Regulators of Fetal and Placental Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:77-107. [PMID: 34807438 DOI: 10.1007/978-3-030-85686-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Kleberg Center, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
6
|
Kovacs CS, Chaussain C, Osdoby P, Brandi ML, Clarke B, Thakker RV. The role of biomineralization in disorders of skeletal development and tooth formation. Nat Rev Endocrinol 2021; 17:336-349. [PMID: 33948016 DOI: 10.1038/s41574-021-00488-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 02/03/2023]
Abstract
The major mineralized tissues are bone and teeth, which share several mechanisms governing their development and mineralization. This crossover includes the hormones that regulate circulating calcium and phosphate concentrations, and the genes that regulate the differentiation and transdifferentiation of cells. In developing endochondral bone and in developing teeth, parathyroid hormone-related protein (PTHrP) acts in chondrocytes to delay terminal differentiation, thereby increasing the pool of precursor cells. Chondrocytes and (in specific circumstances) pre-odontoblasts can also transdifferentiate into osteoblasts. Moreover, bone and teeth share outcomes when affected by systemic disorders of mineral homeostasis or of the extracellular matrix, and by adverse effects of treatments such as bisphosphonates and fluoride. Unlike bone, teeth have more permanent effects from systemic disorders because they are not remodelled after they are formed. This Review discusses the normal processes of bone and tooth development, followed by disorders that have effects on both bone and teeth, versus disorders that have effects in one without affecting the other. The takeaway message is that bone specialists should know when to screen for dental disorders, just as dental specialists should recognize when a tooth disorder should raise suspicions about a possible underlying bone disorder.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | - Philip Osdoby
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Maria Luisa Brandi
- Department of Biochemical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Arnold A, Dennison E, Kovacs CS, Mannstadt M, Rizzoli R, Brandi ML, Clarke B, Thakker RV. Hormonal regulation of biomineralization. Nat Rev Endocrinol 2021; 17:261-275. [PMID: 33727709 DOI: 10.1038/s41574-021-00477-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Biomineralization is the process by which organisms produce mineralized tissues. This crucial process makes possible the rigidity and flexibility that the skeleton needs for ambulation and protection of vital organs, and the hardness that teeth require to tear and grind food. The skeleton also serves as a source of mineral in times of short supply, and the intestines absorb and the kidneys reclaim or excrete minerals as needed. This Review focuses on physiological and pathological aspects of the hormonal regulation of biomineralization. We discuss the roles of calcium and inorganic phosphate, dietary intake of minerals and the delicate balance between activators and inhibitors of mineralization. We also highlight the importance of tight regulation of serum concentrations of calcium and phosphate, and the major regulators of biomineralization: parathyroid hormone (PTH), the vitamin D system, vitamin K, fibroblast growth factor 23 (FGF23) and phosphatase enzymes. Finally, we summarize how developmental stresses in the fetus and neonate, and in the mother during pregnancy and lactation, invoke alternative hormonal regulatory pathways to control mineral delivery, skeletal metabolism and biomineralization.
Collapse
Affiliation(s)
- Andrew Arnold
- Division of Endocrinology & Metabolism and Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Maria Luisa Brandi
- Department of Biochemical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Ryan BA, Kovacs CS. Maternal and fetal vitamin D and their roles in mineral homeostasis and fetal bone development. J Endocrinol Invest 2021; 44:643-659. [PMID: 32772256 DOI: 10.1007/s40618-020-01387-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/02/2020] [Indexed: 01/11/2023]
Abstract
During pregnancy, female physiology adapts to meet the additional mineral demands of the developing fetus. Meanwhile, the fetus actively transports minerals across the placenta and maintains high circulating levels to mineralize the rapidly developing skeleton. Most of this mineral is accreted during the last trimester, including 30 g of calcium, 20 g of phosphate and 0.8 g of magnesium. Given the dependence of calcium homeostasis on vitamin D and calcitriol in the adult and child, it may be expected that vitamin D sufficiency would be even more critical during pregnancy and fetal development. However, the pregnant mother and fetus appear to meet their mineral needs independent of vitamin D. Adaptations in maternal mineral and bone metabolism during pregnancy appear to be invoked independent of maternal vitamin D, while fetal mineral metabolism and skeletal development appear to be protected from vitamin D deficiency and genetic disorders of vitamin D physiology. This review discusses key data from both animal models and human studies to address our current knowledge on the role of vitamin D and calcitriol during pregnancy and fetal development.
Collapse
Affiliation(s)
- B A Ryan
- Faculty of Medicine - Endocrinology, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - C S Kovacs
- Faculty of Medicine - Endocrinology, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
9
|
Sellars KB, Ryan BA, Hartery SA, Kirby BJ, Kovacs CS. Murine Fetal Serum Phosphorus is Set Independent of FGF23 and PTH, Except in the Presence of Maternal Phosphate Loading. Endocrinology 2021; 162:5956315. [PMID: 33150413 PMCID: PMC7737482 DOI: 10.1210/endocr/bqaa202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/03/2023]
Abstract
Fibroblast growth factor 23 (FGF23) appears to play no role until after birth, given unaltered phosphate and bone metabolism in Fgf23- and Klotho-null fetuses. However, in those studies maternal serum phosphorus was normal. We studied whether maternal phosphate loading alters fetal serum phosphorus and invokes a fetal FGF23 or parathyroid hormone (PTH) response. C57BL/6 wild-type (WT) female mice received low (0.3%), normal (0.7%), or high (1.65%) phosphate diets beginning 1 week prior to mating to WT males. Fgf23+/- female mice received the normal or high-phosphate diets 1 week before mating to Fgf23+/- males. One day before expected birth, we harvested maternal and fetal blood, intact fetuses, placentas, and fetal kidneys. Increasing phosphate intake in WT resulted in progressively higher maternal serum phosphorus and FGF23 during pregnancy, while PTH remained undetectable. Fetal serum phosphorus was independent of the maternal phosphorus and PTH remained low, but FGF23 showed a small nonsignificant increase with high maternal serum phosphorus. There were no differences in fetal ash weight and mineral content, or placental gene expression. High phosphate intake in Fgf23+/- mice also increased maternal serum phosphorus and FGF23, but there was no change in PTH. WT fetuses remained unaffected by maternal high-phosphate intake, while Fgf23-null fetuses became hyperphosphatemic but had no change in PTH, skeletal ash weight or mineral content. In conclusion, fetal phosphate metabolism is generally regulated independently of maternal serum phosphorus and fetal FGF23 or PTH. However, maternal phosphate loading reveals that fetal FGF23 can defend against the development of fetal hyperphosphatemia.
Collapse
Affiliation(s)
- K Berit Sellars
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Brittany A Ryan
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Sarah A Hartery
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Beth J Kirby
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Christopher S Kovacs
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
- Correspondence: Dr Christopher Kovacs, Health Sciences Centre, 300 Prince Philip Drive, St. John’s, Newfoundland, A1B 3V6, Canada. E-mail:
| |
Collapse
|
10
|
Taylor-Miller T, Allgrove J. Endocrine Diseases of Newborn: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome "Current Insights Into Disorders of Calcium and Phosphate in the Newborn". Front Pediatr 2021; 9:600490. [PMID: 33614549 PMCID: PMC7892781 DOI: 10.3389/fped.2021.600490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
The physiology and regulation of bone minerals in the fetus and the newborn is significantly different from children and adults. The bone minerals calcium, phosphate and magnesium are all maintained at higher concentrations in utero to achieve adequate bone accretion. This is an integral component of normal fetal development which facilitates safe neonatal transition to post-natal life. When deciphering the cause of bone mineral disorders in newborns, the potential differential diagnosis list is broad and complex, including several extremely rare conditions. Also, significant discoveries including new embryological molecular genetic transcription factors, the role of active placental mineral transport, and hormone regulation factors have changed the understanding of calcium and phosphate homeostasis in the fetus and the newborn. This article will guide clinicians through an updated review of calcium and phosphate physiology, then review specific conditions pertinent to successful neonatal care. Furthermore, with the advancement of increasingly rapid molecular genetic testing, genomics will continue to play a greater role in this area of fetal diagnostics and prognostication.
Collapse
Affiliation(s)
- Tashunka Taylor-Miller
- Department of Endocrinology and Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jeremy Allgrove
- Department of Endocrinology and Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Sethi A, Priyadarshi M, Agarwal R. Mineral and bone physiology in the foetus, preterm and full-term neonates. Semin Fetal Neonatal Med 2020; 25:101076. [PMID: 31882392 DOI: 10.1016/j.siny.2019.101076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mother is the major source of minerals in foetal life with placenta actively transporting against a concentration and electrochemical gradient. The foetal serum mineral concentration is thereby higher as compared to maternal values, which possibly help in its rapid accretion in developing bones and for counteracting postnatal fall in calcium levels at birth. Parathyroid hormone related peptide (PTHrP) and parathyroid hormone (PTH) play a major role in mineral physiology during foetal life with hormones like calcitriol, calcitonin, FGF-23 and sex steroids having minimal role. PTHrP and PTH also play a major role in endochondral bone formation and mineralization of skeleton. At the birth, as the cord is clamped, there is loss of active transport of minerals through placenta and the neonate has to rely on enteral intake of minerals to meet the demands of growing bones and metabolisms. The calcium levels fall after birth, reaching a nadir at 24-48 h and gradually rise to adult values over several days, probably resulting from a fall in PTHrP levels and hyporesponsiveness of parathyroid glands. As PTH and calcitriol levels increase postnatally, there is a rise in calcium levels with maturation in functioning of kidneys and intestines. However, there may be significant delay in intestinal maturation in preterm infants along with an increased demand for mineral accretion, which predispose them to osteopenia of prematurity.
Collapse
Affiliation(s)
- Amanpreet Sethi
- Department of Pediatrics, Guru Gobind Singh Medical College and Hospital, Faridkot, Punjab, India
| | - Mayank Priyadarshi
- Division of Neonatology, Newborn Health Knowledge Center (NHKC), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Agarwal
- Division of Neonatology, Newborn Health Knowledge Center (NHKC), Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Ryan BA, Kovacs CS. Calciotropic and phosphotropic hormones in fetal and neonatal bone development. Semin Fetal Neonatal Med 2020; 25:101062. [PMID: 31786156 DOI: 10.1016/j.siny.2019.101062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are remarkable differences in bone and mineral metabolism between the fetus and adult. The fetal mineral supply is from active transport across the placenta. Calcium, phosphorus, and magnesium circulate at higher levels in the fetus compared to the mother. These high concentrations enable the skeleton to accrete required minerals before birth. Known key regulators in the adult include parathyroid hormone (PTH), calcitriol, fibroblast growth factor-23, calcitonin, and the sex steroids. But during fetal life, PTH plays a lesser role while the others appear to be unimportant. Instead, PTH-related protein (PTHrP) plays a critical role. After birth, serum calcium falls and phosphorus rises, which trigger an increase in PTH and a subsequent rise in calcitriol. The intestines become the main source of mineral supply while the kidneys reabsorb filtered minerals. This striking developmental switch is triggered by loss of the placenta, onset of breathing, and the drop in serum calcium.
Collapse
Affiliation(s)
- Brittany A Ryan
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
13
|
Xu X, Li X, Sun H, Cao Z, Gao R, Niu T, Wang Y, Ma T, Chen R, Wang C, Yang Z, Liu JY. Murine Placental-Fetal Phosphate Dyshomeostasis Caused by an Xpr1 Deficiency Accelerates Placental Calcification and Restricts Fetal Growth in Late Gestation. J Bone Miner Res 2020; 35:116-129. [PMID: 31498925 DOI: 10.1002/jbmr.3866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022]
Abstract
Phosphorus is a necessary component of all living organisms. This nutrient is mainly transported from the maternal blood to the fetus via the placenta, and insufficient phosphorus availability via the placenta disturbs the normal development of the fetus, especially fetal bone formation in late gestation. Key proteins (phosphate transporters and exporters) that are responsible for the maintenance of placental-fetal phosphorus homeostasis have been identified. A deficiency in the phosphate transporter Pit2 has been shown to result in placental calcification and the retardation of fetal development in mice. What roles does XPR1 (the only known phosphate exporter) play in maintaining placental-fetal phosphorus homeostasis? In this study, we found that Xpr1 expression is strong in the murine placenta and increases with age during gestation. We generated a global Xpr1 knockout mouse and found that heterozygous (Xpr1+/- ) and homozygous (Xpr1-/- ) fetuses have lower inorganic phosphate (Pi) levels in amniotic fluid and serum and a decreased skeletal mineral content. Xpr1-deficient placentas show abnormal Pi exchange during gestation. Therefore, Xpr1 deficiency in the placenta disrupts placental-fetal Pi homeostasis. We also discovered that the placentas of the Xpr1+/- and Xpr1-/- embryos are severely calcified. Mendelian inheritance statistics for offspring outcomes indicated that Xpr1-deficient embryos are significantly reduced in late gestation. In addition, Xpr1-/- mice die perinatally and a small proportion of Xpr1+/- mice die neonatally. RNA sequence (RNA-Seq) analysis of placental mRNA revealed that many of the transcripts are significantly differentially expressed due to Xpr1 deficiency and are linked to dysfunction of the placenta. This study is the first to reveal that XPR1 plays an important role in maintaining placental-fetal Pi homeostasis, disruption of which causes severe placental calcification, delays normal placental function, and restricts fetal growth. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiunan Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijian Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Niu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanli Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tingbin Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Ryan BA, Alhani K, Sellars KB, Kirby BJ, St-Arnaud R, Kaufmann M, Jones G, Kovacs CS. Mineral Homeostasis in Murine Fetuses Is Sensitive to Maternal Calcitriol but Not to Absence of Fetal Calcitriol. J Bone Miner Res 2019; 34:669-680. [PMID: 30508318 DOI: 10.1002/jbmr.3642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Vitamin D receptor (VDR) null fetuses have normal serum minerals, parathyroid hormone (PTH), skeletal morphology, and mineralization but increased serum calcitriol, placental calcium transport, and placental expression of Pthrp, Trpv6, and (as reported in this study) Pdia3. We examined Cyp27b1 null fetal mice, which do not make calcitriol, to determine if loss of calcitriol has the same consequences as loss of VDR. Cyp27b1 null and wild-type (WT) females were mated to Cyp27b1+/- males, which generated Cyp27b1 null and Cyp27b1+/- fetuses from Cyp27b1 null mothers, and Cyp27b1+/- and WT fetuses from WT mothers. Cyp27b1 null fetuses had undetectable calcitriol but normal serum calcium and phosphorus, PTH, fibroblast growth factor 23 (FGF23), skeletal mineral content, tibial lengths and morphology, placental calcium transport, and expression of Trpv6 and Pthrp; conversely, placental Pdia3 was downregulated. However, although Cyp27b1+/- and null fetuses of Cyp27b1 null mothers were indistinguishable, they had higher serum and amniotic fluid calcium, lower amniotic fluid phosphorus, lower FGF23, and higher 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D than in WT and Cyp27b1+/- fetuses of WT mothers. In summary, loss of fetal calcitriol did not alter mineral or bone homeostasis, but Cyp27b1 null mothers altered mineral homeostasis in their fetuses independent of fetal genotype. Cyp27b1 null fetuses differ from Vdr null fetuses, possibly through high levels of calcitriol acting on Pdia3 in Vdr nulls to upregulate placental calcium transport and expression of Trpv6 and Pthrp. In conclusion, maternal calcitriol influences fetal mineral metabolism, whereas loss of fetal calcitriol does not. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Brittany A Ryan
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Canada
| | - Kamal Alhani
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Canada
| | - K Berit Sellars
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Canada
| | - Beth J Kirby
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Canada
| | - René St-Arnaud
- Shriners Hospitals for Children-Canada and McGill University, Montréal, Canada
| | | | | | - Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
15
|
PTHrP is essential for normal morphogenetic and functional development of the murine placenta. Dev Biol 2017; 430:325-336. [DOI: 10.1016/j.ydbio.2017.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022]
|
16
|
Kadmiel M, Matson BC, Espenschied ST, Lenhart PM, Caron KM. Loss of receptor activity-modifying protein 2 in mice causes placental dysfunction and alters PTH1R regulation. PLoS One 2017; 12:e0181597. [PMID: 28727763 PMCID: PMC5519170 DOI: 10.1371/journal.pone.0181597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/03/2017] [Indexed: 11/18/2022] Open
Abstract
Receptor activity-modifying protein 2 (Ramp2) is a single-pass transmembrane protein that heterodimerizes with several family B G-protein coupled receptors to alter their function. Ramp2 has been primarily characterized in association with calcitonin receptor-like receptor (Calcrl, CLR), forming the canonical receptor complex for the endocrine peptide adrenomedullin (Adm, AM). However, we previously demonstrated that Ramp2+/- female mice display a constellation of endocrine-related phenotypes that are distinct from those of Adm+/- and Calcrl+/- mice, implying that RAMP2 has physiological functions beyond its canonical complex. Here, we localize Ramp2 expression in the mouse placenta, finding that Ramp2 is robustly expressed in the fetal labyrinth layer, and then characterize the effects of loss of Ramp2 on placental development. Consistent with the expression pattern of Ramp2 in the placenta, Ramp2-/- placentas have a thinner labyrinth layer with significantly fewer trophoblast cells secondary to a reduction in trophoblast proliferation. We also find that absence of Ramp2 leads to failed spiral artery remodeling unaccompanied by changes in the uterine natural killer cell population. Furthermore, we assess changes in gene expression of other RAMP2-associated G-protein coupled receptors (GPCRs), concluding that Ramp2 loss decreases parathyroid hormone 1 receptor (Pthr1) expression and causes a blunted response to systemic parathyroid hormone (PTH) administration in mice. Ultimately, these studies provide in vivo evidence of a role for RAMP2 in placental development distinct from the RAMP2-CLR/AM signaling paradigm and identify additional pathways underlying the endocrine and fertility defects of the previously characterized Ramp2 heterozygous adult females.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brooke C. Matson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Scott T. Espenschied
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Patricia M. Lenhart
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
17
|
Ma Y, Kirby BJ, Fairbridge NA, Karaplis AC, Lanske B, Kovacs CS. FGF23 Is Not Required to Regulate Fetal Phosphorus Metabolism but Exerts Effects Within 12 Hours After Birth. Endocrinology 2017; 158:252-263. [PMID: 27929669 PMCID: PMC5413075 DOI: 10.1210/en.2016-1369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023]
Abstract
Loss of fibroblast growth factor-23 (FGF23) causes hyperphosphatemia, extraskeletal calcifications, and early mortality; excess FGF23 causes hypophosphatemia with rickets or osteomalacia. However, FGF23 may not be important during fetal development. FGF23 deficiency (Fgf23 null) and FGF23 excess (Phex null) did not alter fetal phosphorus or skeletal parameters. In this study, we further tested our hypothesis that FGF23 is not essential for fetal phosphorus regulation but becomes important after birth. Although coreceptor Klotho null adults have extremely high FGF23 concentrations, intact FGF23 was normal in Klotho null fetuses, as were fetal phosphorus and skeletal parameters and placental and renal expression of FGF23 target genes. Pth/Fgf23 double mutants had the same elevation in serum phosphorus as Pth null fetuses, as compared with normal serum phosphorus in Fgf23 nulls. We examined the postnatal time courses of Fgf23 null, Klotho null, and Phex null mice. Fgf23 nulls and Klotho nulls were normal at birth, but developed hyperphosphatemia, increased renal expression of NaPi2a and NaPi2c, and reduced renal phosphorus excretion between 5 and 7 days after birth. Parathyroid hormone remained normal. In contrast, excess FGF23 exerted effects in Phex null males within 12 hours after birth, with the development of hypophosphatemia, reduced renal expression of NaPi2a and NaPi2c, and increased renal phosphorus excretion. In conclusion, although FGF23 is present in the fetal circulation at levels that may equal adult values, and there is robust expression of FGF23 target genes in placenta and fetal kidneys, FGF23 itself is not an important regulator of fetal phosphorous metabolism.
Collapse
Affiliation(s)
- Yue Ma
- Faculty of Medicine–Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada;
| | - Beth J. Kirby
- Faculty of Medicine–Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada;
| | - Nicholas A. Fairbridge
- Faculty of Medicine–Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada;
| | - Andrew C. Karaplis
- McGill University and Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada; and
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Christopher S. Kovacs
- Faculty of Medicine–Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada;
| |
Collapse
|
18
|
|
19
|
Ohata Y, Ozono K, Michigami T. Current concepts in perinatal mineral metabolism. Clin Pediatr Endocrinol 2016; 25:9-17. [PMID: 26865750 PMCID: PMC4738188 DOI: 10.1297/cpe.25.9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/26/2015] [Indexed: 12/03/2022] Open
Abstract
The serum levels of calcium (Ca) and phosphate are maintained higher in the fetus than in
the pregnant mother, especially in late gestation, to meet the demands of fetal bone
development. In order to maintain this fetal stage-specific mineral homeostasis, the
placenta plays a critical role through active transcellular mineral transport. Although
the molecular mechanism of transplacental Ca transport has been well studied, little is
known about the transport mechanism of phosphate and magnesium. Maternal mineral
homeostasis is also altered during pregnancy to supply minerals to the fetus. In the
lactating mother, osteocytic osteolysis is suggested to be involved in the supply of
minerals to the baby. The levels of some calcitropic and phosphotropic (Ca- and
phosphate-regulating, respectively) hormones in the fetus are also different from those in
the adult. The PTH level in the fetus is lower than that in the mother and nonpregnant
adult. It is suggested, however, that low fetal PTH plays an important role in fetal
mineral metabolism. The concentration of PTHrP in the fetus is much higher than that of
PTH and plays a critical role in perinatal Ca homeostasis. Uncovering the molecular
mechanisms for fetal stage-specific mineral metabolism will lead to better management of
perinatal patients with mineral abnormalities.
Collapse
Affiliation(s)
- Yasuhisa Ohata
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| |
Collapse
|
20
|
Hirai T, Kobayashi T, Nishimori S, Karaplis AC, Goltzman D, Kronenberg HM. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis. Endocrinology 2015; 156:2774-80. [PMID: 26052897 PMCID: PMC4511135 DOI: 10.1210/en.2014-1835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level.
Collapse
Affiliation(s)
- Takao Hirai
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - Tatsuya Kobayashi
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - Shigeki Nishimori
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - Andrew C Karaplis
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - David Goltzman
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - Henry M Kronenberg
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| |
Collapse
|
21
|
Kwong RWM, Perry SF. An Essential Role for Parathyroid Hormone in Gill Formation and Differentiation of Ion-Transporting Cells in Developing Zebrafish. Endocrinology 2015; 156:2384-94. [PMID: 25872007 DOI: 10.1210/en.2014-1968] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrates, parathyroid hormone (PTH) is important for skeletogenesis and Ca(2+) homeostasis. However, little is known about the molecular mechanisms by which PTH regulates skeleton formation and Ca(2+) balance during early development. Using larval zebrafish as an in vivo model system, we determined that PTH1 regulates the differentiation of epithelial cells and the development of craniofacial cartilage. We demonstrated that translational gene knockdown of PTH1 decreased Ca(2+) uptake at 4 days after fertilization. We also observed that PTH1-deficient fish exhibited reduced numbers of epithelial Ca(2+) channel (ecac)-expressing cells, Na(+)/K(+)-ATPase-rich cells, and H(+)-ATPase-rich cells. Additionally, the density of epidermal stem cells was decreased substantially in the fish experiencing PTH1 knockdown. Knockdown of PTH1 caused a shortening of the jaw and impeded the development of branchial arches. Results from in situ hybridization suggested that the expression of collagen 2a1a (marker for proliferating chondrocytes) was substantially reduced in the cartilage that forms the jaw and branchial aches. Disorganization of chondrocytes in craniofacial cartilage also was observed in PTH1-deficient fish. The results of real-time PCR demonstrated that PTH1 morphants failed to express the transcription factor glial cell missing 2 (gcm2). Coinjection of PTH1 morpholino with gcm2 capped RNA rescued the phenotypes observed in the PTH1 morphants, suggesting that the defects in PTH1-deficient fish were caused, at least in part, by the suppression of gcm2. Taken together, the results of the present study reveal critical roles for PTH1 in promoting the differentiation of epidermal stem cells into mature ionocytes and cartilage formation during development.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
22
|
Romano T, Wark JD, Wlodek ME. Physiological skeletal gains and losses in rat mothers during pregnancy and lactation are not observed following uteroplacental insufficiency. Reprod Fertil Dev 2015; 26:385-94. [PMID: 23477709 DOI: 10.1071/rd12378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/10/2013] [Indexed: 11/23/2022] Open
Abstract
Fluctuations in maternal bone mass during pregnancy and lactation facilitate calcium transfer to offspring. Uteroplacental insufficiency causes fetal growth restriction and programs poor adult bone health. We aimed to characterise maternal skeletal phenotype during normal pregnancy and pregnancy complicated by uteroplacental insufficiency. Uteroplacental restriction (Restricted) or sham surgery (Control) was performed on gestational Day 18 (term=22 days) in pregnant Wistar-Kyoto rats. Maternal right femurs were collected on embryonic Day 20, postnatal Day 1 and Weeks 5, 7 and 9 postnatal. Dual-energy X-ray absorptiometry was used to quantify global bone mineral content, density and body composition. Peripheral quantitative computed tomography was utilised to determine trabecular and cortical content, density, circumferences and strength. Control rats exhibited expected reductions in trabecular and cortical content, density and bone strength from embryonic Day 20 to postnatal Day 1 (P<0.05). These skeletal alterations were absent in Restricted rats. By postnatal Day 7, bone parameters in Control and Restricted rats were not different from non-pregnant rats, indicating restoration of maternal bone. The lack of bone loss in mothers suffering uteroplacental insufficiency suggests that calcium transfer to pups would be impaired. This reduction in calcium availability is a likely contributor to the programming of poor adult bone health in growth-restricted offspring.
Collapse
Affiliation(s)
- Tania Romano
- Department of Physiology, The University of Melbourne, Vic. 3010, Australia
| | - John D Wark
- Department of Medicine, The University of Melbourne, Vic. 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Vic. 3010, Australia
| |
Collapse
|
23
|
Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol Rev 2014; 94:1143-218. [PMID: 25287862 DOI: 10.1152/physrev.00014.2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mineral and bone metabolism are regulated differently in utero compared with the adult. The fetal kidneys, intestines, and skeleton are not dominant sources of mineral supply for the fetus. Instead, the placenta meets the fetal need for mineral by actively transporting calcium, phosphorus, and magnesium from the maternal circulation. These minerals are maintained in the fetal circulation at higher concentrations than in the mother and normal adult, and such high levels appear necessary for the developing skeleton to accrete a normal amount of mineral by term. Parathyroid hormone (PTH) and calcitriol circulate at low concentrations in the fetal circulation. Fetal bone development and the regulation of serum minerals are critically dependent on PTH and PTH-related protein, but not vitamin D/calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, the serum calcium falls and phosphorus rises before gradually reaching adult values over the subsequent 24-48 h. The intestines are the main source of mineral for the neonate, while the kidneys reabsorb mineral, and bone turnover contributes mineral to the circulation. This switch in the regulation of mineral homeostasis is triggered by loss of the placenta and a postnatal fall in serum calcium, and is followed in sequence by a rise in PTH and then an increase in calcitriol. Intestinal calcium absorption is initially a passive process facilitated by lactose, but later becomes active and calcitriol-dependent. However, calcitriol's role can be bypassed by increasing the calcium content of the diet, or by parenteral administration of calcium.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
24
|
Curtis EM, Moon RJ, Dennison EM, Harvey NC. Prenatal calcium and vitamin D intake, and bone mass in later life. Curr Osteoporos Rep 2014; 12:194-204. [PMID: 24740166 DOI: 10.1007/s11914-014-0210-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aging population will result in an increasing burden of osteoporotic fractures, necessitating the identification of novel strategies for prevention. There is increasing recognition that factors in utero may influence bone mineral accrual, and, thus, osteoporosis risk. The role of calcium and vitamin D has received much attention in recent years, and in this review, we will survey available studies relating maternal calcium and vitamin D status during pregnancy to offspring bone development. The evidence base supporting a positive influence on intrauterine skeletal growth appears somewhat stronger for maternal 25(OH)-vitamin D concentration than for calcium intake, and the available data point toward the need for high-quality randomized controlled trials in order to inform public health policy. It is only with such a rigorous approach that it will be possible to delineate the optimal strategy for vitamin D supplementation in pregnancy in relation to offspring bone health.
Collapse
Affiliation(s)
- Elizabeth M Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | | | | | | |
Collapse
|
25
|
Ma Y, Samaraweera M, Cooke-Hubley S, Kirby BJ, Karaplis AC, Lanske B, Kovacs CS. Neither absence nor excess of FGF23 disturbs murine fetal-placental phosphorus homeostasis or prenatal skeletal development and mineralization. Endocrinology 2014; 155:1596-605. [PMID: 24601885 PMCID: PMC3990847 DOI: 10.1210/en.2013-2061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fibroblast growth factor-23 (FGF23) controls serum phosphorus largely through actions on the kidneys to excrete phosphorus and reduce calcitriol. Although these actions are well established in adults and children, the role that FGF23 plays in regulating fetal phosphorus metabolism has not been previously studied. We used several mouse models to study the effect of endogenous deficiency or excess of FGF23 on fetal phosphorus metabolism. We found that intact FGF23 does not cross the placenta from mother to fetus, but wild-type fetuses normally have intact FGF23 levels that approximately equal the maternal level. Deletion of Fgf23 or 7.8-fold higher serum FGF23 levels did not disturb any parameter of fetal mineral homeostasis, including serum and amniotic fluid phosphorus, skeletal morphology, skeletal mineral content, and placental phosphorus transport. Placentas and fetal kidneys abundantly express FGF23 target genes. Cyp24a1 was significantly reduced in Fgf23 null kidneys and was significantly increased in Phex null placentas and fetal kidneys. Phex null kidneys also showed reduced expression of Klotho. However, these changes in gene expression did not disturb any physiological parameter related to phosphorus. A 50% reduction in FGF23 also failed to affect renal phosphorus excretion into amniotic fluid when either PTH or the vitamin D receptor were absent. In conclusion, FGF23 is not an important regulator of fetal phosphorous metabolism. The active delivery of phosphorus across the placenta does not require FGF23, and that process overrides any effects that absence or excess of FGF23 might otherwise have on phosphate handling by the fetal kidneys.
Collapse
Affiliation(s)
- Yue Ma
- Faculty of Medicine-Endocrinology (Y.M., M.S., S.C.-H., B.J.K., C.S.K.), Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada A1B 3V6; McGill University and Jewish General Hospital, Montréal (A.C.K.), Québec, Canada H3T 1E2; and Department of Oral Medicine, Infection and Immunity (B.L.), Harvard School of Dental Medicine, Boston, Massachusetts 02115-5819
| | | | | | | | | | | | | |
Collapse
|
26
|
Kovacs CS. Bone metabolism in the fetus and neonate. Pediatr Nephrol 2014; 29:793-803. [PMID: 23529641 DOI: 10.1007/s00467-013-2461-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/16/2013] [Accepted: 03/06/2013] [Indexed: 11/30/2022]
Abstract
During embryonic development most of the skeleton begins as a cartilaginous scaffold that is progressively resorbed and replaced by bone. Such endochondral bone development does not cease until the growth plates fuse during puberty. Growth and mineralization of the skeleton are dependent upon the adequate delivery of mineral. During fetal development, the placenta actively transports calcium, magnesium and phosphorus from the maternal circulation. After birth, the role of mineral transport is assumed by the intestines. The limited data currently available on fetal humans are largely based on cord blood samples from normal fetuses and pathological specimens from fetuses which died in utero or at birth. Consequently, much of our understanding of the regulation of fetal mineral and bone homeostasis comes from the study of animal fetuses that have been manipulated surgically, pharmacologically and genetically. Animal and human data indicate that fetal mineral homeostasis requires parathyroid hormone (PTH) and PTH-related protein-but not vitamin D/calcitriol, calcitonin or sex steroids. In the days to weeks after birth, intestinal calcium absorption becomes an active process, which necessitates that the infant depends upon vitamin D/calcitriol. However, even this postnatal function of calcitriol can be bypassed by increasing the calcium content of the diet or by administering calcium infusions.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada,
| |
Collapse
|
27
|
Kovacs CS. The Role of PTHrP in Regulating Mineral Metabolism During Pregnancy, Lactation, and Fetal/Neonatal Development. Clin Rev Bone Miner Metab 2014. [DOI: 10.1007/s12018-014-9157-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Kuriwaka-Kido R, Kido S, Miyatani Y, Ito Y, Kondo T, Omatsu T, Dong B, Endo I, Miyamoto KI, Matsumoto T. Parathyroid hormone (1-34) counteracts the suppression of interleukin-11 expression by glucocorticoid in murine osteoblasts: a possible mechanism for stimulating osteoblast differentiation against glucocorticoid excess. Endocrinology 2013; 154:1156-67. [PMID: 23397032 DOI: 10.1210/en.2013-1915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid (GC) excess causes a rapid loss of bone with a reduction in bone formation. Intermittent PTH (1-34) administration stimulates bone formation and counteracts the inhibition of bone formation by GC excess. We have previously demonstrated that mechanical strain enhances interleukin (IL)-11 gene transcription by a rapid induction of ΔFosB expression and protein kinase C (PKC)-δ-mediated phosphorylation of phosphorylated mothers against decapentaplegic (Smad)-1. Because IL-11 suppresses the expression of dickkopf-1 and -2 and stimulates Wnt signaling, IL-11 appears to mediate at least a part of the effect of mechanical strain on osteoblast differentiation and bone formation. The present study was undertaken to examine the effect of PTH(1-34) and GCs on IL-11 expression in murine primary osteoblasts (mPOBs). PTH(1-34) treatment of mPOBs enhanced IL-11 expression in a time- and dose-dependent manner. PTH(1-34) also stimulated ΔFosB expression and Smad1 phosphorylation, which cooperatively stimulated IL-11 gene transcription. PTH(1-34)-induced Smad1 phosphorylation was mediated via PKCδ and was abrogated in mPOBs from PKCδ knockout mice. Dexamethasone suppressed IL-11 gene transcription enhanced by PTH(1-34) without affecting ΔFosB expression or Smad1 phosphorylation, and dexamethasone-GC receptor complex was bound to JunD, which forms heterodimers with ΔFosB. High doses of PTH(1-34) counteracted the effect of dexamethasone on apoptosis of mPOBs, which was blunted by neutralizing anti-IL-11 antibody or IL-11 small interfering RNA. These results demonstrate that PTH(1-34) and GCs interact to regulate IL-11 expression in parallel with osteoblast differentiation and apoptosis and suggest that PTH(1-34) and dexamethasone may regulate osteoblast differentiation and apoptosis via their effect on IL-11 expression.
Collapse
Affiliation(s)
- Rika Kuriwaka-Kido
- MD, Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medicine, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
During embryonic and fetal development much of the skeleton initiates as a cartilaginous scaffold, which is progressively resorbed and replaced by bone. Endochondral bone formation continues until the growth plates fuse during puberty. At all life stages adequate delivery of mineral is required for the skeleton to achieve and maintain appropriate mineral content and strength. During fetal development the placenta actively transports calcium, phosphorus, and magnesium. Postnatally passive and then active absorption from the intestines becomes the main supply of minerals to the skeleton. Animal and human data indicate that fetal bone development requires parathyroid hormone (PTH) and PTH-related protein but not vitamin D/calcitriol, calcitonin, or (possibly) sex steroids. During the postnatal period, when intestinal calcium absorption becomes an active process, skeletal development begins to depend upon vitamin D/calcitriol but this requirement can be bypassed by increasing the calcium content of the diet or by administering intermittent calcium infusions.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Medicine (Endocrinology and Metabolism), Obstetrics & Gynecology, and BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, 300 Prince Philip Drive, St. John's, Newfoundland, A1B 3V6, Canada.
| |
Collapse
|
30
|
Woods Ignatoski KM, Bingham EL, Frome LK, Doherty GM. DirectedTrans-Differentiation of Thymus Cells into Parathyroid-Like Cells Without Genetic Manipulation. Tissue Eng Part C Methods 2011; 17:1051-9. [PMID: 21797755 DOI: 10.1089/ten.tec.2011.0170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kathleen M. Woods Ignatoski
- Division of Endocrine Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Evangeline L. Bingham
- Division of Endocrine Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Lauren K. Frome
- Division of Endocrine Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Gerard M. Doherty
- Division of Endocrine Surgery, Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
31
|
Goodfellow LR, Cooper C, Harvey NC. Regulation of placental calcium transport and offspring bone health. Front Endocrinol (Lausanne) 2011; 2:3. [PMID: 22649358 PMCID: PMC3355895 DOI: 10.3389/fendo.2011.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/31/2011] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis causes considerable morbidity and mortality in later life, and the risk of the disease is strongly determined by peak bone mass, which is achieved in early adulthood. Poor intrauterine and early childhood growth are associated with reduced peak bone mass, and increased risk of osteoporotic fracture in older age. In this review we describe the regulatory aspects of intrauterine bone development, and then summarize the evidence relating early growth to later fracture risk. Physiological systems include vitamin D, parathyroid hormone, leptin, GH/IGF-1; finally the potential role of epigenetic processes in the underlying mechanisms will be explored. Thus factors such as maternal lifestyle, diet, body build, physical activity, and vitamin D status in pregnancy all appear to influence offspring bone mineral accrual. These data demonstrate a likely interaction between environmental factors and gene expression, a phenomenon ubiquitous in the natural world (developmental plasticity), as the potential key process. Intervention studies are now required to test the hypotheses generated by these epidemiological and physiological findings, to inform potential novel public health interventions aimed at improving childhood bone health and reducing the burden of osteoporotic fracture in future generations.
Collapse
Affiliation(s)
- Laura R. Goodfellow
- The MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of SouthamptonSouthampton, UK
| | - Cyrus Cooper
- The MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of SouthamptonSouthampton, UK
| | - Nicholas C. Harvey
- The MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of SouthamptonSouthampton, UK
| |
Collapse
|
32
|
Abstract
UNLABELLED Intrauterine fracture is an extremely rare finding, but can occur as the result of maternal trauma, osteogenesis imperfecta (OI), or theoretically other metabolic/structural abnormalities. Increased clinical awareness of the diagnosis and optimal management of these cases can lead to more positive outcomes for the patient and her child. Blunt abdominal trauma late in gestation increases the risk of fetal skull fracture, while a known diagnosis of OI or other abnormalities leading to decreased fetal bone density creates concern for long bone fracture. Biochemical and genetic tests can aid in the prenatal diagnosis of OI, while ultrasound is the best overall imaging modality for identifying fetal fracture of any etiology. When fetal fracture is diagnosed radiologically, specific management is recommended to promote optimal outcomes for mother and fetus, with special consideration given to the mother with OI. With the exception of fetal fractures due to lethal conditions, cesarean delivery is recommended in most cases, especially when fetal or maternal well-being cannot be assured. When a patient presents with risk factors for intrauterine fracture, careful evaluation via thorough history-taking, ultrasonography of the entire fetal skeleton, and laboratory tests should be performed. Heightened awareness of intrauterine fracture allows better postpartum management, whether for simple fracture care or for long-term care of patients with OI or genetic/metabolic abnormalities. TARGET AUDIENCE Obstetricians & Gynecologist, Family Physicians. LEARNING OBJECTIVES After completion of this educational activity, the reader will be able to compare x-ray, ultrasound modalities and MRI and their utility in diagnosing fetal fracture. Formulate a differential diagnosis for fetal fracture. Propose a delivery plan for a patient whose fetus has a prenatally diagnosed fetal fracture.
Collapse
|
33
|
Abstract
Parathyroid hormone (PTH) plays an essential role in regulating calcium and bone homeostasis in the adult, but whether PTH is required at all for regulating fetal-placental mineral homeostasis and skeletal development is uncertain. We hypothesized that despite its low circulating levels during fetal life, PTH plays a critical role in regulating these processes. To address this, we examined two different genetic models of PTH deficiency. Pth null mice have enlarged parathyroids that are incapable of making PTH, whereas Gcm2 null mice lack parathyroids but have PTH that arises from the thymus. Pth nulls served as a model of complete absence of PTH, whereas Gcm2 nulls were a model of severe hypoparathyroidism. We determined that PTH contributes importantly to fetal mineral homeostasis because in its absence a fetal hypoparathyroid phenotype results with hypocalcemia, hypomagnesemia, hyperphosphatemia, low amniotic fluid mineral content, and reduced skeletal mineral content. We also determined that PTH is expressed in the placenta, regulates the placental expression of genes involved in calcium and other solute transfer, and may directly stimulate placental calcium transfer. Although parathyroid hormone-related protein (PTHrP) acts in concert with PTH to regulate fetal mineral homeostasis and placental calcium transfer, unlike PTH, it does not upregulate in response to fetal hypocalcemia.
Collapse
|
34
|
Placental-specific Igf2 knockout mice exhibit hypocalcemia and adaptive changes in placental calcium transport. Proc Natl Acad Sci U S A 2010; 107:3894-9. [PMID: 20133672 DOI: 10.1073/pnas.0911710107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Evidence is emerging that the ability of the placenta to supply nutrients to the developing fetus adapts according to fetal demand. To examine this adaptation further, we tested the hypothesis that placental maternofetal transport of calcium adapts according to fetal calcium requirements. We used a mouse model of fetal growth restriction, the placental-specific Igf2 knockout (P0) mouse, shown previously to transiently adapt placental System-A amino acid transporter activity relative to fetal growth. Fetal and placental weights in P0 mice were reduced when compared with WT at both embryonic day 17 (E17) and E19. Ionized calcium concentration [Ca(2+)] was significantly lower in P0 fetal blood compared with both WT and maternal blood at E17 and E19, reflecting a reversal of the fetomaternal [Ca(2+)] gradient. Fetal calcium content was reduced in P0 mice at E17 but not at E19. Unidirectional maternofetal calcium clearance ((Ca) K (mf)) was not different between WT and P0 at E17 but increased in P0 at E19. Expression of the intracellular calcium-binding protein calbindin-D(9K), previously shown to be rate-limiting for calcium transport, was increased in P0 relative to WT placentas between E17 and E19. These data show an increased placental transport of calcium from E17 to E19 in P0 compared to WT. We suggest that this is an adaptation in response to the reduced fetal calcium accumulation earlier in gestation and speculate that the ability of the placenta to adapt its supply capacity according to fetal demand may stretch across other essential nutrients.
Collapse
|
35
|
Maass PG, Wirth J, Aydin A, Rump A, Stricker S, Tinschert S, Otero M, Tsuchimochi K, Goldring MB, Luft FC, Bähring S. A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to Brachydactyly Type E. Hum Mol Genet 2009; 19:848-60. [PMID: 20015959 DOI: 10.1093/hmg/ddp553] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Parathyroid hormone-like hormone (PTHLH) is an important chondrogenic regulator; however, the gene has not been directly linked to human disease. We studied a family with autosomal-dominant Brachydactyly Type E (BDE) and identified a t(8;12)(q13;p11.2) translocation with breakpoints (BPs) upstream of PTHLH on chromosome 12p11.2 and a disrupted KCNB2 on 8q13. We sequenced the BPs and identified a highly conserved Activator protein 1 (AP-1) motif on 12p11.2, together with a C-ets-1 motif translocated from 8q13. AP-1 and C-ets-1 bound in vitro and in vivo at the derivative chromosome 8 breakpoint [der(8) BP], but were differently enriched between the wild-type and BP allele. We differentiated fibroblasts from BDE patients into chondrogenic cells and found that PTHLH and its targets, ADAMTS-7 and ADAMTS-12 were downregulated along with impaired chondrogenic differentiation. We next used human and murine chondrocytes and observed that the AP-1 motif stimulated, whereas der(8) BP or C-ets-1 decreased, PTHLH promoter activity. These results are the first to identify a cis-directed PTHLH downregulation as primary cause of human chondrodysplasia.
Collapse
Affiliation(s)
- Philipp G Maass
- Department of Genetics, Nephrology, Hypertension, and Vascular Injury, Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Demirel N, Aydin M, Zenciroglu A, Okumus N, Cetinkaya S, Yildiz YT, Ipek MS. Hyperparathyroidism secondary to maternal hypoparathyroidism and vitamin D deficiency: an uncommon cause of neonatal respiratory distress. ACTA ACUST UNITED AC 2009; 29:149-54. [PMID: 19460269 DOI: 10.1179/146532809x440770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A 4-day-old neonate presented with respiratory distress owing to chest wall deformity associated with metabolic bone disease. He was found to have congenital hyperparathyroidism and his mother was suffering from post-surgical hypoparathyroidism and vitamin D deficiency. The patient was given calcium lactate and maintenance doses of vitamin D. The respiratory distress subsided, the parathyroid hormone level returned to normal and by 4 weeks of age bone mineral content had improved. Congenital hyperparathyroidism should be considered in neonates presenting with respiratory distress and chest deformity.
Collapse
Affiliation(s)
- N Demirel
- Department of Neonatology, Dr Sami Ulus Maternity and Children's Hospital, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
37
|
Liu Z, Yu S, Manley NR. Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev Biol 2007; 305:333-46. [PMID: 17382312 PMCID: PMC1931567 DOI: 10.1016/j.ydbio.2007.02.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 12/27/2022]
Abstract
The parathyroid glands develop with the thymus from bilateral common primordia that develop from the 3rd pharyngeal pouch endoderm in mouse embryos at about E11, each of which separates into one parathyroid gland and one thymus lobe by E13.5. Gcm2, a mouse ortholog of the Drosophila Glial Cells Missing gene, is expressed in the parathyroid-specific domains in the 3rd pouches from E9.5. The null mutation of Gcm2 causes aparathyroidism in the fetal and adult mouse and has been proposed to be a master regulator for parathyroid development. In order to study how Gcm2 functions in parathyroid development, we investigated the mechanism that causes the loss of parathyroids in Gcm2 null mutants. Analysis of the 3rd pouch-derived primordium in Gcm2-/- mutants showed the parathyroid-specific domain was present before E12.5 but underwent programmed cell death between E12 and 12.5. RNA and protein localization studies for parathyroid hormone (Pth) in wild-type embryos showed that the presumptive parathyroid domain in the parathyroid/thymus primordia started to transcribe Pth mRNA and produce PTH protein from E11.5 before the separation of parathyroid and thymus domains. However in Gcm2-/- mutants, the parathyroid-specific domain in the common primordium did not express Pth and could not maintain the expression of two other parathyroid marker genes, CasR and CCL21, although expression of these two genes was initiated. Marker gene analysis placed Gcm2 downstream of the known transcription and signaling pathways for parathyroid/thymus organogenesis. These results suggest that Gcm2 is not required for pouch patterning or to establish the parathyroid domain, but is required for differentiation and subsequent survival of parathyroid cells.
Collapse
Affiliation(s)
| | | | - Nancy R. Manley
- 1 Author for correspondence: , phone 706-542-5861, fax 706-583-0691
| |
Collapse
|
38
|
Kovacs CS, Woodland ML, Fudge NJ, Friel JK. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice. Am J Physiol Endocrinol Metab 2005; 289:E133-44. [PMID: 15741244 DOI: 10.1152/ajpendo.00354.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We utilized a vitamin D receptor (VDR) gene knockout model to study the effects of maternal and fetal absence of VDR on maternal fertility, fetal-placental calcium transfer, and fetal mineral homoeostasis. Vdr null mice were profoundly hypocalcemic, conceived infrequently, and had significantly fewer viable fetuses in utero that were also of lower body weight. Supplementation of a calcium-enriched diet increased the rate of conception in Vdr nulls but did not normalize the number or weight of viable fetuses. Among offspring of heterozygous (Vdr(+/-)) mothers (wild type, Vdr(+/-), and Vdr null fetuses), there was no alteration in serum Ca, P, or Mg, parathyroid hormone, placental (45)Ca transfer, Ca and Mg content of the fetal skeleton, and morphology and gene expression in the fetal growth plates. Vdr null fetuses did have threefold increased 1,25-dihydroxyvitamin D levels accompanied by increased 1alpha-hydroxylase mRNA in kidney but not placenta; a small increase was also noted in placental expression of parathyroid hormone-related protein (PTHrP). Among offspring of Vdr null mothers, Vdr(+/-) and Vdr null fetuses had normal ionized calcium levels and a skeletal ash weight that was appropriate to the lower body weight. Thus our findings indicate that VDR is not required by fetal mice to regulate placental calcium transfer, circulating mineral levels, and skeletal mineralization. Absence of maternal VDR has global effects on fetal growth that were partly dependent on maternal calcium intake, but absence of maternal VDR did not specifically affect fetal mineral homeostasis.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Dr., St. John's, Newfoundland and Labrador, Canada.
| | | | | | | |
Collapse
|
39
|
Wlodek ME, Westcott KT, O'Dowd R, Serruto A, Wassef L, Moritz KM, Moseley JM. Uteroplacental restriction in the rat impairs fetal growth in association with alterations in placental growth factors including PTHrP. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1620-7. [PMID: 15661964 DOI: 10.1152/ajpregu.00789.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During pregnancy, parathyroid hormone-related protein (PTHrP) is one of many growth factors that play important roles to promote fetal growth and development, including stimulation of placental calcium transport. Angiotensin II, acting through the AT1a receptor, is also known to promote placental growth. We examined the effects of bilateral uterine artery and vein ligation (restriction), which mimics placental insufficiency in humans, on growth, intrauterine PTHrP, placental AT1a, and pup calcium. Growth restriction was surgically induced on day 18 of pregnancy in Wistar-Kyoto female rats by uterine vessel ligation. Uteroplacental insufficiency reduced fetal body weight by 15% and litter size ( P < 0.001) compared with the control rats with no effect on placental weight or amniotic fluid volume. Uteroplacental insufficiency reduced placental PTHrP content by 46%, with increases in PTHrP (by 2.6-fold), parathyroid hormone (PTH)/PTHrP receptor (by 11.6-fold), and AT1a (by 1.7-fold) relative mRNA in placenta following restriction compared with results in control ( P < 0.05). There were no alterations in uterine PTHrP and PTH/PTHrP receptor mRNA expression. Maternal and fetal plasma PTHrP and calcium concentrations were unchanged. Although fetal total body calcium was not altered, placental restriction altered perinatal calcium homeostasis, as evidenced by lower pup total body calcium after birth ( P < 0.05). The increased uterine and amniotic fluid PTHrP ( P < 0.05) may be an attempt to compensate for the induced impaired placental function. The present study demonstrates that uteroplacental insufficiency alters intrauterine PTHrP, placental AT1a expression, and perinatal calcium in association with a reduction in fetal growth. Uteroplacental insufficiency may provide an important model for exploring the early origins of adult diseases.
Collapse
Affiliation(s)
- Mary E Wlodek
- Department of Physiology, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Unger S, Paul DA, Nino MC, McKay CP, Miller S, Sochett E, Braverman N, Clarke JTR, Cole DEC, Superti-Furga A. Mucolipidosis II presenting as severe neonatal hyperparathyroidism. Eur J Pediatr 2005; 164:236-43. [PMID: 15580357 DOI: 10.1007/s00431-004-1591-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 10/19/2004] [Accepted: 10/21/2004] [Indexed: 10/26/2022]
Abstract
UNLABELLED Mucolipidosis II (ML II or I-cell disease ) (OMIM 252500) is an autosomal recessive lysosomal enzyme targeting disorder that usually presents between 6 and 12 months of age with a clinical phenotype resembling Hurler syndrome and a radiological picture of dysostosis multiplex. When ML II is severe enough to be detected in the newborn period, the radiological changes have been described as similar to hyperparathyroidism or rickets. The biological basis of these findings has not been explored and few biochemical measurements have been recorded. We describe three unrelated infants with ML II who had radiological features of intrauterine hyperparathyroidism and biochemical findings consistent with severe secondary neonatal hyperparathyroidism (marked elevation of serum parathyroid hormone and alkaline phosphatase levels). The vitamin D metabolites were not substantially different from normal and repeatedly normal calcium concentrations excluded vitamin D deficiency rickets and neonatal severe hyperparathyroidism secondary to calcium-sensing receptor gene mutations (OMIM 239200). The pathogenesis of severe hyperparathyroidism in the fetus and newborn with ML II is unexplained. We hypothesize that the enzyme targeting defect of ML II interferes with transplacental calcium transport leading to a calcium starved fetus and activation of the parathyroid response to maintain extracellular calcium concentrations within the normal range. CONCLUSION Newborns with mucolipidosis II can present with radiological and biochemical signs of hyperparathyroidism. Awareness of this phenomenon may help in avoiding diagnostic pitfalls and establishing a proper diagnosis and therapy.
Collapse
Affiliation(s)
- Sheila Unger
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
McDonald KR, Fudge NJ, Woodrow JP, Friel JK, Hoff AO, Gagel RF, Kovacs CS. Ablation of calcitonin/calcitonin gene-related peptide-alpha impairs fetal magnesium but not calcium homeostasis. Am J Physiol Endocrinol Metab 2004; 287:E218-26. [PMID: 15039145 DOI: 10.1152/ajpendo.00023.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used the calcitonin/calcitonin gene-related peptide (CGRP)-alpha gene knockout model (Ct/Cgrp null) to determine whether calcitonin and CGRPalpha are required for normal fetal mineral homeostasis and placental calcium transfer. Heterozygous (Ct/Cgrp(+/-)) and Ct/Cgrp null females were mated to Ct/Cgrp(+/-) males. One or two days before term, blood was collected from mothers and fetuses and analyzed for ionized Ca, Mg, P, parathyroid hormone (PTH), and calcitonin. Amniotic fluid was collected for Ca, Mg, and P. To quantify skeletal mineral content, fetuses were reduced to ash, dissolved in nitric acid, and analyzed by atomic absorption spectroscopy for total Ca and Mg. Placental transfer of (45)Ca at 5 min was assessed. Ct/Cgrp null mothers had significantly fewer viable fetuses in utero compared with Ct/Cgrp(+/-) and wild-type mothers. Fetal serum Ca, P, and PTH did not differ by genotype, but serum Mg was significantly reduced in null fetuses. Placental transfer of (45)Ca at 5 min was normal. The calcium content of the fetal skeleton was normal; however, total Mg content was reduced in Ct/Cgrp null skeletons obtained from Ct/Cgrp null mothers. In summary, maternal absence of calcitonin and CGRPalpha reduced the number of viable fetuses. Fetal absence of calcitonin and CGRPalpha selectively reduced serum and skeletal magnesium content but did not alter ionized calcium, placental calcium transfer, and skeletal calcium content. These findings indicate that calcitonin and CGRPalpha are not needed for normal fetal calcium metabolism but may regulate aspects of fetal Mg metabolism.
Collapse
Affiliation(s)
- Kirsten R McDonald
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Rubin LP, Kovacs CS, De Paepe ME, Tsai SW, Torday JS, Kronenberg HM. Arrested pulmonary alveolar cytodifferentiation and defective surfactant synthesis in mice missing the gene for parathyroid hormone-related protein. Dev Dyn 2004; 230:278-89. [PMID: 15162506 DOI: 10.1002/dvdy.20058] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) and PTH/PTHrP receptor expression are developmentally regulated in lung epithelium and adepithelial mesenchyme, respectively. To test the hypothesis that PTHrP is a developmental regulator of terminal airway development, we investigated in vivo and in vitro models of alveolar cytodifferentiation using mice in which the gene encoding PTHrP was ablated by homologous recombination. We have determined that fetal and newborn PTHrP(-/-) lungs showed delayed mesenchymal-epithelial interactions, arrested type II cell differentiation, and reduced surfactant lamellar body formation and pulmonary surfactant production. Embryonic PTHrP(-/-) lung buds cultured in the absence of skeletal constriction or systemic compensating factors also exhibited delayed alveolar epithelial (type II cell) and mesenchymal cytodifferentiation, as well as a > 40% inhibition of surfactant phospholipid production (n = 3-5). Addition of exogenous PTHrP to embryonic PTHrP(-/-) lung cultures normalized interstitial cell morphology and surfactant phospholipid production. The importance of PTHrP as an endogenous regulatory molecule in mammalian lung development is supported by the findings that ablation of PTHrP expression in isolated developing lung is sufficient to disrupt normal development of the alveolar ducts and the centriacinar regions.
Collapse
Affiliation(s)
- Lewis P Rubin
- Department of Pediatrics, Brown Medical School and Women and Infants Hospital, Providence, Rhode Island 02905-2499, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Wilson SG, Reed PW, Bansal A, Chiano M, Lindersson M, Langdown M, Prince RL, Thompson D, Thompson E, Bailey M, Kleyn PW, Sambrook P, Shi MM, Spector TD. Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 2003; 72:144-55. [PMID: 12478480 PMCID: PMC378619 DOI: 10.1086/345819] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 10/24/2002] [Indexed: 02/01/2023] Open
Abstract
Low bone mineral density (BMD) is a major risk factor for osteoporotic fracture. Studies of BMD in families and twins have shown that this trait is under strong genetic control. To identify regions of the genome that contain quantitative trait loci (QTL) for BMD, we performed independent genomewide screens, using two complementary study designs. We analyzed unselected nonidentical twin pairs (1,094 pedigrees) and highly selected, extremely discordant or concordant (EDAC) sib pairs (254 pedigrees). Nonparametric multipoint linkage (NPL) analyses were undertaken for lumbar spine and total-hip BMD in both cohorts and for whole-body BMD in the unselected twin pairs. The maximum evidence of linkage in the unselected twins (spine BMD, LOD 2.7) and the EDAC pedigrees (spine BMD, LOD 2.1) was observed at chromosome 3p21 (76 cM and 69 cM, respectively). These combined data indicate the presence, in this region, of a gene that regulates BMD. Furthermore, evidence of linkage in the twin cohort (whole-body BMD; LOD 2.4) at chromosome 1p36 (17 cM) supports previous findings of suggestive linkage to BMD in the region. Weaker evidence of linkage (LOD 1.0-2.3) in either cohort, but not both, indicates the locality of additional QTLs. These studies validate the use, in linkage analysis, of large cohorts of unselected twins phenotyped for multiple traits, and they highlight the importance of conducting genome scans in replicate populations as a prelude to positional cloning and gene discovery.
Collapse
Affiliation(s)
- S. G. Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - P. W. Reed
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - A. Bansal
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - M. Chiano
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - M. Lindersson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - M. Langdown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - R. L. Prince
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - D. Thompson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - E. Thompson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - M. Bailey
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - P. W. Kleyn
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - P. Sambrook
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - M. M. Shi
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| | - T. D. Spector
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia; Sequenom, San Diego; LifeSciences Advisory Group LLC, Wellesley, MA; Institute of Bone and Joint Research, University of Sydney, Sydney; Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital, London
| |
Collapse
|
44
|
Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 2002; 109:1173-82. [PMID: 11994406 PMCID: PMC150965 DOI: 10.1172/jci14817] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Parathyroid hormone (PTH) is a potent pharmacologic inducer of new bone formation, but no physiologic anabolic effect of PTH on adult bone has been described. We investigated the role of PTH in fetal skeletal development by comparing newborn mice lacking either PTH, PTH-related peptide (PTHrP), or both peptides. PTH-deficient mice were dysmorphic but viable, whereas mice lacking PTHrP died at birth with dyschondroplasia. PTH-deficient mice uniquely demonstrated diminished cartilage matrix mineralization, decreased neovascularization with reduced expression of angiopoietin-1, and reduced metaphyseal osteoblasts and trabecular bone. Compound mutants displayed the combined cartilaginous and osseous defects of both single mutants. These results indicate that coordinated action of both PTH and PTHrP are required to achieve normal fetal skeletal morphogenesis, and they demonstrate an essential function for PTH at the cartilage-bone interface. The effect of PTH on fetal osteoblasts may be relevant to its postnatal anabolic effects on trabecular bone.
Collapse
Affiliation(s)
- Dengshun Miao
- Calcium Research Laboratory, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
45
|
Kovacs CS, Chafe LL, Woodland ML, McDonald KR, Fudge NJ, Wookey PJ. Calcitropic gene expression suggests a role for the intraplacental yolk sac in maternal-fetal calcium exchange. Am J Physiol Endocrinol Metab 2002; 282:E721-32. [PMID: 11832378 DOI: 10.1152/ajpendo.00369.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of calcitropic genes and proteins was localized within murine placenta during late gestation (the time frame of active calcium transfer) with an analysis of several gene-deletion mouse models by immunohistochemistry and in situ hybridization. Parathyroid hormone-related protein (PTHrP), the PTH/PTHrP receptor, calcium receptor, calbindin-D(9k), Ca(2+)-ATPase, and vitamin D receptor were all highly expressed in a localized structure of the murine placenta, the intraplacental yolk sac, compared with trophoblasts. In the PTHrP gene-deleted or Pthrp-null placenta in which placental calcium transfer is decreased, calbindin-D(9k) expression was downregulated in the intraplacental yolk sac but not in the trophoblasts. These observations indicated that the intraplacental yolk sac contains calcium transfer and calcium-sensing capability and that it is a probable route of maternal-fetal calcium exchange in the mouse.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3V6, Canada
| | | | | | | | | | | |
Collapse
|