1
|
Estrada-Meza J, Videlo J, Bron C, Duchampt A, Saint-Béat C, Zergane M, Silva M, Rajas F, Bouret SG, Mithieux G, Gautier-Stein A. Intestinal gluconeogenesis controls the neonatal development of hypothalamic feeding circuits. Mol Metab 2024; 89:102036. [PMID: 39304064 PMCID: PMC11470480 DOI: 10.1016/j.molmet.2024.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE Intestinal gluconeogenesis (IGN) regulates adult energy homeostasis in part by controlling the same hypothalamic targets as leptin. In neonates, leptin exhibits a neonatal surge controlling axonal outgrowth between the different hypothalamic nuclei involved in feeding circuits and autonomic innervation of peripheral tissues involved in energy and glucose homeostasis. Interestingly, IGN is induced during this specific time-window. We hypothesized that the neonatal pic of IGN also regulates the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues. METHODS We genetically induced neonatal IGN by overexpressing G6pc1 the catalytic subunit of glucose-6-phosphatase (the mandatory enzyme of IGN) at birth or at twelve days after birth. The neonatal development of hypothalamic feeding circuits was studied by measuring Agouti-related protein (AgRP) and Pro-opiomelanocortin (POMC) fiber density in hypothalamic nuclei of 20-day-old pups. The effect of the neonatal induction of intestinal G6pc1 on sympathetic innervation of the adipose tissues was studied via tyrosine hydroxylase (TH) quantification. The metabolic consequences of the neonatal induction of intestinal G6pc1 were studied in adult mice challenged with a high-fat/high-sucrose (HFHS) diet for 2 months. RESULTS Induction of intestinal G6pc1 at birth caused a neonatal reorganization of AgRP and POMC fiber density in the paraventricular nucleus of the hypothalamus, increased brown adipose tissue tyrosine hydroxylase levels, and protected against high-fat feeding-induced metabolic disorders. In contrast, inducing intestinal G6pc1 12 days after birth did not impact AgRP/POMC fiber densities, adipose tissue innervation or adult metabolism. CONCLUSION These findings reveal that IGN at birth but not later during postnatal life controls the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues, promoting a better management of metabolism in adulthood.
Collapse
Affiliation(s)
| | - Jasmine Videlo
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Clara Bron
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Adeline Duchampt
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Mickael Zergane
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Marine Silva
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabienne Rajas
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Sebastien G Bouret
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Gilles Mithieux
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
2
|
Wang Q, Huang N, Psaltis JB, Gahtani RM, Yan G, Lu D, Cahalan SR, Shi X, Copeland RL, Haddad BR, Martin MB. Activation of estrogen-related receptor γ by calcium and cadmium. Front Endocrinol (Lausanne) 2024; 15:1400022. [PMID: 39507056 PMCID: PMC11537906 DOI: 10.3389/fendo.2024.1400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Estrogen-related receptor γ (ERRγ) is a metabolic regulator with no identified physiological ligands. This study investigates whether calcium is an ERRγ ligand that mediates the effects of glucagon and whether cadmium, which mimics the effects of calcium, disrupts metabolism through ERRγ. Method HepG2, MCF-7, and HEK293T transfected with ERRγ were treated with glucagon, calcium, cadmium, ERRγ agonist, or ERRγ inhibitor. Cells were then collected for in vitro assays including real-time qPCR, Western blot, ChIP, immunofluorescence, mutational analysis, or gene set enrichment analysis. Molecular dynamics simulations were performed to study mutation sites. Results In HepG2 cells, treatment with glucagon, calcium, or cadmium re-localized ERRγ to the cell nucleus, recruited ERRγ to estrogen-related response elements, induced the expression of ERRγ-regulated genes, and increased extracellular glucose that was blocked by an ERRγ antagonist. In MCF-7 cells and HEK293T cells transfected with ERRγ, similar treatments induced the expression of metabolic genes. Mutational analysis identified S303, T429, and E452 in the ligand-binding domain as potential interaction sites. Molecular dynamics simulations showed that calcium induced changes in ERRγ similar to ERRγ agonist. Conclusion The results suggest that calcium is a potential ligand of ERRγ that mediates the effects of glucagon and cadmium disrupts metabolism through ERRγ.
Collapse
Affiliation(s)
- Qiaochu Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Nanxi Huang
- Oncology, Georgetown University, Washington DC, United States
| | - John B. Psaltis
- Oncology, Georgetown University, Washington DC, United States
| | - Reem M. Gahtani
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Gai Yan
- Oncology, Georgetown University, Washington DC, United States
| | - Dajun Lu
- Oncology, Georgetown University, Washington DC, United States
| | | | - Xu Shi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Robert L. Copeland
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC, United States
| | | | - Mary Beth Martin
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
- Oncology, Georgetown University, Washington DC, United States
| |
Collapse
|
3
|
Yuan Y, Shin S, Shi Z, Shu G, Jiang Y. Postnatal Tamoxifen Exposure Induces Long-Lasting Changes to Adipose Tissue in Adult Mice. Mol Biotechnol 2024; 66:2322-2331. [PMID: 37642828 DOI: 10.1007/s12033-023-00828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023]
Abstract
Tamoxifen (TAM) is commonly administered to a variety of inducible or conditional transgenic mice that contain Cre recombinase fused with ER. While the impacts of adult TAM treatment are well documented in the field of adipose biology, the long-term effects of postnatal TAM treatment on adult life are still understudied. In this study, we investigated whether postnatal TAM treatment had long-lasting effects on adult body composition and adiposity in male and female mice, fed either with chow or a high-fat diet (HFD). We found that postnatal, but not adult, TAM treatment had long-lasting impacts on female mice, resulting in lower body weight, lower fat mass, and smaller adipocytes. In contrast, postnatal exposure to TAM impaired male but not female cold-induced adipose beiging capacity. Interestingly, upon HFD feeding, the sex-dependent effects of TAM on adult life disappeared, and both female and male mice showed a more obese phenotype with impaired glucose tolerance. These findings suggest that postnatal TAM injection exerts a long-lasting impact on adipose tissue in adult life in a sex- and diet-dependent manner.
Collapse
Affiliation(s)
- Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sunhye Shin
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul, 01797, Korea
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Vily-Petit J, Taki A, Sinet F, Soty M, Guiard B, Zemdegs J, Malleret G, Stefanutti A, Mithieux G, Gautier-Stein A. Absence of the Peptide Transporter 1 Induces a Prediabetic and Depressive-Like Phenotype in Mice. Neuroendocrinology 2024; 115:226-241. [PMID: 38852578 DOI: 10.1159/000539499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Protein-enriched diets improve glycemic control in diabetes or emotional behavior in depressive patients. In mice, these benefits depend on intestinal gluconeogenesis activation by di-/tripeptides. Intestinal di-/tripeptides absorption is carried out by the peptide transporter 1, PEPT1. The lack of PEPT1 might thus alter glucose and emotional balance. METHODS To determine the effects of PEPT1 deficiency under standard dietary conditions or during a dietary challenge known to promote both metabolic and cognitive dysfunction, insulin sensitivity, anxiety, and depressive-like traits, hippocampal serotonin (5-HT) and insulin signaling pathway were measured in wild-type (WT) and Pept1-/- mice fed either a chow or a high-fat high-sucrose (HF-HS) diet. RESULTS Pept1-/- mice exhibited slight defects in insulin sensitivity and emotional behavior, which were aggravated by an HF-HS diet. Pept1-/- mice fed a chow diet had lower hippocampal 5-HT levels and exhibited cerebral insulin resistance under HF-HS diet. These defects were independent of intestinal gluconeogenesis but might be linked to increased plasma amino acids levels. CONCLUSION Pept1-/- mice develop prediabetic and depressive-like traits and could thus be used to develop strategies to prevent or cure both diseases.
Collapse
Affiliation(s)
| | - Amelie Taki
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Flore Sinet
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Maud Soty
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Bruno Guiard
- CRCA - UMR - Université Paul Sabatier, Toulouse, France
| | | | - Gael Malleret
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, Lyon, France
| | - Anne Stefanutti
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Gilles Mithieux
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France,
| | | |
Collapse
|
5
|
Thomas NS, Scalzo RL, Wellberg EA. Diabetes mellitus in breast cancer survivors: metabolic effects of endocrine therapy. Nat Rev Endocrinol 2024; 20:16-26. [PMID: 37783846 PMCID: PMC11487546 DOI: 10.1038/s41574-023-00899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Breast cancer is the most common invasive malignancy in the world, with millions of survivors living today. Type 2 diabetes mellitus (T2DM) is also a globally prevalent disease that is a widely studied risk factor for breast cancer. Most breast tumours express the oestrogen receptor and are treated with systemic therapies designed to disrupt oestrogen-dependent signalling. Since the advent of targeted endocrine therapy six decades ago, the mortality from breast cancer has steadily declined; however, during the past decade, an elevated risk of T2DM after breast cancer treatment has been reported, particularly for those who received endocrine therapy. In this Review, we highlight key events in the history of endocrine therapies, beginning with the development of tamoxifen. We also summarize the sequence of reported adverse metabolic effects, which include dyslipidaemia, hepatic steatosis and impaired glucose tolerance. We discuss the limitations of determining a causal role for breast cancer treatments in T2DM development from epidemiological data and describe informative preclinical studies that suggest complex mechanisms through which endocrine therapy might drive T2DM risk and progression. We also reinforce the life-saving benefits of endocrine therapy and highlight the need for better predictive biomarkers of T2DM risk and preventive strategies for the growing population of breast cancer survivors.
Collapse
Affiliation(s)
- Nisha S Thomas
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Chen MY, Zhao FL, Chu WL, Bai MR, Zhang DM. A review of tamoxifen administration regimen optimization for Cre/loxp system in mouse bone study. Biomed Pharmacother 2023; 165:115045. [PMID: 37379643 DOI: 10.1016/j.biopha.2023.115045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Gene knockout is a technique routinely used in basic experimental research, particularly in mouse skeletal and developmental studies. Tamoxifen-induced Cre/loxp system is known for its temporal and spatial precision and commonly utilized by researchers. However, tamoxifen has been shown its side effects on affecting the phenotype of mouse bone directly. This review aimed to optimize tamoxifen administration regimens including its dosage and duration, to identify an optimal induction strategy that minimizes potential side effects while maintaining recombination efficacy. This study will help researchers in designing gene knockout experiments in bone when using tamoxifen.
Collapse
Affiliation(s)
- Ming-Yang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fu-Lin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Lin Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming-Ru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - De-Mao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Phelps HM, Swanson KA, Steinberger AE, Guo J, King AC, Siddappa CM, Davidson NO, Rubin DC, Warner BW. Intestinal Knockout of Peroxisome Proliferator-Activated Receptor-Alpha Affects Structural Adaptation but not Liver Injury Following Massive Enterectomy. J Pediatr Surg 2023; 58:1170-1177. [PMID: 36922278 PMCID: PMC10347420 DOI: 10.1016/j.jpedsurg.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Resection-associated liver steatosis, injury, and fibrosis is a devastating complication associated with massive small bowel resection (SBR). Peroxisome proliferator-activated receptor-alpha (PPARα) is a key regulator of intestinal lipid transport and metabolism whose expression is selectively increased after SBR. Here we asked if attenuating intestinal PPARα signaling would prevent steatosis and liver injury after SBR. METHODS Pparα was deleted selectively in adult mouse intestine using a tamoxifen-inducible Cre-LoxP breeding schema. Mice underwent 50% SBR. At 10 weeks post-operatively, metabolic phenotyping, body composition analysis, in vivo assessment of lipid absorption and intestinal permeability, and assessment of adaptation and liver injury was completed. RESULTS Pparα intestinal knockout and littermate control mice were phenotypically similar in terms of weight trends and body composition after SBR. All mice demonstrated intestinal adaptation with increased villus height and crypt depth; however, Pparα intestinal knockout mice exhibited decreased villus growth at 10 weeks compared to littermate controls. Liver injury and fibrosis were similar between groups as assessed by serum AST and ALT levels, Sirius Red staining, and hepatic expression of Col1a1 and Acta2. CONCLUSIONS Inducible intestinal deletion of Pparα influences structural adaptation but does not mitigate liver injury after SBR. These findings suggest that enterocyte PPARα signaling in adult mice is dispensable for resection-induced liver injury. The results are critical for understanding the contribution of intestinal lipid metabolic signaling pathways to the pathogenesis of hepatic injury associated with short bowel syndrome.
Collapse
Affiliation(s)
- Hannah M Phelps
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110, St. Louis, MO, 63110, USA.
| | - Kerry A Swanson
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110, St. Louis, MO, 63110, USA
| | - Allie E Steinberger
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110, St. Louis, MO, 63110, USA
| | - Jun Guo
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110, St. Louis, MO, 63110, USA
| | - Ashley C King
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110, St. Louis, MO, 63110, USA
| | - Chidananda Mudalagiriyappa Siddappa
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110, St. Louis, MO, 63110, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Brad W Warner
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110, St. Louis, MO, 63110, USA
| |
Collapse
|
8
|
Lewis KT, Oles LR, MacDougald OA. Tetracycline response element driven Cre causes ectopic recombinase activity independent of transactivator element. Mol Metab 2022; 61:101501. [PMID: 35452876 PMCID: PMC9170755 DOI: 10.1016/j.molmet.2022.101501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Tamoxifen is widely used for inducible Cre-LoxP systems but has several undesirable side effects for researchers investigating metabolism or energy balance, including weight loss, lipoatrophy, and drug incorporation into lipid stores. For this reason, we sought to determine whether a doxycycline-inducible system would be more advantageous for adipocyte-specific Cre mouse models, but serendipitously discovered widespread ectopic tetracycline response element Cre (TRE-Cre) recombinase activity. METHODS Adipocyte-specific tamoxifen- and doxycycline-inducible Cre mice were crossed to fluorescent Cre reporter mice and visualized by confocal microscopy to assess efficiency and background activity. TRE-Cre mice were crossed to stop-floxed diphtheria toxin mice to selectively ablate cells with background Cre activity. RESULTS Tamoxifen- and doxycycline-inducible systems performed similarly in adipose tissues, but ectopic Cre recombination was evident in numerous other cell types of the latter, most notably neurons. The source of ectopic Cre activity was isolated to the TRE-Cre transgene, driven by the pTet (tetO7) tetracycline-inducible promoter. Ablation of cells with ectopic recombination in mice led to stunted growth, diminished survival, and reduced brain mass. CONCLUSIONS These results indicate that tamoxifen- and doxycycline-inducible adipocyte-specific Cre mouse models are similarly efficient, but the TRE-Cre component of the latter is inherently leaky. TRE-Cre background activity is especially pronounced in the brain and peripheral nerve fibers, and selective ablation of these cells impairs mouse development and survival. Caution should be taken when pairing TRE-Cre with floxed alleles that have defined roles in neural function, and additional controls should be included when using this model system.
Collapse
Affiliation(s)
- Kenneth T Lewis
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA
| | - Lily R Oles
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA
| | - Ormond A MacDougald
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA; University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Sex Bias in Differentiated Thyroid Cancer. Int J Mol Sci 2021; 22:ijms222312992. [PMID: 34884794 PMCID: PMC8657786 DOI: 10.3390/ijms222312992] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
Differentiated thyroid cancers are more frequent in women than in men. These different frequencies may depend on differences in patient's behavior and in thyroid investigations. However, an impact on sexual hormones is likely, although this has been insufficiently elucidated. Estrogens may increase the production of mutagenic molecules in the thyroid cell and favor the proliferation and invasion of tumoral cells by regulating both the thyrocyte enzymatic machinery and the inflammatory process associated with tumor growth. On the other hand, the worse prognosis of thyroid cancer associated with the male gender is poorly explained.
Collapse
|
10
|
Scalzo RL, Foright RM, Hull SE, Knaub LA, Johnson-Murguia S, Kinanee F, Kaplan J, Houck JA, Johnson G, Sharp RR, Gillen AE, Jones KL, Zhang AMY, Johnson JD, MacLean PS, Reusch JEB, Wright-Hobart S, Wellberg EA. Breast Cancer Endocrine Therapy Promotes Weight Gain With Distinct Adipose Tissue Effects in Lean and Obese Female Mice. Endocrinology 2021; 162:bqab174. [PMID: 34410380 PMCID: PMC8455348 DOI: 10.1210/endocr/bqab174] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer survivors treated with tamoxifen and aromatase inhibitors report weight gain and have an elevated risk of type 2 diabetes, especially if they have obesity. These patient experiences are inconsistent with, preclinical studies using high doses of tamoxifen which reported acute weight loss. We investigated the impact of breast cancer endocrine therapies in a preclinical model of obesity and in a small group of breast adipose tissue samples from women taking tamoxifen to understand the clinical findings. Mature female mice were housed at thermoneutrality and fed either a low-fat/low-sucrose (LFLS) or a high-fat/high-sucrose (HFHS) diet. Consistent with the high expression of Esr1 observed in mesenchymal stem cells from adipose tissue, endocrine therapy was associated with adipose accumulation and more preadipocytes compared with estrogen-treated control mice but resulted in fewer adipocyte progenitors only in the context of HFHS. Analysis of subcutaneous adipose stromal cells revealed diet- and treatment-dependent effects of endocrine therapies on various cell types and genes, illustrating the complexity of adipose tissue estrogen receptor signaling. Breast cancer therapies supported adipocyte hypertrophy and associated with hepatic steatosis, hyperinsulinemia, and glucose intolerance, particularly in obese females. Current tamoxifen use associated with larger breast adipocyte diameter only in women with obesity. Our translational studies suggest that endocrine therapies may disrupt adipocyte progenitors and support adipocyte hypertrophy, potentially leading to ectopic lipid deposition that may be linked to a greater type 2 diabetes risk. Monitoring glucose tolerance and potential interventions that target insulin action should be considered for some women receiving life-saving endocrine therapies for breast cancer.
Collapse
Affiliation(s)
- Rebecca L Scalzo
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sara E Hull
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leslie A Knaub
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stevi Johnson-Murguia
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Fotobari Kinanee
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jeffrey Kaplan
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Houck
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ginger Johnson
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel R Sharp
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Austin E Gillen
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Anni M Y Zhang
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul S MacLean
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jane E B Reusch
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Sabrina Wright-Hobart
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth A Wellberg
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Stout MB, Scalzo RL, Wellberg EA. Persistent Metabolic Effects of Tamoxifen: Considerations for an Experimental Tool and Clinical Breast Cancer Treatment. Endocrinology 2021; 162:bqab126. [PMID: 34161568 PMCID: PMC8282119 DOI: 10.1210/endocr/bqab126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The selective estrogen receptor (ER) modulator tamoxifen is frequently used in preclinical studies to induce Cre recombinase and generate conditional transgenic mice. In addition, it is often prescribed to treat ER-positive breast cancer, which is diagnosed in approximately 150 000 people each year. In mice, protocols to activate Cre-ER transgenes require tamoxifen administration by several methods, including oral gavage, IP injection, or intragastric injection, spanning a wide range of doses to achieve transgene induction. As a result, the reported metabolic effects of tamoxifen treatment are not always consistent with anecdotal reports from breast cancer patients, or with expected outcomes based on the overall metabolically protective role of estrogen. A greater awareness of tamoxifen's adverse metabolic effects is critical to designing studies with appropriate controls, especially those investigations focused on metabolic outcomes.
Collapse
Affiliation(s)
- Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Elizabeth A Wellberg
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
| |
Collapse
|