1
|
Safdari S, Safdari S, Noorabadi P. Prolactin as a novel biomarker in malignancy. Clin Chim Acta 2025; 572:120277. [PMID: 40174759 DOI: 10.1016/j.cca.2025.120277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Apart from lactation, prolactin is engaged in a wide range of physiological activities and mostly generated by lactotroph cells in the anterior pituitary. Among these actions are metabolic, immunological, and reproductive ones. Prolactin acts through the binding of the hormone to its receptor, PRLR. Among organs in which this receptor is found include the liver, adipose tissue, immunological cells, and the central nervous system. Because of its control of glucose and lipid metabolism, adipogenesis, and leptin production, prolactin is a fundamental component in the control of metabolism. It is responsible for maintaining energy homeostasis during critical physiological states such as increasing immune cell diversity and proliferation. However, elevated levels of prolactin have been linked to exacerbated autoimmune diseases. An association has been established between the hormone prolactin and the development and progression of a number of malignancies, including breast, ovarian, prostate, and hepatic cancers. Investigations are now being conducted to determine the diagnostic and therapeutic potential of prolactin. The objective of this review is to investigate the various functions that prolactin serves, as well as the ways in which high or low amounts of the hormone influence certain cancers.
Collapse
Affiliation(s)
- Sami Safdari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran; School of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Sahel Safdari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran; School of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran; Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Parisa Noorabadi
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran.
| |
Collapse
|
2
|
Murina F, Fochesato C, Leo C, Condorelli GE, Rocchi A, Amitrano S, Napolioni V, Savasi V. Evaluation of polygenic risk scores for hormones and receptors levels in patients with vestibulodynia: a case-control study. J Sex Med 2025; 22:483-490. [PMID: 39799433 DOI: 10.1093/jsxmed/qdae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Vulvodynia is a multifactorial disease affecting 7%-16% of reproductive-aged women in general population; however, little is still known about the genetics underlying this complex disease. AIM To compare polygenic risk scores for hormones and receptors levels in a case-control study to investigate their role in vulvodynia and their correlation with clinical phenotypes. METHODS Our case-control study included patients with vestibulodynia (VBD) and healthy women. All participants underwent a vestibular cotton swab test and the assessment of their: pelvic floor, vestibular trophism, ultrasound vestibular mucosa thickness, and current perception threshold levels (Neurometer CPT device). Shallow whole genome sequencing and polygenic risk score calculations were performed. Linear regression models were applied to predict whether genomic predisposition varied significantly between cases and controls, and to investigate the relationship of polygenic risk scores with clinical endophenotypes. OUTCOMES The genomic predisposition to hormones and receptors levels, together with clinical endophenotypes, can support VBD diagnosis and personalized treatment of related pain condition. RESULTS Thirty women with VBD and 30 controls were recruited. Significant differences between cases and controls were observed for body mass index, vestibular mucosa thickness, vestibular trophic health, pelvic floor hypertone and pain sensitivity (P < .05). Cases showed a genomic predisposition to higher levels of membrane-associated progesterone receptor component 1 compared to controls (P < .05). When considering the clinical endophenotypes, cases showed significant correlations between their polygenic risk scores with several clinical measures: predicted genomic levels of testosterone and estrogen receptor and the vestibular mucosa thickness values (estimates: 9.74E-09 and 9.16E-08, respectively; P < .05); predicted genomic levels of prolactin and Neurometer data at 250 Hz (-2.15E-07; P < .05); predicted genomic levels of prolactin, membrane-associated progesterone receptor component 2 and mineralocorticoid receptor and Neurometer data at 5 Hz (-3.75E-07, -3.43E-07 and -3.06E-07, respectively; P < .05). CLINICAL IMPLICATIONS Introduction of polygenic risk scores evaluation in clinical practice can assist early diagnosis and personalized therapeutic treatment of VBD. STRENGTHS AND LIMITATIONS Polygenic risk scores and clinical data allowed the identification of disease endophenotypes and highlighted the possibility of a personalized therapeutic approach. As limitations, these data should be confirmed on a larger cohort and polygenic risk score calculation should be adapted to ancestries other than European. CONCLUSION Cases showed significant differences compared to controls on both clinical and genetic data and specific endophenotypes necessary to classify disease development and treatment were identified.
Collapse
Affiliation(s)
- Filippo Murina
- Lower Genital Tract Disease Unit, V. Buzzi Hospital-University of the Study of Milan, Via Castelvetro 24-20124, Milan, Italy
| | - Cecilia Fochesato
- Lower Genital Tract Disease Unit, V. Buzzi Hospital-University of the Study of Milan, Via Castelvetro 24-20124, Milan, Italy
| | - Chiara Leo
- Laboratory of Genomics-Polo d'Innovazione di Genomica, Genetica e Biologia, Strada del Petriccio e Belriguardo 35-53100, Siena, Italy
| | - Giuseppe E Condorelli
- Genetic and Ecology Research Centre-Polo d'Innovazione di Genomica, Genetica e Biologia, Via Fiorentina 1-05100, Terni, Italy
| | - Anna Rocchi
- Laboratory of Genomics-Polo d'Innovazione di Genomica, Genetica e Biologia, Strada del Petriccio e Belriguardo 35-53100, Siena, Italy
| | - Sara Amitrano
- Laboratory of Genomics-Polo d'Innovazione di Genomica, Genetica e Biologia, Strada del Petriccio e Belriguardo 35-53100, Siena, Italy
| | - Valerio Napolioni
- Genomic and Molecular Epidemiology (GAME) Lab, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Via Gentile III Da Varano 62032 Camerino (MC), Italy
| | - Valeria Savasi
- Clinical Obstetric and Gynecological V Buzzi, ASST-FBF-Sacco, Via Castelvetro 24-20124-University of the Study of Milan, Milan, Italy
| |
Collapse
|
3
|
Liu X, Moamer A, Gomes da Silva R, Shoham-Amizlev A, Hamam D, Shams A, Lebrun JJ, Ali S. A novel clinically relevant antagonistic interplay between prolactin and oncogenic YAP-CCN2 pathways as a differentiation therapeutic target in breast cancer. Cell Death Dis 2025; 16:221. [PMID: 40157909 PMCID: PMC11954952 DOI: 10.1038/s41419-025-07547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Cellular differentiation limits cellular plasticity allowing cells to attain their specialized functional characteristics and phenotypes, whereas loss of differentiation is a hallmark of cancer. Thus, characterizing mechanisms underlying differentiation is key to discover new cancer therapeutics. We report a novel functional antagonistic relationship between the prolactin (PRL)/prolactin receptor (PRLR) differentiation pathway and YAP-CCN2 oncogenic pathway in normal mammary epithelial cells and breast cancer cells that is essential for establishing/maintaining acinar morphogenesis, cell-cell junctions and the intracellular localization of apical-basal polarity protein complexes (Par, Crumb and Scrib). Importantly, using CRISPR knockout of the PRLR in MCF7, HR+ breast cancer cells, further revealed that the negative relationship between PRL/PRLR pathway and YAP-CCN2 pathway is critical in suppressing luminal-to-basal stem-like lineage plasticity. Furthermore, the clinical relevance of this interplay was evaluated using bioinformatics approaches on several human datasets, including samples from normal breast epithelium, breast cancer, and 33 other cancer types. This analysis revealed a positive correlation between PRLR and the YAP suppressor Hippo pathway and a co-expression gene network driving favourable patients' survival outcomes in breast cancer. The therapeutic potential of this interplay was also evaluated in vitro using MDA-MB-231 cells, a preclinical model of human triple-negative breast cancer, where treatment with PRL and Verteporfin, an FDA-approved pharmacological YAP-inhibitor, alone or their combination suppressed the expression of the mesenchymal marker vimentin and the stem cell marker CD44 as well as reduced their Ki67 proliferative marker expression. Collectively, our results emphasize the pro-differentiation role of PRL/PRLR pathway in mammary and breast cancer cells and highlight that promoting PRL/PRLR signaling while inhibiting the YAP-CCN2 oncogenic pathway can be exploited as a differentiation-based combination therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Xueqing Liu
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Alaa Moamer
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Roger Gomes da Silva
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Aidan Shoham-Amizlev
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Dana Hamam
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Anwar Shams
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Pharmacology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Twickler MTB. An intriguing focus on prolactin and the expression of a diabetic phenotype. New developments on the horizon. Eur J Clin Invest 2024; 54:e14230. [PMID: 38650123 DOI: 10.1111/eci.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Marcel Th B Twickler
- Department of Endocrinology, Diabetology and Metabolic Diseases, AZ Monica Deurne, Deurne, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Zeng Z, Peng Q, Yang F, Wu J, Guo H, Deng H, Zhao L, Long K, Wang X. Transcriptome analysis of pigeon pituitary gland: expression changes of genes encoding protein and peptide hormones at different breeding stages. Poult Sci 2024; 103:103742. [PMID: 38670056 PMCID: PMC11068619 DOI: 10.1016/j.psj.2024.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Unlike other poultry, parent pigeons produce "pigeon milk" in their crops to nurture their squabs, which is mainly controlled by prolactin (PRL). Exception for PRL, the pituitary gland may also release various other peptide and protein hormones. However, whether these hormones change during pigeon crop lactation and their potential physiological functions remain unclear. Here, to identify potential peptide or protein hormone genes that regulate crop lactation, we conducted transcriptome analysis of pigeon pituitary glands at 3 different breeding stages (the ceased stage-nonincubation and non-nurturing stage, the 11th d of the incubation, and the 1st d of the nurturing stage) using RNA sequencing (RNA-Seq). Our analysis identified a total of 15,191 mRNAs and screened out 297 differentially expressed genes (DEG), including PRL, VIP, etc. The expression abundance of PRL mRNA on the 1st d of the nurturing stage was respectively 4.93 and 3.62 folds higher when compared to the ceased stage and the 11th d of the incubation stage. Additionally, the expression abundance of VIP is higher in the 1st d of the nurturing stage than in the ceased stage. Protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) analysis identified several vital DEGs (e.g., GHRHR, VIP, etc.), being closely linked with hormone and enriched in neuropeptide signaling pathway and response to the hormone. Expression pattern analysis revealed that these DEGs exhibited 4 distinct expression patterns (profile 10, 16, 18, 19). Genes in profile 10 and 19 presented a trend with the highest expression level on 1st d of the nurturing stage, and functional enrichment analysis indicated that these genes are involved in neuropeptide hormone activity, receptor-ligand activity, and the extracellular matrix, etc. Taken together, being consistent with PRL, some genes encoding peptide and protein hormones (e.g., VIP) presented differentially expressed in different breeding stages. It suggests that these hormones may be involved in regulation of the crop lactation process or corresponding behavior in domestic pigeons. The results of this study help to gain new insights into the role of pituitary gland in regulating pigeon lactation.
Collapse
Affiliation(s)
- Zhanggui Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Qiyi Peng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Fuxing Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Jie Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P. R. of China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P. R. of China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P. R. of China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China.
| |
Collapse
|
6
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
7
|
Lee GJ, Porreca F, Navratilova E. Prolactin and pain of endometriosis. Pharmacol Ther 2023; 247:108435. [PMID: 37169264 DOI: 10.1016/j.pharmthera.2023.108435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Women experience chronic pain more often than men with some pain conditions being specific to women while others are more prevalent in women. Prolactin, a neuropeptide hormone with higher serum levels in women, has recently been demonstrated in preclinical studies to sensitize nociceptive sensory neurons in a sexually dimorphic manner. Dysregulation of prolactin and prolactin receptors may be responsible for increased pain especially in female predominant conditions such as migraine, fibromyalgia, and pelvic pain. In this review, we focus on the role of prolactin in endometriosis, a condition characterized by pelvic pain and infertility that affects a large proportion of women during their reproductive age. We discuss the symptoms and pathology of endometriosis and discuss how different sources of prolactin secretion may contribute to this disease. We highlight our current understanding of prolactin-mediated mechanisms of nociceptor sensitization in females and how this mechanism may apply to endometriosis. Lastly, we report the results of a systematic review of clinical studies conducted by searching the PubMed and EMBASE databases to identify association between endometriosis and blood levels of prolactin. The results of this search strongly indicate that serum prolactin levels are increased in patients with endometriosis and support the possibility that high levels of prolactin may promote pelvic pain in these patients and increase vulnerability to other comorbid pain conditions likely by dysregulating prolactin receptor expression. Targeting of prolactin and prolactin receptors may improve management of pain associated with endometriosis.
Collapse
Affiliation(s)
- Grace J Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Szewczyk AK, Ulutas S, Aktürk T, Al-Hassany L, Börner C, Cernigliaro F, Kodounis M, Lo Cascio S, Mikolajek D, Onan D, Ragaglini C, Ratti S, Rivera-Mancilla E, Tsanoula S, Villino R, Messlinger K, Maassen Van Den Brink A, de Vries T. Prolactin and oxytocin: potential targets for migraine treatment. J Headache Pain 2023; 24:31. [PMID: 36967387 PMCID: PMC10041814 DOI: 10.1186/s10194-023-01557-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Migraine is a severe neurovascular disorder of which the pathophysiology is not yet fully understood. Besides the role of inflammatory mediators that interact with the trigeminovascular system, cyclic fluctuations in sex steroid hormones are involved in the sex dimorphism of migraine attacks. In addition, the pituitary-derived hormone prolactin and the hypothalamic neuropeptide oxytocin have been reported to play a modulating role in migraine and contribute to its sex-dependent differences. The current narrative review explores the relationship between these two hormones and the pathophysiology of migraine. We describe the physiological role of prolactin and oxytocin, its relationship to migraine and pain, and potential therapies targeting these hormones or their receptors.In summary, oxytocin and prolactin are involved in nociception in opposite ways. Both operate at peripheral and central levels, however, prolactin has a pronociceptive effect, while oxytocin appears to have an antinociceptive effect. Therefore, migraine treatment targeting prolactin should aim to block its effects using prolactin receptor antagonists or monoclonal antibodies specifically acting at migraine-pain related structures. This action should be local in order to avoid a decrease in prolactin levels throughout the body and associated adverse effects. In contrast, treatment targeting oxytocin should enhance its signalling and antinociceptive effects, for example using intranasal administration of oxytocin, or possibly other oxytocin receptor agonists. Interestingly, the prolactin receptor and oxytocin receptor are co-localized with estrogen receptors as well as calcitonin gene-related peptide and its receptor, providing a positive perspective on the possibilities for an adequate pharmacological treatment of these nociceptive pathways. Nevertheless, many questions remain to be answered. More particularly, there is insufficient data on the role of sex hormones in men and the correct dosing according to sex differences, hormonal changes and comorbidities. The above remains a major challenge for future development.
Collapse
Affiliation(s)
- Anna K Szewczyk
- Doctoral School, Medical University of Lublin, Lublin, Poland
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Samiye Ulutas
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Tülin Aktürk
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Corinna Börner
- Department of Pediatrics - Dr. von Hauner Children's Hospital, LMU Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Cernigliaro
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - Michalis Kodounis
- First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Lo Cascio
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - David Mikolajek
- Department of Neurology, City Hospital Ostrava, Ostrava, Czech Republic
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Ragaglini
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Susanna Ratti
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sofia Tsanoula
- Department of Neurology, 401 Military Hospital of Athens, Athens, Greece
| | - Rafael Villino
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoinette Maassen Van Den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Santos SAA, Portela LMF, Camargo ACL, Constantino FB, Colombelli KT, Fioretto MN, Mattos R, de Almeida Fantinatti BE, Denti MA, Piazza S, Felisbino SL, Zambrano E, Justulin LA. miR-18a-5p Is Involved in the Developmental Origin of Prostate Cancer in Maternally Malnourished Offspring Rats: A DOHaD Approach. Int J Mol Sci 2022; 23:14855. [PMID: 36499183 PMCID: PMC9739077 DOI: 10.3390/ijms232314855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.
Collapse
Affiliation(s)
- Sergio Alexandre Alcantara Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Flavia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Bruno Evaristo de Almeida Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Michela Alessandra Denti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Sérgio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
10
|
Solomon G, Oclon E, Hayouka Z, Gertler A. Preparation of Superactive Prolactin Receptor Antagonists. Endocrinology 2022; 164:6815676. [PMID: 36351045 DOI: 10.1210/endocr/bqac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/11/2022]
Abstract
Most breast cancer deaths are caused by malignant estrogen receptor-positive breast tumors that later recur as metastatic disease. Prolactin (PRL) has been documented as a factor promoting breast cancer development and metastasis. We therefore developed superactive prolactin receptor (PRLR) antagonists aimed at blocking PRL action. We purified 12 novel mutants to homogeneity as monomers, and the most potent antagonist was over 95-fold more active than the previously reported weak antagonist, the mutant Del 1-9 human PRL G129R. This enhanced antagonistic activity resulted mostly from prolonged interaction with the extracellular domain (ECD) of PRLR. All mutants were properly refolded, as indicated by interaction with human PRLR-ECD and by circular dichroism analysis. We then prepared monopegylated variants of the most active mutants to extend their biological half-life in vivo.
Collapse
Affiliation(s)
- Gili Solomon
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ewa Oclon
- Center for Experimental and Innovative Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Krakow, Poland
| | - Zvi Hayouka
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Arieh Gertler
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
11
|
Abstract
The pathogenesis of breast cancer is driven by multiple hormones and growth factors. One of these, prolactin (PRL), contributes to both mammary differentiation and oncogenesis, and yet the basis for these disparate effects has remained unclear. The focus of this review is to examine and place into context 2 recent studies that have provided insight into the roles of PRL receptors and PRL in tumorigenesis and tumor progression. One study provides novel evidence for opposing actions of PRL in the breast being mediated in part by differential PRL receptor (PRLr) isoform utilization. Briefly, homomeric complexes of the long isoform of the PRLr (PRLrL-PRLrL) promotes mammary differentiation, while heteromeric complexes of the intermediate and long PRLr (PRLrI-PRLrL) isoforms trigger mammary oncogenesis. Another study describes an immunodeficient, prolactin-humanized mouse model, NSG-Pro, that facilitates growth of PRL receptor-expressing patient-derived breast cancer xenografts. Evidence obtained with this model supports the interactions of physiological levels of PRL with estrogen and ERBB2 gene networks, the modulatory effects of PRL on drug responsiveness, and the pro-metastatic effects of PRL on breast cancer. This recent progress provides novel concepts, mechanisms and experimental models expected to renew interest in harnessing/exploiting PRLr signaling for therapeutic effects in breast cancer.
Collapse
Affiliation(s)
- Charles V Clevenger
- Correspondence: Charles V. Clevenger, Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA.
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Qian Y, Berryman DE, Basu R, List EO, Okada S, Young JA, Jensen EA, Bell SRC, Kulkarni P, Duran-Ortiz S, Mora-Criollo P, Mathes SC, Brittain AL, Buchman M, Davis E, Funk KR, Bogart J, Ibarra D, Mendez-Gibson I, Slyby J, Terry J, Kopchick JJ. Mice with gene alterations in the GH and IGF family. Pituitary 2022; 25:1-51. [PMID: 34797529 PMCID: PMC8603657 DOI: 10.1007/s11102-021-01191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.
Collapse
Affiliation(s)
- Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Elizabeth A Jensen
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Stephen R C Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | | | - Patricia Mora-Criollo
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Samuel C Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Mat Buchman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Kevin R Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Jolie Bogart
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Isaac Mendez-Gibson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Julie Slyby
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
13
|
Standing D, Dandawate P, Anant S. Prolactin receptor signaling: A novel target for cancer treatment - Exploring anti-PRLR signaling strategies. Front Endocrinol (Lausanne) 2022; 13:1112987. [PMID: 36714582 PMCID: PMC9880166 DOI: 10.3389/fendo.2022.1112987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Prolactin (PRL) is a peptide hormone mainly secreted from the anterior pituitary gland. PRL is reported to play a role in pregnancy, mammary gland development, immune modulation, reproduction, and differentiation of islet cells. PRL binds to its receptor PRLR, which belongs to a superfamily of the class I cytokine receptor that has no intrinsic kinase activity. In canonical signaling, PRL binding to PRLR induces downstream signaling including JAK-STAT, AKT and MAPK pathways. This leads to increased cell proliferation, stemness, migration, apoptosis inhibition, and resistance to chemotherapy. PRL-signaling is upregulated in numerous hormone-dependent cancers including breast, prostate, ovarian, and endometrial cancer. However, more recently, the pathway has been reported to play a tumor-promoting role in other cancer types such as colon, pancreas, and hepatocellular cancers. Hence, the signaling pathway is an attractive target for drug development with blockade of the receptor being a potential therapeutic approach. Different strategies have been developed to target this receptor including modification of PRL peptides (Del1-9-G129R-hPRL, G129R-Prl), growth hormone receptor/prolactin receptor bispecific antibody antagonist, neutralizing antibody LFA102, an antibody-drug conjugate (ABBV-176) of the humanized antibody h16f (PR-1594804) and pyrrolobenzodiazepine dimer, a bispecific antibody targeting both PRLR and CD3, an in vivo half-life extended fusion protein containing PRLR antagonist PrlRA and albumin binding domain. There have also been attempts to discover and develop small molecular inhibitors targeting PRLR. Recently, using structure-based virtual screening, we identified a few antipsychotic drugs including penfluridol as a molecule that inhibits PRL-signaling to inhibit PDAC tumor progression. In this review, we will summarize the recent advances in the biology of this receptor in cancer and give an account of PRLR antagonist development for the treatment of cancer.
Collapse
|
14
|
Abstract
Ovarian cancer (OC) is characterized by a high morbidity and mortality, highlighting a great need for a better understanding of biological mechanisms that affect OC progression and improving its early detection methods. This study investigates effects of prolactin (PRL) on ovarian cancer cells, analyzes PRL receptors (PRLR) in tissue micro arrays and relates PRLR expression to survival of ovarian cancer. A database, composed of transcript profiles from OC, was searched for PRLR expression and results were put in relation to survival. Expression of PRLR in OC tissue sections and OC cell lines SKOV3, OV2008 and OVSAHO was assessed using immunohistochemistry, western blots and quantitative real-time PCR. The biological function of PRLR was evaluated by proliferation, colony formation and wound healing assays. Levels of PRLR mRNA are related to survival; in epithelial OC a high PRLR mRNA expression is related to a shorter survival. Analysis of a tissue micro array consisting of 84 OC showed that 72% were positive for PRLR immuno-staining. PRLR staining tended to be higher in OC of high grade tumors compared to lower grades. PRLR mRNA and protein can further be detected in OC cell lines. Moreover, in vitro treatment with PRL significantly activated the JAK/STAT pathway. PRLR expression is associated with OC survivals. PRL and its receptor may play an onco-modulatory role and promote tumor aggressiveness in OC. Alternatively, increased PRLR levels may form a base for the development of PRLR antagonist or PRLR antagonist-drug conjugate to increase selective uptake of anti-cancer drugs.
Collapse
|
15
|
Suppression of Breast Cancer by Small Molecules That Block the Prolactin Receptor. Cancers (Basel) 2021; 13:cancers13112662. [PMID: 34071395 PMCID: PMC8198871 DOI: 10.3390/cancers13112662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Unabated tumor growth, metastasis, and resistance to hormone therapy and/or to chemotherapy constitute serious impediments for combating breast cancer (BC). With the exception of targeted anti-HER2/neu therapy and combination therapies, there have been no radical changes in the standard of care for BC patients in the past two decades. In addition, there are only limited options for treating BC-derived brain metastases that cause high morbidity and mortality. This report describes the use of high throughput screening (HTS) for identifying novel small molecules that blocked the prolactin receptor (PRLR) and suppressed BC in a laboratory setting. These small molecules have a great potential to become effective therapeutics in patients with BC. Abstract Prolactin (PRL) is a protein hormone which in humans is secreted by pituitary lactotrophs as well as by many normal and malignant non-pituitary sites. Many lines of evidence demonstrate that both circulating and locally produced PRL increase breast cancer (BC) growth and metastases and confer chemoresistance. Our objective was to identify and then characterize small molecules that block the tumorigenic actions of PRL in BC. We employed three cell-based assays in high throughput screening (HTS) of 51,000 small molecules and identified two small molecule inhibitors (SMIs), named SMI-1 and SMI-6. Both compounds bound to the extracellular domain (ECD) of the PRL receptor (PRLR) at 1–3 micromolar affinity and abrogated PRL-induced breast cancer cell (BCC) invasion and malignant lymphocyte proliferation. SMI-6 effectively reduced the viability of multiple BCC types, had much lower activity against various non-malignant cells, displayed high selectivity, and showed no apparent in vitro or in vivo toxicity. In athymic nude mice, SMI-6 rapidly and dramatically suppressed the growth of PRL-expressing BC xenografts. This report represents a pre-clinical phase of developing novel anti-cancer agents with the potential to become effective therapeutics in breast cancer patients.
Collapse
|
16
|
Iskandar I, As’ad S, Mappaware N, Alasiry E, Hendarto H, Budu, Hatta M, Juliaty A, Ahmad M, Syam A. Gene prolactine receptor (PRLR) and signal transducer and activator of transcription 5 (STAT5) on milk production. MEDICINA CLÍNICA PRÁCTICA 2021; 4:100223. [DOI: 10.1016/j.mcpsp.2021.100223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
|
17
|
Menendez JA, Peirce SK, Papadimitropoulou A, Cuyàs E, Steen TV, Verdura S, Vellon L, Chen WY, Lupu R. Progesterone receptor isoform-dependent cross-talk between prolactin and fatty acid synthase in breast cancer. Aging (Albany NY) 2020; 12:24671-24692. [PMID: 33335078 PMCID: PMC7803566 DOI: 10.18632/aging.202289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 04/13/2023]
Abstract
Progesterone receptor (PR) isoforms can drive unique phenotypes in luminal breast cancer (BC). Here, we hypothesized that PR-B and PR-A isoforms differentially modify the cross-talk between prolactin and fatty acid synthase (FASN) in BC. We profiled the responsiveness of the FASN gene promoter to prolactin in T47Dco BC cells constitutively expressing PR-A and PR-B, in the PR-null variant T47D-Y cell line, and in PR-null T47D-Y cells engineered to stably re-express PR-A (T47D-YA) or PR-B (T47D-YB). The capacity of prolactin to up-regulate FASN gene promoter activity in T47Dco cells was lost in T47D-Y and TD47-YA cells. Constitutively up-regulated FASN gene expression in T47-YB cells and its further stimulation by prolactin were both suppressed by the prolactin receptor antagonist hPRL-G129R. The ability of the FASN inhibitor C75 to decrease prolactin secretion was more conspicuous in T47-YB cells. In T47D-Y cells, which secreted notably less prolactin and downregulated prolactin receptor expression relative to T47Dco cells, FASN blockade resulted in an augmented secretion of prolactin and up-regulation of prolactin receptor expression. Our data reveal unforeseen PR-B isoform-specific regulatory actions in the cross-talk between prolactin and FASN signaling in BC. These findings might provide new PR-B/FASN-centered predictive and therapeutic modalities in luminal intrinsic BC subtypes.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Databases, Genetic
- Fatty Acid Synthase, Type I/antagonists & inhibitors
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Humans
- Interleukin-6/metabolism
- Prolactin/metabolism
- Prolactin/pharmacology
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Receptor Cross-Talk
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | | | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Travis Vander Steen
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- Stem Cells Laboratory, Institute of Biology and Experimental Medicine (IBYME-CONICET), Buenos Aires, Argentina
| | - Wen Y. Chen
- Department of Biological Sciences, Clemson University, Greenville, SC 29634, USA
| | - Ruth Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
- Mayo Clinic Minnesota, Department of Biochemistry and Molecular Biology Laboratory, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Chen X, Wu D, Zheng Y, Liu X, Wang J. Preparation of a Growth Hormone Receptor/Prolactin Receptor Bispecific Antibody Antagonist Which Exhibited Anti-Cancer Activity. Front Pharmacol 2020; 11:598423. [PMID: 33362552 PMCID: PMC7759028 DOI: 10.3389/fphar.2020.598423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/13/2020] [Indexed: 01/30/2023] Open
Abstract
Prolactin receptor (PRLR) and growth hormone receptor (GHR) are closely related to the occurrence and development of breast cancer, and breast cancer cell endogenously express GHR, PRLR and GHR-PRLR heterodimer. In this case, the combined use of PRLR or GHR inhibitors may produce better anti-breast cancer potential than PRLR or GHR inhibitors alone. In this case, it is necessary to develop the dual-function GHR/PRLR antagonists with anti-breast cancer potential. For this, we used hybridoma technology to generate an anti-idiotypic antibody (termed H53). We then used various techniques, including competitive ELISA, competitive receptor binding analysis, and indirect immunofluorescence assay to identify H53, and the results show that H53 behaves as a typical internal image anti-idiotypic antibody (Ab2β). Further experiments indicate that H53 is a dual-function inhibitor, which not only inhibited PRLR-mediated intracellular signaling, but also blocked GHR-mediated intracellular signaling in a dose-dependent manner. Furthermore, H53 could inhibit PRL/GH-driven cancer cell proliferation in vivo and in vitro. This study indicates that H53 exhibits potential biological activity against breast tumors, which implies that internal image anti-idiotypic antibodies may be a useful strategy for the development of PRLR/GHR dual-function antagonists for breast cancer therapy.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yan Zheng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Xingxing Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Jianmeng Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Prolactin: A hormone with diverse functions from mammary gland development to cancer metastasis. Semin Cell Dev Biol 2020; 114:159-170. [PMID: 33109441 DOI: 10.1016/j.semcdb.2020.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 01/14/2023]
Abstract
Prolactin has a rich mechanistic set of actions and signaling in order to elicit developmental effects in mammals. Historically, prolactin has been appreciated as an endocrine peptide hormone that is responsible for final, functional mammary gland development and lactation. Multiple signaling pathways impacted upon by the microenvironment contribute to cell function and differentiation. Endocrine, autocrine and paracrine signaling are now apparent in not only mammary development, but also in cancer, and involve multiple cell types including those of the immune system. Multiple ligands agonists are capable of binding to the prolactin receptor, potentially expanding receptor function. Prolactin has an important role not only in tumorigenesis of the breast, but also in a number of hormonally responsive cancers such as prostate, ovarian and endometrial cancer, as well as pancreatic and lung cancer. Although pituitary and extra-pituitary sources of prolactin such as the epithelium are important, stromal sourced prolactin is now also being recognized as an important factor in tumor progression, all of which potentially signal to multiple cell types in the tumor microenvironment. While prolactin has important roles in milk production including calcium and bone homeostasis, in the disease state it can also affect bone homeostasis. Prolactin also impacts metastatic cancer of the breast to modulate the bone microenvironment and promote bone damage. Prolactin has a fascinating contribution in both physiologic and pathologic settings of mammals.
Collapse
|
20
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Seilicovich A, Candolfi M. The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: what do we know so far? Expert Opin Ther Targets 2020; 24:1121-1133. [PMID: 32896197 DOI: 10.1080/14728222.2020.1821187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Prolactin (PRL) and its receptor (PRLR) have been associated with the development of hormone-dependent tumors and have been detected in glioblastoma (GBM) biopsies. GBM is the most common and aggressive primary brain tumor in adults and the prognosis for patients is dismal; hence researchers are exploring the PRLR pathway as a therapeutic target in this disease. Areas covered: This paper explores the effects of PRLR activation on the biology of GBM, the correlation between PRL and PRLR expression and GBM progression and survival in male and female patients. Finally, we discuss how a better understanding of the PRLR pathway may allow the development of novel treatments for GBM. Expert opinion: We propose PRL and PRLR as potential prognosis biomarkers and therapeutic targets in GBM. Local administration of PRLR inhibitors using gene therapy may offer a beneficial strategy for targeting GBM cells disseminated in the non-neoplastic brain; however, efficacy and safety require careful and extensive evaluation. The data depicted herein underline the need to (i) improve our understanding of sexual dimorphism in GBM, and (ii) develop accurate preclinical models that take into consideration different hormonal contexts, specific genetic alterations, and tumor grades.
Collapse
Affiliation(s)
- Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Camila F Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina.,departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
21
|
Chen Y, Navratilova E, Dodick DW, Porreca F. An Emerging Role for Prolactin in Female-Selective Pain. Trends Neurosci 2020; 43:635-648. [PMID: 32620290 DOI: 10.1016/j.tins.2020.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Women experience many pain conditions more frequently when compared with men, but the biological mechanisms underlying sex differences in pain remain poorly understood. In particular, little is known about possible sex differences in peripheral nociceptors, the fundamental building blocks of pain transmission. Emerging evidence reveals that prolactin (PRL) signaling at its cognate prolactin receptor (PRLR) in primary afferents promotes nociceptor sensitization and pain in a female-selective fashion. In this review, we summarize recent progress in understanding the female-selective role of PRL/PRLR in nociceptor sensitization and in pathological pain conditions, including postoperative, inflammatory, neuropathic, and migraine pain, as well as opioid-induced hyperalgesia. The clinical implications of the peripheral PRL/PRLR system for the discovery of new therapies for pain control in women are also discussed.
Collapse
Affiliation(s)
- Yanxia Chen
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA; Mayo Clinic, Scottsdale, AZ, USA
| | | | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA; Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
22
|
Yu S, Alkharusi A, Norstedt G, Gräslund T. An in vivo half-life extended prolactin receptor antagonist can prevent STAT5 phosphorylation. PLoS One 2019; 14:e0215831. [PMID: 31063493 PMCID: PMC6504076 DOI: 10.1371/journal.pone.0215831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that signaling through the prolactin/prolactin receptor axis is important for stimulation the growth of many cancers including glioblastoma multiforme, breast and ovarian carcinoma. Efficient inhibitors of signaling have previously been developed but their applicability as cancer drugs is limited by the short in vivo half-life. In this study, we show that a fusion protein, consisting of the prolactin receptor antagonist PrlRA and an albumin binding domain for half-life extension can be expressed as inclusion bodies in Escherichia coli and efficiently refolded and purified to homogeneity. The fusion protein was found to have strong affinity for the two intended targets: the prolactin receptor (KD = 2.3±0.2 nM) and mouse serum albumin (KD = 0.38±0.01 nM). Further investigation showed that it could efficiently prevent prolactin mediated phosphorylation of STAT5 at 100 nM concentration and above, similar to the PrlRA itself, suggesting a potential as drug for cancer therapy in the future. Complexion with HSA weakened the affinity for the receptor to 21±3 nM, however the ability to prevent phosphorylation of STAT5 was still prominent. Injection into rats showed a 100-fold higher concentration in blood after 24 h compared to PrlRA itself.
Collapse
Affiliation(s)
- Shengze Yu
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Amira Alkharusi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Gunnar Norstedt
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Center for Molecular Medicine, Karolinska Institute, Solna, Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
23
|
Abstract
The documented efficacy of COX-2 inhibitors in cancer chemoprevention and in suppression of metastasis is predominantly attributed to inflammatory responses, whereas their effects on tumor-stromal interaction are poorly understood. Through single-cell transcriptome analyses in an immune-compromised mouse xenograft model and in vitro reconstitution experiments, we uncover a tumor-stromal paracrine pathway in which secretion by tumor cells of the COX-2 product prostaglandin E2 induces prolactin production by stromal cells, which activates signaling in disseminated tumor cells with upregulated prolactin receptor expression. Analysis of multiple human cancers confirms differential tumor and stromal cell expression of COX-2, prolactin, and prolactin receptor. Together, these findings may provide novel biomarkers to inform the selective application of COX-2 inhibitors and point to additional targets for suppressing metastasis recurrence. Tumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single-cell RNA sequencing in an orthotopic mouse prostate cancer model, we find up-regulation of prolactin receptor as cancer cells that have disseminated to the lungs expand into micrometastases. Secretion of the ligand prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E2 (PGE2). PGE2 treatment of fibroblasts activates the orphan nuclear receptor NR4A (Nur77), with prolactin as a major transcriptional target for the NR4A-retinoid X receptor (RXR) heterodimer. Ectopic expression of prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor celecoxib abrogates prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, prolactin, and prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine cross-talk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression.
Collapse
|
24
|
Oclon E, Solomon G, Hayouka Z, Salame TM, Goffin V, Gertler A. Novel reagents for human prolactin research: large-scale preparation and characterization of prolactin receptor extracellular domain, non-pegylated and pegylated prolactin and prolactin receptor antagonist. Protein Eng Des Sel 2018; 31:7-16. [PMID: 29281090 DOI: 10.1093/protein/gzx062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/30/2017] [Indexed: 11/12/2022] Open
Abstract
To provide new tools for in vitro and in vivo prolactin (PRL) research, novel protocols for large-scale preparation of untagged human PRL (hPRL), a hPRL antagonist (del 1-9-G129R hPRL) that acts as a pure antagonist of hPRL in binding to hPRL receptor extracellular domain (hPRLR-ECD), and hPRLR-ECD are demonstrated. The interaction of del 1-9-G129R hPRL with hPRLR-ECD was demonstrated by competitive non-radioactive binding assay using biotinylated hPRL as the ligand and hPRLR-ECD as the receptor, by formation of stable 1:1 complexes with hPRLR-ECD under non-denaturing conditions using size-exclusion chromatography, and by surface plasmon resonance methodology. In all three types of experiments, the interaction of del 1-9-G129R hPRL was equal to that of unmodified hPRL. Del 1-9-G129R hPRL inhibited the hPRL-induced proliferation of Baf/LP cells stably expressing hPRLR. Overall, the biological properties of del 1-9-G129R hPRL prepared by the protocol described herein were similar to those of the antagonist prepared using the protocol reported in the original study; however, the newly described protocol improved yields by >6-fold. To provide long-lasting hPRL as a new reagent needed for in vivo experiments, we prepared its mono-pegylated analogue and found that pegylation lowers its biological activity in a homologous in vitro assay. As its future use will require the development of a PRL antagonist with highly elevated affinity, del 1-9-G129R hPRL was expressed on the surface of yeast cells. It retained its binding capacity for hPRLR-ECD, and this methodology was shown to be suitable for future development of high-affinity hPRL antagonists using a library of randomly mutated open reading frame of del 1-9-G129R hPRL and selecting high-affinity mutants by yeast surface display methodology.
Collapse
Affiliation(s)
- Ewa Oclon
- I nstitute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel.,Department of Animal Physiology and Endocrinology, The University of Agriculture in Krakow, Krakow, Poland
| | - Gili Solomon
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Tomer Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vincent Goffin
- Institute Necker Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
| | - Arieh Gertler
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| |
Collapse
|
25
|
Langan EA, Fink T, Paus R. Is prolactin a negative neuroendocrine regulator of human skin re-epithelisation after wounding? Arch Dermatol Res 2018; 310:833-841. [PMID: 30244404 DOI: 10.1007/s00403-018-1864-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022]
Abstract
Chronic wounds remain a major unmet healthcare challenge, associated with substantial morbidity and economic costs. Therefore, novel treatment strategies and therapeutic approaches need to be urgently developed. Yet, despite the increasingly recognized importance of neurohormonal signaling in skin physiology, the neuroendocrine regulation of cutaneous wound healing has received surprisingly little attention. Human skin, and its appendages, locally express the pleiotropic neurohormone prolactin (PRL), which not only regulates lactation but also hair follicle cycling, angiogenesis, keratinocyte proliferation, and epithelial stem cell functions. Therefore, we examined the effects of PRL in experimentally wounded female human skin organ culture. Overall, this revealed that PRL slightly, but significantly, inhibited epidermal regeneration (reepithelialisation), cytokeratin 6 protein expression and intraepidermal mitochondrial activity (MTCO1 expression), while it promoted keratinocyte terminal differentiation (i.e. involucrin expression) ex vivo. If the current pilot data are confirmed by further studies, PRL may serve as one of the-rarely studied-negative regulators of cutaneous wound healing that control excessive reepithelialisation. This raises the intriguing and clinically relevant question of whether PRL receptor antagonists could actually promote epidermal repair after human skin wounding.
Collapse
Affiliation(s)
- E A Langan
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK
| | - T Fink
- Department of Dermatology, Klinikum Oldenburg, Oldenburg, Germany
| | - R Paus
- Centre for Dermatology Research, University of Manchester, Manchester, UK. .,Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
26
|
Fang G, Jia X, Li H, Tan S, Nie Q, Yu H, Yang Y. Characterization of microRNA and mRNA expression profiles in skin tissue between early-feathering and late-feathering chickens. BMC Genomics 2018; 19:399. [PMID: 29801437 PMCID: PMC5970437 DOI: 10.1186/s12864-018-4773-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/09/2018] [Indexed: 01/05/2023] Open
Abstract
Background Early feathering and late feathering in chickens are sex-linked phenotypes, which have commercial application in the poultry industry for sexing chicks at hatch and have important impacts on performance traits. However, the genetic mechanism controlling feather development and feathering patterns is unclear. Here, miRNA and mRNA expression profiles in chicken wing skin tissues were analysed through high-throughput transcriptomic sequencing, aiming to understand the biological process of follicle development and the formation of different feathering phenotypes. Results Compared to the N1 group with no primary feathers extending out, 2893 genes and 31 miRNAs displayed significantly different expression in the F1 group with primary feathers longer than primary-covert feathers, and 1802 genes and 11 miRNAs in the L2 group displayed primary feathers shorter than primary-covert feathers. Only 201 altered genes and 3 altered miRNAs were identified between the N1 and L2 groups (fold change > 2, q value < 0.01). Both sequencing and qPCR tests revealed that PRLR was significantly decreased in the F1 and L2 groups compared to the N1 group, whereas SPEF2 was significantly decreased in the F1 group compared to the N1 or L2 group. Functional analysis revealed that the altered genes or targets of altered miRNAs were involved in multiple biological processes and pathways related to feather growth and development, such as the Wnt signalling pathway, the TGF-beta signalling pathway, the MAPK signalling pathway, epithelial cell differentiation, and limb development. Integrated analysis of miRNA and mRNA showed that 14 pairs of miRNA-mRNA negatively interacted in the process of feather formation. Conclusions Transcriptomic sequencing of wing skin tissues revealed large changes in F1 vs. N1 and L2 vs. N1, but few changes in F1 vs. L2 for both miRNA and mRNA expression. PRLR might only contribute to follicle development, while SPEF2 was highly related to the growth rate of primary feathers or primary-covert feathers and could be responsible for early and late feather formation. Interactions between miR-1574-5p/NR2F, miR-365-5p/JAK3 and miR-365-5p/CDK6 played important roles in hair or feather formation. In all, our results provide novel evidence to understand the molecular regulation of follicle development and feathering phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-018-4773-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guijun Fang
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xinzheng Jia
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China. .,Guangdong Tinoo's Foods Limited Company, Qingyuan, 511827, Guangdong, China.
| | - Shuwen Tan
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,Guangdong Tinoo's Foods Limited Company, Qingyuan, 511827, Guangdong, China
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hui Yu
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,Guangdong Tinoo's Foods Limited Company, Qingyuan, 511827, Guangdong, China
| | - Ying Yang
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| |
Collapse
|
27
|
Pedrini JL, Savaris RF, Schorr MC, Cambruzi E, Grudzinski M, Zettler CG. The Effect of Neoadjuvant Chemotherapy on Hormone Receptor Status, HER2/neu and Prolactin in Breast Cancer. TUMORI JOURNAL 2018; 97:704-10. [DOI: 10.1177/030089161109700605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and Background Histological and immunohistochemical findings may vary in cases of breast cancer. Possible changes in tumor markers between biopsies performed before and after neoadjuvant chemotherapy are controversial and pose a challenge when a clinical decision is needed. The objectives of the present study were: (i) to compare the immunohistochemical expression of estrogen, progesterone and prolactin receptors and HER-2/neu in breast cancer before and after neoadjuvant chemotherapy; and (ii) to correlate the expression of these tumor markers with partial tumor response to neoadjuvant chemotherapy. Methods and Study Design Immunohistochemical staining for breast tumor markers was performed in 90 cases of breast cancer. Statistical analysis was carried out using Fisher's exact test, McNemar's test, Spearman's correlation and the Kappa index with linear weighting (κ). Results Agreement between markers before and after neoadjuvant chemotherapy was fair to moderate (κ = 0.37–0.51). The immunohistochemical expression of HER-2/neu and prolactin receptors showed a significant, albeit weak correlation before and after neoadjuvant chemotherapy (HER-2/neu, rho = 0.34; P = 0.0009; κ = 0.35 [95% CI, 0.19–0.51]). Prolactin status changed in 28/90 cases (P = 0.001; McNemar's test), whereas no changes were found in estrogen or progesterone receptors. No association was found between tumor marker expression and tumor response. Conclusions It seems prudent to reevaluate immunohistochemical markers such as HER-2/neu after neoadjuvant chemotherapy, since the findings will guide the strategy for implementation of adjuvant systemic treatment. No correlation was found between the tumor markers analyzed in the present study and partial tumor response to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- José Luiz Pedrini
- Universidade Federal de Ciências da Saúde de Porto Alegre, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre
| | - Ricardo Francalacci Savaris
- Dept Ginecologia e Obstetrícia, e Programa de Pós-Graduação em Medicina: Ciências Cirúrgicas, Universidade Federal do Rio Grande do Sul, Porto Alegre
| | | | - Eduardo Cambruzi
- Hospital Nossa Senhora da Conceição – Grupo Hospitalar Conceição, Porto Alegre
| | - Melina Grudzinski
- Hospital Nossa Senhora da Conceição – Grupo Hospitalar Conceição, Porto Alegre
| | - Cláudio Galleano Zettler
- Dept de Patologia – Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
28
|
Camargo ACL, Constantino FB, Santos SAA, Colombelli KT, Dal-Pai-Silva M, Felisbino SL, Justulin LA. Influence of postnatal prolactin modulation on the development and maturation of ventral prostate in young rats. Reprod Fertil Dev 2017; 30:969-979. [PMID: 29207253 DOI: 10.1071/rd17343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/15/2017] [Indexed: 11/23/2022] Open
Abstract
Besides androgenic dependence, other hormones also influence the prostate biology. Prolactin has been described as an important hormone associated with maintenance of prostatic morphophysiology; however, there is a lack of information on the involvement of prolactin during prostate development and growth. This study aimed to evaluate whether perinatal prolactin modulation interferes with rat ventral prostate (VP) development and maturation. Therefore, prolactin or bromocriptine (an inhibitor of prolactin release from the pituitary) were administered to Sprague Dawley rats from postnatal Day (PND) 12 to PND 21 or 35. Animals were then killed and serum hormonal quantification, VP morphological-stereological and immunohistochemical analyses and western blotting reactions were employed. Our results demonstrate that prolactin blockage increased serum testosterone on PND 21, which reflected an increase in anogenital distance. Although prolactin modulation did not interfere with VP weight, it modified VP morphology by dilating the acinar lumen and reducing epithelial cell height. Prolactin activated the signal transducer and activator of transcription (STAT) downstream pathway, increased androgen receptor expression and epithelial proliferation. In addition, prolactin and bromocriptine also increased expression of cytokeratin 18, a marker of luminal-differentiated cells. In conclusion, the VP responds to prolactin modulation through a mechanism of increasing the epithelial proliferative response and dynamics of cell differentiation, especially in animals treated for a more prolonged period.
Collapse
Affiliation(s)
- Ana C L Camargo
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Prof. Dr. Antonio Celso Wagner Zanin Street, 250, Botucatu, SP, 18618-689, Brazil
| | - Flávia B Constantino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Prof. Dr. Antonio Celso Wagner Zanin Street, 250, Botucatu, SP, 18618-689, Brazil
| | - Sérgio A A Santos
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Prof. Dr. Antonio Celso Wagner Zanin Street, 250, Botucatu, SP, 18618-689, Brazil
| | - Ketlin T Colombelli
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Prof. Dr. Antonio Celso Wagner Zanin Street, 250, Botucatu, SP, 18618-689, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Prof. Dr. Antonio Celso Wagner Zanin Street, 250, Botucatu, SP, 18618-689, Brazil
| | | | - Luis A Justulin
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Prof. Dr. Antonio Celso Wagner Zanin Street, 250, Botucatu, SP, 18618-689, Brazil
| |
Collapse
|
29
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
The prostate response to prolactin modulation in adult castrated rats subjected to testosterone replacement. J Mol Histol 2017; 48:403-415. [PMID: 28988314 DOI: 10.1007/s10735-017-9738-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022]
Abstract
Despite the androgenic dependence, other hormones, growth factors, and cytokines are necessary to support prostatic growth and maintain the glandular structure; among them, prolactin is a non-steroidal hormone secreted mainly by the pituitary gland. However, extra-pituitary expression of prolactin, such as in the prostate, has also been demonstrated, highlighting the paracrine and autocrine actions of prolactin within the prostate. Here, we investigated whether prolactin modulation alters ventral prostate (VP) morphophysiology in adult castrated rats. Sprague Dawley rats were castrated and after 21 days, divided into ten experimental groups (n = 6/group): castrated control: castrated animals that did not receive treatment; castrated+testosterone: castrated animals that received T (4 mg/kg/day); castrated+PRL (PRL): castrated animals receiving prolactin (0.3 mg/kg/day); castrated+T+PRL: castrated animals that received a combination of testosterone and prolactin; and castrated+bromocriptine (BR): castrated animals that received bromocriptine (0.4 mg/kg/day). The control group included intact animals. The animals were treated for 3 or 10 consecutive days. At the end of experimental period, the animals were euthanized, and the blood and VP lobes were collected and analyzed by different methods. The main findings were that the administration of prolactin to castrated rats did not exert anabolic effects on the VP. Although we observed activation of downstream prolactin signaling after prolactin administration, this was not enough to overcome the prostatic androgen deficiency. Likewise, there was no additional glandular involution in the castrated group treated with bromocriptine. We concluded that despite stimulating the downstream signaling pathway, exogenous prolactin does not act on VP in the absence or presence of high levels of testosterone.
Collapse
|
31
|
Understanding the Inguinal Sinus in Sheep (Ovis aries)-Morphology, Secretion, and Expression of Progesterone, Estrogens, and Prolactin Receptors. Int J Mol Sci 2017; 18:ijms18071516. [PMID: 28703772 PMCID: PMC5536006 DOI: 10.3390/ijms18071516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023] Open
Abstract
Post-parturient behavior of mammalian females is essential for early parent–offspring contact. After delivery, lambs need to ingest colostrum for obtaining the related immunological protection, and early interactions between the mother and the lamb are crucial. Despite visual and auditory cues, olfactory cues are decisive in lamb orientation to the mammary gland. In sheep, the inguinal sinus is located bilaterally near the mammary gland as a skin pouch (IGS) that presents a gland that secretes a strong-smelling wax. Sheep IGS gland functions have many aspects under evaluation. The objective of the present study was to evaluate sheep IGS gland functional aspects and mRNA transcription and the protein expression of several hormone receptors, such as progesterone receptor (PGR), estrogen receptor 1 (ESR1), and 2 (ESR2) and prolactin receptor (PRLR) present. In addition, another aim was to achieve information about IGS ultrastructure and chemical compounds produced in this gland. All hormone receptors evaluated show expression in IGS during the estrous cycle (follicular/luteal phases), pregnancy, and the post-partum period. IGS secretion is rich in triterpenoids that totally differ from the surrounding skin. They might be essential substances for the development of an olfactory preference of newborns to their mothers.
Collapse
|
32
|
Lan H, Hong P, Li R, L S, Anshan S, Li S, Zheng X. Internal image anti-idiotypic antibody: A new strategy for the development a new category of prolactin receptor (PRLR) antagonist. Mol Immunol 2017; 87:86-93. [DOI: 10.1016/j.molimm.2017.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
33
|
Tang MW, Garcia S, Gerlag DM, Tak PP, Reedquist KA. Insight into the Endocrine System and the Immune System: A Review of the Inflammatory Role of Prolactin in Rheumatoid Arthritis and Psoriatic Arthritis. Front Immunol 2017; 8:720. [PMID: 28690611 PMCID: PMC5481306 DOI: 10.3389/fimmu.2017.00720] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects females three times more frequently than males. A potential role for hormones, such as prolactin (PRL), may in part explain this phenomenon. The risk of developing RA is increased in women who are lactating after the first pregnancy, which might be related to breastfeeding and the release of PRL. Other studies found a protective effect of PRL on RA development. Some studies have reported that hyperprolactinemia is more common in RA and serum PRL levels are correlated with several disease parameters, although others could not confirm these findings. Overall the plasma PRL levels are on average not elevated in RA. Previously, a small number of open-label clinical trials using bromocriptine, which indirectly decreases PRL levels, were performed in RA patients and showed clinical benefit, although others found the opposite effect. Locally produced PRL at the site of inflammation may have a crucial role in RA as well, as it has been shown that PRL can be produced by synovial macrophages. Locally produced PRL has both pro-inflammatory and anti-inflammatory effects in arthritis. Psoriatic arthritis (PsA) is also an autoinflammatory disease, in which the prolactin receptor is also expressed in macrophages. The aim of this review is to provide an overview of the potential role of PRL signaling in inflammatory joint diseases (RA and PsA) and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Man W Tang
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Centre, Academic Medical Centre/University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Centre/University of Amsterdam, Amsterdam, Netherlands
| | - Samuel Garcia
- Laboratory of Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Center, Utrecht, Netherlands
| | - Danielle M Gerlag
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Centre, Academic Medical Centre/University of Amsterdam, Amsterdam, Netherlands.,GlaxoSmithKline, Cambridge, United Kingdom
| | - Paul P Tak
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Centre, Academic Medical Centre/University of Amsterdam, Amsterdam, Netherlands.,GlaxoSmithKline, Stevenage, United Kingdom.,Ghent University, Ghent, Belgium.,University of Cambridge, Cambridge, United Kingdom
| | - Kris A Reedquist
- Laboratory of Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
34
|
Tang MW, Garcia S, Malvar Fernandez B, Gerlag DM, Tak PP, Reedquist KA. Rheumatoid arthritis and psoriatic arthritis synovial fluids stimulate prolactin production by macrophages. J Leukoc Biol 2017. [PMID: 28642278 DOI: 10.1189/jlb.2a0317-115rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Prolactin (PRL) is a neuroendocrine hormone that can promote inflammation. We examined the synovial tissue and fluid levels of PRL in patients with inflammatory arthritis, PRL expression in differentiated Mϕs from patients with arthritis and from healthy donors, and the effects of different stimuli on PRL production by Mϕs. PRL levels were measured in paired synovial fluid (SF) and peripheral blood of patients with rheumatoid arthritis (RA, n = 19), psoriatic arthritis (PsA, n = 11), and gout (n = 11). Synovial-tissue PRL mRNA expression was measured by quantitative PCR in patients with RA (n = 25), PsA (n = 11), and gout (n = 12) and in Mϕs differentiated in SF of patients with RA, PsA, other subtypes of spondyloarthritis (SpA), and gout. Synovial-tissue PRL mRNA expression correlated significantly with clinical disease parameters in patients with RA and PsA, including erythrocyte sedimentation rate (ESR, r = 0.424; P = 0.049) and disease activity score evaluated in 28 joints (DAS28, r = 0.729; P = 0.017). Synovial-tissue PRL expression was similar in RA, PsA, and gout. PRL mRNA expression was detected in monocyte-derived Mϕs from patients with RA and was significantly higher (P ≤ 0.01) in Mϕs differentiated in pooled SF from patients with RA and PsA compared with SpA or gout. PRL production by Mϕ differentiation in the SF from patients with RA was not further regulated by stimulation with CD40L, IgG, LPS, or TNF. PRL is produced locally in the synovium of patients with inflammatory arthritis. The production of PRL by Mϕs was increased by unknown components of RA and PsA SF, where it could contribute to disease progression.
Collapse
Affiliation(s)
- Man Wai Tang
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; .,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Samuel Garcia
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Malvar Fernandez
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Danielle M Gerlag
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline, Cambridge, United Kingdom
| | - Paul-Peter Tak
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline, Stevenage, United Kingdom.,Department of Rheumatology, Ghent University, Ghent, Belgium; and.,Department of Rheumatology, University of Cambridge, Cambridge, United Kingdom
| | - Kris A Reedquist
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Prolactin/androgen-inducible carboxypeptidase-D increases with nitrotyrosine and Ki67 for breast cancer progression in vivo, and upregulates progression markers VEGF-C and Runx2 in vitro. Breast Cancer Res Treat 2017; 164:27-40. [PMID: 28364216 DOI: 10.1007/s10549-017-4223-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Carboxypeptidase-D (CPD) cleaves C-terminal arginine (Arg) to produce nitric oxide (NO). Upregulation of CPD and NO by 17β-estradiol, prolactin (PRL), and androgen increases survival of human breast cancer (BCa) cells in vitro. To demonstrate similar events in vivo, CPD, nitrotyrosine (NT, hallmark of NO action), androgen receptor (AR), prolactin receptor (PRLR), and phospho-Stat5a (for activated PRLR) levels were evaluated in benign and malignant human breast tissues, and correlated with cell proliferation (Ki67) and BCa progression (Cullin-3) biomarkers. METHODS Paraffin-embedded breast tissues were analyzed by immunohistochemistry (IHC). BCa progression markers in human MCF-7 and T47D BCa cell lines treated with NO donor SIN-1 or PRL, ±CPD inhibitors were analyzed by RT-qPCR and immunoblotting. RESULTS IHC showed progressive increases in CPD, NT, Ki67, and Cullin-3 from low levels in benign tissues to high levels in ductal carcinoma in situ, low-grade, high-grade, and triple-negative BCa. CPD and NT staining were closely associated, implicating CPD in NO production. Phospho-Stat5a increased significantly from benign to high-grade BCa and was mostly nuclear. AR and PRLR were abundant in benign breast and BCa, including triple-negative tumors. SIN-1 and PRL increased VEGF-C and Runx2, but not Cullin-3, in BCa cell lines. PRL induction of VEGF-C and Runx2 was inhibited partly by CPD inhibitors, implicating NO, produced by PRL-regulated CPD, in BCa progression. CONCLUSIONS The CPD-Arg-NO pathway contributes to BCa progression in vitro and in vivo. PRL/androgen activation of the pathway support combined AR and PRLR blockade as an additional therapy for BCa.
Collapse
|
36
|
Tam AA, Kaya C, Aydın C, Ersoy R, Çakır B. Differentiated thyroid cancer in patients with prolactinoma. Turk J Med Sci 2016; 46:1360-1365. [PMID: 27966298 DOI: 10.3906/sag-1501-58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 12/13/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM Increasing evidence is available about the role of prolactin in the development of various cancers. The purpose of this study is to evaluate the frequency of thyroid cancer in patients with prolactinoma followed at a single site. MATERIALS AND METHODS The medical records of 182 patients diagnosed with prolactinoma were reviewed retrospectively. Serum prolactin, antithyroglobulin, antithyroid peroxidase antibody, thyroid-stimulating hormone, free T4, and free T3 values and pituitary gland magnetic resonance imaging and thyroid ultrasound reports were evaluated. RESULTS Forty-five (39.5%) patients were found to have a thyroid nodule (13 solitary, 32 multiple). Ten patients were administered a thyroidectomy, and differentiated thyroid cancer (DTC) was detected in 6 of these patients (6/114, 5.3%). One patient had lung metastasis. The control group consisted of 113 individuals (101 females, 12 males with a mean age of 32.1 ± 9.1). In the ultrasound reports, 28 of these individuals (24.8%) had a thyroid nodule (5 solitary, 23 multiple), and one individual (1/113, 0.8%) had DTC. CONCLUSION When compared to the control group, thyroid volume and thyroid nodularity were significantly higher in patients with prolactinoma (P < 0.001, P = 0.018, respectively); however, no statistically significant difference existed for the incidence of thyroid cancer (P = 0.196).
Collapse
Affiliation(s)
- Abbas Ali Tam
- Department of Endocrinology and Metabolism, Atatürk Training and Research Hospital, Ankara, Turkey
| | - Cafer Kaya
- Department of Endocrinology and Metabolism, Atatürk Training and Research Hospital, Ankara, Turkey
| | - Cevdet Aydın
- Department of Endocrinology and Metabolism, Atatürk Training and Research Hospital, Ankara, Turkey
| | - Reyhan Ersoy
- Department of Endocrinology and Metabolism, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Bekir Çakır
- Department of Endocrinology and Metabolism, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
37
|
Shemanko CS. Prolactin receptor in breast cancer: marker for metastatic risk. J Mol Endocrinol 2016; 57:R153-R165. [PMID: 27658959 DOI: 10.1530/jme-16-0150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 11/08/2022]
Abstract
Prolactin and prolactin receptor signaling and function are complex in nature and intricate in function. Basic, pre-clinical and translational research has opened up our eyes to the understanding that prolactin and prolactin receptor signaling function differently within different cellular contexts and microenvironmental conditions. Its multiple roles in normal physiology are subverted in cancer initiation and progression, and gradually we are teasing out the intricacies of function and therapeutic value. Recently, we observed that prolactin has a role in accelerating the time to bone metastasis in breast cancer patients and identified the mechanism by which prolactin stimulated breast cancer cell-mediated lytic osteoclast formation. The possibility that the prolactin receptor is a marker for metastasis, and specifically bone metastasis, is one that may have to be put into the context of the different variants of prolactin, different prolactin receptor isoforms and intricate signaling pathways that are regulated by the microenvironment. The more complete the picture, the better one can test biomarker identity and design clinical trials to test therapeutic intervention. This review will cover the recent advances and highlight the complexity of prolactin receptor biology.
Collapse
Affiliation(s)
- Carrie S Shemanko
- Department of Biological SciencesCharbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Tang MW, Reedquist KA, Garcia S, Fernandez BM, Codullo V, Vieira-Sousa E, Goffin V, Reuwer AQ, Twickler MT, Gerlag DM, Tak PP. The prolactin receptor is expressed in rheumatoid arthritis and psoriatic arthritis synovial tissue and contributes to macrophage activation. Rheumatology (Oxford) 2016; 55:2248-2259. [PMID: 27616146 PMCID: PMC5144667 DOI: 10.1093/rheumatology/kew316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/22/2016] [Indexed: 11/14/2022] Open
Abstract
Objectives. Prolactin (PRL) is a lactation-inducing hormone with immunomodulatory properties and is found at elevated levels in the serum of patients with RA and other rheumatic diseases. The PRL receptor (PRLR) has been shown to be expressed by macrophages in atherosclerotic plaques. The aim of this study was to examine PRLR expression by synovial macrophages and its role in the regulation of macrophage activation. Methods. Serum monomeric 23 kDa PRL levels were measured in 119 RA patients using a fluoroimmunometric assay. PRLR expression was assessed in synovial tissue of 91 RA, 15 PsA and 8 OA patients by immunohistochemistry and digital image analysis. Double IF was used to identify PRLR-expressing cells. The effects of PRL on monocyte-derived macrophage gene expression were examined by quantitative real-time PCR and ELISA. Results. Serum PRL levels were similar in female and male RA patients. Median (interquartile range) PRLR expression was significantly higher (P < 0.05) in RA and PsA synovial tissue compared with OA. PRLR colocalized with synovial CD68+ macrophages and von Willebrand factor+ endothelial cells. In vitro, PRLR was prominently expressed in IFN-γ-and IL-10-polarized macrophages compared with other polarizing conditions. PRL by itself had negligible effects on macrophage gene expression, but cooperated with CD40L and TNF to increase expression of pro-inflammatory genes including IL-6, IL-8 and IL-12β. Conclusions. Synovial PRLR expression is enhanced in patients with inflammatory arthritis compared with OA, and PRL cooperates with other pro-inflammatory stimuli to activate macrophages. These results identify PRL and PRLR as potential new therapeutic targets in inflammatory arthritis.
Collapse
Affiliation(s)
- Man Wai Tang
- Division of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands, .,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Kris A Reedquist
- Division of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Samuel Garcia
- Division of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Bea Malvar Fernandez
- Division of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Veronica Codullo
- Division of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Elsa Vieira-Sousa
- Division of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Vincent Goffin
- Inserm, Inserm U1151, Institut Necker Enfants Malades, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Q Reuwer
- Division of Vascular Medicine, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel T Twickler
- Division of Vascular Medicine, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Daniëlle M Gerlag
- Division of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Paul-Peter Tak
- Division of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Yamaguchi Y, Moriyama S, Lerner DT, Grau EG, Seale AP. Autocrine Positive Feedback Regulation of Prolactin Release From Tilapia Prolactin Cells and Its Modulation by Extracellular Osmolality. Endocrinology 2016; 157:3505-16. [PMID: 27379370 PMCID: PMC6285229 DOI: 10.1210/en.2015-1969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/27/2016] [Indexed: 12/24/2022]
Abstract
Prolactin (PRL) is a vertebrate hormone with diverse actions in osmoregulation, metabolism, reproduction, and in growth and development. Osmoregulation is fundamental to maintaining the functional structure of the macromolecules that conduct the business of life. In teleost fish, PRL plays a critical role in osmoregulation in fresh water. Appropriately, PRL cells of the tilapia are directly osmosensitive, with PRL secretion increasing as extracellular osmolality falls. Using a model system that employs dispersed PRL cells from the euryhaline teleost fish, Oreochromis mossambicus, we investigated the autocrine regulation of PRL cell function. Unknown was whether these PRL cells might also be sensitive to autocrine feedback and whether possible autocrine regulation might interact with the well-established regulation by physiologically relevant changes in extracellular osmolality. In the cell-perfusion system, ovine PRL and two isoforms of tilapia PRL (tPRL), tPRL177 and tPRL188, stimulated the release of tPRLs from the dispersed PRL cells. These effects were significant within 5-10 minutes and lasted the entire course of exposure, ceasing within 5-10 minutes of removal of tested PRLs from the perifusion medium. The magnitude of response varied between tPRL177 and tPRL188 and was modulated by extracellular osmolality. On the other hand, the gene expression of tPRLs was mainly unchanged or suppressed by static incubations of PRL cells with added PRLs. By demonstrating the regulatory complexity driven by positive autocrine feedback and its interaction with osmotic stimuli, these findings expand upon the knowledge that pituitary PRL cells are regulated complexly through multiple factors and interactions.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Shunsuke Moriyama
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Andre P Seale
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| |
Collapse
|
40
|
Zhao J, Yao J, Li F, Yang Z, Sun Z, Qu L, Wang K, Su Y, Zhang A, Montgomery SA, Geng T, Cui H. Identification of candidate genes for chicken early- and late-feathering. Poult Sci 2016; 95:1498-1503. [PMID: 27081197 DOI: 10.3382/ps/pew131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/25/2016] [Indexed: 11/20/2022] Open
Abstract
Previous studies suggest that prolactin receptor (Prlr) is a potential causative gene for chicken early- (EF) and late-feathering (LF) phenotypes. In this study, we evaluated candidate genes for this trait and determined the expression of 3 genes, including Prlr, sperm flagellar protein 2 (Spef2), and their fusion gene, in the skins of one-day-old EF and LF chicks using RT-qPCR. Data indicated that Prlr expression in the skin did not show significant difference between EF and LF chicks, suggesting Prlr may not be a suitable candidate gene. In contrast, Spef2 expression in the skin displayed a significant difference between EF and LF chicks (P < 0.01), suggesting that Spef2 may be a good candidate gene for chicken feathering. Moreover, dPrlr/dSpef2, the fusion gene, was also a good candidate gene as it was expressed only in LF chicks. However, the expression of the fusion gene was much lower than that of Prlr Additionally, using strand-specific primers, we found that the fusion gene was transcribed in 2 directions (one from dPrlr promoter, another from dSpef2 promoter), which could result in the formation of a double strand RNA. In conclusion, both Spef2 and the fusion gene are good candidate genes for chicken feathering, but Prlr is not. The research on the function and regulation of the candidate genes will help elucidate the molecular basis of the chicken feathering trait.
Collapse
Affiliation(s)
- J Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - J Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - F Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Z Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Z Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - L Qu
- Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu 225125, China
| | - K Wang
- Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu 225125, China
| | - Y Su
- Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu 225125, China
| | - A Zhang
- Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu 225125, China
| | - S A Montgomery
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - T Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - H Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
41
|
Montejo ÁL, Arango C, Bernardo M, Carrasco JL, Crespo-Facorro B, Cruz JJ, del Pino J, García Escudero MA, García Rizo C, González-Pinto A, Hernández AI, Martín Carrasco M, Mayoral Cleries F, Mayoral van Son J, Mories MT, Pachiarotti I, Ros S, Vieta E. Spanish consensus on the risks and detection of antipsychotic drug-related hyperprolactinaemia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.rpsmen.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Liu Y, Zhang Y, Jiang J, Lobie PE, Paulmurugan R, Langenheim JF, Chen WY, Zinn KR, Frank SJ. GHR/PRLR Heteromultimer Is Composed of GHR Homodimers and PRLR Homodimers. Mol Endocrinol 2016; 30:504-517. [PMID: 27003442 PMCID: PMC4853563 DOI: 10.1210/me.2015-1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/17/2016] [Indexed: 01/04/2023] Open
Abstract
GH receptor (GHR) and prolactin (PRL) receptor (PRLR) are homologous transmembrane cytokine receptors. Each prehomodimerizes and ligand binding activates Janus Kinase 2 (JAK2)-signal transducer and activator of transcription (STAT) signaling pathways by inducing conformational changes within receptor homodimers. In humans, GHR is activated by GH, whereas PRLR is activated by both GH and PRL. We previously devised a split luciferase complementation assay, in which 1 receptor is fused to an N-terminal luciferase (Nluc) fragment, and the other receptor is fused to a C-terminal luciferase (Cluc) fragment. When receptors approximate, luciferase activity (complementation) results. Using this assay, we reported ligand-independent GHR-GHR complementation and GH-induced complementation changes characterized by acute augmentation above basal signal, consistent with induction of conformational changes that bring GHR cytoplasmic tails closer. We also demonstrated association between GHR and PRLR in T47D human breast cancer cells by coimmunoprecipitation, suggesting that, in addition to forming homodimers, these receptors form hetero-assemblages with functional consequences. We now extend these analyses to examine basal and ligand-induced complementation of coexpressed PRLR-Nluc and PRLR-Cluc chimeras and coexpressed GHR-Nluc and PRLR-Cluc chimeras. We find that PRLR-PRLR and GHR-PRLR form specifically interacting ligand-independent assemblages and that either GH or PRL augments PRLR-PRLR complementation, much like the GH-induced changes in GHR-GHR dimers. However, in contrast to the complementation patterns for GHR-GHR or PRLR-PRLR homomers, both GH and PRL caused decline in luciferase activity for GHR-PRLR heteromers. These and other data suggest that GHR and PRLR associate in complexes comprised of GHR-GHR/PRLR-PRLR heteromers consisting of GHR homodimers and PRLR homodimers, rather than GHR-PRLR heterodimers.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Yue Zhang
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Jing Jiang
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Peter E Lobie
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Ramasamy Paulmurugan
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - John F Langenheim
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Wen Y Chen
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Kurt R Zinn
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Stuart J Frank
- Department of Medicine (Y.L., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism; Department of Radiology (K.R.Z.); and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| |
Collapse
|
43
|
Agarwal N, Machiels JP, Suárez C, Lewis N, Higgins M, Wisinski K, Awada A, Maur M, Stein M, Hwang A, Mosher R, Wasserman E, Wu G, Zhang H, Zieba R, Elmeliegy M. Phase I Study of the Prolactin Receptor Antagonist LFA102 in Metastatic Breast and Castration-Resistant Prostate Cancer. Oncologist 2016; 21:535-6. [PMID: 27091421 PMCID: PMC4861370 DOI: 10.1634/theoncologist.2015-0502] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 11/17/2022] Open
Abstract
LESSONS LEARNED Despite evidence for a role for prolactin signaling in breast and prostate tumorigenesis, a prolactin receptor-binding monoclonal antibody has not produced clinical efficacy.Increased serum prolactin levels may be a biomarker for prolactin receptor inhibition.Results from the pharmacokinetic and pharmacodynamics (PD) studies suggest that inappropriately long dosing intervals and insufficient exposure to LFA102 may have resulted in lack of antitumor efficacy.Based on preclinical data, combination therapy of LFA102 with those novel agents targeting hormonal pathways in metastatic castration-resistant prostate cancer and metastatic breast cancer is promising.Given the PD evidence of prolactin receptor blockade by LFA102, this drug has the potential to be used in conditions such as hyperprolactinemia that are associated with high prolactin levels. BACKGROUND Prolactin receptor (PRLR) signaling is implicated in breast and prostate cancer. LFA102, a humanized monoclonal antibody (mAb) that binds to and inhibits the PRLR, has exhibited promising preclinical antitumor activity. METHODS Patients with PRLR-positive metastatic breast cancer (MBC) or metastatic castration-resistant prostate cancer (mCRPC) received doses of LFA102 at 3-60 mg/kg intravenously once every 4 weeks. Objectives were to determine the maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE) to investigate the safety/tolerability of LFA102 and to assess pharmacokinetics (PK), pharmacodynamics (PD), and antitumor activity. RESULTS A total of 73 patients were enrolled at 5 dose levels. The MTD was not reached because of lack of dose-limiting toxicities. The RDE was established at 60 mg/kg based on PK and PD analysis and safety data. The most common all-cause adverse events (AEs) were fatigue (44%) and nausea (33%) regardless of relationship. Grade 3/4 AEs reported to be related to LFA102 occurred in 4% of patients. LFA102 exposure increased approximately dose proportionally across the doses tested. Serum prolactin levels increased in response to LFA102 administration, suggesting its potential as a biomarker for PRLR inhibition. No antitumor activity was detected. CONCLUSION Treatment with LFA102 was safe and well tolerated, but did not show antitumor activity as monotherapy at the doses tested.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute, Division of Medical Oncology, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Jean-Pascal Machiels
- Roi Albert II Institute, Medical Oncology Service, University Clinic Saint Luc and Institute of Experimental and Clinical Research (Pôle Molecular Imaging, Radiotherapy & Oncology), Catholic University of Louvain, Brussels, Belgium
| | - Cristina Suárez
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Nancy Lewis
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michaela Higgins
- Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kari Wisinski
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | | | - Michela Maur
- Oncology Unit, Department of Oncology, Hematology and Respiratory Disease, University Hospital Policlinico of Modena, Modena, Italy
| | - Mark Stein
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Andy Hwang
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | | | | | - Gang Wu
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | - Hefei Zhang
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | - Renata Zieba
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | | |
Collapse
|
44
|
Meshaal S, El Refai R, El Saie A, El Hawary R. Signal transducer and activator of transcription 5 is implicated in disease activity in adult and juvenile onset systemic lupus erythematosus. Clin Rheumatol 2016; 35:1515-20. [PMID: 27041383 DOI: 10.1007/s10067-016-3250-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 10/22/2022]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway is one of a handful of pleiotropic cascades used to transduce a multitude of signals for development and homeostasis in humans. It is the principal signaling mechanism for a wide array of cytokines and growth factors. Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE). In this study, we tried to assess the role of STAT5 in systemic lupus erythematosus and correlate its phosphorylation level with the disease activity. The activation of the STAT5 was assessed by measuring the level of expression of phosphorylated STAT5 (pSTAT5) using flow cytometry on the peripheral blood T and B cells in 58 SLE patients (40 adult and 18 juvenile onset) and on 23 healthy age- and sex-matched controls for both groups. Serum prolactin level was also assessed in the patients and control by ELISA. The study revealed that the level of pSTAT5 was higher in adult SLE patients than in healthy control (p = 0.001) and in juvenile-onset SLE patients versus age-matched control (p = 0.031). A positive correlation existed between the pSTAT5 levels and Systemic Lupus Activity Measure (SLAM) score and also with multiple clinical manifestations indicating a potential role of STAT5 signaling in pathogenesis SLE. The pSTAT5 signaling is implicated in the disease activity of SLE and may be a useful target of therapy by correcting the dysregulation of cytokines involved in the disease pathogenesis.
Collapse
Affiliation(s)
- Safa Meshaal
- Clinical and Chemical pathology department, Faculty of medicine, Cairo University, Cairo, Egypt
| | - Rasha El Refai
- Rheumatology and Rehabilitation department, Faculty of medicine, Cairo university, Cairo, Egypt
| | - Ahmed El Saie
- Pediatrics department, Faculty of medicine, Cairo University, Cairo, Egypt
| | - Rabab El Hawary
- Clinical and Chemical pathology department, Faculty of medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
45
|
Montejo ÁL, Arango C, Bernardo M, Carrasco JL, Crespo-Facorro B, Cruz JJ, Del Pino J, García Escudero MA, García Rizo C, González-Pinto A, Hernández AI, Martín Carrasco M, Mayoral Cleries F, Mayoral van Son J, Mories MT, Pachiarotti I, Ros S, Vieta E. Spanish consensus on the risks and detection of antipsychotic drug-related hyperprolactinaemia. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2016; 9:158-73. [PMID: 26927534 DOI: 10.1016/j.rpsm.2015.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/28/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Iatrogenic hyperprolactinaemia (IHPRL) has been more frequently related to some antipsychotic drugs that provoke an intense blockade of dopamine D2 receptors. There is a wide variation in clinical practice, and perhaps some more awareness between clinicians is needed. Due to the high frequency of chronic treatment in severe mental patients, careful attention is recommended on the physical risk. IHPRL symptoms could be underestimated without routine examination. METHODOLOGY An intense scientific literature search was performed in order to draw up a multidisciplinary consensus, including different specialists of psychiatry, endocrinology, oncology and internal medicine, and looking for a consensus about clinical risk and detection of IHPRL following evidence-based medicine criteria levels (EBM I- IV). RESULTS Short-term symptoms include amenorrhea, galactorrhoea, and sexual dysfunction with decrease of libido and erectile difficulties related to hypogonadism. Medium and long-term symptoms related to oestrogens are observed, including a decrease bone mass density, hypogonadism, early menopause, some types of cancer risk increase (breast and endometrial), cardiovascular risk increase, immune system disorders, lipids, and cognitive dysfunction. Prolactin level, gonadal hormones and vitamin D should be checked in all patients receiving antipsychotics at baseline although early symptoms (amenorrhea-galactorrhoea) may not be observed due to the risk of underestimating other delayed symptoms that may appear in the medium term. Routine examination of sexual dysfunction is recommended due to possible poor patient tolerance and low compliance. Special care is required in children and adolescents, as well as patients with PRL levels >50ng/ml (moderate hyperprolactinaemia). A possible prolactinoma should be investigated in patients with PRL levels >150ng/ml, with special attention to patients with breast/endometrial cancer history. Densitometry should be prescribed for males >50 years old, amenorrhea>6 months, or early menopause to avoid fracture risk.
Collapse
Affiliation(s)
- Ángel L Montejo
- Área de Neurociencias, Instituto de Biomedicina de Salamanca (IBSAL), Universidad de Salamanca, Servicio de Psiquiatría, Hospital Universitario de Salamanca, España.
| | - Celso Arango
- Departamento de Psiquiatría Infanto-Juvenil, Hospital General Universitario Gregorio Marañón (IiSGM). Facultad de Medicina, Universidad Complutense, CIBERSAM, Madrid, España
| | - Miguel Bernardo
- Unidad Esquizofrenia Clínic, Instituto Clínic de Neurociencias, Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, España
| | - José L Carrasco
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, CIBERSAM, Madrid, España
| | - Benedicto Crespo-Facorro
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria. Hospital Universitario Marqués de Valdecilla, IDIVAL, CIBERSAM, Santander, España
| | - Juan J Cruz
- Servicio de Oncología Médica, Hospital Universitario de Salamanca, Universidad de Salamanca (IBSAL), España
| | - Javier Del Pino
- Servicio Medicina Interna, Hospital Clínico Universitario, Universidad de Salamanca, España
| | | | - Clemente García Rizo
- Unidad Esquizofrenia Clínic, Instituto Clínic de Neurociencias, Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, España
| | - Ana González-Pinto
- International Mood Disorders Research Centre, CIBERSAM, Hospital Santiago Apóstol, Universidad del País Vasco, Vitoria, España
| | - Ana I Hernández
- FEA Psiquiatría, Red de Salud Mental de Guipúzcoa, San Sebastián, España
| | - Manuel Martín Carrasco
- Instituto de Investigaciones Psiquiátricas, Fundación María Josefa Recio, Bilbao, España; Clínica Psiquiátrica Padre Menni, CIBERSAM, Pamplona, España
| | - Fermin Mayoral Cleries
- UGC Salud Mental, Hospital Regional Universitario, Instituto de Biomedicina de Málaga, Málaga, España
| | | | - M Teresa Mories
- Servicio de Endocrinología y Nutrición, Hospital Universitario de Salamanca, España
| | - Isabella Pachiarotti
- Programa de Trastornos Bipolares, Departamento de Psiquiatría, Hospital Clínic, Universidad de Barcelona, IDIBAPS, CIBERSAM, Barcelona, España
| | - Salvador Ros
- Instituto Internacional de Neurociencias Aplicadas, Barcelona, España
| | - Eduard Vieta
- Programa de Trastornos Bipolares, Departamento de Psiquiatría, Hospital Clínic, Universidad de Barcelona, IDIBAPS, CIBERSAM, Barcelona, España
| |
Collapse
|
46
|
Otto C, Särnefält A, Ljungars A, Wolf S, Rohde-Schulz B, Fuchs I, Schkoldow J, Mattsson M, Vonk R, Harrenga A, Freiberg C. A Neutralizing Prolactin Receptor Antibody Whose In Vivo Application Mimics the Phenotype of Female Prolactin Receptor-Deficient Mice. Endocrinology 2015; 156:4365-73. [PMID: 26284426 DOI: 10.1210/en.2015-1277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The prolactin receptor (PRLR) has been implicated in a variety of physiological processes (lactation, reproduction) and diseases (breast cancer, autoimmune diseases). Prolactin synthesis in the pituitary and extrapituitary sites is regulated by different promoters. Dopamine receptor agonists such as bromocriptine can only interfere with pituitary prolactin synthesis and thus do not induce a complete blockade of PRLR signaling. Here we describe the identification of a human monoclonal antibody 005-C04 that blocks PRLR-mediated signaling at nanomolar concentrations in vitro. In contrast to a negative control antibody, the neutralizing PRLR antibody 005-C04 inhibits signal transducer and activator of transcription 5 phosphorylation in T47D cells and proliferation of BaF3 cells stably expressing murine or human PRLRs in a dose-dependent manner. In vivo application of this new function-blocking PRLR antibody reflects the phenotype of PRLR-deficient mice. After antibody administration female mice become infertile in a reversible manner. In lactating dams, the antibody induces mammary gland involution and negatively interferes with lactation capacity as evidenced by reduced milk protein expression in mammary glands and impaired litter weight gain. Antibody-mediated blockade of the PRLR in vivo stimulates hair regrowth in female mice. Compared with peptide-derived PRLR antagonists, the PRLR antibody 005-C04 exhibits several advantages such as higher potency, noncompetitive inhibition of PRLR signaling, and a longer half-life, which allows its use as a tool compound also in long-term in vivo studies. Therefore, we suggest that this antibody will help to further our understanding of the role of auto- and paracrine PRLR signaling in health and disease.
Collapse
Affiliation(s)
- Christiane Otto
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Anna Särnefält
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Anne Ljungars
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Siegmund Wolf
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Beate Rohde-Schulz
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Iris Fuchs
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Jenny Schkoldow
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Mikael Mattsson
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Richardus Vonk
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Axel Harrenga
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Christoph Freiberg
- TRG Oncology and Gynaecological Therapy (C.O., S.W., B.R.-S., I.F., J.S.), and Department of Research and Clinical Sciences Statistics (R.V.), Bayer Pharma AG, 13342 Berlin, Germany; Department of Protein Engineering (A.S., A.L., M.M.), BioInvent International AB, Soelvegatan 41, SE-223 70 Lund, Sweden; and Department of Global Biologics (A.H., C.F.), Bayer Pharma AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| |
Collapse
|
47
|
Liu TT, Qu ZW, Ren C, Gan X, Qiu CY, Hu WP. Prolactin potentiates the activity of acid-sensing ion channels in female rat primary sensory neurons. Neuropharmacology 2015; 103:174-82. [PMID: 26188144 DOI: 10.1016/j.neuropharm.2015.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023]
Abstract
Prolactin (PRL) is a polypeptide hormone produced and released from the pituitary and extrapituitary tissues. It regulates activity of nociceptors and causes hyperalgesia in pain conditions, but little is known the molecular mechanism. We report here that PRL can exert a potentiating effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons. First, PRL dose-dependently increased the amplitude of ASIC currents with an EC50 of (5.89 ± 0.28) × 10(-8) M. PRL potentiation of ASIC currents was also pH dependent. Second, PRL potentiation of ASIC currents was blocked by Δ1-9-G129R-hPRL, a PRL receptor antagonist, and removed by intracellular dialysis of either protein kinase C inhibitor GF109203X, protein interacting with C-kinase 1(PICK1) inhibitor FSC-231, or PI3K inhibitor AS605240. Third, PRL altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Four, PRL exacerbated nociceptive responses to injection of acetic acid in female rats. Finally, PRL displayed a stronger effect on ASIC mediated-currents and nociceptive behavior in intact female rats than OVX female and male rats and thus modulation of PRL may be gender-dependent. These results suggest that PRL up-regulates the activity of ASICs and enhances ASIC mediated nociceptive responses in female rats, which reveal a novel peripheral mechanism underlying PRL involvement in hyperalgesia.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Zu-Wei Qu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Cuixia Ren
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Xiong Gan
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Chun-Yu Qiu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China.
| | - Wang-Ping Hu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China.
| |
Collapse
|
48
|
Goffin V, Touraine P. The prolactin receptor as a therapeutic target in human diseases: browsing new potential indications. Expert Opin Ther Targets 2015; 19:1229-44. [PMID: 26063597 DOI: 10.1517/14728222.2015.1053209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Prolactin (PRL) signaling has emerged as a relevant target in breast and prostate cancers. This has encouraged various laboratories to develop compounds targeting the PRL receptor (PRLR). As the latter is widely distributed, it is timely to address whether other conditions could also benefit from such inhibitors. AREAS COVERED The authors briefly overview the two classes of PRLR blockers, which involve: i) PRL-core based analogs that have been validated as competitive antagonists in various preclinical models, and ii) anti-PRLR neutralizing antibodies that are currently in clinical Phase I for advanced breast and prostate cancers. The main purpose of this review is to discuss the multiple organs/diseases that may be considered as potential targets/indications for such inhibitors. This is done in light of reports suggesting that PRLR expression/signaling is increased in disease, and/or that systemic or locally elevated PRL levels correlate with (or promote) organ pathogenesis. EXPERT OPINION The two immediate challenges in the field are i) to provide the scientific community with potent anti-prolactin receptor antibodies to map prolactin receptor expression in target organs, and ii) to take advantage of the availability of functionally validated PRLR blockers to establish the relevance of these potential indications in humans.
Collapse
Affiliation(s)
- Vincent Goffin
- Research Director at Inserm, Head of the 'PRL/GH Pathophysiology: Translational Approaches' Laboratory,University Paris Descartes, Institut Necker Enfants Malades (INEM), Inserm Unit 1151, Faculté de Médecine Paris Descartes , Bâtiment Leriche, 14 Rue Maria Helena Vieira Da Silva, CS61431, 75993 Paris Cedex 14 , France +33 1 72 60 63 68 +33 1 72 60 64 01 ;
| | | |
Collapse
|
49
|
Zhang C, Cherifi I, Nygaard M, Haxholm GW, Bogorad RL, Bernadet M, England P, Broutin I, Kragelund BB, Guidotti JE, Goffin V. Residue 146 regulates prolactin receptor folding, basal activity and ligand-responsiveness: potential implications in breast tumorigenesis. Mol Cell Endocrinol 2015; 401:173-88. [PMID: 25524456 DOI: 10.1016/j.mce.2014.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022]
Abstract
PRLR(I146L) is the first identified gain-of-function variant of the prolactin receptor (PRLR) that was proposed to be associated with benign breast tumorigenesis. Structural investigations suggested this hydrophobic core position in the extracellular D2 domain to be linked to receptor dimerization. Here, we used a mutational approach to address how the conservative I-to-L substitution induced constitutive activity. Using cell-based assays of different I146-PRLR variants in combination with spectroscopic/nuclear magnetic resonance analyses we found that chemical manipulation of position 146 profoundly altered folding, PRL-responsiveness, and ligand-independent activity of the receptor in a mutation-specific manner. Together, these data further add to the critical role of position 146, showing it to also be crucial to structural integrity thereby imposing on the biological PRLR properties. When stably introduced in MCF-7 (luminal) and MDA-MB231 (mesenchymal) breast cancer cells, the most potent of the PRL-insensitive mutants (PRLR(I146D)) had minimal impact on cell proliferation and cell differentiation status.
Collapse
Affiliation(s)
- Chi Zhang
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Ibtissem Cherifi
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mads Nygaard
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte W Haxholm
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Roman L Bogorad
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Marie Bernadet
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Patrick England
- Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Isabelle Broutin
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France; Laboratoire de Cristallographie et RMN Biologiques CNRS, UMR 8015 Paris, France
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacques-Emmanuel Guidotti
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades (INEM), Equipe Physiopathologie des Hormones PRL/GH, Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Paris, France.
| |
Collapse
|
50
|
Yang X, Friedl A. A positive feedback loop between prolactin and STAT5 promotes angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:265-80. [PMID: 25472543 DOI: 10.1007/978-3-319-12114-7_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The signal transduction events that orchestrate cellular activities required for angiogenesis remain incompletely understood. We and others recently described that proangiogenic mediators such as fibroblast growth factors can activate members of the signal transducers and activators of transcription (STAT) family. STAT5 activation is necessary and sufficient to induce migration, invasion and tube formation of endothelial cells. STAT5 effects on endothelial cells require the secretion of the prolactin (PRL) family member proliferin-1 (PLF1) in mice and PRL in humans. In human endothelial cells, PRL activates the PRL receptor (PRLR) resulting in MAPK and STAT5 activation, thus closing a positive feedback loop. In vivo, endothelial cell-derived PRL is expected to combine with PRL of tumor cell and pituitary origin to raise the concentration of this polypeptide hormone in the tumor microenvironment. Thus, PRL may stimulate tumor angiogenesis via autocrine, paracrine, and endocrine pathways. The disruption of tumor angiogenesis by interfering with PRL signaling may offer an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Xinhai Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 6051 WIMR, MC-2275, 1111 Highland Avenue, 53705, Madison, WI, USA,
| | | |
Collapse
|