1
|
Mavridou M, Pearce SH. Exploring antigenic variation in autoimmune endocrinopathy. Front Immunol 2025; 16:1561455. [PMID: 40093006 PMCID: PMC11906412 DOI: 10.3389/fimmu.2025.1561455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune disorders develop owing to a misdirected immune response against self-antigen. Genetic studies have revealed that numerous variants in genes encoding immune system proteins are associated with the development of autoimmunity. Indeed, many of these genetic variants in key immune receptors or transcription factors are common in the pathogenesis of several different autoimmune conditions. In contrast, the proclivity to develop autoimmunity to any specific target organ or tissue is under-researched. This has particular relevance to autoimmune endocrine conditions, where organ-specific involvement is the rule. Genetic polymorphisms in the genes encoding the targets of autoimmune responses have been shown to be associated with predisposition to several autoimmune diseases, including type 1 diabetes, autoimmune thyroid disease and Addison's disease. Mechanistically, variations leading to decreased intrathymic expression, overexpression, different localisation, alternative splicing or post-translational modifications can interfere in the tolerance induction process. This review will summarise the different ways genetic variations in certain genes encoding endocrine-specific antigens (INS, TSHR, TPO, CYP21A2, PIT-1) may predispose to different autoimmune endocrine conditions.
Collapse
Affiliation(s)
- Maria Mavridou
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Newcastle-upon-Tyne, United Kingdom
| | - Simon H Pearce
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Newcastle-upon-Tyne, United Kingdom
- Endocrine Unit, Royal Victoria Infirmary, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
2
|
Zubkov AV, Butova LG, Kuzmina NS, Zubkova IV, Fadeev VV, Svitich OA. Expression of the Extracellular Domain of the Thyrotropin Receptor Based on mRNA Isolated from Thyroid Tissue and Whole Blood of Patients with Toxic Diffuse Goiter (Graves' Disease). Bull Exp Biol Med 2025; 178:431-436. [PMID: 40153161 DOI: 10.1007/s10517-025-06351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 03/30/2025]
Abstract
Fragments of the thyrotropin receptor gene (TSHR) encoding 432- and 389-bp regions of the extracellular domain corresponding to the autoantibody binding sites in autoimmune diseases of the thyroid gland (Graves' disease and Hashimoto's thyroiditis, respectively) were cloned based on mRNA isolated not only from the thyroid tissue, but also from the whole blood of patients with toxic diffuse goiter (Graves' disease). In a group of 18 patients, the 432-bp fragment was detected in 6 patients and the 389-bp fragment was detected in 3 patients. In one patient, both fragments were isolated from the blood. The results indicate that TSHR is expressed in the blood in 30% of patients with Graves' disease.
Collapse
Affiliation(s)
- A V Zubkov
- I. Mechnikov Research Institute of Vaccine and Sera, Moscow, Russia.
| | - L G Butova
- I. Mechnikov Research Institute of Vaccine and Sera, Moscow, Russia
| | - N S Kuzmina
- I. Mechnikov Research Institute of Vaccine and Sera, Moscow, Russia
| | - I V Zubkova
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V V Fadeev
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - O A Svitich
- I. Mechnikov Research Institute of Vaccine and Sera, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Yang Q, Zhang Q, Pan F, Zha B. STAT6 blockade ameliorates thyroid function in Graves' disease via downregulation of the sodium/iodide symporter. Endocr Connect 2024; 13:e240428. [PMID: 39393405 PMCID: PMC11623256 DOI: 10.1530/ec-24-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Background Signal transducer and activator of transcription 6 (STAT6) is an important nuclear transcription factor. Previous studies demonstrated that blocking STAT6 can ameliorate thyroid function by reducing serum T3 and T4. Sodium/iodide symporter (NIS) is a key protein that mediates active iodine uptake and plays an important role in regulating thyroid function. This study explored the interaction between STAT6 and NIS. Methods Immunohistochemical staining was performed for detecting the expression of NIS in different tissues. RT-PCR was performed for evaluating the mRNA level of NIS when Nthy-ori 3-1 cells were incubated with IL4, thyroid stimulating hormone (TSH), or monoclonal thyroid-specific stimulatory autoantibody (TSAb) for 24 h. Quantitative RT-PCR, western blot, and immunofluorescence analysis were performed for detecting NIS expression after inhibiting STAT6 phosphorylation by AS1517499. Finally, we used luciferase reporter assays to explore the ability of STAT6 to regulate the promoter activity of the NIS-coding gene. Results NIS was highly expressed in thyroid epithelial cells of EAGD mice or Graves' disease (GD) patients, and TSAb increased the expression of NIS. We show that a STAT6 phosphorylation inhibitor can attenuate the effect of TSAb on increasing NIS protein and mRNA levels. Finally, we confirm that transcription factor STAT6 can mediate NIS transcription and co-activator P100 protein can enhance STAT6-dependent transcriptional activation. Conclusion In GD, TSAb induces STAT6 signaling to upregulate NIS expression, and STAT6 blockade ameliorates thyroid function via downregulation of the NIS. Our study furthers understanding of the effects of STAT6 on thyroid function and reveals new avenues for GD treatment.
Collapse
Affiliation(s)
- Qian Yang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Qinnan Zhang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Fanfan Pan
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhang Y, Tan Y, Zhang Z, Cheng X, Duan J, Li Y. Targeting Thyroid-Stimulating Hormone Receptor: A Perspective on Small-Molecule Modulators and Their Therapeutic Potential. J Med Chem 2024; 67:16018-16034. [PMID: 39269788 DOI: 10.1021/acs.jmedchem.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
TSHR is a member of the glycoprotein hormone receptors, a subfamily of class A G-protein-coupled receptors and plays pivotal roles in various physiological and pathological processes, particularly in thyroid growth and hormone production. The aberrant TSHR function has been implicated in several human diseases including Graves' disease and orbitopathy, nonautoimmune hyperthyroidism, hypothyroidism, cancer, neurological disorders, and osteoporosis. Consequently, TSHR is recognized as an attractive therapeutic target, and targeting TSHR with small-molecule modulators including agonists, antagonists, and inverse agonists offers great potential for drug discovery. In this perspective, we summarize the structures and biological functions of TSHR as well as the recent advances in the development of small-molecule TSHR modulators, highlighting their chemotypes, mode of actions, structure-activity relationships, characterizations, in vitro/in vivo activities, and therapeutic potential. The challenges, new opportunities, and future directions in this area are also discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ye Tan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zian Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 330106, China
| | - Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Center for Structure & Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Jiang Z, Chen L, Huang H. Peptidomic profiling of endogenous peptides in the spleens of mouse models of Graves' disease. Heliyon 2024; 10:e36661. [PMID: 39295986 PMCID: PMC11408014 DOI: 10.1016/j.heliyon.2024.e36661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background Graves' disease (GD) is a common autoimmune thyroid disorder. The pathogenesis of GD involves an autoimmune response to the A subunit of the human thyrotropin receptor (hTSHR), although the specific mechanisms are not fully elucidated. Methods This study established a GD model by immunizing BALB/c mice with a recombinant adenovirus expressing the hTSHR A subunit. Spleen tissues were collected and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify differentially expressed peptides (DEPs). Gene Ontology (GO) analysis and KEGG pathway analysis were further utilized to annotate the functions of these DEPs. Additionally, peptide bioactivity prediction and molecular docking studies were conducted using Alphafold and Pymol software, respectively, to assess the binding affinity of specific peptides to the hTSHR A subunit. Results The GD mouse model was successfully established, and 1,428 DEPs were identified in the spleen, with 368 upregulated and 1,060 downregulated. Functional analysis indicated that these DEPs are mainly involved in cellular endocytosis, regulation of gene expression, and nucleocytoplasmic transport. Notably, molecular docking studies revealed that the abnormally highly expressed peptide HG2A-24aa demonstrated potential bioactivity and strong binding affinity with hTSHR-289aa. Conclusion The specific bioactive peptides may play key roles in the pathogenesis of GD, particularly HG2A-24aa, which may have a significant role in the MHC II antigen presentation pathway mediated by the hTSHR A subunit.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lijun Chen
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Huibin Huang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| |
Collapse
|
6
|
Mezei M, Latif R, Davies TF. TSH Receptor Oligomers Associated With the TSH Receptor Antibody Reactome. Endocrinology 2024; 165:bqae099. [PMID: 39116382 DOI: 10.1210/endocr/bqae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The TSH receptor (TSHR) and its many forms are the primary antigens of Graves' disease as evidenced by the presence of TSHR antibodies of differing biological activity. The TSH holoreceptor undergoes complex posttranslational changes including cleavage of its ectodomain and oligomer formation. We have previously shown that the TSHR exists in both monomeric and dimeric structures in the thyroid cell membrane and have demonstrated, by modeling, that the transmembrane domains (TMD) can form stable dimeric structures. Based on these earlier simulations of the TSHR-TMD structure and our most recent model of the full-length TSHR, we have now built models of full-length TSHR multimers with and without TSH ligand in addition to multimers of the extracellular leucine-rich domain, the site of TSH and autoantibody binding. Starting from these models we ran molecular dynamics simulations of the receptor oligomers solvated with water and counterions; the full-length oligomers also were embedded in a dipalmitoylphosphatidylcholine bilayer. The full-length TSHR dimer and trimer models stayed in the same relative orientation and distance during 2000 ns (or longer) molecular dynamics simulation in keeping with our earlier report of TMD dimerization. Simulations were also performed to model oligomers of the leucine-rich domain alone; we found a trimeric complex to be even more stable than the dimers. These data provide further evidence that different forms of the TSHR add to the complexity of the immune response to this antigen that, in patients with autoimmune thyroid disease, generate an autoantibody reactome with multiple types of autoantibody to the TSHR.
Collapse
Affiliation(s)
- Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, 10019, New York, USA
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, 10019, New York, USA
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, 10019, New York, USA
- Thyroid Research Unit, James J. Peters VA Medical Center, New York, 10019, New York, USA
| | - Terry F Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, 10019, New York, USA
- Thyroid Research Unit, James J. Peters VA Medical Center, New York, 10019, New York, USA
| |
Collapse
|
7
|
Wiersinga WM, Poppe KG, Effraimidis G. Hyperthyroidism: aetiology, pathogenesis, diagnosis, management, complications, and prognosis. Lancet Diabetes Endocrinol 2023; 11:282-298. [PMID: 36848916 DOI: 10.1016/s2213-8587(23)00005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 02/26/2023]
Abstract
Hyperthyroidism is a common condition with a global prevalence of 0·2-1·3%. When clinical suspicion of hyperthyroidism arises, it should be confirmed by biochemical tests (eg, low TSH, high free thyroxine [FT4], or high free tri-iodothyonine [FT3]). If hyperthyroidism is confirmed by biochemical tests, a nosological diagnosis should be done to find out which disease is causing the hyperthyroidism. Helpful tools are TSH-receptor antibodies, thyroid peroxidase antibodies, thyroid ultrasonography, and scintigraphy. Hyperthyroidism is mostly caused by Graves' hyperthyroidism (70%) or toxic nodular goitre (16%). Hyperthyroidism can also be caused by subacute granulomatous thyroiditis (3%) and drugs (9%) such as amiodarone, tyrosine kinase inhibitors, and immune checkpoint inhibitors. Disease-specific recommendations are given. Currently, Graves' hyperthyroidism is preferably treated with antithyroid drugs. However, recurrence of hyperthyroidism after a 12-18 month course of antithyroid drugs occurs in approximately 50% of patients. Being younger than 40 years, having FT4 concentrations that are 40 pmol/L or higher, having TSH-binding inhibitory immunoglobulins that are higher than 6 U/L, and having a goitre size that is equivalent to or larger than WHO grade 2 before the start of treatment with antithyroid drugs increase risk of recurrence. Long-term treatment with antithyroid drugs (ie, 5-10 years of treatment) is feasible and associated with fewer recurrences (15%) than short-term treatment (ie, 12-18 months of treatment). Toxic nodular goitre is mostly treated with radioiodine (131I) or thyroidectomy and is rarely treated with radiofrequency ablation. Destructive thyrotoxicosis is usually mild and transient, requiring steroids only in severe cases. Specific attention is given to patients with hyperthyroidism who are pregnant, have COVID-19, or have other complications (eg, atrial fibrillation, thyrotoxic periodic paralysis, and thyroid storm). Hyperthyroidism is associated with increased mortality. Prognosis might be improved by rapid and sustained control of hyperthyroidism. Innovative new treatments are expected for Graves' disease, by targeting B cells or TSH receptors.
Collapse
Affiliation(s)
- Wilmar M Wiersinga
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Netherlands
| | - Kris G Poppe
- Endocrine Unit, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Grigoris Effraimidis
- Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
- Department of Endocrinology and Metabolism, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
8
|
Zala A, Thomas R. Antigen-specific immunotherapy to restore antigen-specific tolerance in Type 1 diabetes and Graves' disease. Clin Exp Immunol 2023; 211:164-175. [PMID: 36545825 PMCID: PMC10019129 DOI: 10.1093/cei/uxac115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes and Graves' disease are chronic autoimmune conditions, characterized by a dysregulated immune response. In Type 1 diabetes, there is beta cell destruction and subsequent insulin deficiency whereas in Graves' disease, there is unregulated excessive thyroid hormone production. Both diseases result in significant psychosocial, physiological, and emotional burden. There are associated risks of diabetic ketoacidosis and hypoglycaemia in Type 1 diabetes and risks of thyrotoxicosis and orbitopathy in Graves' disease. Advances in the understanding of the immunopathogenesis and response to immunotherapy in Type 1 diabetes and Graves' disease have facilitated the introduction of targeted therapies to induce self-tolerance, and subsequently, the potential to induce long-term remission if effective. We explore current research surrounding the use of antigen-specific immunotherapies, with a focus on human studies, in Type 1 diabetes and Graves' disease including protein-based, peptide-based, dendritic-cell-based, and nanoparticle-based immunotherapies, including discussion of factors to be considered when translating immunotherapies to clinical practice.
Collapse
Affiliation(s)
- Aakansha Zala
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Ranjeny Thomas
- Correspondence: Ranjeny Thomas, Frazer Institute, The University of Queensland.
| |
Collapse
|
9
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Cui X, Wang F, Liu C. A review of TSHR- and IGF-1R-related pathogenesis and treatment of Graves' orbitopathy. Front Immunol 2023; 14:1062045. [PMID: 36742308 PMCID: PMC9893276 DOI: 10.3389/fimmu.2023.1062045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Graves' orbitopathy (GO) is an organ-specific autoimmune disease, but its pathogenesis remains unclear. There are few review articles on GO research from the perspective of target cells and target antigens. A systematic search of PubMed was performed, focusing mainly on studies published after 2015 that involve the role of target cells, orbital fibroblasts (OFs) and orbital adipocytes (OAs), target antigens, thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R), and their corresponding antibodies, TSHR antibodies (TRAbs) and IGF-1R antibodies (IGF-1R Abs), in GO pathogenesis and the potentially effective therapies that target TSHR and IGF-1R. Based on the results, OFs may be derived from bone marrow-derived CD34+ fibrocytes. In addition to CD34+ OFs, CD34- OFs are important in the pathogenesis of GO and may be involved in hyaluronan formation. CD34- OFs expressing Slit2 suppress the phenotype of CD34+ OFs. β-arrestin 1 can be involved in TSHR/IGF-1R crosstalk as a scaffold. Research on TRAbs has gradually shifted to TSAbs, TBAbs and the titre of TRAbs. However, the existence and role of IGF-1R Abs are still unknown and deserve further study. Basic and clinical trials of TSHR-inhibiting therapies are increasing, and TSHR is an expected therapeutic target. Teprotumumab has become the latest second-line treatment for GO. This review aims to effectively describe the pathogenesis of GO from the perspective of target cells and target antigens and provide ideas for its fundamental treatment.
Collapse
Affiliation(s)
- Xuejiao Cui
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Futao Wang
- Department of Endocrinology, Changchun Central Hospital, Changchun, China
| | - Cong Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature 2022; 609:854-859. [PMID: 35940204 DOI: 10.1038/s41586-022-05173-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Thyroid stimulating hormone (TSH), through activation of its G protein-coupled thyrotropin receptor (TSHR), controls the synthesis of thyroid hormone (TH), an essential metabolic hormone1-3. Aberrant signaling of TSHR by autoantibodies causes Graves' disease and hypothyroidism that affect millions of patients worldwide4. Here we report the active structures of TSHR with TSH and an activating autoantibody M225, both bound to an allosteric agonist ML-1096, as well as an inactivated TSHR structure with inhibitory antibody K1-707. Both TSH and M22 push the extracellular domain (ECD) of TSHR into the upright active conformation. In contrast, K1-70 blocks TSH binding and is incapable of pushing the ECD to the upright conformation. Comparisons of the active and inactivated structures of TSHR with those of the luteinizing hormone-choriogonadotropin receptor (LHCGR) reveal a universal activation mechanism of glycoprotein hormone receptors, in which a conserved 10-residue fragment (P10) from the hinge C-terminal loop mediates ECD interactions with the TSHR transmembrane domain8. One surprisingly feature is that there are over 15 cholesterols surrounding TSHR, supporting its preferential location in lipid rafts9. These structures also highlight a similar ECD-push mechanism for TSH and autoantibody M22 to activate TSHR, thus providing the molecular basis for Graves' disease.
Collapse
|
13
|
Zhang Y, Xie R, Ou J. A U-shaped association between serum albumin with total triiodothyronine in adults. J Clin Lab Anal 2022; 36:e24473. [PMID: 35524426 PMCID: PMC9169170 DOI: 10.1002/jcla.24473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Thyroid dysfunction is a common thyroid disorder in our life and its symptoms are non-specific, therefore the diagnosis of thyroid dysfunction is important for patients. Albumin (ALB) can carry thyroid hormones to their sites of action as a way to achieve rapid delivery of thyroid hormones to the tissues. The purpose of this study was to investigate the relationship between serum ALB levels and total triiodothyronine (TT3) in adults. METHODS Data from the 2007-2012 National Health and Nutrition Examination Survey (NHANES) were used to examine the association between ALB and TT3 using multivariate logistic regression models. Fitting smoothed curves and generalized weighted models were also used. RESULTS The analysis included a total of 7933 participants that we found an independent positive relationship between ALB and TT3 among participants [0.006 (0.003, 0.009)]. In men, there was a significant positive correlation between ALB and TT3, whereas in women ALB and TT3 suggested a significant negative correlation. Moreover, our study revealed that the independent association between the levels of ALB and TT3 was significant in Non-Hispanic White, but not in Non-Hispanic Black. Notably, we found a U-shaped association between ALB and serum TT3 in total participants (inflection point for ALB: 41 g/L) and females after adjusted covariates (inflection point for ALB: 46 g/L). CONCLUSIONS We found a U-shaped relationship between serum ALB and TT3 with infection point at 41 g/L for ALB, which may provide a reference for future screening in adults with thyroid dysfunction.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Breast and Thyroid SurgeryThe Affiliated Nanhua HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Ruijie Xie
- Department of Hand & MicrosurgeryThe Affiliated Nanhua HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Jun Ou
- Department of Spine SurgeryThe Affiliated Nanhua HospitalHengyang Medical schoolUniversity of South ChinaHengyangChina
| |
Collapse
|
14
|
Abstract
PURPOSE Our understanding of thyroid-associated ophthalmopathy (TAO, A.K.A Graves' orbitopathy, thyroid eye disease) has advanced substantially, since one of us (TJS) wrote the 2010 update on TAO, appearing in this journal. METHODS PubMed was searched for relevant articles. RESULTS Recent insights have resulted from important studies conducted by many different laboratory groups around the World. A clearer understanding of autoimmune diseases in general and TAO specifically emerged from the use of improved research methodologies. Several key concepts have matured over the past decade. Among them, those arising from the refinement of mouse models of TAO, early stage investigation into restoring immune tolerance in Graves' disease, and a hard-won acknowledgement that the insulin-like growth factor-I receptor (IGF-IR) might play a critical role in the development of TAO, stand out as important. The therapeutic inhibition of IGF-IR has blossomed into an effective and safe medical treatment. Teprotumumab, a β-arrestin biased agonist monoclonal antibody inhibitor of IGF-IR has been studied in two multicenter, double-masked, placebo-controlled clinical trials demonstrated both effectiveness and a promising safety profile in moderate-to-severe, active TAO. Those studies led to the approval by the US FDA of teprotumumab, currently marketed as Tepezza for TAO. We have also learned far more about the putative role that CD34+ fibrocytes and their derivatives, CD34+ orbital fibroblasts, play in TAO. CONCLUSION The past decade has been filled with substantial scientific advances that should provide the necessary springboard for continually accelerating discovery over the next 10 years and beyond.
Collapse
Affiliation(s)
- E J Neag
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - T J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
15
|
Helfinger L, Tate CG. Expression and Purification of the Human Thyroid-Stimulating Hormone Receptor. Methods Mol Biol 2022; 2507:313-325. [PMID: 35773589 DOI: 10.1007/978-1-0716-2368-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The thyroid-stimulating hormone receptor (TSHR) is a Class A G protein-coupled receptor (GPCR) that mediates signalling through the hypothalamic-pituitary-thyroid axis. Inappropriate activation of TSHR by autoantibodies or mutations, results in human disease such as Grave's disease and Hashimito's thyroiditis. Therefore, there is a need to develop novel therapeutics targeting the TSHR. Understanding the structure and mechanism of activation of this receptor would help elucidate the pathogenesis of disease and aid drug development. Here, we describe a method for the expression of the human TSHR in a mammalian cell line generated through a lentiviral expression system. The receptor is then purified by affinity chromatography in the ligand-free state and is suitable for structure determination by single-particle electron cryo-microscopy (cryo-EM).
Collapse
|
16
|
Vieira IH, Rodrigues D, Paiva I. The Mysterious Universe of the TSH Receptor. Front Endocrinol (Lausanne) 2022; 13:944715. [PMID: 35903283 PMCID: PMC9315062 DOI: 10.3389/fendo.2022.944715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022] Open
Abstract
The thyroid-stimulating hormone receptor (TSH-R) is predominantly expressed in the basolateral membrane of thyrocytes, where it stimulates almost every aspect of their metabolism. Several extrathyroidal locations of the receptor have been found including: the pituitary, the hypothalamus, and other areas of the central nervous system; the periorbital tissue; the skin; the kidney; the adrenal; the liver; the immune system cells; blood cells and vascular tissues; the adipose tissue; the cardiac and skeletal muscles, and the bone. Although the functionality of the receptor has been demonstrated in most of these tissues, its physiological importance is still a matter of debate. A contribution to several pathological processes is evident in some cases, as is the case of Grave's disease in its multiple presentations. Conversely, in the context of other thyroid abnormalities, the contribution of the TSH-R and its ligand is still a matter of debate. This article reviews the several different sites of expression of the TSH-R and its potential role in both physiological and pathological processes.
Collapse
|
17
|
Sviridenko NY, Sheremeta MS, Belovalova IM, Melnichenko GA. [Treatment of Graves' disease in patients with thyroid eye disease]. Vestn Oftalmol 2021; 137:128-135. [PMID: 34965078 DOI: 10.17116/oftalma2021137061128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Graves' disease (GD) is an autoimmune disease that is often complicated by thyroid eye disease (TED). Clinical presentations of TED can develop simultaneously with the manifestation of GD, after the manifestation of GD amid treatment, and before the development of thyrotoxicosis. Treatment of such patients is a difficult task, because on the one hand, it is necessary to take into account the clinical picture of thyrotoxicosis, and on the other - the symptoms of eye damage. The combination of the two pathologies determines the need for simultaneous treatment of GD and TED, and the choice of a treatment method for GD will depend on the manifestations of TED. This article presents current views on the treatment of GD with concomitant TED. The choice of GD treatment method will be largely determined by the clinical manifestations of TED and will be conducted jointly by endocrinologists and ophthalmologists.
Collapse
Affiliation(s)
- N Yu Sviridenko
- Scientific Medical Research Center of Endocrinology, Moscow, Russia
| | - M S Sheremeta
- Scientific Medical Research Center of Endocrinology, Moscow, Russia
| | - I M Belovalova
- Scientific Medical Research Center of Endocrinology, Moscow, Russia
| | - G A Melnichenko
- Scientific Medical Research Center of Endocrinology, Moscow, Russia
| |
Collapse
|
18
|
Benvenga S, Antonelli A, Fallahi P, Bonanno C, Rodolico C, Guarneri F. Amino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis. J Clin Transl Endocrinol 2021; 26:100274. [PMID: 34849350 PMCID: PMC8609095 DOI: 10.1016/j.jcte.2021.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Alpha-enolase, aldehyde reductase-I and dimethylargininase-I are SREAT autoantigens. Molecular mimicry between thyroid and CNS autoantigens is hypothesized in SREAT. Homology with TSH-R, Tg and TPO exists for 6, 27 and 47 of 46,809 CNS-proteins. The above homologies are often in epitope-containing parts of thyroid autoantigens. Most of the above proteins are expressed in CNS regions which are altered in SREAT.
A few patients with Hashimoto’s thyroiditis or Graves’ disease develop a multiform syndrome of the central nervous system (CNS) termed Hashimoto’s encephalopathy or steroid-responsive encephalopathy associated with autoimmune thyroid disease (HE/SREAT). They have high levels of thyroid autoantibodies (TgAb, TPOAb and/or TSH-R-Ab) in blood and cerebrospinal fluid. Autoantibodies against alpha-enolase, aldehyde reductase-I (AKRIA) and/or dimethylargininase-I (DDAHI), proteins expressed in the CNS among other tissues, were detected in the blood and, when searched, in the cerebrospinal fluid of HE/SREAT patients. Recently, we reported that alpha-enolase, AKRIA and DDAHI share local sequence homology with each of the three autoantigens (TgAb, TPOAb, TSH-R-Ab), often in epitope-containing segments of the thyroid autoantigens. We hypothesized that there might be additional CNS-expressed proteins homologous to thyroid autoantigens, possibly overlapping known epitopes of the thyroid autoantigens. We used bioinformatic methods to address this hypothesis. Six, 27 and 47 of 46,809 CNS-expressed proteins share homology with TSH-R, Tg and TPO, respectively. The homologous regions often contain epitopes, and some match regions of thyroid autoantigens which have homology with alpha-enolase, AKRIA and/or DDAHI. Several of the aforementioned proteins are present in CNS areas that show abnormalities at neuroimaging in HE/SREAT patients. Furthermore, autoantibodies against some of the said six, 27 and 47 proteins were reported to be associated with a number of autoimmune diseases. Not only we validated our hypothesis, but we think that such a variety of potential CNS targets for thyroid Ab against epitopes contained in regions that have local homology with CNS proteins may explain the polymorphic phenotypes of HE/SREAT. Only when elevated amounts of these Ab are synthesized and trespass the blood-brain barrier, HE/SREAT appears. This might explain why HE/SREAT is so relatively rare.
Collapse
|
19
|
Lu CF, Liu WS, Ge XQ, Xu F, Su JB, Wang XQ, Wang Y. The association between serum adenosine deaminase levels and Graves' disease. Endocr Connect 2021; 10:1227-1233. [PMID: 34473081 PMCID: PMC8494409 DOI: 10.1530/ec-21-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Adenosine deaminase (ADA) is essential for the differentiation and maturation of lymphocytes, while lymphocytes infiltration in thyroid tissue is a vital pathological feature of Graves' disease (GD). The aim of the present study was to compare the concentration of ADA between healthy controls (HC) and patients with GD, and evaluate the association between ADA and GD. METHODS A total of 112 GD patients and 77 matched HC were enrolled in this study. Each participant was examined for thyroid hormones and autoantibodies, ADA concentration, and thyroid ultrasonography. RESULTS Serum ADA levels in GD patients were significantly higher than that in HC subgroup (P < 0.001). In GD patients, serum ADA levels were positively associated with serum-free triiodothyronine (FT3), free thyroxine (FT4), thyroid peroxidase antibody (TPOAb), thyroid-stimulating hormone receptor antibody (TRAb) levels, and total thyroid gland volume (thyroid VolT) and negatively associated with serum thyroid-stimulating hormone receptor (TSH) levels (all P < 0.05). There were no similar correlations in the HC subgroup. Multiple linear regression analysis suggested that serum TSH, FT3, and ADA levels played an important role in serum TRAb levels. CONCLUSIONS Our results demonstrated that serum ADA levels were closely associated with GD.
Collapse
Affiliation(s)
- Chun-feng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Wang-shu Liu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Xiao-qin Ge
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to F Xu or J Su or X Wang: or or
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to F Xu or J Su or X Wang: or or
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to F Xu or J Su or X Wang: or or
| | - Yan Wang
- Department of Geriatrics, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| |
Collapse
|
20
|
Mahmood F, Xu R, Awan MUN, Song Y, Han Q, Xia X, Zhang J. PDIA3: Structure, functions and its potential role in viral infections. Biomed Pharmacother 2021; 143:112110. [PMID: 34474345 DOI: 10.1016/j.biopha.2021.112110] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The catalysis of disulphide (SS) bonds is the most important characteristic of protein disulphide isomerase (PDI) family. Catalysis occurs in the endoplasmic reticulum, which contains many proteins, most of which are secretory in nature and that have at least one s-s bond. Protein disulphide isomerase A3 (PDIA3) is a member of the PDI family that acts as a chaperone. PDIA3 is highly expressed in response to cellular stress, and also intercept the apoptotic cellular death related to endoplasmic reticulum (ER) stress, and protein misfolding. PDIA3 expression is elevated in almost 70% of cancers and its expression has been linked with overall low cell invasiveness, survival and metastasis. Viral diseases present a significant public health threat. The presence of PDIA3 on the cell surface helps different viruses to enter the cells and also helps in replication. Therefore, inhibitors of PDIA3 have great potential to interfere with viral infections. In this review, we summarize what is known about the basic structure, functions and role of PDIA3 in viral infections. The review will inspire studies of pathogenic mechanisms and drug targeting to counter viral diseases.
Collapse
Affiliation(s)
- Faisal Mahmood
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Ruixian Xu
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Yuzhu Song
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Qinqin Han
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Xueshan Xia
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Jinyang Zhang
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| |
Collapse
|
21
|
Mattila SO, Tuhkanen HE, Lackman JJ, Konzack A, Morató X, Argerich J, Saftig P, Ciruela F, Petäjä-Repo UE. GPR37 is processed in the N-terminal ectodomain by ADAM10 and furin. FASEB J 2021; 35:e21654. [PMID: 34042202 DOI: 10.1096/fj.202002385rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022]
Abstract
GPR37 is an orphan G protein-coupled receptor (GPCR) implicated in several neurological diseases and important physiological pathways in the brain. We previously reported that its long N-terminal ectodomain undergoes constitutive metalloprotease-mediated cleavage and shedding, which have been rarely described for class A GPCRs. Here, we demonstrate that the protease that cleaves GPR37 at Glu167↓Gln168 is a disintegrin and metalloprotease 10 (ADAM10). This was achieved by employing selective inhibition, RNAi-mediated downregulation, and genetic depletion of ADAM10 in cultured cells as well as in vitro cleavage of the purified receptor with recombinant ADAM10. In addition, the cleavage was restored in ADAM10 knockout cells by overexpression of the wild type but not the inactive mutant ADAM10. Finally, postnatal conditional depletion of ADAM10 in mouse neuronal cells was found to reduce cleavage of the endogenous receptor in the brain cortex and hippocampus, confirming the physiological relevance of ADAM10 as a GPR37 sheddase. Additionally, we discovered that the receptor is subject to another cleavage step in cultured cells. Using site-directed mutagenesis, the site (Arg54↓Asp55) was localized to a highly conserved region at the distal end of the ectodomain that contains a recognition site for the proprotein convertase furin. The cleavage by furin was confirmed by using furin-deficient human colon carcinoma LoVo cells and proprotein convertase inhibitors. GPR37 is thus the first multispanning membrane protein that has been validated as an ADAM10 substrate and the first GPCR that is processed by both furin and ADAM10. The unconventional N-terminal processing may represent an important regulatory element for GPR37.
Collapse
Affiliation(s)
- S Orvokki Mattila
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Hanna E Tuhkanen
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Jarkko J Lackman
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Anja Konzack
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Xavier Morató
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Josep Argerich
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Paul Saftig
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Ulla E Petäjä-Repo
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| |
Collapse
|
22
|
Grassi ES, Lábadi A, Vezzoli V, Ghiandai V, Bonomi M, Persani L. Thyrotropin Receptor p.N432D Retained Variant Is Degraded Through an Alternative Lysosomal/Autophagosomal Pathway and Can Be Functionally Rescued by Chemical Chaperones. Thyroid 2021; 31:1030-1040. [PMID: 33446056 DOI: 10.1089/thy.2020.0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Loss-of-function mutations of thyrotropin receptor (TSHR) are one of the main causes of congenital hypothyroidism. As for many disease-associated G-protein coupled receptors (GPCRs), these mutations often affect the correct trafficking and maturation of the receptor, thus impairing the expression on the cell surface. Several retained GPCR mutants are able to effectively bind their ligands and to transduce signals when they are forced to the cell surface by degradation inhibition or by treatment with chaperones. Despite the large number of well-characterized retained TSHR mutants, no attempts have been made for rescue. Further, little is known about TSHR degradation pathways. We hypothesize that, similar to other GPCRs, TSHR retained mutants may be at least partially functional if their maturation and membrane expression is facilitated by chaperones or degradation inhibitors. Methods: We performed in silico predictions of the functionality of known TSHR variants and compared the results with available in vitro data. Western blot, confocal microscopy, enzyme-linked immunosorbent assays, and dual luciferase assays were used to investigate the effects of degradation pathways inhibition and of chemical chaperone treatments on TSHR variants' maturation and functionality. Results: We found a high discordance rate between in silico predictions and in vitro data for retained TSHR variants, a fact indicative of a conserved potential to initiate signal transduction if these mutants were expressed on the cell surface. We show experimentally that some maturation defective TSHR mutants are able to effectively transduce Gs/cAMP signaling if their maturation and expression are enhanced by using chemical chaperones. Further, through the characterization of the intracellular retained p.N432D variant, we provide new insights on the TSHR degradation mechanism, as our results suggest that aggregation-prone mutant can be directed toward the autophagosomal pathway instead of the canonical proteasome system. Conclusions: Our study reveals alternative pathways for TSHR degradation. Retained TSHR variants can be functional when expressed on the cell surface membrane, thus opening the possibility of further studies on the pharmacological modulation of TSHR expression and functionality in patients in whom TSHR signaling is disrupted.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Arpad Lábadi
- Department of Laboratory Medicine, University of Pécs, Pécs, Hungary
| | - Valeria Vezzoli
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Viola Ghiandai
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
23
|
Mezei M, Latif R, Das B, Davies TF. Implications of an Improved Model of the TSH Receptor Transmembrane Domain (TSHR-TMD-TRIO). Endocrinology 2021; 162:6161546. [PMID: 33693584 PMCID: PMC8183494 DOI: 10.1210/endocr/bqab051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/19/2022]
Abstract
The thyroid-stimulating hormone receptor (TSHR) is a G-protein-coupled receptor group A family member with 7 transmembrane helices. We generated 3 new models of its entire transmembrane region using a 600 ns molecular simulation. The simulation started from our previously published model, which we have now revised by also modeling the intracellular loops and the C-terminal tail, adding internal waters and embedding it into a lipid bilayer with a water layer and with ions added to complete the system. We have named this model TSHR-TMD-TRIO since 3 representative dominant structures were then extracted from the simulation trajectory and compared with the original model. These structures each showed small but significant changes in the relative positions of the helices. The 3 models were also used as targets to dock a set of small molecules that are known active compounds including a new TSHR antagonist (BT362), which confirmed the appropriateness of the model with some small molecules showing significant preference for one or other of the structures.
Collapse
Affiliation(s)
- Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Correspondence: Mihaly Mezei, PhD, Icahn School of Medicine at Mount Sinai, New York, NY, USA. E-mail:
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
| | - Bhaskar Das
- Arnold & Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, New York, NY, USA
| | - Terry F Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Hopperstad K, Truschel T, Wahlicht T, Stewart W, Eicher A, May T, Deisenroth C. Characterization of Novel Human Immortalized Thyroid Follicular Epithelial Cell Lines. APPLIED IN VITRO TOXICOLOGY 2021; 7:39-49. [PMID: 35663474 PMCID: PMC9157743 DOI: 10.1089/aivt.2020.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Investigation of normal human thyroid function using in vitro culture systems is dependent on cells that recapitulate physiology of differentiated thyrocytes. Primary thyrocytes retain features of the native organ but have limited lifespan in culture. Immortalized thyrocytes offer an alternative if challenges maintaining phenotypic stability can be overcome to retain functional features of primary cells. MATERIALS AND METHODS CI-SCREEN immortalization technology was applied to normal human thyroid tissue to generate four cell line variants. The lines were characterized for transgene integration, biomarker expression, genomic stability, and proliferation rates. Thyroid Stimulating Hormone (TSH)-dependent morphology, thyroglobulin production, thyroxine hormone synthesis, and viability were assessed using conventional 2D monolayer and 3D microtissue culture formats in huThyrEC or h7H medium. RESULTS Despite differential transgene profiles, the lines had similar biomarker expression patterns and proliferation rates. In 2D culture there was no thyroxine synthesis or changes in viability, but TSH-dependent thyroglobulin production was more significant for several lines in h7H than huThyrEC medium. Comparatively, in 3D microtissues, TSH-dependent thyroglobulin induction was greater for cell lines in h7H medium. Synthesis of thyroxine in one cell line was higher than background with TSH exposure, but not significantly different than control. DISCUSSION Immortalization of primary human thyrocytes yielded transgenic lines of epithelial origin. When evaluated in 2D or 3D culture formats, h7H medium supported thyroglobulin production to a greater magnitude than huThyrEC medium. One cell line cultured in 3D microtissue format marginally recapitulated T4 synthesis under continuous TSH exposure. CONCLUSION Select human thyroid cell lines exhibited morphological and functional features of primary thyrocytes and are a novel resource for in vitro disease modeling and toxicity testing that will enable reproducible culture models more representative of normal human thyroid function.
Collapse
Affiliation(s)
- Kristen Hopperstad
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | | | - Tom Wahlicht
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Wendy Stewart
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Andrew Eicher
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Chad Deisenroth
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| |
Collapse
|
25
|
Krieger CC, Neumann S, Gershengorn MC. Is There Evidence for IGF1R-Stimulating Abs in Graves' Orbitopathy Pathogenesis? Int J Mol Sci 2020; 21:E6561. [PMID: 32911689 PMCID: PMC7555308 DOI: 10.3390/ijms21186561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
In this review, we summarize the evidence against direct stimulation of insulin-like growth factor 1 receptors (IGF1Rs) by autoantibodies in Graves' orbitopathy (GO) pathogenesis. We describe a model of thyroid-stimulating hormone (TSH) receptor (TSHR)/IGF1R crosstalk and present evidence that observations indicating IGF1R's role in GO could be explained by this mechanism. We evaluate the evidence for and against IGF1R as a direct target of stimulating IGF1R antibodies (IGF1RAbs) and conclude that GO pathogenesis does not involve directly stimulating IGF1RAbs. We further conclude that the preponderance of evidence supports TSHR as the direct and only target of stimulating autoantibodies in GO and maintain that the TSHR should remain a major target for further development of a medical therapy for GO in concert with drugs that target TSHR/IGF1R crosstalk.
Collapse
Affiliation(s)
| | | | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, Bethesda, MD 20892, USA; (C.C.K.); (S.N.)
| |
Collapse
|
26
|
The Molecular Function and Clinical Role of Thyroid Stimulating Hormone Receptor in Cancer Cells. Cells 2020; 9:cells9071730. [PMID: 32698392 PMCID: PMC7407617 DOI: 10.3390/cells9071730] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023] Open
Abstract
The thyroid stimulating hormone (TSH) and its cognate receptor (TSHR) are of crucial importance for thyrocytes to proliferate and exert their functions. Although TSHR is predominantly expressed in thyrocytes, several studies have revealed that functional TSHR can also be detected in many extra-thyroid tissues, such as primary ovarian and hepatic tissues as well as their corresponding malignancies. Recent advances in cancer biology further raise the possibility of utilizing TSH and/or TSHR as a therapeutic target or as an informative index to predict treatment responses in cancer patients. The TSH/TSHR cascade has been considered a pivotal modulator for carcinogenesis and/or tumor progression in these cancers. TSHR belongs to a sub-group of family A G-protein-coupled receptors (GPCRs), which activate a bundle of well-defined signaling transduction pathways to enhance cell renewal in response to external stimuli. In this review, recent findings regarding the molecular basis of TSH/TSHR functions in either thyroid or extra-thyroid tissues and the potential of directly targeting TSHR as an anticancer strategy are summarized and discussed.
Collapse
|
27
|
Oh JM, Baek SH, Gangadaran P, Hong CM, Rajendran RL, Lee HW, Zhu L, Gopal A, Kalimuthu S, Jeong SY, Lee SW, Lee J, Ahn BC. A Novel Tyrosine Kinase Inhibitor Can Augment Radioactive Iodine Uptake Through Endogenous Sodium/Iodide Symporter Expression in Anaplastic Thyroid Cancer. Thyroid 2020; 30:501-518. [PMID: 31928162 DOI: 10.1089/thy.2018.0626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Radioactive iodine (RAI) therapy is an important strategy in the treatment of thyroid cancer. However, anaplastic thyroid cancer (ATC), a rare malignancy, exhibits severe dedifferentiation characteristics along with a lack of sodium iodide symporter (NIS) expression and function. Therefore, RAI therapy is ineffective and contributes toward poor prognosis of these patients. Recently, small-molecule tyrosine kinase inhibitors (TKIs) have been used to treat thyroid cancer patients for restoring NIS expression and function and RAI uptake capacity. However, most results reported thus far are associated with differentiated thyroid cancer. In this study, we identified a new TKI and investigated its effects on cell redifferentiation, NIS function, and RAI therapy in ATC. Methods: We identified a new TKI, "5-(5-{4H, 5H,6H-cyclopenta[b]thiophen-2-yl}-1,3,4-oxadiazol-2-yl)-1-methyl-1,2-dihydropyridin-2-one" (CTOM-DHP), using a high-throughput screening system. CTOM-DHP was exposed to 8505C ATC cells at different concentrations and time points. Concentrations of 12.5 and 25 μM and an incubation time of 72 hours were chosen as the conditions for subsequent NIS promoter assays and NIS mRNA and protein expression experiments. In addition, we examined factors related to iodide metabolism after CTOM-DHP treatment as well as the signaling pathways mediating the effects of CTOM-DHP on endogenous NIS expression. RAI uptake and 131I cytotoxicity effects caused by CTOM-DHP pretreatment were also evaluated in vitro and in vivo. Results: Promoter assays as well as mRNA and protein expression analyses confirmed that NIS expression was augmented by treatment of 8505C ATC cells with CTOM-DHP. Moreover, CTOM-DHP treatment robustly increased the expression of other thyroid-specific proteins and thyroid transcription factors related to iodide metabolism. Enhancement of NIS function was demonstrated by an increase in 125I uptake and 131I cytotoxicity. Increased endogenous NIS expression was associated with the inhibition of PI3K/Akt and MAPK signaling pathways. In vivo results also demonstrated an increase in NIS promoter activity and RAI avidity in response to CTOM-DHP treatment. Furthermore, 131I-mediated therapeutic effects preferentially improved in a tumor xenograft mice model. Conclusions: CTOM-DHP, a new TKI identified in this study, enhances endogenous NIS expression and thereby is a promising compound for restoring RAI avidity in ATC.
Collapse
Affiliation(s)
- Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
28
|
Brix K, Szumska J, Weber J, Qatato M, Venugopalan V, Al-Hashimi A, Rehders M. Auto-Regulation of the Thyroid Gland Beyond Classical Pathways. Exp Clin Endocrinol Diabetes 2020; 128:437-445. [PMID: 32074633 DOI: 10.1055/a-1080-2969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This mini-review asks how self-regulation of the thyroid gland is realized at the cellular and molecular levels by canonical and non-canonical means. Canonical pathways of thyroid regulation comprise thyroid stimulating hormone-triggered receptor signaling. As part of non-canonical regulation, we hypothesized an interplay between protease-mediated thyroglobulin processing and thyroid hormone release into the circulation by means of thyroid hormone transporters like Mct8. We proposed a sensing mechanism by different thyroid hormone transporters, present in specific subcellular locations of thyroid epithelial cells, selectively monitoring individual steps of thyroglobulin processing, and thus, the cellular thyroid hormone status. Indeed, we found that proteases and thyroid hormone transporters are functionally inter-connected, however, in a counter-intuitive manner fostering self-thyrotoxicity in particular in Mct8- and/or Mct10-deficient mice. Furthermore, the possible role of the G protein-coupled receptor Taar1 is discussed, because we detected Taar1 at cilia of the apical plasma membrane of thyrocytes in vitro and in situ. Eventually, through pheno-typing Taar1-deficient mice, we identified a co-regulatory role of Taar1 and the thyroid stimulating hormone receptors. Recently, we showed that inhibition of thyroglobulin-processing enzymes results in disappearance of cilia from the apical pole of thyrocytes, while Taar1 is re-located to the endoplasmic reticulum. This pathway features a connection between thyrotropin-stimulated secretion of proteases into the thyroid follicle lumen and substrate-mediated self-assisted control of initially peri-cellular thyroglobulin processing, before its reinternalization by endocytosis, followed by extensive endo-lysosomal liberation of thyroid hormones, which are then released from thyroid follicles by means of thyroid hormone transporters.
Collapse
Affiliation(s)
- Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany.,Present address of JS is Department of Internal Medicine III, Cardiology, Angiology and Respiratory Medicine, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maria Qatato
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
29
|
McLachlan SM, Rapoport B. A transgenic mouse that spontaneously develops pathogenic TSH receptor antibodies will facilitate study of antigen-specific immunotherapy for human Graves' disease. Endocrine 2019; 66:137-148. [PMID: 31560118 DOI: 10.1007/s12020-019-02083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Graves' hyperthyroidism can be treated but not cured. Antigen-specific immunotherapy would accomplish this goal, for which purpose an animal model is an invaluable tool. Two types of animal models are available. First, pathogenic TSHR antibodies (TSHRAb) can be induced by injecting mice with fibroblasts co-expressing the human TSHR (hTSHR) and MHC class II, or in mammals using plasmid or adenovirus vectors encoding the hTSHR or its A-subunit. Second, a mouse model that spontaneously develops pathogenic TSHRAb resembling those in human disease was recently described. This outcome was accomplished by transgenic intrathyroidal expression of the hTSHR A-subunit in NOD.H2h4 mice that are genetically predisposed to develop thyroiditis but, without the transgene, do not generate TSHRAb. Recently, novel approaches to antigen-specific immunotherapy have been tested, primarily in the induced model, by injecting TSHR A-subunit protein or cyclic TSHR peptides. T-cell tolerance has also been induced in "humanized" HLA-DR3 mice by injecting synthetic peptides predicted in silico to mimic naturally processed TSHR T-cell epitopes. Indeed, a phase 1 study based on the latter approach has been conducted in humans. In the spontaneous model (hTSHR/NOD.H2h mice), injection of soluble or nanoparticle-bearing hTSHR A-subunits had the unwanted effect of exacerbating pathogenic TSHRAb levels. A promising avenue for tolerance induction, successful in other conditions and yet to be tested with the TSHR, involves encapsulating the antigen. In conclusion, these studies provide insight into the potential outcome of immunotherapeutic approaches and emphasize the importance of a spontaneous model to test future novel, antigen-specific immunotherapies for Graves' disease.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Basil Rapoport
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA.
| |
Collapse
|
30
|
Inaba H, Ariyasu H, Takeshima K, Iwakura H, Akamizu T. Comprehensive research on thyroid diseases associated with autoimmunity: autoimmune thyroid diseases, thyroid diseases during immune-checkpoint inhibitors therapy, and immunoglobulin-G4-associated thyroid diseases. Endocr J 2019; 66:843-852. [PMID: 31434818 DOI: 10.1507/endocrj.ej19-0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Various thyroid diseases are associated with autoimmunity. Major autoimmune thyroid diseases are Graves' disease (GD) and Hashimoto's thyroiditis (HT). Thyrotropin receptor is an autoantigen in GD, and its immunogenicity has been examined. Immune-checkpoint inhibitor (ICI) is recently widely used for treatment of malignant tumors, but cases of thyroid diseases during ICI treatment have been increasing. Thyroid diseases during ICI therapy have been investigated in immunological and clinical aspects, and their Japanese official diagnostic guidelines were established. In addition, serum and tissue immunoglobulin-G4 levels have been examined in association with clinicopathological characteristics in GD, HT, and Riedel's thyroiditis. We review these diseases associated with thyroid autoimmunity and comprehensively discuss their potential application in future research and therapeutic options.
Collapse
Affiliation(s)
- Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Hiroyuki Ariyasu
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Ken Takeshima
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Hiroshi Iwakura
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| |
Collapse
|
31
|
McLachlan SM, Aliesky HA, Rapoport B. A Mouse Thyrotropin Receptor A-Subunit Transgene Expressed in Thyroiditis-Prone Mice May Provide Insight into Why Graves' Disease Only Occurs in Humans. Thyroid 2019; 29:1138-1146. [PMID: 31184281 PMCID: PMC6707033 DOI: 10.1089/thy.2019.0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Graves' disease, caused by autoantibodies that activate the thyrotropin (TSH) receptor (TSHR), has only been reported in humans. Thyroiditis-prone NOD.H2h4 mice develop autoantibodies to thyroglobulin (Tg) and thyroid peroxidase (TPO) but not to the TSHR. Evidence supports the importance of the shed TSHR A-subunit in the initiation and/or amplification of the autoimmune response to the holoreceptor. Cells expressing the gene for the isolated A-subunit secrete A-subunit protein, a surrogate for holoreceptor A-subunit shedding. NOD.H2h4 mice with the human TSHR A-subunit targeted to the thyroid (a "self" antigen in such transgenic (Tgic) animals), unlike their wild-type (wt) siblings, spontaneously develop pathogenic TSHR antibodies to the human-TSH holoreceptor. These autoantibodies do not recognize the endogenous mouse-TSH holoreceptor and do not cause hyperthyroidism. Methods: We have now generated NOD.H2h4 mice with the mouse-TSHR A-subunit transgene targeted to the thyroid. Tgic mice and wt littermates were compared for intrathyroidal expression of the mouse A-subunit. Sera from six-month-old mice were tested for the presence of autoantibodies to Tg and TPO as well as for pathogenic TSHR antibodies (TSH binding inhibition, bioassay for thyroid stimulating antibodies) and nonpathogenic TSHR antibodies (ELISA). Results: Expression of the mouse TSHR A-subunit transgene in the thyroid was confirmed by real-time polymerase chain reaction in the Tgics and had no effect on the spontaneous development of autoantibodies to Tg or TPO. However, unlike the same NOD.H2h4 strain with the human-TSHR A-subunit target to the thyroid, mice expressing intrathyroidal mouse-TSHR A subunit failed to develop either pathogenic or nonpathogenic TSHR antibodies. The mouse TSHR A-subunit differs from the human TSHR A-subunit in terms of its amino acid sequence and has one less glycosylation site than the human TSHR A-subunit. Conclusions: Multiple genetic and environmental factors contribute to the pathogenesis of Graves' disease. The present study suggests that the TSHR A-subunit structure (possibly including posttranslational modification such as glycosylation) may explain, in part, why Graves' disease only develops in humans.
Collapse
Affiliation(s)
- Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California
- UCLA School of Medicine, University of California, Los Angeles, California
- Address correspondence to: Sandra M. McLachlan, PhD, Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, B-131, Los Angeles, CA 90048
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California
| | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California
- UCLA School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
32
|
Marín-Sánchez A, Álvarez-Sierra D, González O, Lucas-Martin A, Sellés-Sánchez A, Rudilla F, Enrich E, Colobran R, Pujol-Borrell R. Regulation of TSHR Expression in the Thyroid and Thymus May Contribute to TSHR Tolerance Failure in Graves' Disease Patients via Two Distinct Mechanisms. Front Immunol 2019; 10:1695. [PMID: 31379878 PMCID: PMC6657650 DOI: 10.3389/fimmu.2019.01695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Graves' disease (GD) involves the presence of agonistic auto-antibodies against the thyrotropin receptor (TSHR), which are responsible for the clinical symptoms. While failure of TSHR tolerance is central to GD pathogenesis, the process leading to this failure remains poorly understood. Two mechanisms intimately linked to tolerance have been proposed to explain the association of SNPs located in TSHR intron 1 to GD: (1) differential alternative splicing in the thyroid; and (2) modulation of expression in the thymus. To elucidate the relative contribution to these two mechanisms to GD pathogenesis, we analyzed the level of full-length and ST4 and ST5 isoform expression in the thyroid (n = 49) and thymus (n = 39) glands, and the influence of intron 1-associated SNPs on such expression. The results show that: (1) the level of flTSHR and ST4 expression in the thymus was unexpectedly high (20% that of the thyroid); (2) while flTSHR is the predominant isoform, the levels are similar to ST4 (ratio flTSHR/ST4 = 1.34 in the thyroid and ratio flTSHR/ST4 in the thymus = 1.93); (3) next-generation sequencing confirmed the effect of the TSHR intron 1 polymorphism on TSHR expression in the thymus with a bias of 1.5 ± 0.2 overexpression of the protective allele in the thymus compared to the thyroid; (4) GD-associated intron 1 SNPs did not influence TSHR alternative splicing of ST4 and ST5 in the thyroid and thymus; and (5) three-color confocal imaging showed that TSHR is associated with both thymocytes, macrophages, and dendritic cells in the thymus. Our findings confirm the effect of intron 1 polymorphisms on thymic TSHR expression and we present evidence against an effect on the relative expression of isoforms. The high level of ST4 expression in the thymus and its distribution within the tissue suggest that this would most likely be the isoform that induces central tolerance to TSHR thus omitting most of the hinge and transmembrane portion. The lack of central tolerance to a large portion of TSHR may explain the relatively high frequency of autoimmunity related to TSHR and its clinical consequence, GD.
Collapse
Affiliation(s)
- Ana Marín-Sánchez
- Immunology Division, FOCIS Center of Excellence, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Álvarez-Sierra
- Diagnostic Immunology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar González
- Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ana Lucas-Martin
- Endocrinology Division, Hospital Universitari Germans Trias Pujol, Badalona, Spain
| | | | - Francesc Rudilla
- Immunogenetics and Histocompatibility Laboratory, Blood and Tissue Bank, Transfusional Medicine Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Emma Enrich
- Immunogenetics and Histocompatibility Laboratory, Blood and Tissue Bank, Transfusional Medicine Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Roger Colobran
- Immunology Division, FOCIS Center of Excellence, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricardo Pujol-Borrell
- Immunology Division, FOCIS Center of Excellence, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
McLachlan SM, Aliesky HA, Rapoport B. Nanoparticles Bearing TSH Receptor Protein and a Tolerogenic Molecule Do Not Induce Immune Tolerance but Exacerbate Thyroid Autoimmunity in hTSHR/NOD. H2h4 Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2570-2577. [PMID: 30944161 PMCID: PMC6478544 DOI: 10.4049/jimmunol.1900038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023]
Abstract
Transgenic NOD.H2h4 mice that express the human (h) TSHR A-subunit in the thyroid gland spontaneously develop pathogenic TSHR autoantibodies resembling those in patients with Graves disease. Nanoparticles coupled to recombinant hTSHR A-subunit protein and a tolerogenic molecule (ligand for the endogenous aryl-hydrocarbon receptor; ITE) were injected i.p. four times at weekly intervals into hTSHR/NOD.H2h4 mice with the goal of blocking TSHR Ab development. Unexpectedly, in transgenic mice, injecting TSHR A-subunit-ITE nanoparticles (not ITE-nanoparticles or buffer) accelerated and enhanced the development of pathogenic TSHR Abs measured by inhibition of TSH binding to the TSHR. Nonpathogenic TSHR Abs (ELISA) were enhanced in transgenics and induced in wild-type littermates. Serendipitously, these findings have important implications for disease pathogenesis: development of Graves TSHR Abs is limited by the availability of A-subunit protein, which is shed from membrane bound TSHR, expressed at low levels in the thyroid. The enhanced TSHR Ab response following injected TSHR A-subunit protein-nanoparticles is reminiscent of the transient increase in pathogenic TSHR Abs following the release of thyroid autoantigens after radio-iodine therapy in Graves patients. However, in the hTSHR/NOD.H2h4 model, enhancement is specific for TSHR Abs, with Abs to thyroglobulin and thyroid peroxidase remaining unchanged. In conclusion, despite the inclusion of a tolerogenic molecule, injected nanoparticles coated with TSHR A-subunit protein enhanced and accelerated development of pathogenic TSHR Abs in hTSHR/NOD. NOD.H2h4 These findings emphasize the need for sufficient TSHR A-subunit protein to activate the immune system and the generation of stimulatory TSHR Abs in genetically predisposed individuals.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Basil Rapoport
- Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
34
|
Miller-Gallacher J, Sanders P, Young S, Sullivan A, Baker S, Reddington SC, Clue M, Kabelis K, Clark J, Wilmot J, Thomas D, Chlebowska M, Cole F, Pearson E, Roberts E, Holly M, Evans M, Núñez Miguel R, Powell M, Sanders J, Furmaniak J, Rees Smith B. Crystal structure of a ligand-free stable TSH receptor leucine-rich repeat domain. J Mol Endocrinol 2019; 62:117-128. [PMID: 30689545 DOI: 10.1530/jme-18-0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Abstract
The crystal structures of the thyroid-stimulating hormone receptor (TSHR) leucine-rich repeat domain (amino acids 22-260; TSHR260) in complex with a stimulating human monoclonal autoantibody (M22TM) and in complex with a blocking human autoantibody (K1-70™) have been solved. However, attempts to purify and crystallise free TSHR260, that is not bound to an autoantibody, have been unsuccessful due to the poor stability of free TSHR260. We now describe a TSHR260 mutant that has been stabilised by the introduction of six mutations (H63C, R112P, D143P, D151E, V169R and I253R) to form TSHR260-JMG55TM, which is approximately 900 times more thermostable than wild-type TSHR260. These six mutations did not affect the binding of human TSHR monoclonal autoantibodies or patient serum TSHR autoantibodies to the TSHR260. Furthermore, the response of full-length TSHR to stimulation by TSH or human TSHR monoclonal autoantibodies was not affected by the six mutations. Thermostable TSHR260-JMG55TM has been purified and crystallised without ligand and the structure solved at 2.83 Å resolution. This is the first reported structure of a glycoprotein hormone receptor crystallised without ligand. The unbound TSHR260-JMG55TM structure and the M22 and K1-70 bound TSHR260 structures are remarkably similar except for small changes in side chain conformations. This suggests that neither the mutations nor the binding of M22TM or K1-70TM change the rigid leucine-rich repeat domain structure of TSHR260. The solved TSHR260-JMG55TM structure provides a rationale as to why the six mutations have a thermostabilising effect and provides helpful guidelines for thermostabilisation strategies of other soluble protein domains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jill Clark
- FIRS Laboratories, RSR Ltd, Cardiff, CF14 5DUUK
| | - Jane Wilmot
- FIRS Laboratories, RSR Ltd, Cardiff, CF14 5DUUK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ząbczyńska M, Kozłowska K, Pocheć E. Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders. Int J Mol Sci 2018; 19:E2792. [PMID: 30227620 PMCID: PMC6163523 DOI: 10.3390/ijms19092792] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 02/08/2023] Open
Abstract
The key proteins responsible for hormone synthesis in the thyroid are glycosylated. Oligosaccharides strongly affect the function of glycosylated proteins. Both thyroid-stimulating hormone (TSH) secreted by the pituitary gland and TSH receptors on the surface of thyrocytes contain N-glycans, which are crucial to their proper activity. Thyroglobulin (Tg), the protein backbone for synthesis of thyroid hormones, is a heavily N-glycosylated protein, containing 20 putative N-glycosylated sites. N-oligosaccharides play a role in Tg transport into the follicular lumen, where thyroid hormones are produced, and into thyrocytes, where hyposialylated Tg is degraded. N-glycans of the cell membrane transporters sodium/iodide symporter and pendrin are necessary for iodide transport. Some changes in glycosylation result in abnormal activity of the thyroid and alteration of the metabolic clearance rate of hormones. Alteration of glycan structures is a pathological process related to the progression of chronic diseases such as thyroid cancers and autoimmunity. Thyroid carcinogenesis is accompanied by changes in sialylation and fucosylation, β1,6-branching of glycans, the content and structure of poly-LacNAc chains, as well as O-GlcNAcylation, while in thyroid autoimmunity the main processes affected are sialylation and fucosylation. The glycobiology of the thyroid gland is an intensively studied field of research, providing new data helpful in understanding the role of the sugar component in thyroid protein biology and disorders.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Kamila Kozłowska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
36
|
Kahaly GJ, Bartalena L, Hegedüs L, Leenhardt L, Poppe K, Pearce SH. 2018 European Thyroid Association Guideline for the Management of Graves' Hyperthyroidism. Eur Thyroid J 2018; 7:167-186. [PMID: 30283735 PMCID: PMC6140607 DOI: 10.1159/000490384] [Citation(s) in RCA: 483] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Graves' disease (GD) is a systemic autoimmune disorder characterized by the infiltration of thyroid antigen-specific T cells into thyroid-stimulating hormone receptor (TSH-R)-expressing tissues. Stimulatory autoantibodies (Ab) in GD activate the TSH-R leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Diagnosis of GD is straightforward in a patient with biochemically confirmed thyrotoxicosis, positive TSH-R-Ab, a hypervascular and hypoechoic thyroid gland (ultrasound), and associated orbitopathy. In GD, measurement of TSH-R-Ab is recommended for an accurate diagnosis/differential diagnosis, prior to stopping antithyroid drug (ATD) treatment and during pregnancy. Graves' hyperthyroidism is treated by decreasing thyroid hormone synthesis with the use of ATD, or by reducing the amount of thyroid tissue with radioactive iodine (RAI) treatment or total thyroidectomy. Patients with newly diagnosed Graves' hyperthyroidism are usually medically treated for 12-18 months with methimazole (MMI) as the preferred drug. In children with GD, a 24- to 36-month course of MMI is recommended. Patients with persistently high TSH-R-Ab at 12-18 months can continue MMI treatment, repeating the TSH-R-Ab measurement after an additional 12 months, or opt for therapy with RAI or thyroidectomy. Women treated with MMI should be switched to propylthiouracil when planning pregnancy and during the first trimester of pregnancy. If a patient relapses after completing a course of ATD, definitive treatment is recommended; however, continued long-term low-dose MMI can be considered. Thyroidectomy should be performed by an experienced high-volume thyroid surgeon. RAI is contraindicated in Graves' patients with active/severe orbitopathy, and steroid prophylaxis is warranted in Graves' patients with mild/active orbitopathy receiving RAI.
Collapse
Affiliation(s)
- George J. Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
- *Prof. George J. Kahaly, JGU Medical Center, DE-55101 Mainz (Germany), E-Mail
| | - Luigi Bartalena
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Lazlo Hegedüs
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
| | - Laurence Leenhardt
- Thyroid and Endocrine Tumors Unit, Pitié Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Kris Poppe
- Endocrine Unit, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Simon H. Pearce
- Department of Endocrinology, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
37
|
McLachlan SM, Rapoport B. Thyroid Autoantibodies Display both "Original Antigenic Sin" and Epitope Spreading. Front Immunol 2017; 8:1845. [PMID: 29326719 PMCID: PMC5742354 DOI: 10.3389/fimmu.2017.01845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Evidence for original antigenic sin in spontaneous thyroid autoimmunity is revealed by autoantibody interactions with immunodominant regions on thyroid autoantigens, thyroglobulin (Tg), thyroid peroxidase (TPO), and the thyrotropin receptor (TSHR) A-subunit. In contrast, antibodies induced by immunization of rabbits or mice recognize diverse epitopes. Recognition of immunodominant regions persists despite fluctuations in autoantibody levels following treatment or over time. The enhancement of spontaneously arising pathogenic TSHR antibodies in transgenic human thyrotropin receptor/NOD.H2h4 mice by injecting a non-pathogenic form of TSHR A-subunit protein also provides evidence for original antigenic sin. From other studies, antigen presentation by B cells, not dendritic cells, is likely responsible for original antigenic sin. Recognition of restricted epitopes on the large glycosylated thyroid autoantigens (60-kDa A-subunit, 100-kDa TPO, and 600-kDa Tg) facilitates exploring the amino acid locations in the immunodominant regions. Epitope spreading has also been revealed by autoantibodies in thyroid autoimmunity. In humans, and in mice that spontaneously develop autoimmunity to all three thyroid autoantigens, autoantibodies develop first to Tg and later to TPO and the TSHR A-subunit. The pattern of intermolecular epitope spreading is related in part to the thyroidal content of Tg, TPO and TSHR A-subunit and to the molecular sizes of these proteins. Importantly, the epitope spreading pattern provides a rationale for future antigen-specific manipulation to block the development of all thyroid autoantibodies by inducing tolerance to Tg, first in the autoantigen cascade. Because of its abundance, Tg may be the autoantigen of choice to explore antigen-specific treatment, preventing the development of pathogenic TSHR antibodies.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
38
|
Widiapradja A, Chunduri P, Levick SP. The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 2017; 74:2019-2038. [PMID: 28097372 PMCID: PMC6339818 DOI: 10.1007/s00018-017-2452-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022]
Abstract
In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
39
|
Rowe CW, Paul JW, Gedye C, Tolosa JM, Bendinelli C, McGrath S, Smith R. Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer 2017; 24:R191-R202. [PMID: 28351942 DOI: 10.1530/erc-17-0010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022]
Abstract
Recent advances in the arena of theranostics have necessitated a re-examining of previously established fields. The existing paradigm of therapeutic thyroid-stimulating hormone receptor (TSHR) targeting in the post-surgical management of differentiated thyroid cancer using levothyroxine and recombinant human thyroid-stimulating hormone (TSH) is well understood. However, in an era of personalized medicine, and with an increasing awareness of the risk profile of longstanding pharmacological hyperthyroidism, it is imperative clinicians understand the molecular basis and magnitude of benefit for individual patients. Furthermore, TSHR has been recently re-conceived as a selective target for residual metastatic thyroid cancer, with pilot data demonstrating effective targeting of nanoparticles to thyroid cancers using this receptor as a target. This review examines the evidence for TSHR signaling as an oncogenic pathway and assesses the evidence for ongoing TSHR expression in thyroid cancer metastases. Priorities for further research are highlighted.
Collapse
Affiliation(s)
- Christopher W Rowe
- Department of EndocrinologyJohn Hunter Hospital, Newcastle, Australia
- School of Medicine and Public HealthUniversity of Newcastle, Newcastle, Australia
- Hunter Medical Research InstituteNewcastle, New South Wales, Australia
| | - Jonathan W Paul
- School of Medicine and Public HealthUniversity of Newcastle, Newcastle, Australia
- Hunter Medical Research InstituteNewcastle, New South Wales, Australia
| | - Craig Gedye
- Hunter Medical Research InstituteNewcastle, New South Wales, Australia
- Department of Medical OncologyCalvary Mater Newcastle, Waratah, Australia
- School of Biomedical Sciences and PharmacyUniversity of Newcastle, Newcastle, Australia
| | - Jorge M Tolosa
- School of Medicine and Public HealthUniversity of Newcastle, Newcastle, Australia
- Hunter Medical Research InstituteNewcastle, New South Wales, Australia
| | - Cino Bendinelli
- School of Medicine and Public HealthUniversity of Newcastle, Newcastle, Australia
- Department of SurgeryJohn Hunter Hospital, Newcastle, Australia
| | - Shaun McGrath
- Department of EndocrinologyJohn Hunter Hospital, Newcastle, Australia
- School of Medicine and Public HealthUniversity of Newcastle, Newcastle, Australia
| | - Roger Smith
- Department of EndocrinologyJohn Hunter Hospital, Newcastle, Australia
- School of Medicine and Public HealthUniversity of Newcastle, Newcastle, Australia
- Hunter Medical Research InstituteNewcastle, New South Wales, Australia
| |
Collapse
|
40
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
41
|
Fröhlich E, Wahl R. Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front Immunol 2017; 8:521. [PMID: 28536577 PMCID: PMC5422478 DOI: 10.3389/fimmu.2017.00521] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Autoimmune diseases have a high prevalence in the population, and autoimmune thyroid disease (AITD) is one of the most common representatives. Thyroid autoantibodies are not only frequently detected in patients with AITD but also in subjects without manifest thyroid dysfunction. The high prevalence raises questions regarding a potential role in extra-thyroidal diseases. This review summarizes the etiology and mechanism of AITD and addresses prevalence of antibodies against thyroid peroxidase, thyroid-stimulating hormone receptor (TSHR), and anti-thyroglobulin and their action outside the thyroid. The main issues limiting the reliability of the conclusions drawn here include problems with different specificities and sensitivities of the antibody detection assays employed, as well as potential confounding effects of altered thyroid hormone levels, and lack of prospective studies. In addition to the well-known effects of TSHR antibodies on fibroblasts in Graves' disease (GD), studies speculate on a role of anti-thyroid antibodies in cancer. All antibodies may have a tumor-promoting role in breast cancer carcinogenesis despite anti-thyroid peroxidase antibodies having a positive prognostic effect in patients with overt disease. Cross-reactivity with lactoperoxidase leading to induction of chronic inflammation might promote breast cancer, while anti-thyroid antibodies in manifest breast cancer might be an indication for a more active immune system. A better general health condition in older women with anti-thyroid peroxidase antibodies might support this hypothesis. The different actions of the anti-thyroid antibodies correspond to differences in cellular location of the antigens, titers of the circulating antibodies, duration of antibody exposure, and immunological mechanisms in GD and Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Internal Medicine (Department of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Tuebingen, Germany
- Center for Medical Research, Medical University Graz, Graz, Austria
| | - Richard Wahl
- Internal Medicine (Department of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
42
|
McLachlan SM, Aliesky HA, Banuelos B, Lesage S, Collin R, Rapoport B. High-level intrathymic thyrotrophin receptor expression in thyroiditis-prone mice protects against the spontaneous generation of pathogenic thyrotrophin receptor autoantibodies. Clin Exp Immunol 2017; 188:243-253. [PMID: 28099999 PMCID: PMC5383439 DOI: 10.1111/cei.12928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
The thyrotrophin receptor (TSHR) A-subunit is the autoantigen targeted by pathogenic autoantibodies that cause Graves' hyperthyroidism, a common autoimmune disease in humans. Previously, we reported that pathogenic TSHR antibodies develop spontaneously in thyroiditis-susceptible non-obese diabetic (NOD).H2h4 mice bearing a human TSHR A-subunit transgene, which is expressed at low levels in both the thyroid and thymus (Lo-expressor transgene). The present study tested recent evidence that high intrathymic TSHR expression protects against the development of pathogenic TSHR antibodies in humans. By successive back-crossing, we transferred to the NOD.H2h4 background a human TSHR A-subunit transgene expressed at high levels in the thyroid and thymus (Hi-expressor transgene). In the sixth back-cross generation (> 98% NOD.H2h4 genome), only transgenic offspring produced spontaneously immunoglobulin (Ig)G class non-pathogenic human TSHR A-subunit antibodies. In contrast, both transgenic and non-transgenic offspring developed antibodies to thyroglobulin and thyroid peroxidase. However, non-pathogenic human TSHR antibody levels in Hi-expressor offspring were lower than in Lo-expressor transgenic mice. Moreover, pathogenic TSHR antibodies, detected by inhibition of TSH binding to the TSHR, only developed in back-cross offspring bearing the Lo-expressor, but not the Hi-expressor, transgene. High versus low expression human TSHR A-subunit in the NOD.H2h4 thymus was not explained by the transgene locations, namely chromosome 2 (127-147 Mb; Hi-expressor) and chromosome 1 (22.9-39.3 Mb; low expressor). Nevertheless, using thyroiditis-prone NOD.H2h4 mice and two transgenic lines, our data support the association from human studies that low intrathymic TSHR expression is associated with susceptibility to developing pathogenic TSHR antibodies, while high intrathymic TSHR expression is protective.
Collapse
Affiliation(s)
- S. M. McLachlan
- Thyroid Autoimmune Disease UnitCedars‐Sinai Research Institute and UCLA School of Medicine, University of CaliforniaLos AngelesCAUSA
| | - H. A. Aliesky
- Thyroid Autoimmune Disease UnitCedars‐Sinai Research Institute and UCLA School of Medicine, University of CaliforniaLos AngelesCAUSA
| | - B. Banuelos
- Thyroid Autoimmune Disease UnitCedars‐Sinai Research Institute and UCLA School of Medicine, University of CaliforniaLos AngelesCAUSA
| | - S. Lesage
- Department of Immunology‐OncologyMaisonneuve‐Rosemont Hospital, Montréal, Québec, Canada and Département de Microbiologie, Infectiologie et Immunologie, Université de MontréalMontréalQuébecCanada
| | - R. Collin
- Department of Immunology‐OncologyMaisonneuve‐Rosemont Hospital, Montréal, Québec, Canada and Département de Microbiologie, Infectiologie et Immunologie, Université de MontréalMontréalQuébecCanada
| | - B. Rapoport
- Thyroid Autoimmune Disease UnitCedars‐Sinai Research Institute and UCLA School of Medicine, University of CaliforniaLos AngelesCAUSA
| |
Collapse
|
43
|
Abstract
INTRODUCTION Graves' disease (GD) and thyroid-associated ophthalmopathy (TAO) are thought to result from actions of pathogenic antibodies mediated through the thyrotropin receptor (TSHR). This leads to the unregulated consequences of the antibody-mediated receptor activity in the thyroid and connective tissues of the orbit. Recent studies reveal antibodies that appear to be directed against the insulin-like growth factor-I receptor (IGF-IR). Areas covered: In this brief article, I attempt to review the fundamental characteristics of the TSHR, its role in GD and TAO, and its relationship to IGF-IR. Strong evidence supports the concept that the two receptors form a physical and functional complex and that IGF-IR activity is required for some of the down-stream signaling initiated through TSHR. Recently developed small molecules and monoclonal antibodies that block TSHR and IGF-IR signaling are also reviewed in the narrow context of their potential utility as therapeutics in GD and TAO. The Pubmed database was searched from its inception for relevant publications. Expert opinion: Those agents that can interrupt the TSHR and IGF-IR pathways possess the potential for offering more specific and better tolerated treatments of both hyperthyroidism and TAO. This would spare patients exposure to toxic drugs, ionizing radiation and potentially hazardous surgeries.
Collapse
Affiliation(s)
- Terry Smith
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
44
|
Inaba H, De Groot LJ, Akamizu T. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves' Disease. Front Endocrinol (Lausanne) 2016; 7:120. [PMID: 27602020 PMCID: PMC4994058 DOI: 10.3389/fendo.2016.00120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/12/2016] [Indexed: 11/13/2022] Open
Abstract
Graves' disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments.
Collapse
Affiliation(s)
- Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Hidefumi Inaba,
| | - Leslie J. De Groot
- Department of Cellular and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
45
|
Smith TJ, Janssen JAMJL. Building the Case for Insulin-Like Growth Factor Receptor-I Involvement in Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2016; 7:167. [PMID: 28096798 PMCID: PMC5206614 DOI: 10.3389/fendo.2016.00167] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of orbital Graves' disease (GD), a process known as thyroid-associated ophthalmopathy (TAO), remains incompletely understood. The thyrotropin receptor (TSHR) represents the central autoantigen involved in GD and has been proposed as the thyroid antigen shared with the orbit that could explain the infiltration of immune cells into tissues surrounding the eye. Another cell surface protein, insulin-like growth factor-I receptor (IGF-IR), has recently been proposed as a second antigen that participates in TAO by virtue of its interactions with anti-IGF-IR antibodies generated in GD, its apparent physical and functional complex formation with TSHR, and its necessary involvement in TSHR post-receptor signaling. The proposal that IGF-IR is involved in TAO has provoked substantial debate. Furthermore, several studies from different laboratory groups, each using different experimental models, have yielded conflicting results. In this article, we attempt to summarize the biological characteristics of IGF-IR and TSHR. We also review the evidence supporting and refuting the postulate that IGF-IR is a self-antigen in GD and that it plays a potentially important role in TAO. The putative involvement of IGF-IR in disease pathogenesis carries substantial clinical implications. Specifically, blocking this receptor with monoclonal antibodies can dramatically attenuate the induction by TSH and pathogenic antibodies generated in GD of proinflammatory genes in cultured orbital fibroblasts and fibrocytes. These cell types appear critical to the development of TAO. These observations have led to the conduct of a now-completed multicenter therapeutic trial of a fully human monoclonal anti-IGF-IR blocking antibody in moderate to severe, active TAO.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
- *Correspondence: Terry J. Smith,
| | - Joseph A. M. J. L. Janssen
- Department of Internal Medicine, Erasmus Medical Center, Division of Endocrinology, Rotterdam, Netherlands
| |
Collapse
|
46
|
Giuliani C, Saji M, Bucci I, Napolitano G. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor-LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn. Front Endocrinol (Lausanne) 2016; 7:103. [PMID: 27504107 PMCID: PMC4958915 DOI: 10.3389/fendo.2016.00103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
Since the discovery 60 years ago of the "long-acting thyroid stimulator" by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves' disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves' disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves' disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR-rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves' disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.
Collapse
Affiliation(s)
- Cesidio Giuliani
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, Ce.S.I.-Me.T., University of Chieti–Pescara, Chieti, Italy
- *Correspondence: Cesidio Giuliani,
| | - Motoyasu Saji
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Ines Bucci
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, Ce.S.I.-Me.T., University of Chieti–Pescara, Chieti, Italy
| | - Giorgio Napolitano
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, Ce.S.I.-Me.T., University of Chieti–Pescara, Chieti, Italy
| |
Collapse
|