1
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
2
|
Wang J, Feng Y, Liu B, Xie W. Estrogen sulfotransferase and sulfatase in steroid homeostasis, metabolic disease, and cancer. Steroids 2024; 201:109335. [PMID: 37951289 PMCID: PMC10842091 DOI: 10.1016/j.steroids.2023.109335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Sulfation and desulfation of steroids are opposing processes that regulate the activation, metabolism, excretion, and storage of steroids, which account for steroid homeostasis. Steroid sulfation and desulfation are catalyzed by cytosolic sulfotransferase and steroid sulfatase, respectively. By modifying and regulating steroids, cytosolic sulfotransferase (SULT) and steroid sulfatase (STS) are also involved in the pathophysiology of steroid-related diseases, such as hormonal dysregulation, metabolic disease, and cancer. The estrogen sulfotransferase (EST, or SULT1E1) is a typical member of the steroid SULTs. This review is aimed to summarize the roles of SULT1E1 and STS in steroid homeostasis and steroid-related diseases.
Collapse
Affiliation(s)
- Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ye Feng
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Brian Liu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Ontsouka E, Schroeder M, Albrecht C. Revisited role of the placenta in bile acid homeostasis. Front Physiol 2023; 14:1213757. [PMID: 37546542 PMCID: PMC10402276 DOI: 10.3389/fphys.2023.1213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g., intrauterine growth restriction and/or increased vulnerability to metabolic diseases). However, little is known about the precise role of the placenta in BA biosynthesis, transport, and metabolism in healthy pregnancies when serum BAs are at physiological levels (i.e., low maternal and high fetal BA concentrations). It is well known that primary BAs are synthesized from cholesterol in the liver and are later modified to secondary BA species by colonic bacteria. Besides the liver, BA synthesis in extrahepatic sites such as the brain elicits neuroprotective actions through inhibition of apoptosis as well as oxidative and endoplasmic reticulum stress. Even though historically BAs were thought to be only "detergent molecules" required for intestinal absorption of dietary fats, they are nowadays acknowledged as full signaling molecules. They modulate a myriad of signaling pathways with functional consequences on essential processes such as gluconeogenesis -one of the principal energy sources of the fetus- and cellular proliferation. The current manuscript discusses the potential multipotent roles of physiologically circulating BAs on developmental processes during gestation and provides a novel perspective in terms of the importance of the placenta as a previously unknown source of BAs. Since the principle "not too much, not too little" applicable to other signaling molecules may be also true for BAs, the risks associated with fetal exposure to excessive levels of BAs are discussed.
Collapse
|
4
|
Schmidhauser M, Hankele AK, Ulbrich SE. Reconsidering "low-dose"-Impacts of oral estrogen exposure during preimplantation embryo development. Mol Reprod Dev 2023; 90:445-458. [PMID: 36864780 DOI: 10.1002/mrd.23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Perturbations of estrogen signaling during developmental stages of high plasticity may lead to adverse effects later in life. Endocrine-disrupting chemicals (EDC) are compounds that interfere with the endocrine system by particularly mimicking the action of endogenous estrogens as functional agonists or antagonists. EDCs compose synthetic and naturally occurring compounds discharged into the environment, which may be taken up via skin contact, inhalation, orally due to contaminated food or water, or via the placenta during in utero development. Although estrogens are efficiently metabolized by the liver, the role of circulating glucuro- and/or sulpho-conjugated estrogen metabolites in the body has not been fully addressed to date. Particularly, the role of intracellular cleavage to free functional estrogens could explain the hitherto unknown mode of action of adverse effects of EDC at very low concentrations currently considered safe. We summarize and discuss findings on estrogenic EDC with a focus on early embryonic development to highlight the need for reconsidering low dose effects of EDC.
Collapse
Affiliation(s)
- Meret Schmidhauser
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | | | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
5
|
Estrogen Sulfotransferase is Highly Expressed in Vascular Endothelial Cells Overlying Atherosclerotic Plaques. Protein J 2022; 41:179-188. [DOI: 10.1007/s10930-022-10042-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
6
|
Mueller JW, Vogg N, Lightning TA, Weigand I, Ronchi CL, Foster PA, Kroiss M. Steroid Sulfation in Adrenal Tumors. J Clin Endocrinol Metab 2021; 106:3385-3397. [PMID: 33739426 DOI: 10.1210/clinem/dgab182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The adrenal cortex produces specific steroid hormones including steroid sulfates such as dehydroepiandrosterone sulfate (DHEAS), the most abundant steroid hormone in the human circulation. Steroid sulfation involves a multistep enzyme machinery that may be impaired by inborn errors of steroid metabolism. Emerging data suggest a role of steroid sulfates in the pathophysiology of adrenal tumors and as potential biomarkers. EVIDENCE ACQUISITION Selective literature search using "steroid," "sulfat*," "adrenal," "transport," "mass spectrometry" and related terms in different combinations. EVIDENCE SYNTHESIS A recent study highlighted the tissue abundance of estrogen sulfates to be of prognostic impact in adrenocortical carcinoma tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging. General mechanisms of sulfate uptake, activation, and transfer to substrate steroids are reasonably well understood. Key aspects of this pathway, however, have not been investigated in detail in the adrenal; these include the regulation of substrate specificity and the secretion of sulfated steroids. Both for the adrenal and targeted peripheral tissues, steroid sulfates may have relevant biological actions beyond their cognate nuclear receptors after desulfation. Impaired steroid sulfation such as low DHEAS in Cushing adenomas is of diagnostic utility, but more comprehensive studies are lacking. In bioanalytics, the requirement of deconjugation for gas-chromatography/mass-spectrometry has precluded the study of steroid sulfates for a long time. This limitation may be overcome by liquid chromatography/tandem mass spectrometry. CONCLUSIONS A role of steroid sulfation in the pathophysiology of adrenal tumors has been suggested and a diagnostic utility of steroid sulfates as biomarkers is likely. Recent analytical developments may target sulfated steroids specifically.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Nora Vogg
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Thomas Alec Lightning
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Isabel Weigand
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| | - Cristina L Ronchi
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Paul A Foster
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
7
|
Duffel MW, Tuttle K, Lehmler HJ, Robertson LW. Human hepatic microsomal sulfatase catalyzes the hydrolysis of polychlorinated biphenyl sulfates: A potential mechanism for retention of hydroxylated PCBs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103757. [PMID: 34688910 PMCID: PMC8595862 DOI: 10.1016/j.etap.2021.103757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 05/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that continue to be of concern due to their varied toxicities. Upon human exposure, many PCBs with lower numbers of chlorine atoms are metabolized to hydroxylated derivatives (OH-PCBs), and cytosolic sulfotransferases can subsequently catalyze the formation of PCB sulfates. Recent studies have indicated that PCB sulfates bind reversibly with a high affinity to human serum proteins, and that they are also taken up by cells and tissues. Since PCB sulfates might be hydrolyzed to the more toxic OH-PCBs, we have investigated the ability of human hepatic microsomal sulfatase to catalyze this reaction. Twelve congeners of PCB sulfates were substrates for the microsomal sulfatase with catalytic rates exceeding that of dehydroepiandrosterone sulfate as a comparison substrate for steroid sulfatase (STS). These results are consistent with an intracellular mechanism for sulfation and de-sulfation that may contribute to retention and increased time of exposure to OH-PCBs.
Collapse
Affiliation(s)
- Michael W Duffel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, IA, USA.
| | - Kristopher Tuttle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Abstract
Almost 50% of prescription drugs lack age-appropriate dosing guidelines and therefore are used "off-label." Only ~10% drugs prescribed to neonates and infants have been studied for safety or efficacy. Immaturity of drug metabolism in children is often associated with drug toxicity. This chapter summarizes data on the ontogeny of major human metabolizing enzymes involved in oxidation, reduction, hydrolysis, and conjugation of drugs. The ontogeny data of individual drug-metabolizing enzymes are important for accurate prediction of drug pharmacokinetics and toxicity in children. This information is critical for designing clinical studies to appropriately test pharmacological hypotheses and develop safer pediatric drugs, and to replace the long-standing practice of body weight- or surface area-normalized drug dosing. The application of ontogeny data in physiologically based pharmacokinetic model and regulatory submission are discussed.
Collapse
|
9
|
Arbiters of endogenous opioid analgesia: role of CNS estrogenic and glutamatergic systems. Transl Res 2021; 234:31-42. [PMID: 33567346 PMCID: PMC8217383 DOI: 10.1016/j.trsl.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
Nociception and opioid antinociception in females are pliable processes, varying qualitatively and quantitatively over the reproductive cycle. Spinal estrogenic signaling via membrane estrogen receptors (mERs), in combination with multiple other signaling molecules [spinal dynorphin, kappa-opioid receptors (KOR), glutamate and metabotropic glutamate receptor 1 (mGluR1)], appears to function as a master coordinator, parsing functionality between pronociception and antinociception. This provides a window into pharmacologically accessing intrinsic opioid analgesic/anti-allodynic systems. In diestrus, membrane estrogen receptor alpha (mERα) signals via mGluR1 to suppress spinal endomorphin 2 (EM2) analgesia. Strikingly, in the absence of exogenous opioids, interfering with this suppression in a chronic pain model elicits opioid anti-allodynia, revealing contributions of endogenous opioid(s). In proestrus, robust spinal EM2 analgesia is manifest but this requires spinal dynorphin/KOR and glutamate-activated mGluR1. Furthermore, spinal mGluR1 blockade in a proestrus chronic pain animal (eliminating spinal EM2 analgesia) exacerbates mechanical allodynia, revealing tempering by endogenous opioid(s). A complex containing mu-opioid receptor, KOR, aromatase, mGluRs, and mERα are foundational to eliciting endogenous opioid anti-allodynia. Aromatase-mERα oligomers are also plentiful, in a central nervous system region-specific fashion. These can be independently regulated and allow estrogens to act intracellularly within the same signaling complex in which they are synthesized, explaining asynchronous relationships between circulating estrogens and central nervous system estrogen functionalities. Observations with EM2 highlight the translational relevance of extensively characterizing exogenous responsiveness to endogenous opioids and the neuronal circuits that mediate them along with the multiplicity of estrogenic systems that concomitantly function in phase and out-of-phase with the reproductive cycle.
Collapse
|
10
|
Schuler G. Steroid sulfates in domestic mammals and laboratory rodents. Domest Anim Endocrinol 2021; 76:106622. [PMID: 33765496 DOI: 10.1016/j.domaniend.2021.106622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/15/2022]
Abstract
Historically steroid sulfates have been considered predominantly as inactive metabolites. It was later discovered that by cleavage of the sulfate residue by steroid sulfatase (STS), they can be (re-)converted into active forms or into precursors for the local production of active steroids. This sulfatase pathway is now a very active field of research, which has gained considerable interest particularly in connection with the steroid metabolism of human steroid hormone-dependent cancer tissue. In comparison, there is much less information available on the occurrence of the sulfatase pathway in physiological settings, where the targeted uptake of steroid sulfates by specific transporters and their hydrolysis could serve to limit steroid effects to a subgroup of potentially steroid responsive cells. In humans, steroid sulfates of adrenal origin circulate in intriguingly high concentrations throughout most of life. Thus, ample substrate is available for the sulfatase pathway regardless of sex. However, the abundant adrenal output of steroid sulfates is a specific feature of select primates. Compared to humans, in our domestic mammals (dogs, cats, domestic ungulates) and laboratory rodents (mouse, rat) research into the biology of steroid sulfates is still in its infancy and information on the subject has so far been largely limited to punctual observations, which indicate considerable species-specific peculiarities. The aim of this overview is to provide a summary of the relevant information available in the above-mentioned species, predominantly taking into account data on concentrations of steroid sulfates in blood as well as the expression patterns and activities of relevant sulfotransferases and STS.
Collapse
Affiliation(s)
- G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|
11
|
Anbar HS, Isa Z, Elounais JJ, Jameel MA, Zib JH, Samer AM, Jawad AF, El-Gamal MI. Steroid sulfatase inhibitors: the current landscape. Expert Opin Ther Pat 2021; 31:453-472. [PMID: 33783295 DOI: 10.1080/13543776.2021.1910237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Steroid sulfatase (STS) enzyme is responsible for transforming the inactive sulfate metabolites of steroid sex hormones into the active free steroids. Both the deficiency and the over-expression of STS are associated with the pathophysiology of certain diseases. This article provides the readership with a comprehensive review about STS enzyme and its recently reported inhibitors.Areas covered: In the present article, we reviewed the structure, location, and substrates of STS enzyme, physiological functions of STS, and disease states related to over-expression or deficiency of STS enzyme. STS inhibitors reported during the last five years (2016-present) have been reviewed as well.Expert opinion: Irosustat is the most successful STS inhibitor drug candidate so far. It is currently under investigation in clinical trials for treatment of estrogen-dependent breast cancer. Non-steroidal sulfamate is the most favorable scaffold for STS inhibitor design. They can be beneficial for the treatment of hormone-dependent cancers and neurodegenerative disorders without significant estrogenic side effects. Moreover, dual-acting molecules (inhibitors of STS + another synergistic mechanism) can be therapeutically efficient.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Zahraa Isa
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Jana J Elounais
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mariam A Jameel
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Joudi H Zib
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya M Samer
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya F Jawad
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
12
|
Sato N, Ise K, Hata S, Yamashita S, Ito A, Sasano H, Nakamura Y. Clinicopathological Significance of Estrogen Receptor β and Estrogen Synthesizing/Metabolizing Enzymes in Urothelial Carcinoma of Urinary Bladder. Pathol Oncol Res 2021; 27:589649. [PMID: 34257538 PMCID: PMC8262212 DOI: 10.3389/pore.2021.589649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022]
Abstract
Sex-specific differences in the incidence of urinary bladder carcinomas are well known, and the possible involvement of sex steroids has been proposed. We previously reported the association of the loss of androgen receptors and androgen-producing enzymes with tumor progression of urinary bladder cancer patients. Clinically, the selective estrogen receptor modulators (SERMs) were reported to suppress the progression of these tumors but the status of estrogen receptors (ERs) has not been well studied in patients with bladder urinary cancer. Moreover, not only ERs but also estrogen-related enzymes, such as aromatase, steroid sulfatase (STS), and estrogen sulfotransferase (EST), have been reported in the biological/clinical behavior of various hormone-dependent carcinomas but not studied in urinary bladder carcinoma. Therefore, in this study, we immunolocalized ERs as well as estrogen metabolizing enzymes in urinary bladder carcinoma and performed immunoblotting and cell proliferation assays using the bladder urothelial carcinoma cell line, T24. The results revealed that the loss of STS and aromatase was significantly correlated with advanced stages of the carcinoma. In vitro studies also revealed that T24 cell proliferation rates were significantly ameliorated after treatment with estradiol or diarylpropionitrile (DPN). EST and aromatase were also significantly correlated with the nuclear grade of the carcinoma. The results of our present study, for the first time, demonstrated that biologically active estrogens that bind to ERs could suppress tumor progression and the inactive ones could promote its progression and the potential clinical utility of SERM treatment in selective patients with urinary bladder carcinoma.
Collapse
Affiliation(s)
- Naomi Sato
- Division of Pathology, Sendai City Hospital, Sendai, Japan
| | - Kazue Ise
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuko Hata
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Yamashita
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Chapron BD, Chapron A, Leeder JS. Recent advances in the ontogeny of drug disposition. Br J Clin Pharmacol 2021; 88:4267-4284. [PMID: 33733546 DOI: 10.1111/bcp.14821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Developmental changes that occur throughout childhood have long been known to impact drug disposition. However, pharmacokinetic studies in the paediatric population have historically been limited due to ethical concerns arising from incorporating children into clinical trials. As such, much of the early work in the field of developmental pharmacology was reliant on difficult-to-interpret in vitro and in vivo animal studies. Over the last 2 decades, our understanding of the mechanistic processes underlying age-related changes in drug disposition has advanced considerably. Progress has largely been driven by technological advances in mass spectrometry-based methods for quantifying proteins implicated in drug disposition, and in silico tools that leverage these data to predict age-related changes in pharmacokinetics. This review summarizes our current understanding of the impact of childhood development on drug disposition, particularly focusing on research of the past 20 years, but also highlighting select examples of earlier foundational research. Equally important to the studies reviewed herein are the areas that we cannot currently describe due to the lack of research evidence; these gaps provide a map of drug disposition pathways for which developmental trends still need to be characterized.
Collapse
Affiliation(s)
- Brian D Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Alenka Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Schools of Medicine and Pharmacy, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
14
|
Sato A, Watanabe H, Yamazaki M, Sakurai E, Ebina K. Interaction of Native- and Oxidized-Low-Density Lipoprotein with Human Estrogen Sulfotransferase. Protein J 2021; 40:192-204. [PMID: 33665770 DOI: 10.1007/s10930-021-09971-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Cytosolic estrogen sulfotransferase (SULT1E) mainly catalyzes the sulfate conjugation of estrogens, which decrease atherosclerosis progression. Recently we reported that a YKEG sequence in human SULT1E1 (hSULT1E1) corresponding to residues 61-64 can bind specifically to oxidized low-density lipoprotein (Ox-LDL), which plays a major role in the pathogenesis of atherosclerosis; its major oxidative lipid component lysophosphatidylcholine (LPC), and its structurally similar lipid, platelet-activating factor (PAF). In this study, we investigated the effect of Ox-LDL on the sulfating activity of hSULT1E1. In vivo experiments using a mouse model of atherosclerosis showed that the protein expression of SULT1E1 was higher in the aorta of mice with atherosclerosis compared with that in control animals. Results from a sulfating activity assay of hSULT1E1 using 1-hydroxypyrene as the substrate demonstrated that Ox-LDL, LPC, and PAF markedly decreased the sulfating activity of hSULT1E1, whereas native LDL and 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) as one of the oxidized phosphatidylcholines showed the opposite effect. The sulfating activity greatly changed in the presence of LPC, PAF, and POVPC in their concentration-dependen manner (especially above their critical micelle concentrations). Moreover, Ox-LDL specifically recognized dimeric hSULT1E1. These results suggest that the effects of Ox-LDL and native LDL on the sulfating activity of hSULT1E1 might be helpful in elucidating the novel mechanism underlying the pathogenesis of atherosclerosis, involving the relationship between estrogen metabolism, LDL, and Ox-LDL.
Collapse
Affiliation(s)
- Akira Sato
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan. .,Graduate School of Life Science and Technology, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.
| | - Hinako Watanabe
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Miyuki Yamazaki
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Eiko Sakurai
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Keiichi Ebina
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|
15
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Abstract
The cytosolic sulfotransferase (SULT) enzymes are found in human liver, kidney, intestine, and other tissues. These enzymes catalyze the transfer of the -SO3 group from 3'-phospho-adenosyl-5'-phosphosulfate (PAPS) to a nucleophilic hydroxyl or amine group in a drug substrate. SULTs are stable as dimers, with a highly conserved dimerization domain near the C-terminus of the protein. Crystal structures have revealed flexible loop regions in the native proteins, one of which, located near the dimerization domain, is thought to form a gate that changes position once PAPS is bound to the PAPS-binding site and modulates substrate access and enzyme properties. There is also evidence that oxidation and reduction of certain cysteine residues reversibly regulate the binding of the substrate and PAPS or PAP to the enzyme thus modulating sulfonation. Because SULT enzymes have two substrates, the drug and PAPS, it is common to report apparent kinetic constants with either the drug or the PAPS varied while the other is kept at a constant concentration. The kinetics of product formation can follow classic Michaelis-Menten kinetics, typically over a narrow range of substrate concentrations. Over a wide range of substrate concentrations, it is common to observe partial or complete substrate inhibition with SULT enzymes. This chapter describes the function, tissue distribution, structural features, and properties of the human SULT enzymes and presents examples of enzyme kinetics with different substrates.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Lardone MC, Reyes IN, Ortiz E, Piottante A, Palma C, Ebensperger M, Castro A. Testicular steroid sulfatase overexpression is associated with Leydig cell dysfunction in primary spermatogenic failure. Andrology 2020; 9:657-664. [PMID: 33290605 DOI: 10.1111/andr.12950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/24/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Decreased testosterone (T) to LH ratio and increased 17β-estradiol (E2) serum concentrations represent a common finding among patients with severe spermatogenic failure, suggesting a concurrent Leydig cell steroidogenic dysfunction. Aromatase overexpression has been associated with increased serum and intratesticular E2 in these patients. However, it is unknown whether the sulfatase pathway contributes to the increased availability of active estrogens in patients with primary spermatogenic failure. OBJECTIVES To assess estrogen sulfotransferase (SULT1E1) and steroid sulfatase (STS) mRNA abundance in testicular tissue of patients with Sertoli cell-only syndrome (SCOS) and normal tissues, its association with serum and intratesticular hormone levels, and to explore the mRNA and protein testicular localization of both enzymes. MATERIALS AND METHODS Testicular tissues of 23 subjects with SCOS (cases) and 22 patients with obstructive azoospermia and normal spermatogenesis (controls) were obtained after biopsy. SULT1E1 and STS transcripts accumulation was quantified by RT-qPCR. For mRNA and protein localization, we performed RT-qPCR in Leydig cell clusters and seminiferous tubules isolated by laser-capture microdissection and immunofluorescence in testicular tissues. Serum and intratesticular hormones were measured by immunoradiometric assays. RESULTS SULT1E1 mRNA accumulation was similar in both groups. The amount of STS mRNA was higher in cases (p = 0.007) and inversely correlated with T/LH ratio (r = -0.402; p = 0.02). Also, a near significant correlation was observed with intratesticular E2 (r = 0.329, p = 0.057), in agreement with higher intratesticular E2 in cases (p < 0.001). Strong STS immunoreaction was localized in the wall of small blood vessels but not in Leydig cells. Both SULT1E1 and STS mRNA abundance was similar in Leydig cell clusters and the tubular compartment, except for lower SUTL1E1 mRNA in the seminiferous tubules of SCOS patients (p = 0.001). CONCLUSIONS Our results suggest that an unbalance of the STS/SULT1E1 pathway contributes to the testicular hyperestrogenic microenvironment in patients with primary spermatogenic failure and Leydig cell dysfunction.
Collapse
Affiliation(s)
- Maria C Lardone
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Ian N Reyes
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Eliana Ortiz
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | | | - Cristián Palma
- Urology Department, José Joaquín Aguirre Clinical Hospital, School of Medicine, University of Chile, Santiago, Chile.,Urology Department, Clínica Las Condes, Santiago, Chile
| | - Mauricio Ebensperger
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile.,Urology Department, San Borja Arriarán Clinical Hospital, Santiago, Chile
| | - Andrea Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
18
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
19
|
Tanwar AK, Dhiman N, Kumar A, Jaitak V. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. Eur J Med Chem 2020; 213:113037. [PMID: 33257172 DOI: 10.1016/j.ejmech.2020.113037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Cancer is the world's devastating disease, and breast cancer is the most common reason for the death of women worldwide. Many synthetic drugs and medications are provided with their beneficial actions, but all of these have side effects and resistance problems. Natural remedies are coming forward to overcome the disadvantages of synthetic drugs. Among the natural categories, phytoestrogens having a structural similarity of mammalian oestradiol proves its benefit with various mechanisms not only in the treatment of breast cancer but even to prevent the occurrence of postmenopausal symptoms. Phytoestrogens are plant-derived compounds that were utilized in ancient medications and traditional knowledge for its sex hormone properties. Phytoestrogens exert pleiotropic effects on cellular signalling and show effects on estrogen-dependent diseases. However, because of activation/inhibition of steroid hormonal receptor ER-α or ER-β, these compounds induce or inhibit steroid hormonal (estrogen) action and, therefore, have the potential to disrupt hormone (estrogen) signalling pathway. In this review, we have discussed and summarize the effect of certain phytoestrogens and their possible mechanisms that can substantiate advantageous benefits for the treatment of post-menopausal symptoms as well as for breast cancer.
Collapse
Affiliation(s)
- Ankur Kumar Tanwar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Neha Dhiman
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India.
| |
Collapse
|
20
|
Sato A, Yamazaki M, Watanabe H, Sakurai E, Ebina K. Human estrogen sulfotransferase and its related fluorescently labeled decapeptides specifically interact with oxidized low-density lipoprotein. J Pept Sci 2020; 26:e3274. [PMID: 32633098 DOI: 10.1002/psc.3274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/16/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Estrogen sulfotransferase (SULT1E) mainly catalyzes the sulfation of estrogens, which are known to prevent the pathogenesis of atherosclerosis. Recently, we found that peptides with a YKDG sequence specifically bind to oxidized low-density lipoprotein (Ox-LDL), which plays a major role in the pathogenesis of atherosclerosis. Here, we investigated the interaction between human SULT1E1 (hSULT1E1), which has a YKEG sequence (residues 61-64) unlike other human SULTs, and Ox-LDL. Results from polyacrylamide gel electrophoresis and western blotting demonstrated that hSULT1E1 specifically binds to Ox-LDL and its major lipid component (lysophosphatidylcholine; LPC), and platelet-activating factor (PAF), which bears a marked resemblance to LPC in terms of structure and activity. Moreover, an N-terminally fluorescein isothiocyanate (FITC)-labeled decapeptide (MIYKEGDVEK; FITC-hSULT1E1-P10) corresponding to residues 59-68 of hSULT1E1 specifically binds to Ox-LDL, LPC, and PAF. Unveiling the specific interaction between hSULT1E1 and Ox-LDL, LPC, and PAF provides important information regarding the mechanisms underlying various diseases caused by Ox-LDL, LPC, and PAF, such as atherosclerosis. In addition, FITC-hSULT1E1-P10 could be used as an efficient fluorescent probe for the detection of Ox-LDL, LPC, and PAF, which could facilitate the mechanistic study, identification, diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Akira Sato
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Miyuki Yamazaki
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Hinako Watanabe
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Eiko Sakurai
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Keiichi Ebina
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| |
Collapse
|
21
|
Dubaisi S, Fang H, Caruso JA, Gaedigk R, Vyhlidal CA, Kocarek TA, Runge-Morris M. Developmental Expression of SULT1C4 Transcript Variants in Human Liver: Implications for Discordance Between SULT1C4 mRNA and Protein Levels. Drug Metab Dispos 2020; 48:515-520. [PMID: 32303576 PMCID: PMC7250359 DOI: 10.1124/dmd.120.090829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/20/2020] [Indexed: 01/11/2023] Open
Abstract
The cytosolic sulfotransferases (SULTs) metabolize a variety of xenobiotic and endogenous substrates. Several SULTs are expressed in the fetus, implying that these enzymes have important functions during human development. We recently reported that while SULT1C4 mRNA is abundant in prenatal human liver specimens, SULT1C4 protein is barely detectable. Two coding transcript variants (TVs) of SULT1C4 are indexed in GenBank, TV1 (full-length) and TV2 (lacking exons 3 and 4). The purpose of this study was to evaluate expression of the individual TVs as a clue for understanding the discordance between mRNA and protein levels. Reverse-transcription polymerase chain reaction was initially performed to identify TVs expressed in intestinal and hepatic cell lines. This analysis generated fragments corresponding to TV1, TV2, and a third variant that lacked exon 3 (E3DEL). Using reverse-transcription quantitative polymerase chain reaction assays designed to quantify TV1, TV2, or E3DEL individually, all three TVs were more highly expressed in prenatal than postnatal specimens. TV2 levels were ∼fivefold greater than TV1, while E3DEL levels were minimal. RNA sequencing (RNA-seq) analysis of another set of liver specimens confirmed that TV1 and TV2 levels were highest in prenatal liver, with TV2 higher than TV1. RNA-seq also detected a noncoding RNA, which was also more abundant in prenatal liver. Transfection of HEK293T cells with plasmids expressing individual Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-tagged SULT1C4 isoforms demonstrated that TV1 produced much more protein than did TV2. These data suggest that the lack of correspondence between SULT1C4 mRNA and protein levels in human liver is likely attributable to the inability of the more abundant TV2 to produce stable protein. SIGNIFICANCE STATEMENT: Cytosolic sulfotransferases (SULTs) metabolize a variety of xenobiotic and endogenous substrates, and several SULTs are highly expressed in the fetus, implying that they have important functions during human development. SULT1C4 is highly expressed in prenatal liver at the mRNA level but not the protein level. This study provides an explanation for this discordance by demonstrating that the predominant SULT1C4 transcript is a variant that produces relatively little protein.
Collapse
Affiliation(s)
- Sarah Dubaisi
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (H.F., J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.)
| | - Hailin Fang
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (H.F., J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.)
| | - Joseph A Caruso
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (H.F., J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.)
| | - Roger Gaedigk
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (H.F., J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.)
| | - Carrie A Vyhlidal
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (H.F., J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.)
| | - Thomas A Kocarek
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (H.F., J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.)
| | - Melissa Runge-Morris
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (H.F., J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.)
| |
Collapse
|
22
|
Surmak AJ, Wong KP, Cole GB, Hirata K, Aabedi AA, Mirfendereski O, Mirfendereski P, Yu AS, Huang SC, Ringman JM, Liebeskind DS, Barrio JR. Probing Estrogen Sulfotransferase-Mediated Inflammation with [11C]-PiB in the Living Human Brain. J Alzheimers Dis 2020; 73:1023-1033. [DOI: 10.3233/jad-190559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Andrew J. Surmak
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Koon-Pong Wong
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Graham B. Cole
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Kenji Hirata
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- Department of Nuclear Medicine, Hokkaido University, Sapporo, Japan
| | - Alexander A. Aabedi
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Omid Mirfendereski
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Payam Mirfendereski
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Amy S. Yu
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Sung-Cheng Huang
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - John M. Ringman
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - David S. Liebeskind
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jorge R. Barrio
- University of California, Los Angeles, David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| |
Collapse
|
23
|
Hess RA, Cooke PS. Estrogen in the male: a historical perspective. Biol Reprod 2019; 99:27-44. [PMID: 29438493 PMCID: PMC6044326 DOI: 10.1093/biolre/ioy043] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mouse models where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Cornel KMC, Bongers MY, Kruitwagen RPFM, Romano A. Local estrogen metabolism (intracrinology) in endometrial cancer: A systematic review. Mol Cell Endocrinol 2019; 489:45-65. [PMID: 30326245 DOI: 10.1016/j.mce.2018.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Endometrial cancer (EC) is the most common malignancy of the female gynaecological tract and increased exposure to estrogens is a risk factor. EC cells are able to produce estrogens locally using precursors like, among others, adrenal steroids present in the serum. This is referred to as local estrogen metabolism (or intracrinology) and consists of a complex network of multiple enzymes. Particular relevant to the final generation of active estrogens in endometrial cells are: steroid sulfatase (STS), estrogen sulfotransferase (SULT1E1), aromatase (CYP19A1), 17β-hydroxysteroid dehydrogenase (HSD17B) type 1 and type 2. During the last decades, a plethora of studies explored the level of these enzymes in EC but contrasting data were reported, which generated vigorous debate and controversies. Several reviews attempted at clarifying some of the debated issues, but published reviews are based on investigator-defined bibliography selection and not on systematic analysis. Therefore, we performed a systematic review of the literature reporting about the level of STS, SULT1E1, CYP19A1, HSD17B1 and HSD17B2 in EC. Additional intracrine enzymes and networks (e.g., HSD17Bs other than types 1 and 2, aldo-keto reductases, progesterone and androgen metabolism) were non-systematically reviewed as well.
Collapse
Affiliation(s)
- K M C Cornel
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - M Y Bongers
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands; Department of Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - R P F M Kruitwagen
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - A Romano
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands.
| |
Collapse
|
25
|
Kurogi K, Yoshihama M, Williams FE, Kenmochi N, Sakakibara Y, Suiko M, Liu MC. Identification of zebrafish steroid sulfatase and comparative analysis of the enzymatic properties with human steroid sulfatase. J Steroid Biochem Mol Biol 2019; 185:110-117. [PMID: 30118815 PMCID: PMC6289849 DOI: 10.1016/j.jsbmb.2018.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022]
Abstract
Steroid sulfatase (STS) plays an important role in the regulation of steroid hormones. Metabolism of steroid hormones in zebrafish has been investigated, but the action of steroid sulfatase remains unknown. In this study, a zebrafish sts was cloned, expressed, purified, and characterized in comparison with the orthologous human enzyme. Enzymatic assays demonstrated that similar to human STS, zebrafish Sts was most active in catalyzing the hydrolysis of estrone-sulfate and estradiol-sulfate, among five steroid sulfates tested as substrates. Kinetic analyses revealed that the Km values of zebrafish Sts and human STS differed with respective substrates, but the catalytic efficiency as reflected by the Vmax/Km appeared comparable, except for DHEA-sulfate with which zebrafish Sts appeared less efficient. While zebrafish Sts was catalytically active at 28 °C, the enzyme appeared more active at 37 °C and with similar Km values to those determined at 28 °C. Assays performed in the presence of different divalent cations showed that the activities of both zebrafish and human STSs were stimulated by Ca2+, Mg2+, and Mn2+, and inhibited by Zn+2 and Fe2+. EMATE and STX64, two known mammalian steroid sulafatase inhibitors, were shown to be capable of inhibiting the activity of zebrafish Sts. Collectively, the results obtained indicated that zebrafish Sts exhibited enzymatic characteristics comparable to the human STS, suggesting that the physiological function of STS may be conserved between zebrafish and humans.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Maki Yoshihama
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Frontier Research Center, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Frederick E Williams
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Naoya Kenmochi
- Frontier Research Center, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
26
|
Fujiki J, Maeda N, Sato M, Ieko T, Inoue H, Iwasaki T, Iwano H, Yokota H. Corticosterone biosynthesis in mouse clonal myoblastic C2C12 cells. Steroids 2018; 138:64-71. [PMID: 30018003 DOI: 10.1016/j.steroids.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/04/2023]
Abstract
Corticosterone (CORT), the major glucocorticoid in rodents, is secreted from the adrenal gland, affects various organs in the body and regulates energy metabolism as a stress response. Although local steroidogenesis of androgens and estrogens in skeletal muscles has been previously reported, local CORT synthesis in skeletal muscle remains unconfirmed. In the present study, we investigated steroidogenic activities in a clonal myoblastic cell line, C2C12 cells. Three enzymes involved in CORT synthesis, 3ß-hydroxysteroid dehydrogenase (3ß-HSD), cytochrome P450c21 and cytochrome P45011ß, were identified in C2C12 cells by detecting the enzymatic reaction products with LC-MS/MS analysis. Only one enzyme that mediates cholesterol cleavage was not detected in the cells. After the addition of pregnenolone-sulfate conjugates to the cell culture medium, pregnenolone was detected and increased according to the incubation time. In conclusion, CORT synthesis occurs in C2C12 cells, and it is suggested that the initial steroidogenesis substrate is the pregnenolone-sulfate conjugate.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Naoyuki Maeda
- Safety Research Institute for Chemical Compounds Co., Ltd., Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan; Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Michiko Sato
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takahiro Ieko
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Inoue
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroshi Yokota
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
27
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
28
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Gibson DA, Foster PA, Simitsidellis I, Critchley HOD, Kelepouri O, Collins F, Saunders PTK. SULFATION PATHWAYS: A role for steroid sulphatase in intracrine regulation of endometrial decidualisation. J Mol Endocrinol 2018; 61:M57-M65. [PMID: 29720512 PMCID: PMC6055542 DOI: 10.1530/jme-18-0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
In women, establishment of pregnancy is dependent upon 'fine-tuning' of the endometrial microenvironment, which is mediated by terminal differentiation (decidualisation) of endometrial stromal fibroblasts (ESFs). We have demonstrated that intracrine steroid metabolism plays a key role in regulating decidualisation and is essential for time-dependent expression of key factors required for endometrial receptivity. The primary aim of the current study was to determine whether sulphated steroids can act as precursors to bioactive sex steroids during decidualisation. We used primary human ESF and a robust in vitro model of decidualisation to assess the expression of genes associated with sulphation, desulphation and transport of sulphated steroids in human ESF as well as the impact of the steroid sulphatase (STS) inhibitor STX64 (Irosustat). We found evidence for an increase in both expression and activity of STS in response to a decidualisation stimulus with abrogation of oestrone biosynthesis and decreased secretion of the decidualisation marker IGFBP1 in the presence of STX64. These results provide novel insight into the contribution of STS to the intracrine regulation of decidualisation.
Collapse
Affiliation(s)
- Douglas A Gibson
- MRC Centre for Inflammation ResearchThe University of Edinburgh, QMRI, Edinburgh, UK
| | - Paul A Foster
- Institute of Metabolism & Systems ResearchUniversity of Birmingham, Birmingham, UK.
| | - Ioannis Simitsidellis
- MRC Centre for Inflammation ResearchThe University of Edinburgh, QMRI, Edinburgh, UK
| | - Hilary O D Critchley
- MRC Centre for Reproductive HealthThe University of Edinburgh, QMRI, Edinburgh, UK
| | - Olympia Kelepouri
- MRC Centre for Inflammation ResearchThe University of Edinburgh, QMRI, Edinburgh, UK
| | - Frances Collins
- MRC Centre for Inflammation ResearchThe University of Edinburgh, QMRI, Edinburgh, UK
| | - Philippa T K Saunders
- MRC Centre for Inflammation ResearchThe University of Edinburgh, QMRI, Edinburgh, UK
| |
Collapse
|
30
|
Dubaisi S, Barrett KG, Fang H, Guzman-Lepe J, Soto-Gutierrez A, Kocarek TA, Runge-Morris M. Regulation of Cytosolic Sulfotransferases in Models of Human Hepatocyte Development. Drug Metab Dispos 2018; 46:1146-1156. [PMID: 29858374 PMCID: PMC6038032 DOI: 10.1124/dmd.118.081398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) are expressed during early life and therefore metabolize endogenous and xenobiotic chemicals during development. Little is currently known about the regulation of individual SULTs in the developing human liver. We characterized SULT expression in primary cultures of human fetal hepatocytes and the HepaRG model of liver cell differentiation. SULT1A1 (transcript variants 1-4), SULT1C2, SULT1C4, SULT1E1, and SULT2A1 were the most abundant transcripts in human fetal hepatocytes. In HepaRG cells, SULT1B1, SULT1C2/3/4, and SULT1E1 mRNA levels increased during the transition from proliferation to confluency and then decreased as the cells underwent further differentiation. By contrast, SULT2A1 mRNA levels increased during differentiation, whereas SULT1A1 and SULT2B1 mRNA levels remained relatively constant. The temporal patterns of SULT1C2, SULT1E1, and SULT2A1 protein content were consistent with those observed at the mRNA level. To identify regulators of SULT expression, cultured fetal hepatocytes and HepaRG cells were treated with a panel of lipid- and xenobiotic-sensing receptor activators. The following effects were observed in both fetal hepatocytes and HepaRG cells: 1) liver X receptor activator treatment increased SULT1A1 transcript variant 5 levels; 2) vitamin D receptor activator treatment increased SULT1C2 and SULT2B1 mRNA levels; and 3) farnesoid X receptor activator treatment decreased SULT2A1 expression. Activators of aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, and peroxisome proliferator-activated receptors produced additional gene-dependent effects on SULT expression in HepaRG cells. These findings suggest that SULT-regulating chemicals have the potential to modulate physiologic processes and susceptibility to xenobiotic stressors in the developing human liver.
Collapse
Affiliation(s)
- Sarah Dubaisi
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Kathleen G Barrett
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Hailin Fang
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Jorge Guzman-Lepe
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Alejandro Soto-Gutierrez
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Thomas A Kocarek
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Melissa Runge-Morris
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| |
Collapse
|
31
|
Davies W. SULFATION PATHWAYS: The steroid sulfate axis and its relationship to maternal behaviour and mental health. J Mol Endocrinol 2018; 61:T199-T210. [PMID: 29440314 DOI: 10.1530/jme-17-0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022]
Abstract
Steroid hormones can exist in functionally dissociable sulfated and non-sulfated (free) forms and can exert profound effects on numerous aspects of mammalian physiology; the ratio of free-to-sulfated steroids is governed by the antagonistic actions of steroid sulfatase (STS) and sulfotransferase (SULT) enzymes. Here, I examine evidence from human and animal model studies, which suggests that STS and its major substrate (dehydroepiandrosterone sulfate, DHEAS) and product (DHEA) can influence brain function, behaviour and mental health, before summarising how the activity of this axis varies throughout mammalian pregnancy and the postpartum period. I then consider how the steroid sulfate axis might impact upon normal maternal behaviour and how its dysfunction might contribute towards risk of postpartum psychiatric illness. Understanding the biological substrates underlying normal and abnormal maternal behaviour will be important for maximising the wellbeing of new mothers and their offspring.
Collapse
Affiliation(s)
- William Davies
- School of PsychologyCardiff University, Cardiff, UK
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical NeurosciencesSchool of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research InstituteCardiff University, Cardiff, UK
| |
Collapse
|
32
|
Storman EM, Liu NJ, Wessendorf MW, Gintzler AR. Physical Linkage of Estrogen Receptor α and Aromatase in Rat: Oligocrine and Endocrine Actions of CNS-Produced Estrogens. Endocrinology 2018; 159:2683-2697. [PMID: 29771302 PMCID: PMC6692873 DOI: 10.1210/en.2018-00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
Rapid-signaling membrane estrogen receptors (mERs) and aromatase (Aro) are present throughout the central nervous system (CNS), enabling acute regulation of CNS estrogenic signaling. We previously reported that spinal membrane Aro (mAro) and mERα oligomerize (1). As their organizational relationship would likely influence functions of locally produced estrogens, we quantified the mAro and mERα that are physically associated and nonassociated in two functionally different regions of rat CNS: the spinal cord, which has predominantly neural functionalities, and the hypothalamus, which has both neural and endocrine capabilities. Quantitative immunoprecipitation (IP), coimmunoprecipitation, and Western blot analysis were used to quantify the associated and nonassociated subpopulations of mAro and mERα. Regardless of estrous-cycle stage, virtually all mAro was oligomerized with mERα in the spinal cord, whereas only ∼15% was oligomerized in the hypothalamus. The predominance of nonassociated mAro in the hypothalamus, in combination with findings that many hypothalamic Aro-immunoreactive neurons could be retrogradely labeled with peripherally injected Fluoro-Gold, suggests that a portion of hypothalamic estrogens is secreted, potentially regulating pituitary function. Moreover, circulating estrogens increased hypothalamic Aro activity (quantified by the tritiated water-release assay) in the absence of increased Aro protein, revealing nongenomic regulation of Aro activity in the mammalian CNS. The demonstrated presence of associated and nonassociated mAro and mERα subpopulations in the CNS suggests that their selective targeting could restore impaired estrogen-dependent CNS functionalities while minimizing unwanted effects. The full physiological ramifications of brain-secreted estrogens remain to be explored.
Collapse
Affiliation(s)
- Emiliya M Storman
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Martin W Wessendorf
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
- Correspondence: Alan R. Gintzler, PhD, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York 11203. E-mail:
| |
Collapse
|
33
|
Gao C, Liao MZ, Han LW, Thummel KE, Mao Q. Hepatic Transport of 25-Hydroxyvitamin D 3 Conjugates: A Mechanism of 25-Hydroxyvitamin D 3 Delivery to the Intestinal Tract. Drug Metab Dispos 2018; 46:581-591. [PMID: 29467214 PMCID: PMC5896369 DOI: 10.1124/dmd.117.078881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/15/2018] [Indexed: 12/18/2022] Open
Abstract
Vitamin D3 is an important prohormone critical for maintaining calcium and phosphate homeostasis in the body and regulating drug-metabolizing enzymes and transporters. 25-Hydroxyvitamin D3 (25OHD3), the most abundant circulating metabolite of vitamin D3, is further transformed to the biologically active metabolite 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) by CYP27B1 in the kidney and extrarenal tissues, and to nonactive metabolites by other cytochrome P450 enzymes. In addition, 25OHD3 undergoes sulfation and glucuronidation in the liver, forming two major conjugative metabolites, 25OHD3-3-O-sulfate (25OHD3-S) and 25OHD3-3-O-glucuronide (25OHD3-G), both of which were detected in human blood and bile. Considering that the conjugates excreted into the bile may be circulated to and reabsorbed from the intestinal lumen, deconjugated to 25OHD3, and then converted to 1α,25-(OH)2D3, exerting local intestinal cellular effects, it is crucial to characterize enterohepatic transport mechanisms of 25OHD3-S and 25OHD3-G, and thereby understand and predict mechanisms of interindividual variability in mineral homeostasis. In the present study, with plasma membrane vesicle and cell-based transport studies, we showed that 25OHD3-G is a substrate of multidrug resistance proteins 2 and 3, OATP1B1, and OATP1B3, and that 25OHD3-S is probably a substrate of breast cancer resistance protein, OATP2B1, and OATP1B3. We also demonstrated sinusoidal and canalicular efflux of both conjugates using sandwich-cultured human hepatocytes. Given substantial expression of these transporters in liver hepatocytes and intestinal enterocytes, this study demonstrates for the first time that transporters could play important roles in the enterohepatic circulation of 25OHD3 conjugates, providing an alternative pathway of 25OHD3 delivery to the intestinal tract, which could be critical for vitamin D receptor-dependent gene regulation in enterocytes.
Collapse
Affiliation(s)
- Chunying Gao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Michael Z Liao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Lyrialle W Han
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
34
|
Simitsidellis I, Saunders PTK, Gibson DA. Androgens and endometrium: New insights and new targets. Mol Cell Endocrinol 2018; 465:48-60. [PMID: 28919297 DOI: 10.1016/j.mce.2017.09.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022]
Abstract
Androgens are synthesised in both the ovary and adrenals in women and play an important role in the regulation of female fertility, as well as in the aetiology of disorders such as polycystic ovarian syndrome, endometriosis and endometrial cancer. The endometrium is an androgen target tissue and the impact of AR-mediated effects has been studied using human endometrial tissue samples and rodent models. In this review we highlight recent evidence that endometrial androgen biosynthesis and intracrine action is important in preparation of a tissue microenvironment that can support implantation and establishment of pregnancy. The impact of androgens on endometrial cell proliferation, in repair of the endometrial wound at the time of menstruation and in endometrial disorders is discussed. Future directions for research focused on AR function as a therapeutic target are considered.
Collapse
Affiliation(s)
- Ioannis Simitsidellis
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Philippa T K Saunders
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Douglas A Gibson
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
35
|
Braun BC, Okuyama MW, Müller K, Dehnhard M, Jewgenow K. Steroidogenic enzymes, their products and sex steroid receptors during testis development and spermatogenesis in the domestic cat (Felis catus). J Steroid Biochem Mol Biol 2018; 178:135-149. [PMID: 29196065 DOI: 10.1016/j.jsbmb.2017.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022]
Abstract
In the present study we comprehensively characterize intratesticular sex steroid production, metabolism and receptors in the domestic cat to elucidate the role of testosterone, estradiol and progesterone in testis development, steroid synthesis and spermatogenesis. There is a great demand for new concepts of fertility control in domestic (feral) cats and wild felids. The acquired knowledge will help to understand the regulation of spermatogenesis in felids, and may reveal new target points for male contraception. Progesterone and androgens are produced throughout all stages of testicular development; their synthesizing enzymes are mainly expressed in Leydig cells, and to a much lesser extent also in tubular cells. Aromatase (CYP19A1), the estrogen synthesizing enzyme, is only present in the tubuli and is first detectable in spermatocytes and round spermatids at puberty. As shown by elevated expression of the enzymes steroid 5-α-reductase type 1 (SRD5A) and aldo-keto-reductase family 1 member C3 (AKR1C3), the capacity to metabolize particular steroids increases during testis development. Apparently, this refers to a decreasing intra-testicular testosterone concentration per mg tissue with increasing testis weight during postpuberty. The increasing potential of sulfation of E2 by estrogen sulfotransferase (SULT1E1) with ongoing development might be responsible for the low level of unconjugated intratesticular estradiol in all stages of development probably due to facilitated excretion of conjugated estrogens. For the first time, expression of the progesterone membrane receptor components 1 and 2 (PGRMC1, PGRMC2) was studied in mammalian testis tissue. Both of these and also the progesterone receptor (PGR) are expressed depending on the developmental stage and cell type, suggesting an important regulatory role of progesterone in the testis. Androgen receptor (AR) is present in almost all cell types except for some spermatogenic cells. The co-localization of aromatase with estrogen receptor alpha (ESR1) in spermatocytes and round spermatids of domestic cat testis indicates an auto-/paracrine function of estrogen in spermatogenesis. In summary, the testis of the domestic cat is an important source of sex steroids. All of them could act within the testis but additionally, at least androgens and estrogens are likely secreted by the testis, partly as conjugated steroids.
Collapse
Affiliation(s)
- Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany.
| | - Minami W Okuyama
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Martin Dehnhard
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Katarina Jewgenow
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| |
Collapse
|
36
|
Paitz RT, Duffield KR, Bowden RM. Characterizing the distribution of steroid sulfatase during embryonic development: when and where might metabolites of maternal steroids be reactivated? J Exp Biol 2017; 220:4567-4570. [PMID: 29074704 DOI: 10.1242/jeb.167031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022]
Abstract
All vertebrate embryos are exposed to maternally derived steroids during development. In placental vertebrates, metabolism of maternal steroids by the placenta modulates embryonic exposure, but how exposure is regulated in oviparous vertebrates is less clear. Recent work in oviparous vertebrates has demonstrated that steroids are not static molecules, as they can be converted to more polar steroid sulfates by sulfotransferase enzymes. Importantly, these steroid sulfates can be converted back to the parent compound by the enzyme steroid sulfatase (STS). We investigated when and where STS was present during embryonic development in the red-eared slider turtle, Trachemys scripta We report that STS is present during all stages of development and in all tissues we examined. We conclude that STS activity may be particularly important for regulating maternal steroid exposure in oviparous vertebrates.
Collapse
Affiliation(s)
- Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Kristin R Duffield
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
37
|
Mauvais-Jarvis F. New Insights Into Estrogens Inactivation and Prevention of Systemic Inflammation in Male Subjects. Endocrinology 2017; 158:3711-3712. [PMID: 29099958 PMCID: PMC5695833 DOI: 10.1210/en.2017-00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology & Metabolism, Department of
Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
70112
| |
Collapse
|
38
|
Berkane N, Liere P, Oudinet JP, Hertig A, Lefèvre G, Pluchino N, Schumacher M, Chabbert-Buffet N. From Pregnancy to Preeclampsia: A Key Role for Estrogens. Endocr Rev 2017; 38:123-144. [PMID: 28323944 DOI: 10.1210/er.2016-1065] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/28/2017] [Indexed: 02/08/2023]
Abstract
Preeclampsia (PE) results in placental dysfunction and is one of the primary causes of maternal and fetal mortality and morbidity. During pregnancy, estrogen is produced primarily in the placenta by conversion of androgen precursors originating from maternal and fetal adrenal glands. These processes lead to increased plasma estrogen concentrations compared with levels in nonpregnant women. Aberrant production of estrogens could play a key role in PE symptoms because they are exclusively produced by the placenta and they promote angiogenesis and vasodilation. Previous assessments of estrogen synthesis during PE yielded conflicting results, possibly because of the lack of specificity of the assays. However, with the introduction of reliable analytical protocols using liquid chromatography/mass spectrometry or gas chromatography/mass spectrometry, more recent studies suggest a marked decrease in estradiol levels in PE. The aim of this review is to summarize current knowledge of estrogen synthesis, regulation in the placenta, and biological effects during pregnancy and PE. Moreover, this review highlights the links among the occurrence of PE, estrogen biosynthesis, angiogenic factors, and cardiovascular risk factors. A close link between estrogen dysregulation and PE occurrence might validate estrogen levels as a biomarker but could also reveal a potential approach for prevention or cure of PE.
Collapse
Affiliation(s)
- Nadia Berkane
- Department of Gynecology and Obstetrics of University Hospital of Geneva, 1205, Genève, Switzerland.,U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Philippe Liere
- U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Jean-Paul Oudinet
- U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Alexandre Hertig
- Department of Nephrology, Tenon Hospital, APHP, 75020 Paris, France.,University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Unité Mixte de Recherche Scientifique 1155, F-75020 Paris, France
| | - Guillaume Lefèvre
- University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Department of Biochemistry and Hormonology, Tenon Hospital, APHP, F-75020 Paris, France
| | - Nicola Pluchino
- Department of Gynecology and Obstetrics of University Hospital of Geneva, 1205, Genève, Switzerland
| | | | - Nathalie Chabbert-Buffet
- University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Department of Obstetrics, Gynecology and Reproductive Medicine, Tenon Hospital, APHP, F-75020 Paris, France.,INSERM, UMR-S938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| |
Collapse
|
39
|
Distributions of therapeutically promising neurosteroids in cellular membranes. Chem Phys Lipids 2017; 203:78-86. [DOI: 10.1016/j.chemphyslip.2016.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/25/2016] [Accepted: 12/26/2016] [Indexed: 10/20/2022]
|
40
|
Sex-specific effects of serum sulfate level and SLC13A1 nonsense variants on DHEA homeostasis. Mol Genet Metab Rep 2017; 10:84-91. [PMID: 28154797 PMCID: PMC5278115 DOI: 10.1016/j.ymgmr.2017.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
Context Sulfate is critical in the biotransformation of multiple compounds via sulfation. These compounds include neurotransmitters, proteoglycans, xenobiotics, and hormones such as dehydroepiandrosterone (DHEA). Sulfation reactions are thought to be rate-limited by endogenous sulfate concentrations. The gene, SLC13A1, encodes the sodium-sulfate cotransporter NaS1, responsible for sulfate (re)absorption in the intestines and kidneys. We previously reported two rare, non-linked, nonsense variants in SLC13A1 (R12X and W48X) associated with hyposulfatemia (P = 9 × 10− 20). Objective To examine the effect of serum sulfate concentration and sulfate-lowering genotype on DHEA homeostasis. Design Retrospective cohort study. Setting Academic research. Patients Participants of the Amish Pharmacogenomics of Anti-Platelet Intervention (PAPI) Study and the Amish Hereditary and Phenotype Intervention (HAPI) Study. Main outcome measures DHEA, DHEA-S, and DHEA-S/DHEA ratio. Results Increased serum sulfate was associated with decreased DHEA-S (P = 0.03) and DHEA-S/DHEA ratio (P = 0.06) in males but not females. Female SLC13A1 nonsense variant carriers, who had lower serum sulfate (P = 9 × 10− 13), exhibited 14% lower DHEA levels (P = 0.01) and 7% higher DHEA-S/DHEA ratios compared to female non-carriers (P = 0.002). Consistent with this finding, female SLC13A1 nonsense variant carriers also had lower total testosterone levels compared to non-carrier females (P = 0.03). Conclusions Our results demonstrate an inverse relationship between serum sulfate, and DHEA-S and DHEA-S/DHEA ratio in men, while also suggesting that the sulfate-lowering variants, SLC13A1 R12X and W48X, decrease DHEA and testosterone levels, and increase DHEA-S/DHEA ratio in women. While paradoxical, these results illustrate the complexity of the mechanisms involved in DHEA homeostasis and warrant additional studies to better understand sulfate's role in hormone physiology.
Collapse
|
41
|
Louw-du Toit R, Storbeck KH, Cartwright M, Cabral A, Africander D. Progestins used in endocrine therapy and the implications for the biosynthesis and metabolism of endogenous steroid hormones. Mol Cell Endocrinol 2017; 441:31-45. [PMID: 27616670 DOI: 10.1016/j.mce.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 02/03/2023]
Abstract
Steroidogenesis refers to the de novo synthesis of steroid hormones from cholesterol by a number of sequential enzyme catalysed reactions in the adrenal and the gonads. In addition, circulating steroid hormone precursors are further metabolised in selected peripheral tissues. It has been suggested that the biosynthesis of endogenous steroid hormones can be modulated by progestins, used widely by women in female reproductive medicine. However, as a number of structurally diverse progestins with different pharmacological properties are available, it is possible that these synthetic compounds may vary in their effects on steroidogenesis. This review summarises the evidence indicating that progestins influence the biosynthesis of steroid hormones in the adrenal and gonads, as well as the metabolism of these endogenous hormones in the breast, highlighting the limitations to the current knowledge and directions for future research.
Collapse
Affiliation(s)
- Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Meghan Cartwright
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Angelique Cabral
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa.
| |
Collapse
|
42
|
Uno Y, Takata R, Kito G, Yamazaki H, Nakagawa K, Nakamura Y, Kamataki T, Katagiri T. Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. Drug Metab Pharmacokinet 2017; 32:100-107. [DOI: 10.1016/j.dmpk.2016.10.409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023]
|
43
|
Garbacz WG, Jiang M, Xie W. Sex-Dependent Role of Estrogen Sulfotransferase and Steroid Sulfatase in Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:455-469. [PMID: 29224107 DOI: 10.1007/978-3-319-70178-3_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sulfonation and desulfation are two opposing processes that represent an important layer of regulation of estrogenic activity via ligand supplies. Enzymatic activities of families of enzymes, known as sulfotransferases and sulfatases, lead to structural and functional changes of the steroids, thyroids, xenobiotics, and neurotransmitters. Estrogen sulfotransferase (EST) and steroid sulfatase (STS) represent negative and positive regulation of the estrogen activity, respectively. This is because EST-mediated sulfation deactivates estrogens, whereas STS-mediated desulfation converts the inactive estrogen sulfates to active estrogens. In addition to the known functions of estrogens, EST and STS in reproductive processes, regulation of estrogens and other signal molecules especially at the local tissue levels has gained increased attention in the context of metabolic disease in recent years. EST expression is detectable in the subcutaneous adipose tissue in both obese women and men, and the expression of EST is markedly induced in the livers of rodent models of obesity and type 2 diabetes. STS was found to be upregulated in patients with chronic inflammatory liver diseases. Interestingly, the tissue distribution and the transcriptional regulation of EST and STS exhibit obvious sex and species specificity. EST ablation produces completely opposite metabolic phenotype in female and male obese mice. Adipogenesis is also differentially regulated by EST in murine and human adipocytes. This chapter focuses on the recent progress in our understanding of the expression and regulation EST and STS in the context of metabolic homeostasis.
Collapse
Affiliation(s)
- Wojciech G Garbacz
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mengxi Jiang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Li SY, Song Z, Song MJ, Qin JW, Zhao ML, Yang ZM. Impaired receptivity and decidualization in DHEA-induced PCOS mice. Sci Rep 2016; 6:38134. [PMID: 27924832 PMCID: PMC5141439 DOI: 10.1038/srep38134] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study.
Collapse
Affiliation(s)
- Shu-Yun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuo Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Min-Jie Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jia-Wen Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Meng-Long Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
45
|
Licznerska B, Szaefer H, Wierzchowski M, Sobierajska H, Baer-Dubowska W. Resveratrol and its methoxy derivatives modulate the expression of estrogen metabolism enzymes in breast epithelial cells by AhR down-regulation. Mol Cell Biochem 2016; 425:169-179. [DOI: 10.1007/s11010-016-2871-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
46
|
Mayne BT, Bianco-Miotto T, Buckberry S, Breen J, Clifton V, Shoubridge C, Roberts CT. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans. Front Genet 2016; 7:183. [PMID: 27790248 PMCID: PMC5062749 DOI: 10.3389/fgene.2016.00183] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.
Collapse
Affiliation(s)
- Benjamin T Mayne
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
| | - Sam Buckberry
- Harry Perkins Institute of Medical Research, The University of Western AustraliaPerth, WA, Australia; Plant Energy Biology, Australian Research Council Centre of Excellence, The University of Western AustraliaPerth, WA, Australia
| | - James Breen
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; Bioinformatics Hub, School of Biological Sciences, University of AdelaideAdelaide, SA, Australia
| | - Vicki Clifton
- Mater Research Institute, University of Queensland Brisbane, QLD, Australia
| | - Cheryl Shoubridge
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
47
|
Matsubara F, Katabami T, Asai S, Ariizumi Y, Maeda I, Takagi M, Keely MM, Ono K, Maekawa T, Nakamura Y, Tanaka Y, Sasano H. Immunohistochemical analysis of insulin-like growth factor 1 and its receptor in sporadic schwannoma/peripheral nerve sheath tumour. J Int Med Res 2016; 44:662-72. [PMID: 27091859 PMCID: PMC5536698 DOI: 10.1177/0300060516637768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/15/2016] [Indexed: 01/17/2023] Open
Abstract
Objective To investigate the immunohistochemical localization of insulin-like growth factor 1 (IGF-1) and IGF-1 receptor (IGF-1R) in archival specimens of sporadic schwannoma. Method This study retrospectively analysed the immunolocalization of IGF-1 and IGF-1R in schwannoma specimens collected from all patients with sporadic schwannoma that were treated by two institutions in Japan. The study also evaluated the association between the extent of the IGF-1 and IGF-1R immunoreactivity and several clinicopathological characteristics (age, sex and maximum tumour dimension). Results The study examined a total of 29 sporadic schwannoma specimens. IGF-1 and IGF-1R immunoreactivity was detected in the majority of the specimens regardless of their anatomical location. IGF-1 and IGF-1R were not co-localized. There was no association between the extent of the IGF-1 and IGF-1R immunoreactivity and the clinicopathological characteristics of the patients. Conclusions As IGF-1 and IGF-1R immunoreactivity was detected in the majority of sporadic schwannoma specimens regardless of their anatomical location, these findings suggest that an IGF-1/IGF-1R loop could play a role in the tumorigenesis and progression of schwannomas via an autocrine–paracrine mechanism.
Collapse
Affiliation(s)
- Fumiaki Matsubara
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Takuyuki Katabami
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Shiko Asai
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Yasushi Ariizumi
- Department of Pathology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Ichiro Maeda
- Department of Pathology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Masayuki Takagi
- Department of Pathology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - May McNamara Keely
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Katsuhiko Ono
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takashi Maekawa
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasuhiro Nakamura
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasushi Tanaka
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Hironobu Sasano
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
48
|
Thongbuakaew T, Siangcham T, Suwansa-ard S, Elizur A, Cummins SF, Sobhon P, Sretarugsa P. Steroids and genes related to steroid biosynthesis in the female giant freshwater prawn, Macrobrachium rosenbergii. Steroids 2016; 107:149-60. [PMID: 26774430 DOI: 10.1016/j.steroids.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/24/2015] [Accepted: 01/11/2016] [Indexed: 12/01/2022]
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is important to many Asian countries due to its high economic value as an aquaculture product. With demand increasing, there is requirement for a better understanding of the biosynthetic components that regulate its growth and reproduction, including steroids, in order to help increase production. Vertebrate-type steroids and their receptors were identified in crustaceans and implicated in reproduction. In this study, we presented the sex steroids estradiol and progesterone by LC-MS/MS in female M. rosenbergii, and reveal steroidogenic-related genes by in silico analysis of de novo assembled transcriptomes. Comparative analysis with other species was performed to confirm their putative role, as well as tissue-specific and quantitative gene expression. We reveal 29 transcripts that encode for steroidogenic-related proteins, including steroidogenic enzymes, a nuclear steroid hormone receptors, and a steroidogenic factor. Moreover, we identified for the first time the presence of steroidogenic factor 1, StAR-related lipid transfer protein, estradiol receptor- and progesterone-like protein in M. rosenbergii. Those targeted for gene expression analysis (3 beta-hydroxysteroid dehydrogenase, 17 beta-hydroxysteroid dehydrogenase, estrogen sulfotransferase and progesterone receptor-like) showed widespread expression within many tissues, and at relatively high levels in the central nervous system (CNS) during ovarian maturation. In summary, we provide further evidence for the existence of steroidogenic pathways in crustaceans, which may be useful for advancing prawn aquaculture.
Collapse
Affiliation(s)
- Tipsuda Thongbuakaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tanapan Siangcham
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Saowaros Suwansa-ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Prapee Sretarugsa
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
49
|
Shah R, Singh J, Singh D, Jaggi AS, Singh N. Sulfatase inhibitors for recidivist breast cancer treatment: A chemical review. Eur J Med Chem 2016; 114:170-90. [PMID: 26974384 DOI: 10.1016/j.ejmech.2016.02.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Steroid sulfatase (STS) plays a momentous role in the conversion of sulfated steroids, which are biologically inactive, into biologically active un-sulfated steroid hormones, which support the development and growth of a number of hormone-dependent cancers, including breast cancer. Therefore, inhibitors of STS are supposed to be potential drugs for the treatment of breast and other steroid-dependent cancers. The present review concentrates on broad chemical classification of steroid sulfatase inhibitors. The inhibitors reviewed are classified into four main categories: Steroid sulfamate based inhibitors; Steroid non-sulfamate based inhibitors; Non-steroidal sulfamate based inhibitors; Non-steroidal non-sulfamate based inhibitors. A succinct overview of current treatment of cancer, estradiol precursors, STS enzyme and its role in breast cancer is herein described.
Collapse
Affiliation(s)
- Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| |
Collapse
|
50
|
Gauderat G, Picard-Hagen N, Toutain PL, Corbel T, Viguié C, Puel S, Lacroix MZ, Mindeguia P, Bousquet-Melou A, Gayrard V. Bisphenol A glucuronide deconjugation is a determining factor of fetal exposure to bisphenol A. ENVIRONMENT INTERNATIONAL 2016; 86:52-59. [PMID: 26540084 DOI: 10.1016/j.envint.2015.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
Previous studies in experimental animals have shown that maternal exposure to bisphenol A (BPA) during late pregnancy leads to high plasma concentrations of BPA glucuronide (BPAG) in fetus compared to mother due to the inability of BPAG to cross the placental barrier. A recent in vitro study has reported that BPAG can exert adipogenic effect underlining the need for characterization of the fetal disposition of BPAG. Experiments were conducted in chronically catheterized fetal sheep to determine the contribution of BPAG hydrolysis to BPA to the elimination of BPAG from the fetal compartment and its resulting effect on the overall fetal exposure to free BPA. Serial sampling of fetal arterial blood, amniotic fluid, maternal venous blood and urine was performed following separate single doses of BPA and BPAG administered intravenously to eight fetal/maternal pairs after cesarean section, and repeated BPAG doses given to two fetal sheep. On average 67% of the BPA entering the fetal circulation was rapidly eliminated through fetal to maternal clearance, with a very short half-life (20 min), while the remaining fraction (24%) was glucuronoconjugated. BPA conjugation-deconjugation cycling was responsible for a 43% increase of the overall fetal exposure to free BPA. A very specific pattern of fetal exposure to free BPA was observed due to its highly increased persistence with a hydrolysis-dependent plasma terminal free BPA half-life of several tens of hours. These findings suggest that although the high fetal to maternal clearance of free BPA protects the fetus from transient increases in free BPA plasma concentrations associated with maternal BPA intake, low but sustained basal free BPA concentrations are maintained in the fetus through BPA conjugation-deconjugation cycling. The potential health implications of these low but sustained basal concentrations of free BPA in fetal plasma should be addressed especially when considering time-dependent effects.
Collapse
Affiliation(s)
- Glenn Gauderat
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France; Agreenium's International Research School (EIR-A), Paris, France.
| | - Nicole Picard-Hagen
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France.
| | - Pierre-Louis Toutain
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France.
| | - Tanguy Corbel
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France.
| | - Catherine Viguié
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France.
| | - Sylvie Puel
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France.
| | - Marlène Z Lacroix
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France.
| | - Pierre Mindeguia
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France.
| | - Alain Bousquet-Melou
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France.
| | - Véronique Gayrard
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, Toulouse F-31027, France; Université de Toulouse, INPT (Institut National Polytechnique de Toulouse), ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse, France.
| |
Collapse
|