1
|
Aouchiche K, Charmensat C, Morgane P, Teinturier C, Bretones P, Brac de la Perriere A, Layet V, Bouhours-Nouet N, Vantyghem MC, Haine E, Nunes-Sanchez ML, Camard O, Baron S, Castinetti F, Barlier A, Brue T, Reynaud R, Saveanu A. Phenotype and genotype of 23 patients with hypopituitarism and pathogenic GLI2 variants. Eur J Endocrinol 2025; 192:110-118. [PMID: 39938560 DOI: 10.1093/ejendo/lvaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
OBJECTIVE To analyze the phenotype and genotype of patients with congenital hypopituitarism (CH) and pathogenic (P) GLI2 variants. METHODS A large cohort of patients with hypopituitarism was screened for GLI2 variants using a next-generation sequencing panel. Genotype-phenotype correlations were then assessed using GENHYPOPIT phenotypic data. RESULTS Of the 39 GLI2 variants identified in 717 index cases, 17 were classified as pathogenic and likely pathogenic. All these GLI2 variants were identified in 23 patients (17 index cases and 6 relatives) with associated pituitary stalk interruption syndrome or extrapituitary manifestations. GLI2 variants were the most frequently identified genetic cause in patients with syndromic hypopituitarism (68%): 88% (15/17) of mutations were truncating variants, and 45% were de novo. Most patients with a GLI2 variant (21/23, 91%) had hypopituitarism, including 21.7% (5/23) presenting isolated growth hormone deficiency. Two patients had Kallmann syndrome. Pituitary morphological abnormalities were present in 84% of the patients with P GLI2 variants (index cases and affected relatives). The remaining signs included neurocognitive disorders (38%), hexadactyly (27%), cardiac septal defects, and renal/vesical abnormalities. A possible digenic origin (GLI2/HESX1) is proposed in one family. CONCLUSION In this large multicentric international cohort, GLI2 was the most frequently identified genetic cause of syndromic CH with constant association of pituitary stalk interruption syndrome or extrapituitary clinical features. In addition to polydactyly and neurocognitive disorders, cardiac and renal abnormalities were also frequently observed and should be investigated further. The variable expression of GLI2-associated phenotypes justifies further research in this area.
Collapse
Affiliation(s)
- Karine Aouchiche
- Department of Pediatrics Endocrinology, CHU Timone Enfants, Assistance Publique-Hôpitaux de Marseille (APHM), 13385 Marseille, France
- Aix Marseille University, INSERM, MMG, UMR 1251, 13385 Marseille, France
| | - Camille Charmensat
- Department of Pediatrics Endocrinology, CHU Timone Enfants, Assistance Publique-Hôpitaux de Marseille (APHM), 13385 Marseille, France
| | - Pertuit Morgane
- Laboratory of Molecular Biology GEnOPé, Assistance-Publique des Hôpitaux de Marseille (AP-HM), Hôpital de la Timone, 13385 Marseille, France
| | - Cécile Teinturier
- Department of Pediatric Endocrinology and Diabetes, Assistance Publique-Hôpitaux de Paris (AP-HP), Endocrinology and Diabetes for Children, Bicêtre Paris Sud Hospital (HUPS), 94270 Le Kremlin-Bicêtre, Val-de-Marne, France
| | - Patricia Bretones
- Department of Pediatric Endocrinology, Hopital Mère Enfant, Hospices Civils de Lyon (HCL), 69500 Bron, France
| | - Aude Brac de la Perriere
- Department of Endocrinology, Groupement Hospitalier Est, Hospices Civils de Lyon (HCL), 69500 Bron, France
| | - Valérie Layet
- Department of Genetics, Havre's Hospital, 76600 Le Havre, France
| | - Natacha Bouhours-Nouet
- Department of Pediatric Endocrinology and Diabetology, University Hospital of Angers, 49933 Angers, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology, Metabolism, University Hospital of Lille, 59037 Lille, France
| | - Elsa Haine
- Department of Pediatrics, University Hospital of Nice-Lenval Hospital, 06200 Nice, France
| | | | - Odile Camard
- Department of Pediatrics, Niort Hospital, 79021 Niort, France
| | - Sabine Baron
- Department of Pediatric Endocrinology and Diabetology, University Hospital of Nantes, 44093 Nantes, France
| | - Frederic Castinetti
- Department of Endocrinology, APHM, Aix Marseille Univ, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, 13385 Marseille, France
| | - Anne Barlier
- Department of Endocrinology, APHM, Aix Marseille Univ, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, 13385 Marseille, France
- Laboratory of Molécular Biology GenOpé, APHM, Aix Marseille Univ, INSERM, MMG, IUMR 1251, La Timone University Hospital, 13385 Marseille, France
| | - Thierry Brue
- Department of Endocrinology, APHM, Aix Marseille Univ, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, 13385 Marseille, France
| | - Rachel Reynaud
- Department of Pediatrics Endocrinology, CHU Timone Enfants, Assistance Publique-Hôpitaux de Marseille (APHM), 13385 Marseille, France
- Aix Marseille University, INSERM, MMG, UMR 1251, 13385 Marseille, France
| | - Alexandru Saveanu
- Laboratory of Molécular Biology GenOpé, APHM, Aix Marseille Univ, INSERM, MMG, IUMR 1251, La Timone University Hospital, 13385 Marseille, France
| |
Collapse
|
2
|
Mueller LM, Isaacson A, Wilson H, Salowka A, Tay I, Gong M, Elbarbary NS, Raile K, Spagnoli FM. Heterozygous missense variant in GLI2 impairs human endocrine pancreas development. Nat Commun 2024; 15:2483. [PMID: 38509065 PMCID: PMC10954617 DOI: 10.1038/s41467-024-46740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Missense variants are the most common type of coding genetic variants. Their functional assessment is fundamental for defining any implication in human diseases and may also uncover genes that are essential for human organ development. Here, we apply CRISPR-Cas9 gene editing on human iPSCs to study a heterozygous missense variant in GLI2 identified in two siblings with early-onset and insulin-dependent diabetes of unknown cause. GLI2 is a primary mediator of the Hedgehog pathway, which regulates pancreatic β-cell development in mice. However, neither mutations in GLI2 nor Hedgehog dysregulation have been reported as cause or predisposition to diabetes. We establish and study a set of isogenic iPSC lines harbouring the missense variant for their ability to differentiate into pancreatic β-like cells. Interestingly, iPSCs carrying the missense variant show altered GLI2 transcriptional activity and impaired differentiation of pancreatic progenitors into endocrine cells. RNASeq and network analyses unveil a crosstalk between Hedgehog and WNT pathways, with the dysregulation of non-canonical WNT signaling in pancreatic progenitors carrying the GLI2 missense variant. Collectively, our findings underscore an essential role for GLI2 in human endocrine development and identify a gene variant that may lead to diabetes.
Collapse
Affiliation(s)
- Laura M Mueller
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Abigail Isaacson
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Heather Wilson
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Anna Salowka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Isabel Tay
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Maolian Gong
- Department of Pediatric Endocrinology and Diabetology, Charité, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Nancy Samir Elbarbary
- Department of Pediatrics, Diabetes and Endocrine Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Klemens Raile
- Department of Pediatric Endocrinology and Diabetology, Charité, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom.
| |
Collapse
|
3
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
4
|
Growth Hormone Deficiency. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Short stature is a common reason for a child to visit the endocrinologist, and can be a variant of normal or secondary to an underlying pathologic cause. Pathologic causes include growth hormone deficiency (GHD), which can be congenital or acquired later. GHD can be isolated or can occur with other pituitary hormone deficiencies. The diagnosis of GHD requires thorough clinical, biochemical, and radiographic investigations. Genetic testing may also be helpful in some patients. Treatment with recombinant human growth hormone (rhGH) should be initiated as soon as the diagnosis is made and patients should be monitored closely to evaluate response to treatment and for potential adverse effects.
Collapse
|
5
|
Corder ML, Berland S, Førsvoll JA, Banerjee I, Murray P, Bratland E, Gokhale D, Houge G, Douzgou S. Truncating and zinc-finger variants in GLI2 are associated with hypopituitarism. Am J Med Genet A 2022; 188:1065-1074. [PMID: 34921505 DOI: 10.1002/ajmg.a.62611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Variants in transcription factor GLI2 have been associated with hypopituitarism and structural brain abnormalities, occasionally including holoprosencephaly (HPE). Substantial phenotypic variability and nonpenetrance have been described, posing difficulties in the counseling of affected families. We present three individuals with novel likely pathogenic GLI2 variants, two with truncating and one with a de novo missense variant p.(Ser548Leu), and review the literature for comprehensive phenotypic descriptions of individuals with confirmed pathogenic (a) intragenic GLI2 variants and (b) chromosome 2q14.2 deletions encompassing only GLI2. We show that most of the 31 missense variants previously reported as pathogenic are likely benign or, at most, low-risk variants. Four Zn-finger variants: p.(Arg479Gly), p.(Arg516Pro), p.(Gly518Lys), and p.(Tyr575His) were classified as likely pathogenic, and three other variants as possibly pathogenic: p.(Pro253Ser), p.(Ala593Val), and p.(Pro1243Leu). We analyze the phenotypic descriptions of 60 individuals with pathogenic GLI2 variants and evidence a morbidity spectrum that includes hypopituitarism (58%), HPE (6%) or other brain structure abnormalities (15%), orofacial clefting (17%) and dysmorphic facial features (35%). We establish that truncating and Zn-finger variants in GLI2 are associated with a high risk of hypopituitarism, and that a solitary median maxillary central incisor is part of the GLI2-related phenotypic variability. The most prevalent phenotypic feature is post-axial polydactyly (65%) which is also the mildest phenotypic expression of the condition, reported in many parents of individuals with systemic findings. Our approach clarifies clinical risks and the important messages to discuss in counseling for a pathogenic GLI2 variant.
Collapse
Affiliation(s)
- Megan L Corder
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Jostein A Førsvoll
- Department of Pediatrics, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Indraneel Banerjee
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, University of Manchester and Manchester Academic Health Science Centre, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Phil Murray
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, University of Manchester and Manchester Academic Health Science Centre, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Eirik Bratland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - David Gokhale
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Vishnopolska SA, Mercogliano MF, Camilletti MA, Mortensen AH, Braslavsky D, Keselman A, Bergadá I, Olivieri F, Miranda L, Marino R, Ramírez P, Pérez Garrido N, Patiño Mejia H, Ciaccio M, Di Palma MI, Belgorosky A, Martí MA, Kitzman JO, Camper SA, Pérez-Millán MI. Comprehensive Identification of Pathogenic Gene Variants in Patients With Neuroendocrine Disorders. J Clin Endocrinol Metab 2021; 106:1956-1976. [PMID: 33729509 PMCID: PMC8208670 DOI: 10.1210/clinem/dgab177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/12/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis. METHODS We conducted target panel genetic screening using single-molecule molecular inversion probes sequencing to assess the frequency of mutations in known hypopituitarism genes and new candidates in Argentina. We captured genomic deoxyribonucleic acid from 170 pediatric patients with CH, either alone or with other abnormalities. We performed promoter activation assays to test the functional effects of patient variants in LHX3 and LHX4. RESULTS We found variants classified as pathogenic, likely pathogenic, or with uncertain significance in 15.3% of cases. These variants were identified in known CH causative genes (LHX3, LHX4, GLI2, OTX2, HESX1), in less frequently reported genes (FOXA2, BMP4, FGFR1, PROKR2, PNPLA6) and in new candidate genes (BMP2, HMGA2, HNF1A, NKX2-1). CONCLUSION In this work, we report the prevalence of mutations in known CH genes in Argentina and provide evidence for new candidate genes. We show that CH is a genetically heterogeneous disease with high phenotypic variation and incomplete penetrance, and our results support the need for further gene discovery for CH. Identifying population-specific pathogenic variants will improve the capacity of genetic data to predict eventual clinical outcomes.
Collapse
Affiliation(s)
- Sebastian Alexis Vishnopolska
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Florencia Mercogliano
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Andrea Camilletti
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Amanda Helen Mortensen
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Federico Olivieri
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Lucas Miranda
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Roxana Marino
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Pablo Ramírez
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Natalia Pérez Garrido
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Helen Patiño Mejia
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Marta Ciaccio
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Maria Isabel Di Palma
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Alicia Belgorosky
- Hospital de Pediatría Garrahan-CONICET, Ciudad de Buenos Aires, Argentina
| | - Marcelo Adrian Martí
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Jacob Otto Kitzman
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Sally Ann Camper
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| | - Maria Ines Pérez-Millán
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| |
Collapse
|
7
|
Botermann DS, Brandes N, Frommhold A, Heß I, Wolff A, Zibat A, Hahn H, Buslei R, Uhmann A. Hedgehog signaling in endocrine and folliculo-stellate cells of the adult pituitary. J Endocrinol 2021; 248:303-316. [PMID: 33480359 PMCID: PMC7983331 DOI: 10.1530/joe-20-0388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022]
Abstract
Ubiquitous overactivation of Hedgehog signaling in adult pituitaries results in increased expression of proopiomelanocortin (Pomc), growth hormone (Gh) and prolactin (Prl), elevated adrenocorticotropic hormone (Acth) production and proliferation of Sox2+ cells. Moreover, ACTH, GH and PRL-expressing human pituitary adenomas strongly express the Hedgehog target GLI1. Accordingly, Hedgehog signaling seems to play an important role in pathology and probably also in homeostasis of the adult hypophysis. However, the specific Hedgehog-responsive pituitary cell type has not yet been identified. We here investigated the Hedgehog pathway activation status and the effects of deregulated Hedgehog signaling cell-specifically in endocrine and non-endocrine pituitary cells. We demonstrate that Hedgehog signaling is unimportant for the homeostasis of corticotrophs, whereas it is active in subpopulations of somatotrophs and folliculo-stellate cells in vivo. Reinforcement of Hedgehog signaling activity in folliculo-stellate cells stimulates growth hormone production/release from somatotrophs in a paracrine manner, which most likely is mediated by the neuropeptide vasoactive intestinal peptide. Overall, our data show that Hedgehog signaling affects the homeostasis of pituitary hormone production via folliculo-stellate cell-mediated regulation of growth hormone production/secretion.
Collapse
Affiliation(s)
- Dominik Simon Botermann
- Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany
| | - Nadine Brandes
- Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany
| | - Anke Frommhold
- Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany
| | - Ina Heß
- Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany
| | - Alexander Wolff
- Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany
| | - Arne Zibat
- Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany
| | - Heidi Hahn
- Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany
| | - Rolf Buslei
- Institute of Pathology, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Germany
| | - Anja Uhmann
- Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany
- Correspondence should be addressed to A Uhmann:
| |
Collapse
|
8
|
Firouzi M, Sherkatolabbasieh H, Shafizadeh S. Genetic Anomalies of Growth Hormone Deficiency in Pediatrics. Endocr Metab Immune Disord Drug Targets 2020; 21:288-297. [PMID: 32621723 DOI: 10.2174/1871530320666200704144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
Several different proteins regulate, directly or indirectly, the production of growth hormones from the pituitary gland, thereby complex genetics is involved. Defects in these genes are related to the deficiency of growth hormones solely, or deficiency of other hormones, secreted from the pituitary gland including growth hormones. These studies can aid clinicians to trace the pattern of the disease between the families, start early treatment and predict possible future consequences. This paper highlights some of the most common and novel genetic anomalies concerning growth hormones, which are responsible for various genetic defects in isolated growth and combined pituitary hormone deficiency disease.
Collapse
Affiliation(s)
- Majid Firouzi
- Department of Pediatrics, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Shiva Shafizadeh
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
9
|
Ren YA, Monkkonen T, Lewis MT, Bernard DJ, Christian HC, Jorgez CJ, Moore JA, Landua JD, Chin HM, Chen W, Singh S, Kim IS, Zhang XH, Xia Y, Phillips KJ, MacKay H, Waterland RA, Ljungberg MC, Saha PK, Hartig SM, Coll TF, Richards JS. S100a4-Cre-mediated deletion of Patched1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation. JCI Insight 2019; 5:126325. [PMID: 31265437 DOI: 10.1172/jci.insight.126325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hormones produced by the anterior pituitary gland regulate an array of important physiological functions, but pituitary hormone disorders are not fully understood. Herein we report that genetically-engineered mice with deletion of the hedgehog signaling receptor Patched1 by S100a4 promoter-driven Cre recombinase (S100a4-Cre;Ptch1fl/fl mutants) exhibit adult-onset hypogonadotropic hypogonadism and multiple pituitary hormone disorders. During the transition from puberty to adult, S100a4-Cre;Ptch1fl/fl mice of both sexes develop hypogonadism coupled with reduced gonadotropin levels. Their pituitary glands also display severe structural and functional abnormalities, as revealed by transmission electron microscopy and expression of key genes regulating pituitary endocrine functions. S100a4-Cre activity in the anterior pituitary gland is restricted to CD45+ cells of hematopoietic origin, including folliculo-stellate cells and other immune cell types, causing sex-specific changes in the expression of genes regulating the local microenvironment of the anterior pituitary. These findings provide in vivo evidence for the importance of pituitary hematopoietic cells in regulating fertility and endocrine function, in particular during sexual maturation and likely through sexually dimorphic mechanisms. These findings support a previously unrecognized role of hematopoietic cells in causing hypogonadotropic hypogonadism and provide inroads into the molecular and cellular basis for pituitary hormone disorders in humans.
Collapse
Affiliation(s)
- Yi Athena Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Radiology and.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England
| | - Carolina J Jorgez
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Joshua A Moore
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - John D Landua
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Radiology and.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Haelee M Chin
- Department of Biology, Rice University, Houston, Texas, USA
| | - Weiqin Chen
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Swarnima Singh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ik Sun Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang Hf Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yan Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin J Phillips
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Harry MacKay
- USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | | | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Center at Texas Children's Hospital, Houston, Texas, USA
| | - Pradip K Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France.,Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Cobben JM, Krzyzewska IM, Venema A, Mul AN, Polstra A, Postma AV, Smigiel R, Pesz K, Niklinski J, Chomczyk MA, Henneman P, Mannens MMAM. DNA methylation abundantly associates with fetal alcohol spectrum disorder and its subphenotypes. Epigenomics 2019; 11:767-785. [DOI: 10.2217/epi-2018-0221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Fetal alcohol spectrum disorder (FASD) involves prenatal growth delay, impaired facial and CNS development and causes severe clinical, social-economic burdens. Here, we aim to detect DNA-methylation aberrations associated with FASD and potential FASD diagnostic and prognostic biomarkers. Patients & methods: The FASD diagnosis was established according to golden-standard protocols in a discovery and independent replication cohort. Genome-wide differential methylation association and replication analyses were performed. Results: We identified several loci that were robustly associated with FASD or one of its sub phenotypes. Our findings were evaluated using previously reported genome-wide surveys. Conclusion: We have detected robust FASD associated differentially methylated positions and differentially methylated regions for FASD in general and for FASD subphenotypes, in other words on growth delay, impaired facial and CNS development.
Collapse
Affiliation(s)
- Jan Maarten Cobben
- Department of Pediatrics, Amsterdam University Medical Centers, Location AMC, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Izabela M Krzyzewska
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Adri N Mul
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Abeltje Polstra
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Department of Anatomy, Embryology & Physiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Robert Smigiel
- Department of Pediatrics & Rare Disorders, Medical University of Wroclaw, Poland
| | - Karolina Pesz
- Department of Genetics, Medical University of Wroclaw, Poland
| | - Jacek Niklinski
- Department of Molecular Biology, Medical University of Bialystok, Poland
| | - Monika A Chomczyk
- Department of Molecular Biology, Medical University of Bialystok, Poland
| | - Peter Henneman
- Department of Anatomy, Embryology & Physiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Marcel MAM Mannens
- Department of Anatomy, Embryology & Physiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Nasal fistula, epidermal cyst and hypernatremia in a girl presenting holoprosencephaly due to a rare ZIC2 point mutation. Eur J Med Genet 2019; 63:103641. [PMID: 30894326 DOI: 10.1016/j.ejmg.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 11/23/2022]
Abstract
Holoprosencephaly is the most common brain malformation in humans and it is a complex genetic disorder. We report on a patient with holoprosencephaly caused by a rare ZIC2 mutation presenting a bifid nose associated with a nasal fistula and an epidermal cyst, besides hypernatremia. The patient was a 1 year and 4 months old girl that developed an important neuropsychomotor delay. Currently, she uses a wheelchair to move around and only emits sounds. Computed tomography (CT) scan revealed a semilobar holoprosencephaly and a Dandy-Walker variant. Head magnetic resonance imaging also disclosed corpus callosum agenesis and prefrontal subarachnoid space enlargement. On physical examination at 1 year and 4 months of age, we verified growth retardation, microcephaly, bilateral epicantic fold, upslanting palpebral fissures, bifid nose, and limbs spasticity secondary to hypertonia. Later, she began to present hypernatremia; however, its precise cause was not identified. At 6 years and 10 months of age, a nasal fistula was suspected. Facial CT scan showed an epidermal cyst at cartilaginous portion of the nasal septum. High resolution GTG-Banding karyotype was normal. However, molecular analysis through direct sequencing technique showed a mutation at regulatory region of the ZIC2 gene: c.1599*954T > A, a genetic variation previously described only in a Brazilian patient. Our patient presented findings still not reported in literature among patients with holoprosencephaly, including those with ZIC2 mutations. Thus, the spectrum of abnormalities associated to ZIC2 mutations may be broader and include other defects as those observed in our patient.
Collapse
|
12
|
Valenza F, Cittaro D, Stupka E, Biancolini D, Patricelli MG, Bonanomi D, Lazarević D. A novel truncating variant of GLI2 associated with Culler-Jones syndrome impairs Hedgehog signalling. PLoS One 2019; 14:e0210097. [PMID: 30629636 PMCID: PMC6328167 DOI: 10.1371/journal.pone.0210097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/16/2018] [Indexed: 12/30/2022] Open
Abstract
Background GLI2 encodes for a transcription factor that controls the expression of several genes in the Hedgehog pathway. Mutations in GLI2 have been described as causative of a spectrum of clinical phenotypes, notably holoprosencephaly, hypopituitarism and postaxial polydactyl. Methods In order to identify causative genetic variant, we performed exome sequencing of a trio from an Italian family with multiple affected individuals presenting clinical phenotypes in the Culler-Jones syndrome spectrum. We performed a series of cell-based assays to test the functional properties of mutant GLI2. Results Here we report a novel deletion c.3493delC (p.P1167LfsX52) in the C-terminal activation domain of GLI2. Functional assays confirmed the pathogenicity of the identified variant and revealed a dominant-negative effect of mutant GLI2 on Hedgehog signalling. Conclusions Our results highlight the variable clinical manifestation of GLI2 mutations and emphasize the value of functional characterisation of novel gene variants to assist genetic counselling and diagnosis.
Collapse
Affiliation(s)
- Fabiola Valenza
- Molecular Neurobiology Laboratory, Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Elia Stupka
- Centre for Translational Genomics and Bioinformatics, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Donatella Biancolini
- Centre for Translational Genomics and Bioinformatics, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | | | - Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarević
- Centre for Translational Genomics and Bioinformatics, IRCSS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
13
|
Gergics P. Pituitary Transcription Factor Mutations Leading to Hypopituitarism. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:263-298. [PMID: 31588536 DOI: 10.1007/978-3-030-25905-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Congenital pituitary hormone deficiency is a disabling condition. It is part of a spectrum of disorders including craniofacial midline developmental defects ranging from holoprosencephaly through septo-optic dysplasia to combined and isolated pituitary hormone deficiency. The first genes discovered in the human disease were based on mouse models of dwarfism due to mutations in transcription factor genes. High-throughput DNA sequencing technologies enabled clinicians and researchers to find novel genetic causes of hypopituitarism for the more than three quarters of patients without a known genetic diagnosis to date. Transcription factor (TF) genes are at the forefront of the functional analysis of novel variants of unknown significance due to the relative ease in in vitro testing in a research lab. Genetic testing in hypopituitarism is of high importance to the individual and their family to predict phenotype composition, disease progression and to avoid life-threatening complications such as secondary adrenal insufficiency.This chapter aims to highlight our current understanding about (1) the contribution of TF genes to pituitary development (2) the diversity of inheritance and phenotype features in combined and select isolated pituitary hormone deficiency and (3) provide an initial assessment on how to approach variants of unknown significance in human hypopituitarism. Our better understanding on how transcription factor gene variants lead to hypopituitarism is a meaningful step to plan advanced therapies to specific genetic changes in the future.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Gregory LC, Dattani MT. Embryologic and Genetic Disorders of the Pituitary Gland. CONTEMPORARY ENDOCRINOLOGY 2019:3-27. [DOI: 10.1007/978-3-030-11339-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Palencia-Campos A, Ullah A, Nevado J, Yildirim R, Unal E, Ciorraga M, Barruz P, Chico L, Piceci-Sparascio F, Guida V, De Luca A, Kayserili H, Ullah I, Burmeister M, Lapunzina P, Ahmad W, Morales AV, Ruiz-Perez VL. GLI1 inactivation is associated with developmental phenotypes overlapping with Ellis-van Creveld syndrome. Hum Mol Genet 2018; 26:4556-4571. [PMID: 28973407 DOI: 10.1093/hmg/ddx335] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
GLI1, GLI2 and GLI3 form a family of transcription factors which regulate development by mediating the action of Hedgehog (Hh) morphogens. Accordingly, inactivating variants in GLI2 and GLI3 are found in several developmental disorders. In contrast, loss-of-function mutations in GLI1 have remained elusive, maintaining enigmatic the role of this gene in the human embryo. We describe eight patients from three independent families having biallelic truncating variants in GLI1 and developmental defects overlapping with Ellis-van Creveld syndrome (EvC), a disease caused by diminished Hh signaling. Two families had mutations in the last exon of the gene and a third family was identified with an N-terminal stop gain variant predicted to be degraded by the NMD-pathway. Analysis of fibroblasts from one of the patients with homozygous C-terminal truncation of GLI1 demonstrated that the corresponding mutant GLI1 protein is fabricated by patient cells and becomes upregulated in response to Hh signaling. However, the transcriptional activity of the truncated GLI1 factor was found to be severely impaired by cell culture and in vivo assays, indicating that the balance between GLI repressors and activators is altered in affected subjects. Consistent with this, reduced expression of the GLI target PTCH1 was observed in patient fibroblasts after chemical induction of the Hh pathway. We conclude that GLI1 inactivation is associated with a phenotypic spectrum extending from isolated postaxial polydactyly to an EvC-like condition.
Collapse
Affiliation(s)
- Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029 Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Julian Nevado
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| | - Ruken Yildirim
- Diyarbakir Children State Hospital, Clinic of Pediatric Endocrinology, Diyarbakir, Turkey
| | - Edip Unal
- Department of Pediatric Endocrinology, Dicle University, Diyarbakir, Turkey
| | - Maria Ciorraga
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Pilar Barruz
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| | - Lucia Chico
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029 Madrid, Spain
| | - Francesca Piceci-Sparascio
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Valentina Guida
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSoM) Istanbul, Istanbul 34010, Turkey
| | - Irfan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Margit Burmeister
- Department of Psychiatry.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain.,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Victor L Ruiz-Perez
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029 Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain.,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| |
Collapse
|
16
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
17
|
Martinez AF, Kruszka PS, Muenke M. Extracephalic manifestations of nonchromosomal, nonsyndromic holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:246-257. [PMID: 29761634 DOI: 10.1002/ajmg.c.31616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Nonchromosomal, nonsyndromic holoprosencephaly (NCNS-HPE) has traditionally been considered as a condition of brain and craniofacial maldevelopment. In this review, we present the results of a comprehensive literature search supporting a wide spectrum of extracephalic manifestations identified in patients with NCNS-HPE. These manifestations have been described in case reports and in large cohorts of patients with "single-gene" mutations, suggesting that the NCNS-HPE phenotype can be more complex than traditionally thought. Likely, a complex network of interacting genetic variants and environmental factors is responsible for these systemic abnormalities that deviate from the usual brain and craniofacial findings in NCNS-HPE. In addition to the systemic consequences of pituitary dysfunction (as a direct result of brain midline defects), here we describe a number of extracephalic findings of NCNS-HPE affecting various organ systems. It is our goal to provide a guide of extracephalic features for clinicians given the important clinical implications of these manifestations for the management and care of patients with HPE and their mutation-positive relatives. The health risks associated with some manifestations (e.g., fatty liver disease) may have historically been neglected in affected families.
Collapse
Affiliation(s)
- Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul S Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Pérez Millán MI, Vishnopolska SA, Daly AZ, Bustamante JP, Seilicovich A, Bergadá I, Braslavsky D, Keselman AC, Lemons RM, Mortensen AH, Marti MA, Camper SA, Kitzman JO. Next generation sequencing panel based on single molecule molecular inversion probes for detecting genetic variants in children with hypopituitarism. Mol Genet Genomic Med 2018; 6:514-525. [PMID: 29739035 PMCID: PMC6081231 DOI: 10.1002/mgg3.395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Congenital Hypopituitarism is caused by genetic and environmental factors. Over 30 genes have been implicated in isolated and/or combined pituitary hormone deficiency. The etiology remains unknown for up to 80% of the patients, but most cases have been analyzed by limited candidate gene screening. Mutations in the PROP1 gene are the most common known cause, and the frequency of mutations in this gene varies greatly by ethnicity. We designed a custom array to assess the frequency of mutations in known hypopituitarism genes and new candidates, using single molecule molecular inversion probes sequencing (smMIPS). METHODS We used this panel for the first systematic screening for causes of hypopituitarism in children. Molecular inversion probes were designed to capture 693 coding exons of 30 known genes and 37 candidate genes. We captured genomic DNA from 51 pediatric patients with CPHD (n = 43) or isolated GH deficiency (IGHD) (n = 8) and their parents and conducted next generation sequencing. RESULTS We obtained deep coverage over targeted regions and demonstrated accurate variant detection by comparison to whole-genome sequencing in a control individual. We found a dominant mutation GH1, p.R209H, in a three-generation pedigree with IGHD. CONCLUSIONS smMIPS is an efficient and inexpensive method to detect mutations in patients with hypopituitarism, drastically limiting the need for screening individual genes by Sanger sequencing.
Collapse
Affiliation(s)
- María I. Pérez Millán
- Institute of Biomedical Investigations (INBIOMED‐UBA‐CONICET)University of Buenos AiresBuenos AiresArgentina
| | - Sebastian A. Vishnopolska
- Department of Biological Chemistry (IQUIBICEN‐UBA‐CONICET)Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | | | - Juan P. Bustamante
- Department of Biological Chemistry (IQUIBICEN‐UBA‐CONICET)Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | - Adriana Seilicovich
- Institute of Biomedical Investigations (INBIOMED‐UBA‐CONICET)University of Buenos AiresBuenos AiresArgentina
| | - Ignacio Bergadá
- División de EndocrinologíaHospital de Niños Ricardo GutiérrezCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’ (CEDIE) CONICET – FEIBuenos AiresArgentina
| | - Débora Braslavsky
- División de EndocrinologíaHospital de Niños Ricardo GutiérrezCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’ (CEDIE) CONICET – FEIBuenos AiresArgentina
| | - Ana C. Keselman
- División de EndocrinologíaHospital de Niños Ricardo GutiérrezCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’ (CEDIE) CONICET – FEIBuenos AiresArgentina
| | | | | | - Marcelo A. Marti
- Department of Biological Chemistry (IQUIBICEN‐UBA‐CONICET)Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | - Sally A. Camper
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Jacob O. Kitzman
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
19
|
Zwaveling-Soonawala N, Alders M, Jongejan A, Kovacic L, Duijkers FA, Maas SM, Fliers E, van Trotsenburg ASP, Hennekam RC. Clues for Polygenic Inheritance of Pituitary Stalk Interruption Syndrome From Exome Sequencing in 20 Patients. J Clin Endocrinol Metab 2018; 103:415-428. [PMID: 29165578 DOI: 10.1210/jc.2017-01660] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
CONTEXT Pituitary stalk interruption syndrome (PSIS) consists of a small/absent anterior pituitary lobe, an interrupted/absent pituitary stalk, and an ectopic posterior pituitary lobe. Mendelian forms of PSIS are detected infrequently (<5%), and a polygenic etiology has been suggested. GLI2 variants have been reported at a relatively high frequency in PSIS. OBJECTIVE To provide further evidence for a non-Mendelian, polygenic etiology of PSIS. METHODS Exome sequencing (trio approach) in 20 patients with isolated PSIS. In addition to searching for (potentially) pathogenic de novo and biallelic variants, a targeted search was performed in a panel of genes associated with midline brain development (223 genes). For GLI2 variants, both (potentially) pathogenic and relatively rare variants (<5% in the general population) were studied. The frequency of GLI2 variants was compared with that of a reference population. RESULTS We found four additional candidate genes for isolated PSIS (DCHS1, ROBO2, CCDC88C, and KIF14) and one for syndromic PSIS (KAT6A). Eleven GLI2 variants were present in six patients. A higher frequency of a combination of two GLI2 variants (M1352V + D1520N) was found in the study group compared with a reference population (10% vs 0.68%). (Potentially) pathogenic variants were identified in genes associated with midline brain anomalies, including holoprosencephaly, hypogonadotropic hypogonadism, and absent corpus callosum and in genes involved in ciliopathies. CONCLUSION Combinations of variants in genes associated with midline brain anomalies are frequently present in PSIS and sustain the hypothesis of a polygenic cause of PSIS.
Collapse
Affiliation(s)
- Nitash Zwaveling-Soonawala
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lidija Kovacic
- Novartis Ireland Ltd, Beech Hill Office Campus, Dublin, Ireland
| | - Floor A Duijkers
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - A S Paul van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
21
|
Abstract
Research over the last 20 years has led to the elucidation of the genetic aetiologies of Isolated Growth Hormone Deficiency (IGHD) and Combined Pituitary Hormone Deficiency (CPHD). The pituitary plays a central role in growth regulation, coordinating the multitude of central and peripheral signals to maintain the body's internal balance. Naturally occurring mutation in humans and in mice have demonstrated a role for several factors in the aetiology of IGHD/CPHD. Mutations in the GH1 and GHRHR genes shed light on the phenotype and pathogenesis of IGHD whereas mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 contributed to the understanding of CPHD. Depending upon the expression patterns of these molecules, the phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Although numerous monogenic causes of growth disorders have been identified, most of the patients with IGHD/CPHD remain with an explained aetiology as shown by the relatively low mutation detection rate. The introduction of novel diagnostic approaches is now leading to the disclosure of novel genetic causes in disorders characterized by pituitary hormone defects.
Collapse
Affiliation(s)
- Mara Giordano
- Department of Health Sciences, Laboratory of Human Genetics, University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
22
|
Pyczek J, Buslei R, Schult D, Hölsken A, Buchfelder M, Heß I, Hahn H, Uhmann A. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland. Sci Rep 2016; 6:24928. [PMID: 27109116 PMCID: PMC4842994 DOI: 10.1038/srep24928] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.
Collapse
Affiliation(s)
- Joanna Pyczek
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, Germany
| | - Rolf Buslei
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - David Schult
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Annett Hölsken
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Ina Heß
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, Germany
| | - Heidi Hahn
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, Germany
| | - Anja Uhmann
- Institute of Human Genetics, Tumor Genetics Group, University of Göttingen, Germany
| |
Collapse
|
23
|
De Rienzo F, Mellone S, Bellone S, Babu D, Fusco I, Prodam F, Petri A, Muniswamy R, De Luca F, Salerno M, Momigliano-Richardi P, Bona G, Giordano M. Frequency of genetic defects in combined pituitary hormone deficiency: a systematic review and analysis of a multicentre Italian cohort. Clin Endocrinol (Oxf) 2015; 83:849-60. [PMID: 26147833 DOI: 10.1111/cen.12849] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/22/2015] [Accepted: 07/02/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Combined pituitary hormonal deficiency (CPHD) can result from mutations within genes that encode transcription factors. This study evaluated the frequency of mutations in these genes in a cohort of 144 unrelated Italian patients with CPHD and estimated the overall prevalence of mutations across different populations using a systematic literature review. MATERIAL AND METHODS A multicentre study of adult and paediatric patients with CPHD was performed. The PROP1, POU1F1, HESX1, LHX3 and LHX4 genes were analysed for the presence of mutations using direct sequencing. We systematically searched PubMed with no date restrictions for studies that reported genetic screening of CPHD cohorts. We only considered genetic screenings with at least 10 individuals. Data extraction was conducted in accordance with the guidelines set by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS Global mutation frequency in Italian patients with CPHD was 2·9% (4/136) in sporadic cases and 12·5% (1/8) in familial cases. The worldwide mutation frequency for the five genes calculated from 21 studies was 12·4%, which ranged from 11·2% in sporadic to 63% in familial cases. PROP1 was the most frequently mutated gene in sporadic (6·7%) and familial cases (48·5%). CONCLUSION The frequency of defects in genes encoding pituitary transcription factors is quite low in Italian patients with CPHD and other western European countries, especially in sporadic patients. The decision of which genes should be tested and in which order should be guided by hormonal and imaging phenotype, the presence of extrapituitary abnormalities and the frequency of mutation for each gene in the patient-referring population.
Collapse
Affiliation(s)
- Francesca De Rienzo
- Unit of Paediatrics, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Simona Mellone
- Laboratory of Genetics, Department of Health Sciences, University of Eastern Piedmont and IRCAD, Novara, Italy
| | - Simonetta Bellone
- Unit of Paediatrics, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Deepak Babu
- Laboratory of Genetics, Department of Health Sciences, University of Eastern Piedmont and IRCAD, Novara, Italy
| | - Ileana Fusco
- Laboratory of Genetics, Department of Health Sciences, University of Eastern Piedmont and IRCAD, Novara, Italy
| | - Flavia Prodam
- Unit of Paediatrics, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Antonella Petri
- Unit of Paediatrics, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Ranjith Muniswamy
- Laboratory of Genetics, Department of Health Sciences, University of Eastern Piedmont and IRCAD, Novara, Italy
| | - Filippo De Luca
- Department of Paediatrics, University of Messina, Messina, Italy
| | - Mariacarolina Salerno
- Paediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | | | - Gianni Bona
- Unit of Paediatrics, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Mara Giordano
- Laboratory of Genetics, Department of Health Sciences, University of Eastern Piedmont and IRCAD, Novara, Italy
| |
Collapse
|
24
|
Arnhold IJP, França MM, Carvalho LR, Mendonca BB, Jorge AAL. Role of GLI2 in hypopituitarism phenotype. J Mol Endocrinol 2015; 54:R141-50. [PMID: 25878059 DOI: 10.1530/jme-15-0009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 02/01/2023]
Abstract
GLI2 is a zinc-finger transcription factor involved in the Sonic Hedgehog pathway. Gli2 mutant mice have hypoplastic anterior and absent posterior pituitary glands. We reviewed the literature for patients with hypopituitarism and alterations in GLI2. Twenty-five patients (16 families) had heterozygous truncating mutations, and the phenotype frequently included GH deficiency, a small anterior pituitary lobe and an ectopic/undescended posterior pituitary lobe on magnetic resonance imaging and postaxial polydactyly. The inheritance pattern was autosomal dominant with incomplete penetrance and variable expressivity. The mutation was frequently inherited from an asymptomatic parent. Eleven patients had heterozygous non-synonymous GLI2 variants that were classified as variants of unknown significance, because they were either absent from or had a frequency lower than 0.001 in the databases. In these patients, the posterior pituitary was also ectopic, but none had polydactyly. A third group of variants found in patients with hypopituitarism were considered benign because their frequency was ≥ 0.001 in the databases. GLI2 is a large and polymorphic gene, and sequencing may identify variants whose interpretation may be difficult. Incomplete penetrance implies in the participation of other genetic and/or environmental factors. An interaction between Gli2 mutations and prenatal ethanol exposure has been demonstrated in mice dysmorphology. In conclusion, a relatively high frequency of GLI2 mutations and variants were identified in patients with congenital GH deficiency without other brain defects, and most of these patients presented with combined pituitary hormone deficiency and an ectopic posterior pituitary lobe. Future studies may clarify the relative role and frequency of GLI2 alterations in the aetiology of hypopituitarism.
Collapse
Affiliation(s)
- Ivo J P Arnhold
- Divisão de EndocrinologiaUnidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Hospital das Clinicas da FMUSP, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Eneas de Carvalho Aguiar, 155, Prédio dos Ambulatórios, 8° andar, Bloco 3, CEP 05403-900 Sao Paulo, BrazilUnidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Marcela M França
- Divisão de EndocrinologiaUnidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Hospital das Clinicas da FMUSP, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Eneas de Carvalho Aguiar, 155, Prédio dos Ambulatórios, 8° andar, Bloco 3, CEP 05403-900 Sao Paulo, BrazilUnidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Luciani R Carvalho
- Divisão de EndocrinologiaUnidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Hospital das Clinicas da FMUSP, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Eneas de Carvalho Aguiar, 155, Prédio dos Ambulatórios, 8° andar, Bloco 3, CEP 05403-900 Sao Paulo, BrazilUnidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Berenice B Mendonca
- Divisão de EndocrinologiaUnidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Hospital das Clinicas da FMUSP, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Eneas de Carvalho Aguiar, 155, Prédio dos Ambulatórios, 8° andar, Bloco 3, CEP 05403-900 Sao Paulo, BrazilUnidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Alexander A L Jorge
- Divisão de EndocrinologiaUnidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Hospital das Clinicas da FMUSP, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Eneas de Carvalho Aguiar, 155, Prédio dos Ambulatórios, 8° andar, Bloco 3, CEP 05403-900 Sao Paulo, BrazilUnidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, Brazil
| |
Collapse
|
25
|
Gregory LC, Gaston-Massuet C, Andoniadou CL, Carreno G, Webb EA, Kelberman D, McCabe MJ, Panagiotakopoulos L, Saldanha JW, Spoudeas HA, Torpiano J, Rossi M, Raine J, Canham N, Martinez-Barbera JP, Dattani MT. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism. Clin Endocrinol (Oxf) 2015; 82:728-38. [PMID: 25327282 DOI: 10.1111/cen.12637] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/22/2014] [Accepted: 10/13/2014] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The Gli family of zinc finger (GLI) transcription factors mediates the sonic hedgehog signalling pathway (HH) essential for CNS, early pituitary and ventral forebrain development in mice. Human mutations in this pathway have been described in patients with holoprosencephaly (HPE), isolated congenital hypopituitarism (CH) and cranial/midline facial abnormalities. Mutations in Sonic hedgehog (SHH) have been associated with HPE but not CH, despite murine studies indicating involvement in pituitary development. OBJECTIVES/METHODS We aimed to establish the role of the HH pathway in the aetiology of hypothalamo-pituitary disorders by screening our cohort of patients with midline defects and/or CH for mutations in SHH, GLI2, Shh brain enhancer 2 (SBE2) and growth-arrest specific 1 (GAS1). RESULTS Two variants and a deletion of GLI2 were identified in three patients. A novel variant at a highly conserved residue in the zinc finger DNA-binding domain, c.1552G > A [pE518K], was identified in a patient with growth hormone deficiency and low normal free T4. A nonsynonymous variant, c.2159G > A [p.R720H], was identified in a patient with a short neck, cleft palate and hypogonadotrophic hypogonadism. A 26·6 Mb deletion, 2q12·3-q21·3, encompassing GLI2 and 77 other genes, was identified in a patient with short stature and impaired growth. Human embryonic expression studies and molecular characterisation of the GLI2 mutant p.E518K support the potential pathogenicity of GLI2 mutations. No mutations were identified in GAS1 or SBE2. A novel SHH variant, c.1295T>A [p.I432N], was identified in two siblings with variable midline defects but normal pituitary function. CONCLUSIONS Our data suggest that mutations in SHH, GAS1 and SBE2 are not associated with hypopituitarism, although GLI2 is an important candidate for CH.
Collapse
Affiliation(s)
- L C Gregory
- Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Paulo SS, Fernandes-Rosa FL, Turatti W, Coeli-Lacchini FB, Martinelli CE, Nakiri GS, Moreira AC, Santos AC, de Castro M, Antonini SR. Sonic Hedgehog mutations are not a common cause of congenital hypopituitarism in the absence of complex midline cerebral defects. Clin Endocrinol (Oxf) 2015; 82:562-9. [PMID: 25056824 DOI: 10.1111/cen.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 01/29/2023]
Abstract
CONTEXT AND OBJECTIVE Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. PATIENTS AND METHODS Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). RESULTS Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. CONCLUSION SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship.
Collapse
Affiliation(s)
- Sabrina Soares Paulo
- Department of Pediatrics, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kordaß U, Schröder C, Elbracht M, Soellner L, Eggermann T. A familial GLI2 deletion (2q14.2) not associated with the holoprosencephaly syndrome phenotype. Am J Med Genet A 2015; 167A:1121-4. [PMID: 25820550 DOI: 10.1002/ajmg.a.36972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/28/2014] [Indexed: 01/15/2023]
Abstract
Molecular alterations of the GLI2 gene in 2q14.2 are associated with features from the holoprosencephaly spectrum. However, the phenotype is extremely variable, ranging from unaffected mutation heterozygotes to isolated or combined pituitary hormone deficiency, and to patients with a phenotype that overlaps with holoprosencephaly, including abnormal pituitary gland formation/function, craniofacial dysmorphisms, branchial arch anomalies, and polydactyly. Although many point mutations within the GLI2 gene have been identified, large (sub) microscopic deletions affecting 2q14.2 are rare. We report on a family with a 4.3 Mb deletion in 2q14 affecting GLI2 without any dysmorphologic features belonging to the holoprosencephaly spectrum. This family confirms the incomplete penetrance of genomic disturbances affecting the GLI2 gene. However, the family presented here is unique as none of the three identified individuals with a GLI2 deletion showed any typical signs of holoprosencephaly, whereas all patients reported so far were referred for genetic testing because at least one member exhibited holoprosencephaly and related features.
Collapse
|
28
|
Ma D, Marion R, Punjabi NP, Pereira E, Samanich J, Agarwal C, Li J, Huang CK, Ramesh KH, Cannizzaro LA, Naeem R. A de novo 10.79 Mb interstitial deletion at 2q13q14.2 involving PAX8 causing hypothyroidism and mullerian agenesis: a novel case report and literature review. Mol Cytogenet 2014; 7:85. [PMID: 25484916 PMCID: PMC4256837 DOI: 10.1186/s13039-014-0085-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Reports of interstitial deletions involving proximal long arm of chromosome 2 are limited. Based on early chromosomal analysis studies, the phenotypic consequence of deletions at the ancestral chromosome fusion site at chromosome 2q13q14.1 remains unclear. A recurrent 1.71 Mb deletion at 2q13 has recently been proposed as a new genomic disorder, associated with an increased risk of intellectual disability and craniofacial dysmorphism. Herein, we report the case of a 12 year-old girl with unique clinical features including global developmental delay, mullerian agenesis, and hypothyroidism associated with a normal size and position of the thyroid gland, as well as negative thyroid antibodies. Microarray-based comparative genomic hybridization study revealed a de novo 10.79 Mb deletion at 2q13q14.2 (111,548,932–122,336,492), which involves more than 88 UCSC genes, 38 of which are OMIM genes, 7 of which are disease-causing and 3 of which (including GLI2, IL1B and PAX8) show a dominant inheritance pattern.. Interestingly, PAX8 (chr2:113,973,574–114,036,498), a member of the paired-box gene family, is essential for the formation of thyroxine-producing follicular cells. Autosomal dominant transmission of congenital thyroid hypoplasia due to loss-of-function mutation of PAX8 suggests a possible haploinsufficiency effect. Additionally, PAX8 is also expressed in the tissue primordia that form both the mullerian duct derivatives and the upper urinary tracts. A recent study has associated a novel PAX8 mutation with a severe form of hypothyroidism and abnormalities in the urogenital tract. Taken together, the unique clinical manifestation seen in this patient could be attributed to the heterozygous deletion of PAX8 gene. A prospective investigation is merited to fully evaluate the pathogenic effect of the interstitial deletion of 2q13q14.2.
Collapse
Affiliation(s)
- Deqiong Ma
- Molecular Pathology and Cytogenetics Lab, Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 1635 Poplar Street, Bronx, NY 10461 USA
| | - Robert Marion
- Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY USA
| | | | - Elaine Pereira
- Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY USA
| | - Joy Samanich
- Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY USA
| | - Chhavi Agarwal
- Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY USA
| | - Jianli Li
- Molecular Pathology and Cytogenetics Lab, Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 1635 Poplar Street, Bronx, NY 10461 USA
| | - Chih-Kang Huang
- Molecular Pathology and Cytogenetics Lab, Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 1635 Poplar Street, Bronx, NY 10461 USA
| | - K H Ramesh
- Molecular Pathology and Cytogenetics Lab, Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 1635 Poplar Street, Bronx, NY 10461 USA
| | - Linda A Cannizzaro
- Molecular Pathology and Cytogenetics Lab, Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 1635 Poplar Street, Bronx, NY 10461 USA
| | - Rizwan Naeem
- Molecular Pathology and Cytogenetics Lab, Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 1635 Poplar Street, Bronx, NY 10461 USA
| |
Collapse
|
29
|
Tasdemir S, Sahin I, Cayır A, Doneray H, Solomon BD, Muenke M, Yuce I, Tatar A. Holoprosencephaly: ZIC2 mutation in a case with panhypopituitarism. J Pediatr Endocrinol Metab 2014; 27:777-81. [PMID: 24706429 DOI: 10.1515/jpem-2013-0449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Holoprosencephaly (HPE), the most common malformation of the brain, results from failed or incomplete separation of the embryonic forebrain (prosencephalon). HPE occurs in approximately 1 in 250 embryos and in about 1 in 10,000 births. It is etiologically heterogeneous, and may be caused by cytogenetic anomalies and teratogenic influences; it occurs as part of a syndrome, or due to heterozygous mutations in 1 of over 10 HPE-associated genes. ZIC2 mutations are the second-most common cause of non-syndromic non-chromosomal HPE (after sonic hedgehog) and occur de novo in 74% of the affected probands. OBJECTIVE The objective of the study was to describe the first case of ZIC2-related HPE with both anterior and posterior pituitary insufficiencies. CASE PRESENTATION We report about a 2-year-8-month-old boy who was born as a second child in a non-consanguineous healthy Turkish family. He has the characteristic ZIC2 phenotype: bitemporal narrowing, upslanting palpebral fissures, large ears, short nose with anteverted nares and broad and deep philtrum. Magnetic resonance imaging revealed alobar HPE. During laboratory investigation, his blood sodium level was 158 mmol/L and the specific gravity of his urine was 1.002. Serum osmolarity was 336 mOsm/L and urine osmolality was 135 mOsm/kg. His FT4 was 0.8 ng/dL and TSH was 0.79 mLU/mL. Response to vasopressin confirmed the diagnosis of central diabetes insipidus and TRH-stimulating test supported the central hypothyroidism. A frameshift mutation (NM_007129.2:c1091_1092 del, p.Gln364Leufs*2) in the ZIC2 gene was detected. CONCLUSION Pituitary insufficiency other than isolated diabetes insipidus is a rare finding of HPE, and occurs most frequently in patients with GLI2 mutations (the phenotype of which typically does not include frank neuroanatomic anomalies such as HPE); ours is the only described patient with a ZIC2 mutation and both anterior and posterior pituitary dysfunction.
Collapse
|
30
|
Ferent J, Traiffort E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2014; 21:356-71. [PMID: 24743306 DOI: 10.1177/1073858414531457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of the segment polarity gene Hedgehog in Drosophila three decades ago, our knowledge of Hedgehog signaling pathway has considerably improved and paved the way to a wide field of investigations in the developing and adult central nervous system. Its peculiar transduction mechanism together with its implication in tissue patterning, neural stem cell biology, and neural tissue homeostasis make Hedgehog pathway of interest in a high number of normal or pathological contexts. Consistent with its role during brain development, misregulation of Hedgehog signaling is associated with congenital diseases and tumorigenic processes while its recruitment in damaged neural tissue may be part of the repairing process. This review focuses on the most recent data regarding the Hedgehog pathway in the developing and adult central nervous system and also its relevance as a therapeutic target in brain and spinal cord diseases.
Collapse
Affiliation(s)
- Julien Ferent
- IRCM, Molecular Biology of Neural Development, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-Université Paris Sud, Neuroprotection and Neuroregeneration: Small Neuroactive Molecules UMR 788, Le Kremlin-Bicêtre, France
| |
Collapse
|