1
|
Fernández Aceñero MJ, Díaz del Arco C. Hereditary Gastrointestinal Tumor Syndromes: When Risk Comes with Your Genes. Curr Issues Mol Biol 2024; 46:6440-6471. [PMID: 39057027 PMCID: PMC11275188 DOI: 10.3390/cimb46070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Despite recent campaigns for screening and the latest advances in cancer therapy and molecular biology, gastrointestinal (GI) neoplasms remain among the most frequent and lethal human tumors. Most GI neoplasms are sporadic, but there are some well-known familial syndromes associated with a significant risk of developing both benign and malignant GI tumors. Although some of these entities were described more than a century ago based on clinical grounds, the increasing molecular information obtained with high-throughput techniques has shed light on the pathogenesis of several of them. The vast amount of information gained from next-generation sequencing has led to the identification of some high-risk genetic variants, although others remain to be discovered. The opportunity for genetic assessment and counseling in these families has dramatically changed the management of these syndromes, though it has also resulted in significant psychological distress for the affected patients, especially those with indeterminate variants. Herein, we aim to summarize the most relevant hereditary cancer syndromes involving the stomach and colon, with an emphasis on new molecular findings, novel entities, and recent changes in the management of these patients.
Collapse
Affiliation(s)
- María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
2
|
Carsote M, Ciobica ML, Sima OC, Ciuche A, Popa-Velea O, Stanciu M, Popa FL, Nistor C. Personalized Management of Malignant and Non-Malignant Ectopic Mediastinal Thyroid: A Proposed 10-Item Algorithm Approach. Cancers (Basel) 2024; 16:1868. [PMID: 38791947 PMCID: PMC11120123 DOI: 10.3390/cancers16101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
We aimed to analyze the management of the ectopic mediastinal thyroid (EMT) with respect to EMT-related cancer and non-malignant findings related to the pathological report, clinical presentation, imaging traits, endocrine profile, connective tissue to the cervical (eutopic) thyroid gland, biopsy or fine needle aspiration (FNA) results, surgical techniques and post-operatory outcome. This was a comprehensive review based on revising any type of freely PubMed-accessible English, full-length original papers including the keywords "ectopic thyroid" and "mediastinum" from inception until March 2024. We included 89 original articles that specified EMTs data. We classified them into four main groups: (I) studies/case series (n = 10; N = 36 EMT patients); (II) malignant EMTs (N = 22 subjects; except for one newborn with immature teratoma in the EMT, only adults were reported; mean age of 62.94 years; ranges: 34 to 90 years; female to male ratio of 0.9). Histological analysis in adults showed the following: papillary (N = 11/21); follicular variant of the papillary type (N = 2/21); Hürthle cell thyroid follicular malignancy (N = 1/21); poorly differentiated (N = 1/21); anaplastic (N = 2/21); medullary (N = 1/21); lymphoma (N = 2/21); and MALT (mucosa-associated lymphoid tissue) (N = 1/21); (III) benign EMTs with no thyroid anomalies (N = 37 subjects; mean age of 56.32 years; ranges: 30 to 80 years; female to male ratio of 1.8); (IV) benign EMTs with thyroid anomalies (N = 23; female to male ratio of 5.6; average age of 52.1 years). This panel involved clinical/subclinical hypothyroidism (iatrogenic, congenital, thyroiditis-induced, and transitory type upon EMT removal); thyrotoxicosis (including autonomous activity in EMTs that suppressed eutopic gland); autoimmune thyroiditis/Graves's disease; nodules/multinodular goiter and cancer in eutopic thyroid or prior thyroidectomy (before EMT detection). We propose a 10-item algorithm that might help navigate through the EMT domain. To conclude, across this focused-sample analysis (to our knowledge, the largest of its kind) of EMTs, the EMT clinical index of suspicion remains low; a higher rate of cancer is reported than prior data (18.8%), incident imagery-based detection was found in 10-14% of the EMTs; surgery offered an overall good outcome. A wide range of imagery, biopsy/FNA and surgical procedures is part of an otherwise complex personalized management.
Collapse
Affiliation(s)
- Mara Carsote
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Mihai-Lucian Ciobica
- Department of Internal Medicine and Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine I and Rheumatology, “Dr. Carol Davila” Central Military University Emergency Hospital, 010825 Bucharest, Romania
| | - Oana-Claudia Sima
- PhD Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adrian Ciuche
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| | - Ovidiu Popa-Velea
- Department of Medical Psychology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihaela Stanciu
- Department of Endocrinology, Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| | - Florina Ligia Popa
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| |
Collapse
|
3
|
Li M, Wang X, Wang F, Wang F, Zhao D, Liu S. JAG1 Variants Confer Genetic Susceptibility to Thyroid Dysgenesis and Thyroid Dyshormonogenesis in 813 Congenital Hypothyroidism in China. Int J Gen Med 2024; 17:885-894. [PMID: 38468821 PMCID: PMC10926855 DOI: 10.2147/ijgm.s445557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background and Objective Congenital hypothyroidism (CH) is indeed a prevalent neonatal endocrine disorder, affecting approximately 1 in 2000-3000 newborns worldwide, and 1 in 2400 newborns in China. Despite its high incidence, the genetic causes of CH, particularly those related to thyroid dysgenesis (TD), are still not well understood. However, previous studies have suggested that JAG1 may be a potential susceptibility gene for congenital thyroid defects. To explore the association between JAG1 and CH, we screened JAG1 variants in a large cohort of 813 CH patients. Methods We performed genetic analysis of JAG1 using next-generation sequencing in 813 CH cases. The pathogenicity of the variants was assessed by bioinformatics softwares, protein sequence conservation analysis, and hydrophobic analysis. Further genetic analysis was conducted targeting 20 CH-related genes in these 25 JAG1 variant carriers. Results We identified 10 pathogenic missense mutations (p.V45L, p.V272I, p.P552L, p.G610E, p.G852D, p.A891T, p.E1030K, p.R1060W, p.A1131T, p.P1174L) carried by 25 patients, the mutation rate of JAG1 in CH was 3.08%. Among these 25 patients, 16 with 1 variant, 6 with 2 variants, and the other 3 with 3 variants. Our findings indicated that JAG1 variants confer genetic susceptibility to both TD and DH, but with different inheritance models. JAG1 variants lead to TD mainly through monogenic model, while for DH cases, both monogenic mechanisms and oligogenic mechanisms play a pivotal role. Oligogenicity may contribute to the disease severity of DH. Conclusion JAG1 is a shared genetic factor in TD and DH, with a detection rate of 3.08% in Chinese individuals with CH. A comparison between the oligogenic and monogenic groups suggests a gene dosage effect in CH. Patients with the same JAG1 mutation exhibit diverse clinical phenotypes, indicating complex mechanisms underlying phenotypic heterogeneity.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoyu Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Fang Wang
- Endocrinology Department, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Fengqi Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Dehua Zhao
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shiguo Liu
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Kim DS, Park S. Interactions between Polygenetic Variants and Lifestyle Factors in Hypothyroidism: A Hospital-Based Cohort Study. Nutrients 2023; 15:3850. [PMID: 37686882 PMCID: PMC10490100 DOI: 10.3390/nu15173850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Hypothyroidism is a prevalent endocrine disorder and is associated with a variety of metabolic disturbances. This study aimed to investigate the polygenic variants associated with hypothyroidism risk and the interaction of polygenic risk scores (PRS) with dietary patterns in influencing disease risk in 56,664 participants aged >40 in a hospital-based cohort. The participants were classified as having hypothyroidism (n = 870) diagnosed by a physician and no hypothyroidism (n = 55,794). Genetic variants associated with hypothyroidism were identified using a genome-wide association study (GWAS). Genetic variants interacting with each other were selected using a generalized multifactor dimensionality reduction analysis, and the PRS generated was evaluated for interaction with lifestyle parameters. Coffee, alcohol, meat intake, and a Korean balanced diet were inversely associated with hypothyroidism risk, as were selenium, copper, and manganese intakes. White blood cell (WBC) counts and serum alkaline phosphatase and triglyceride concentrations were positively associated with hypothyroidism risk, as were osteoporosis and thyroid cancer. The GMDR analysis generated a three-single nucleotide polymorphism (SNP) model comprising dual oxidase-1 (DUOX1)_rs1648314; thyroid-stimulating hormone receptor (TSHR)_rs75664963; and major histocompatibility complex, class-II, DQ Alpha-1 (HLA-DQA1)_rs17426593. The PRS derived from the three- and seven-SNP models were associated with a 2.11- and 2.32-fold increase in hypothyroidism risk, respectively. Furthermore, the PRS from the three-SNP model showed interactions with WBC counts, wherein the positive association with hypothyroidism risk was more pronounced in participants with low WBC counts than those with high WBC counts (≥4 × 109 /L). Dietary patterns, such as the plant-based diet (PBD) and the Western-style diet (WSD), along with smoking status, exhibited interactions with the PRS, influencing hypothyroidism risk. In participants with a high PRS, those in the high-PBD, low-WSD, and smoker groups had a higher proportion of hypothyroidism than those in the low-PBD, high-WSD, and non-smoker groups. In conclusion, genetic variants related to immunity and thyroid hormone secretion were linked to hypothyroidism risk, and their PRS interacted with PBD and WSD intake and smoking status. These results contribute to a better understanding of hypothyroidism and its prevention strategies for precision medicine intervention.
Collapse
Affiliation(s)
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea;
| |
Collapse
|
5
|
Gomes Pio M, Adrover E, Miras MB, Sobrero G, Molina MF, Scheps KG, Rivolta CM, Targovnik HM. The p.Cys1281Tyr variant in the hinge module/flap region of thyroglobulin causes intracellular transport disorder and congenital hypothyroidism. Mol Cell Endocrinol 2023; 572:111948. [PMID: 37164149 DOI: 10.1016/j.mce.2023.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Congenital hypothyroidism (CH) due to thyroglobulin (TG) variants causes very low serum TG levels with normal or enlarged thyroid glands, depending on the severity of the defect, and with autosomal recessive inheritance. The purpose of this study was to functionally characterize p.Cys1281Tyr variant in the TG gene in order to increase our knowledge of the molecular mechanisms associated with CH. In order to find evidence that support the hypothesis that the p.Cys1281Tyr variant would affect the TG folding were performed amino acid prediction, 3D modeling and transient expression analysis in HEK293T cells. 18 of the 21″in silico" algorithms predict a deleterious effect of the p.Cys1281Tyr variant. The full-length 3D model p.Cys1281Tyr TG showed disulfide bond cleavage between the cysteines at positions 1249 and 1281 and rearrangement of the TG structure, while transient expression analysis indicated that p.Cys1281Tyr causes retention of the protein inside the cell. Consequently, these results show that this pathogenic variant makes it impossible for TG to fulfill its function in the biosynthesis process of thyroid hormones, causing CH. In conclusion, our results confirm the pathophysiological importance of misfolding of TG as a consequence of p.Cys1281Tyr variant located in the hinge module/flap region of TG.
Collapse
Affiliation(s)
- Mauricio Gomes Pio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Mirta B Miras
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Gabriela Sobrero
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Maricel F Molina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Karen G Scheps
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Molina MF, Papendieck P, Sobrero G, Balbi VA, Belforte FS, Martínez EB, Adrover E, Olcese MC, Chiesa A, Miras MB, González VG, Pio MG, González-Sarmiento R, Targovnik HM, Rivolta CM. Mutational screening of the TPO and DUOX2 genes in Argentinian children with congenital hypothyroidism due to thyroid dyshormonogenesis. Endocrine 2022; 77:86-101. [PMID: 35507000 DOI: 10.1007/s12020-022-03054-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the preventable causes of both cognitive and motor deficits. We present a genetic and bioinformatics investigation of rational clinical design in 17 Argentine patients suspected of CH due to thyroid dyshormonogenesis (TDH). METHODS Next-Generation Sequencing approach was used to identify variants in Thyroid Peroxidase (TPO) and Dual Oxidase 2 (DUOX2) genes. A custom panel targeting 7 genes associated with TDH [(TPO), Iodothyrosine Deiodinase I (IYD), Solute Carrier Family 26 Member 4 (SLC26A4), Thyroglobulin (TG), DUOX2, Dual Oxidase Maturation Factor 2 (DUOXA2), Solute Carrier Family 5 Member 5 (SLC5A5)] and 4 associated with thyroid dysembryogenesis [PAX8, FOXE1, NKX2-1, Thyroid Stimulating Hormone Receptor (TSHR)] has been designed. Additionally, bioinformatic analysis and structural modeling were carried out to predict the disease-causing potential variants. RESULTS Four novel variants have been identified, two in TPO: c.2749-2 A > C and c.2752_2753delAG, [p.Ser918Cysfs*62] and two variants in DUOX2 gene: c.425 C > G [p.Pro142Arg] and c.2695delC [p.Gln899Serfs*21]. Eighteen identified TPO, DUOX2 and IYD variants were previously described. We identified potentially pahogenic biallelic variants in TPO and DUOX2 in 7 and 2 patients, respectively. We also detected a potentially pathogenic monoallelic variant in TPO and DUOX2 in 7 and 1 patients respectively. CONCLUSIONS 22 variants have been identified associated with TDH. All described novel mutations occur in domains important for protein structure and function, predicting the TDH phenotype.
Collapse
Affiliation(s)
- Maricel F Molina
- Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia Papendieck
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Gabriela Sobrero
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Viviana A Balbi
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Fiorella S Belforte
- Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elena Bueno Martínez
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, España
| | - Ezequiela Adrover
- Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María C Olcese
- Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Mirta B Miras
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Verónica G González
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Mauricio Gomes Pio
- Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rogelio González-Sarmiento
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, España
| | - Héctor M Targovnik
- Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina M Rivolta
- Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Stoupa A, Kariyawasam D, Polak M, Carré A. Genetics of congenital hypothyroidism: Modern concepts. Pediatr Investig 2022; 6:123-134. [PMID: 35774517 PMCID: PMC9218988 DOI: 10.1002/ped4.12324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder and one of the most common preventable causes of intellectual disability in the world. CH may be due to developmental or functional thyroid defects (primary or peripheral CH) or be hypothalamic-pituitary in origin (central CH). In most cases, primary CH is caused by a developmental malformation of the gland (thyroid dysgenesis, TD) or by a defect in thyroid hormones synthesis (dyshormonogenesis, DH). TD represents about 65% of CH and a genetic cause is currently identified in fewer than 5% of patients. The remaining 35% are cases of DH and are explained with certainty at the molecular level in more than 50% of cases. The etiology of CH is mostly unknown and may include contributions from individual and environmental factors. In recent years, the detailed phenotypic description of patients, high-throughput sequencing technologies, and the use of animal models have made it possible to discover new genes involved in the development or function of the thyroid gland. This paper reviews all the genetic causes of CH. The modes by which CH is transmitted will also be discussed, including a new oligogenic model. CH is no longer simply a dominant disease for cases of CH due to TD and recessive for cases of CH due to DH, but a far more complex disorder.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Dulanjalee Kariyawasam
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Michel Polak
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
- Université de Paris CitéParisFrance
| | - Aurore Carré
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
| |
Collapse
|
8
|
Li M, Li X, Wang F, Ren Y, Zhang X, Wang J, Shen L, Zhao D, ShiguoLiu. Genetic analysis of iodide transporter and recycling (NIS, PDS, SLC26A7, IYD) in patients with congenital hypothyroidism. Gene X 2022; 824:146402. [PMID: 35276235 DOI: 10.1016/j.gene.2022.146402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- Miaomiao Li
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China; Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaole Li
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Endocrinology Department, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yubao Ren
- Neonatal Screening Center, Shengli Hospital of Shengli Oilfield, Dongying, China
| | - Xiao Zhang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China; Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingli Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China; Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Shen
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China; Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dehua Zhao
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - ShiguoLiu
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China; Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Stoupa A, Kariyawasam D, Polak M, Carré A. [Genetic of congenital hypothyroidism]. Med Sci (Paris) 2022; 38:263-273. [PMID: 35333163 DOI: 10.1051/medsci/2022028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). DH accounts for about 35% of CH and a genetic cause is identified in 50% of patients. However, TD accounts for about 65% of CH, and a genetic cause is identified in less than 5% of patients. The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development and function. We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Dulanjalee Kariyawasam
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Michel Polak
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France - Université de Paris, Paris, France
| | - Aurore Carré
- Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France
| |
Collapse
|
10
|
Sun F, Zhang RJ, Cheng F, Fang Y, Yang RM, Ye XP, Han B, Zhao SX, Dong M, Song HD. Correlation of DUOX2 residual enzymatic activity with phenotype in congenital hypothyroidism caused by biallelic DUOX2 defects. Clin Genet 2021; 100:713-721. [PMID: 34564849 DOI: 10.1111/cge.14065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
DUOX2 is the most frequently mutated gene in patients with congenital hypothyroidism (CH) in China. However, no reliable genotype-phenotype relationship has been found in patients with DUOX2 mutations. In this study, DUOX2 mutations were screened in 266 CH patients, and the enzymatic activity of 89 DUOX2 variants was determined in vitro. Furthermore, the DUOX2 residual activity in 76 CH patients caused by DUOX2 biallelic mutations was calculated. The thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels were found to be higher and lower in patients with DUOX2 residual activity ≤22%, respectively, compared to patients with residual enzymatic activity >22%. Moreover, we interpreted the pathogenicity of DUOX2 variants by applying the ACMG classification criteria with or without PS3/BS3 evidence. The results indicated that residual DUOX2 enzymatic activity was closely related to the clinical phenotypes of CH patients caused by DUOX2 biallelic mutations. These findings suggest that the residual enzymatic activity of 22% may be a cutoff value for estimating the severity of hypothyroidism in CH patients with biallelic DUOX2 mutations. Well-established functional studies are useful and necessary to evaluate the pathogenicity of DUOX2 variants, improving the accuracy and scope of genetic consultations.
Collapse
Affiliation(s)
- Feng Sun
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Jia Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Children's Hospital, Fujian Provincial Maternity and Children's Hospital, Fuzhou, China
| | - Ya Fang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Meng Yang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Ye
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei Dong
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Li M, Tian W, Wang F, Yang C, Zhang L, Tang Q, Liu S, Wang F. Nicotinamide nucleotide transhydrogenase mutation analysis in Chinese patients with thyroid dysgenesis. Am J Med Genet A 2021; 188:89-98. [PMID: 34545694 DOI: 10.1002/ajmg.a.62493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Thyroid dysgenesis (TD) accounts for 80% cases of congenital hypothyroidism, which is the most common neonatal disorder. Until now, the gene mutations have been reported associated with TD can only account for 5% cases, suggesting the genetic heterogeneity of the pathology. Nicotinamide nucleotide transhydrogenase (NNT) plays a crucial role in regulating redox homeostasis, patients carrying NNT mutations have been described with a clinical phenotype of hypothyroidism. As TD risk is increased in the context of several syndromes and redox homeostasis is vital for thyroid development and function, NNT might be a candidate gene involved in syndromic TD. Therefore, we performed target sequencing (TS) in 289 TD patients for causative mutations in NNT and conducted functional analysis of the gene mutations. TS and Sanger sequence were used to screen the novel mutations. For functional analysis, we performed western blot, measurement of NADPH/NADPtotal and H2 O2 generation, cell proliferation, and wounding healing assay. As a result, three presumably pathogenic mutations (c.811G > A, p.Ala271Ser; c.2078G > A, p.Arg693His; and c.2581G > A, p.Val861Met) in NNT had been identified. Our results showed the damaging effect of NNT mutations on stability and catalytic activity of proteins and redox balance of cells. In conclusion, our findings provided novel insights into the role of the NNT isotype in thyroid physiopathology and broaden the spectrum of pathogenic genes associated with TD. However, the pathogenic mechanism of NNT in TD is still need to be investigated in further study.
Collapse
Affiliation(s)
- Miaomiao Li
- The Affiliated Hospital of Qingdao University, Medical Genetic Department, Prenatal Diagnosis Center, Qingdao, China
| | - Weibing Tian
- Weifang Maternal and Child Health Hospital, Newborn Screening Center, Weifang, China
| | - Fengqi Wang
- The Affiliated Hospital of Qingdao University, Medical Genetic Department, Prenatal Diagnosis Center, Qingdao, China
| | - Chengyu Yang
- The Affiliated Hospital of Qingdao University, Medical Genetic Department, Prenatal Diagnosis Center, Qingdao, China
| | - Lu Zhang
- The Affiliated Hospital of Qingdao University, Medical Genetic Department, Prenatal Diagnosis Center, Qingdao, China
| | - Qian Tang
- The Affiliated Hospital of Qingdao University, Medical Genetic Department, Prenatal Diagnosis Center, Qingdao, China
| | - Shiguo Liu
- The Affiliated Hospital of Qingdao University, Medical Genetic Department, Prenatal Diagnosis Center, Qingdao, China
| | - Fang Wang
- The Affiliated Hospital of Qingdao University, Department of Endocrinology, Qingdao, China
| |
Collapse
|
12
|
Sawayama E, Handa Y, Nakano K, Noguchi D, Takagi M, Akiba Y, Sanada S, Yoshizaki G, Usui H, Kawamoto K, Suzuki M, Asahina K. Identification of the causative gene of a transparent phenotype of juvenile red sea bream Pagrus major. Heredity (Edinb) 2021; 127:167-175. [PMID: 34175895 PMCID: PMC8322342 DOI: 10.1038/s41437-021-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deformities in cultured fish species may be genetic, and identifying causative genes is essential to expand production and maintain farmed animal welfare. We previously reported a genetic deformity in juvenile red sea bream, designated a transparent phenotype. To identify its causative gene, we conducted genome-wide linkage analysis and identified two single nucleotide polymorphisms (SNP) located on LG23 directly linked to the transparent phenotype. The scaffold on which the two SNPs were located contained two candidate genes, duox and duoxa, which are related to thyroid hormone synthesis. Four missense mutations were found in duox and one in duoxa, with that in duoxa showing perfect association with the transparent phenotype. The mutation of duoxa was suggested to affect the transmembrane structure and thyroid-related traits, including an enlarged thyroid gland and immature erythrocytes, and lower thyroxine (T4) concentrations were observed in the transparent phenotype. The transparent phenotype was rescued by T4 immersion. Loss-of-function of duoxa by CRISPR-Cas9 induced the transparent phenotype in zebrafish. Evidence suggests that the transparent phenotype of juvenile red sea bream is caused by the missense mutation of duoxa and that this mutation disrupts thyroid hormone synthesis. The newly identified missense mutation will contribute to effective selective breeding of red sea bream to purge the causative gene of the undesirable phenotype and improve seed production of red sea bream as well as provide basic information of the mechanisms of thyroid hormones and its related diseases in fish and humans.
Collapse
Affiliation(s)
- Eitaro Sawayama
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | | | | | - Daiki Noguchi
- Nippon Total Science, Inc., Fukuyama, Hiroshima Japan
| | - Motohiro Takagi
- grid.255464.40000 0001 1011 3808South Ehime Fisheries Research Center, Ehime University, Ehime, Japan
| | - Yosuke Akiba
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shuwa Sanada
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hayato Usui
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kenta Kawamoto
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Miwa Suzuki
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kiyoshi Asahina
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| |
Collapse
|
13
|
Wang F, Xiaole L, Ma R, Zhao D, Liu S. Dual Oxidase System Genes Defects in Children With Congenital Hypothyroidism. Endocrinology 2021; 162:6149935. [PMID: 33631011 DOI: 10.1210/endocr/bqab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE The objectives of this study were to analyze the distribution of dual oxidase (DUOX) system genes (containing DUOX2, DUOX1, DUOXA2, and DUOXA1) variants in children with congenital hypothyroidism (CH) and their phenotypes. METHODS Target region sequencing technology was performed on DUOX system genes among 606 CH subjects covering all the exon and intron regions. Detailed clinical data were collected for statistical analysis. RESULTS A total of 95 suspected pathogenic variants were detected in the DUOX system genes, showing a 39.11% rate in variant carrying (237/606). DUOX2 had the highest rate in this study. There were statistical differences in maximum adjusted dose and current dose of levothyroxine between the DUOX system genes nonmutated group with the mutated group (both Ps < 0.001). The cases in the DUOX system genes mutated group were more likely to develop into transient CH (χ 2 = 23.155, P < 0.001) and more likely to manifested as goiter or gland-in-situ (χ 2 = 66.139, P < 0.001). In addition, there was no significant difference in clinical characteristics between DUOX system genes monoallelic and non-monoallelic. Although 20% of the variants affected the functional domain regions (EF hand, flavin adenine dinucleotide and nicotinamide adenine dinucleotide binding sites), there was no significant effect on the phenotype severity whether the variation is located in the functional domain regions. CONCLUSIONS Our results showed the high variation rate of DUOX2 in the DUOX system genes among Chinese CH patients. The complex genotype-phenotype relationship of DUOX system genes broadened the understanding of CH phenotype spectrum.
Collapse
Affiliation(s)
- Fengqi Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xiaole
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixin Ma
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dehua Zhao
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiguo Liu
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Vishnopolska SA, Mercogliano MF, Camilletti MA, Mortensen AH, Braslavsky D, Keselman A, Bergadá I, Olivieri F, Miranda L, Marino R, Ramírez P, Pérez Garrido N, Patiño Mejia H, Ciaccio M, Di Palma MI, Belgorosky A, Martí MA, Kitzman JO, Camper SA, Pérez-Millán MI. Comprehensive Identification of Pathogenic Gene Variants in Patients With Neuroendocrine Disorders. J Clin Endocrinol Metab 2021; 106:1956-1976. [PMID: 33729509 PMCID: PMC8208670 DOI: 10.1210/clinem/dgab177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/12/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis. METHODS We conducted target panel genetic screening using single-molecule molecular inversion probes sequencing to assess the frequency of mutations in known hypopituitarism genes and new candidates in Argentina. We captured genomic deoxyribonucleic acid from 170 pediatric patients with CH, either alone or with other abnormalities. We performed promoter activation assays to test the functional effects of patient variants in LHX3 and LHX4. RESULTS We found variants classified as pathogenic, likely pathogenic, or with uncertain significance in 15.3% of cases. These variants were identified in known CH causative genes (LHX3, LHX4, GLI2, OTX2, HESX1), in less frequently reported genes (FOXA2, BMP4, FGFR1, PROKR2, PNPLA6) and in new candidate genes (BMP2, HMGA2, HNF1A, NKX2-1). CONCLUSION In this work, we report the prevalence of mutations in known CH genes in Argentina and provide evidence for new candidate genes. We show that CH is a genetically heterogeneous disease with high phenotypic variation and incomplete penetrance, and our results support the need for further gene discovery for CH. Identifying population-specific pathogenic variants will improve the capacity of genetic data to predict eventual clinical outcomes.
Collapse
Affiliation(s)
- Sebastian Alexis Vishnopolska
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Florencia Mercogliano
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Andrea Camilletti
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Amanda Helen Mortensen
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Federico Olivieri
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Lucas Miranda
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Roxana Marino
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Pablo Ramírez
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Natalia Pérez Garrido
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Helen Patiño Mejia
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Marta Ciaccio
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Maria Isabel Di Palma
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Alicia Belgorosky
- Hospital de Pediatría Garrahan-CONICET, Ciudad de Buenos Aires, Argentina
| | - Marcelo Adrian Martí
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Jacob Otto Kitzman
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Sally Ann Camper
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| | - Maria Ines Pérez-Millán
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| |
Collapse
|
15
|
Citterio CE, Rivolta CM, Targovnik HM. Structure and genetic variants of thyroglobulin: Pathophysiological implications. Mol Cell Endocrinol 2021; 528:111227. [PMID: 33689781 DOI: 10.1016/j.mce.2021.111227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Thyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared. Although TG deficiency is thought to be of autosomal recessive inheritance, the introduction of massive sequencing platforms led to the identification of a variety of monoallelic TG variants (combined with mutations in other thyroid gene products) opening new questions regarding the possibility of oligogenic inheritance of the disease. In this review we discuss remarkable advances in the understanding of the TG architecture and the pathophysiology of CH associated with TG defects, providing new insights for the management of congenital disorders as well as counseling benefits for families with a history of TG abnormalities. Moreover, we summarize relevant aspects of TH synthesis within TG and offer an updated analysis of animal and cellular models of TG deficiency for pathophysiological studies of thyroid dyshormonogenesis while highlighting perspectives for new investigations. All in all, even though there has been sustained progress in understanding the role of TG in thyroid pathophysiology during the past 50 years, functional characterization of TG variants remains an important area of study for future advancement in the field.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Li L, Liu W, Zhang L, Wang F, Wang F, Gu M, Wang X, Liu S. Identification and analyzes of DUOX2 mutations in two familial congenital hypothyroidism cases. Endocrine 2021; 72:147-156. [PMID: 32803677 DOI: 10.1007/s12020-020-02437-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations in DUOX2 are the frequent cause of congenital hypothyroidism (CH), a common neonatal metabolic disorder characterized by great phenotypic variability. CH can be traditionally subclassified into two subtypes: thyroid dysgenesis (TD) and thyroid dyshormonogenesis. The objectives of this study were to analyze the genetic data of two familial CH cases, to elucidate the pathogenesis from the perspective of genetics and to review and summarize the previous findings. METHODS Targeted regions sequencing (TRS) technology covering all exons and intron-exon boundaries of 35 known and potential CH-related candidate target genes in combination with Sanger sequencing were performed to identify the likely pathogenic mutations of the six patients with familial CH. RESULTS In family 1, two DUOX2 missense mutations, namely, c.1060C>T/p.R354W in exon 10 and c.3200C>T/p.S1067L in exon 25, were found. Patient 1 (P1), P2 and P3 were transient CH (TCH) patients with eutopic thyroid glands of normal size and function. In family 2, only the mutation c.3200C>T/p.S1067L was identified. P4, P5, and P6 were diagnosed with permanent CH (PCH), which requires lifelong levothyroxine (L-T4) treatment. Furthermore, both P4 and P5 harbored properly located thyroid glands, whereas P6 had a mildly reduced gland. P1, P3, P6, and other family members carrying monoallelic or biallelic DUOX2 mutations showed no obvious abnormal clinical symptoms or signs, while P2, P4, and P5 showed umbilical hernias. CONCLUSIONS The present study suggests that the phenotypic features resulting from DUOX2 mutations vary greatly. The p.R354W and p.S1067L alterations or the combination of the two alterations in DUOX2 are probably only predisposing to CH and DUOX2 may be involved in the morphogenesis of the human thyroid gland. Simultaneously, the compensation of DUOX1 for the loss of DUOX2, undetectable pathogenic mutations, the effects of environmental factors, epigenetic mechanisms and the involvement of multiple genes cannot be excluded in the explanation of these genetic results.
Collapse
Affiliation(s)
- Liangshan Li
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Medical College of Qingdao University, Qingdao, China
| | - Wenmiao Liu
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqin Zhang
- Child Health Care Department, Qingdao Women and Children's Hospital, Qingdao, China
| | - Fang Wang
- Endocrinology Department, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengqi Wang
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Maosheng Gu
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Xiuli Wang
- Neonatal Screening Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China.
| | - Shiguo Liu
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
17
|
Li L, Jia C, Li X, Wang F, Wang Y, Chen Y, Liu S, Zhao D. Molecular and clinical characteristics of congenital hypothyroidism in a large cohort study based on comprehensive thyroid transcription factor mutation screening in Henan. Clin Chim Acta 2021; 518:162-169. [PMID: 33773966 DOI: 10.1016/j.cca.2021.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/14/2021] [Accepted: 03/11/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Congenital hypothyroidism (CH), the most common neonatal endocrine disorder worldwide, can be caused by variants in thyroid transcription factor (TTF) genes including NKX2-1, FOXE1, PAX8, NKX2-5 and HHEX. This study aims to perform targeted next-generation sequencing (NGS) panel for comprehensive mutation screening on these genes in a cohort of 606 CH patients with various types from Henan Province, China, to investigate the mutation rate of TTF genes, and to analyze the clinical, biochemical and molecular characteristics of our CH cohort. METHODS High-throughput sequencing combined with statistical calculation were applied for mutation screening and analyses of the clinical data. RESULTS Twenty-two likely disease-causing monoallelic mutations in the TTF genes were identified in our cohort (3.63%, 22/606). Mutated PAX8 was the most predominant genetic alteration among these TTF mutations. Interestingly, PAX8 defects were only found in TD cases and variants in the five TTF genes were detected in gland in situ (GIS) patients. CH patients with the same genotype may have significant phenotypic variability and permanent CH (PCH) patients in the GIS group were significantly fewer than those in the TD group. CONCLUSIONS Our study showed the estimated TTF mutation rate among CH cases was 3.63% in Henan Province and genetic alternations in TTF genes played a role not only in TD but also in GIS, especially in goiter. Although we speculated that the five TTF genes may be involved in certain steps of thyroid hormone biosynthesis, more researches are needed to verify the conclusions of the present study.
Collapse
Affiliation(s)
- Liangshan Li
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China; Department of Clinical Laboratory, Medical College of Qingdao University, Qingdao, China
| | - Chenlu Jia
- Department of Henan Newborn Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaole Li
- Department of Henan Newborn Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Endocrinology Department, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Endocrinology Department, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanping Chen
- Neonatal Disease Screening Center, Qingdao Women and Children's Hospital, Qingdao, China
| | - Shiguo Liu
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Dehua Zhao
- Department of Henan Newborn Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
18
|
van Trotsenburg P, Stoupa A, Léger J, Rohrer T, Peters C, Fugazzola L, Cassio A, Heinrichs C, Beauloye V, Pohlenz J, Rodien P, Coutant R, Szinnai G, Murray P, Bartés B, Luton D, Salerno M, de Sanctis L, Vigone M, Krude H, Persani L, Polak M. Congenital Hypothyroidism: A 2020-2021 Consensus Guidelines Update-An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid 2021; 31:387-419. [PMID: 33272083 PMCID: PMC8001676 DOI: 10.1089/thy.2020.0333] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: An ENDO-European Reference Network (ERN) initiative was launched that was endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology with 22 participants from the ENDO-ERN and the two societies. The aim was to update the practice guidelines for the diagnosis and management of congenital hypothyroidism (CH). A systematic literature search was conducted to identify key articles on neonatal screening, diagnosis, and management of primary and central CH. The evidence-based guidelines were graded with the Grading of Recommendations, Assessment, Development and Evaluation system, describing both the strength of recommendations and the quality of evidence. In the absence of sufficient evidence, conclusions were based on expert opinion. Summary: The recommendations include the various neonatal screening approaches for CH as well as the etiology (also genetics), diagnostics, treatment, and prognosis of both primary and central CH. When CH is diagnosed, the expert panel recommends the immediate start of correctly dosed levothyroxine treatment and frequent follow-up including laboratory testing to keep thyroid hormone levels in their target ranges, timely assessment of the need to continue treatment, attention for neurodevelopment and neurosensory functions, and, if necessary, consulting other health professionals, and education of the child and family about CH. Harmonization of diagnostics, treatment, and follow-up will optimize patient outcomes. Lastly, all individuals with CH are entitled to a well-planned transition of care from pediatrics to adult medicine. Conclusions: This consensus guidelines update should be used to further optimize detection, diagnosis, treatment, and follow-up of children with all forms of CH in the light of the most recent evidence. It should be helpful in convincing health authorities of the benefits of neonatal screening for CH. Further epidemiological and experimental studies are needed to understand the increased incidence of this condition.
Collapse
Affiliation(s)
- Paul van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Athanasia Stoupa
- Pediatric Endocrinology, Gynecology and Diabetology Department, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Universitaire Necker Enfants Malades, Paris, France
- Université de Paris, Paris, France
- INSERM U1163, IMAGINE Institute, Paris, France
- INSERM U1016, Cochin Institute, Paris, France
| | - Juliane Léger
- Department of Pediatric Endocrinology and Diabetology, Reference Center for Growth and Development Endocrine Diseases, Assistance Publique-Hôpitaux de Paris, Robert Debré University Hospital, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1141, Paris, France
| | - Tilman Rohrer
- Department of Pediatric Endocrinology, University Children's Hospital, Saarland University Medical Center, Homburg, Germany
| | - Catherine Peters
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Laura Fugazzola
- Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandra Cassio
- Department of Pediatric Endocrinology, Unit of Pediatrics, Department of Medical & Surgical Sciences, University of Bologna, Bologna Italy
| | - Claudine Heinrichs
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Veronique Beauloye
- Unité d'Endocrinologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Joachim Pohlenz
- Department of Pediatrics, Johannes Gutenberg University Medical School, Mainz, Germany
| | - Patrice Rodien
- Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, Service EDN, CHU d'Angers, Institut MITOVASC, Université d'Angers, Angers, France
| | - Regis Coutant
- Unité d' Endocrinologie Diabetologie Pédiatrique and Centre des Maladies Rares de la Réceptivité Hormonale, CHU-Angers, Angers, France
| | - Gabor Szinnai
- Department of Pediatric Endocrinology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Philip Murray
- European Society for Pediatric Endocrinology
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Beate Bartés
- Thyroid Group, European Patient Advocacy Group Patient Representative (ePAG), Association Vivre sans Thyroide, Léguevin, France
| | - Dominique Luton
- Department of Obstetrics and Gynecology, University Hospitals Paris Nord Val de Seine (HUPNVS), Assistance Publique Hôpitaux de Paris (APHP), Bichat Hospital, Paris, France
- Department Risks and Pregnancy (DHU), Université de Paris, Inserm U1141, Paris, France
| | - Mariacarolina Salerno
- Pediatric Endocrine Unit, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luisa de Sanctis
- Department of Public Health and Pediatrics, University of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | - Mariacristina Vigone
- Department of Pediatrics, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology Department, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Universitaire Necker Enfants Malades, Paris, France
- Université de Paris, Paris, France
- INSERM U1163, IMAGINE Institute, Paris, France
- INSERM U1016, Cochin Institute, Paris, France
- Paris Regional Newborn Screening Program, Centre régional de dépistage néonatal, Paris, France
- Centre de Référence Maladies Endocriniennes de la Croissance et du Développement, INSERM U1016, IMAGINE Institute, Paris, France
- ENDO-European Reference Network, Main Thematic Group 8, Paris, France
| |
Collapse
|
19
|
Stoupa A, Kariyawasam D, Muzza M, de Filippis T, Fugazzola L, Polak M, Persani L, Carré A. New genetics in congenital hypothyroidism. Endocrine 2021; 71:696-705. [PMID: 33650047 DOI: 10.1007/s12020-021-02646-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder and one of the most common preventable forms of mental retardation worldwide. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). TD accounts for about 65% of CH, however a genetic cause is identified in less than 5% of patients. PURPOSE The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development, function and pathways. RESULTS AND CONCLUSION We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker Children's University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- IMAGINE Institute affiliate, INSERM U1163, Paris, France
- Cochin Institute, INSERM U1016, Paris, France
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker Children's University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- IMAGINE Institute affiliate, INSERM U1163, Paris, France
- Cochin Institute, INSERM U1016, Paris, France
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
| | - Marina Muzza
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
| | - Tiziana de Filippis
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
| | - Laura Fugazzola
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20100, Milan, Italy
| | - Michel Polak
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker Children's University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- IMAGINE Institute affiliate, INSERM U1163, Paris, France
- Cochin Institute, INSERM U1016, Paris, France
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Luca Persani
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, 20100, Milan, Italy
| | - Aurore Carré
- IMAGINE Institute affiliate, INSERM U1163, Paris, France.
- Cochin Institute, INSERM U1016, Paris, France.
| |
Collapse
|
20
|
Zhang X, Han J, Feng L, Zhi L, Jiang D, Yu B, Zhang Z, Gao B, Zhang C, Li M, Zhao L, Wang G. DUOX2 promotes the progression of colorectal cancer cells by regulating the AKT pathway and interacting with RPL3. Carcinogenesis 2021; 42:105-117. [PMID: 32531052 PMCID: PMC7877561 DOI: 10.1093/carcin/bgaa056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Dual oxidase 2 (DUOX2) is an important regulatory protein in the organic process of thyroid hormone iodine. Mounting evidence suggests that DUOX2 plays a crucial role in the occurrence and development of cancers. However, the function and mechanism of DUOX2 in colorectal cancer (CRC) have not been fully clarified. In the present study, the relationship between the expression of DUOX2 and the clinicopathological features and prognosis of CRC patients was analyzed. Furthermore, the effects of DUOX2 on proliferation and invasion in vitro and in vivo were examined. DUOX2-associated proteins were identified by immunoprecipitation (IP). Next-generation sequencing detection was performed to illustrate the mechanism of DUOX2 in CRC cells. It was found that the expression levels of DUOX2 in metastatic sites were significantly higher than those in primary tumor tissues, and this was demonstrated to be associated with poor prognosis. The knockdown of DUOX2 inhibited the invasion and migration of CRC cells. Furthermore, DUOX2 regulated the stability of ribosomal protein uL3 (RPL3) by affecting the ubiquitination status of RPL3, and the invasion and migration ability of DUOX2 can be reversed by the overexpression of RPL3. The downregulation of DUOX2 can affect the expression level of a large number of genes, and a number of these are enriched in the PI3K-AKT pathway. Some of the changes caused by DUOX2 can be reversed by RPL3. In summary, DUOX2 exhibits a significantly higher expression in CRC tumor samples, and facilitates the invasion and metastasis ability of CRC cells by interacting with RPL3.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Jing Han
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Li Feng
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Lianghui Zhi
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Da Jiang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Bin Yu
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Zhenya Zhang
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Bo Gao
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Cong Zhang
- Scientific Research Center, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Meng Li
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Lianmei Zhao
- Scientific Research Center, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Guiying Wang
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
- Department of General Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Long W, Guo F, Yao R, Wang Y, Wang H, Yu B, Xue P. Genetic and Phenotypic Characteristics of Congenital Hypothyroidism in a Chinese Cohort. Front Endocrinol (Lausanne) 2021; 12:705773. [PMID: 34539567 PMCID: PMC8446595 DOI: 10.3389/fendo.2021.705773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The molecular etiology and the genotype-phenotype correlation of congenital hypothyroidism (CH) remain unclear. METHODS We performed genetic analysis in 42 newborns with CH using whole-exome sequencing. Patients were divided into a single-gene group and a multi-gene group according to the number of affected genes, or divided into a monoallelic group, a biallelic group, and an oligogenic group according to the pattern of the detected variants. The clinical characteristics were compared between groups. RESULTS Thyroid dysgenesis (TD) was observed in 10 patients and goiter in 5 patients, whereas 27 patients had normal-sized gland-in-situ (GIS). We identified 58 variants in five genes in 29 patients. The genes with the most frequent variants were DUOX2 (70.7%), followed by TSHR (12.1%), DUOXA2 (10.3%), and TPO (5.2%). Variants in the genes causing dyshormonogenesis (DH) were more common than those in the genes causing TD (87.9% versus 12.1%). Among the patients with detected variants, 26 (89.7%) were harboring a single gene variant (single-gene group), which include 22 patients harboring biallelic variants (biallelic group) and four patients harboring monoallelic variants (monoallelic group). Three (10.3%) patients harbored variants in two or three genes (multi-gene group or oligogenic group). Compared with the single-gene group, the levothyroxine (L-T4) dose at 1 year of age was higher in the multi-gene group (p = 0.018). A controllable reduction in the L-T4 dose was observed in 25% of patients in the monoallelic group and 59.1% of patients in the biallelic group; however, no patients with such reduction in the L-T4 dose were observed in the oligogenic group. CONCLUSIONS Patients with normal-sized GIS accounted for the majority of our cohort. Genetic defects in the genes causing DH were more common than those in the genes causing TD, with biallelic variants in DUOX2 being dominant. DH might be the leading pathophysiology of CH in Chinese individuals.
Collapse
Affiliation(s)
- Wei Long
- Department of Medical Genetics, Affiliated Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou, China
| | - Fang Guo
- Department of Medical Genetics, Affiliated Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Pediatrics, Affiliated Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou, China
| | - Huaiyan Wang
- Department of Pediatrics, Affiliated Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou, China
| | - Bin Yu
- Department of Medical Genetics, Affiliated Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou, China
- *Correspondence: Bin Yu, ; Peng Xue,
| | - Peng Xue
- Department of Pediatrics, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, China
- *Correspondence: Bin Yu, ; Peng Xue,
| |
Collapse
|
22
|
Sorapipatcharoen K, Tim-Aroon T, Mahachoklertwattana P, Chantratita W, Iemwimangsa N, Sensorn I, Panthan B, Jiaranai P, Noojarern S, Khlairit P, Pongratanakul S, Suprasongsin C, Korwutthikulrangsri M, Sriphrapradang C, Poomthavorn P. DUOX2 variants are a frequent cause of congenital primary hypothyroidism in Thai patients. Endocr Connect 2020; 9:1121-1134. [PMID: 33310921 PMCID: PMC7774760 DOI: 10.1530/ec-20-0411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To identify the genetic etiologies of congenital primary hypothyroidism (CH) in Thai patients. DESIGN AND METHODS CH patients were enrolled. Clinical characteristics including age, signs and symptoms of CH, pedigree, family history, screened thyroid-stimulating hormone results, thyroid function tests, thyroid imaging, clinical course and treatment of CH were collected. Clinical exome sequencing by next-generation sequencing was performed. In-house gene list which covered 62 potential candidate genes related to CH and thyroid disorders was developed for targeted sequencing. Sanger sequencing was performed to validate the candidate variants. Thyroid function tests were determined in the heterozygous parents who carried the same DUOX2 or DUOXA2 variants as their offsprings. RESULTS There were 118 patients (63 males) included. Mean (SD) age at enrollment was 12.4 (7.9) years. Forty-five of 118 patients (38%) had disease-causing variants. Of 45 variants, 7 genes were involved (DUOX2, DUOXA2, TG, TPO, SLC5A5, PAX8 and TSHR). DUOX2, a gene causing thyroid dyshormonogenesis, was the most common defective gene (25/45, 56%). The most common DUOX2 variant found in this study was c.1588A>T. TG and TPO variants were less common. Fourteen novel variants were found. Thyroid function tests of most parents with heterozygous state of DUOX2 and DUOXA2 variants were normal. CONCLUSIONS DUOX2 variants were most common among Thai CH patients, while TG and TPO variants were less common. The c.1588A>T in DUOX2 gene was highly frequent in this population.
Collapse
Affiliation(s)
- Kinnaree Sorapipatcharoen
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thipwimol Tim-Aroon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pat Mahachoklertwattana
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nareenart Iemwimangsa
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Insee Sensorn
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bhakbhoom Panthan
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poramate Jiaranai
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Saisuda Noojarern
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Patcharin Khlairit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sarunyu Pongratanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chittiwat Suprasongsin
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Chutintorn Sriphrapradang
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Preamrudee Poomthavorn
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Correspondence should be addressed to P Poomthavorn:
| |
Collapse
|
23
|
Zdraveska N, Kocova M, Nicholas AK, Anastasovska V, Schoenmakers N. Genetics of Gland- in-situ or Hypoplastic Congenital Hypothyroidism in Macedonia. Front Endocrinol (Lausanne) 2020; 11:413. [PMID: 32765423 PMCID: PMC7381236 DOI: 10.3389/fendo.2020.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Neonatal screening in Macedonia detects congenital hypothyroidism (CH) with an incidence of 1 in 1,585, and more than 50% of cases exhibit a normally located gland-in-situ (GIS). Monogenic mutations causing dyshormonogenesis may underlie GIS CH; additionally, a small proportion of thyroid hypoplasia has a monogenic cause, such as TSHR and PAX8 defects. The genetic architecture of Macedonian CH cases has not previously been studied. We recruited screening-detected, non-syndromic GIS CH or thyroid hypoplasia cases (n = 40) exhibiting a spectrum of biochemical thyroid dysfunction ranging from severe permanent to mild transient CH and including 11 familial cases. Cases were born at term, with birth weight >3,000 g, and thyroid morphologies included goiter (n = 11), thyroid hypoplasia (n = 6), and apparently normal-sized thyroid. A comprehensive, phenotype-driven, Sanger sequencing approach was used to identify genetic mutations underlying CH, by sequentially screening known dyshormonogenesis-associated genes and TSHR in GIS cases and TSHR and PAX8 in cases with thyroid hypoplasia. Potentially pathogenic variants were identified in 14 cases, of which four were definitively causative; we also detected digenic variants in three cases. Seventeen variants (nine novel) were identified in TPO (n = 4), TG (n = 3), TSHR (n = 4), DUOX2 (n = 4), and PAX8 (n = 2). No mutations were detected in DUOXA2, NIS, IYD, and SLC26A7. The relatively low mutation frequency suggests that factors other than recognized monogenic causes (oligogenic variants, environmental factors, or novel genes) may contribute to GIS CH in this region. Future non-hypothesis-driven, next-generation sequencing studies are required to confirm these findings.
Collapse
Affiliation(s)
| | - Mirjana Kocova
- Medical Faculty, University Children's Hospital, Skopje, Macedonia
| | - Adeline K. Nicholas
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | | | - Nadia Schoenmakers
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Miertuš J, Maltese PE, Hýblová M, Tomková E, Ďurovčíková D, Rísová V, Bertelli M. Expanding the phenotype of thrombocytopenia absent radius syndrome with hypospadias. J Biotechnol 2020; 311:44-48. [PMID: 32109542 DOI: 10.1016/j.jbiotec.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
Rare genetic diseases and syndromes may appear with unique features in some patients. In genetically-solved cases, this situation indicates a phenotypic expansion of the syndrome with additional features (i.e. the disease-associated gene gives rise to unusual clinical presentation). However, this situation can also hide a multilocus pathogenic variation that cannot be solved genetically except by a massive sequencing approach, such as exome sequencing. Here we describe the case of a child with bilateral radial aplasia, transient thrombocytopenia and anemia, cow's milk intolerance, hypospadias, facial dysmorphism, mild hypothyroidism and umbilical and inguinal hernia. Bilaterally absent radius, presence of thumbs and low platelet count are pathognomonic of thrombocytopenia absent radius (TAR) syndrome, but the child also showed other features beyond those reported in the literature. Since various diseases resembling the proband's phenotype required differential diagnosis, clinical exome sequencing was performed. The results showed compound heterozygous mutations in the RBM8A gene, confirming the suspicion of TAR syndrome. A truncating heterozygous variant in the DUOX2 gene, known to be associated with transient thyroid dyshormonogenesis type 6 (TDH6), was also detected and may explain the proband's mild hypothyroidism.
Collapse
Affiliation(s)
- Ján Miertuš
- Génius n. o., Mestská Poliklinika, Starohájska 2, Trnava, Slovakia; MAGI´s Lab, via delle Maioliche 57/D, Rovereto, TN, Italy.
| | | | - Michaela Hýblová
- Genetics Lab, Medirex a.s., Galvaniho 17C, Bratislava, Slovakia.
| | - Erika Tomková
- Genetics Lab, Medirex a.s., Galvaniho 17C, Bratislava, Slovakia.
| | - Darina Ďurovčíková
- Genetic Clinic, Slovak Healthcare University, Limbová 12, Bratislava, Slovakia.
| | - Vanda Rísová
- Histology Dept., "Commeniana" University, Špitálska 24, Bratislava, Slovakia.
| | | |
Collapse
|
25
|
Targovnik HM, Scheps KG, Rivolta CM. Defects in protein folding in congenital hypothyroidism. Mol Cell Endocrinol 2020; 501:110638. [PMID: 31751626 DOI: 10.1016/j.mce.2019.110638] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the most common preventable causes of both cognitive and motor deficits. CH is a heterogeneous group of thyroid disorders in which inadequate production of thyroid hormone occurs due to defects in proteins involved in the gland organogenesis (dysembryogenesis) or in multiple steps of thyroid hormone biosynthesis (dyshormonogenesis). Dysembryogenesis is associated with genes responsible for the development or growth of thyroid cells: such as NKX2-1, FOXE1, PAX8, NKX2-5, TSHR, TBX1, CDCA8, HOXD3 and HOXB3 resulting in agenesis, hypoplasia or ectopia of thyroid gland. Nevertheless, the etiology of the dysembryogenesis remains unknown for most cases. In contrast, the majority of patients with dyshormonogenesis has been linked to mutations in the SLC5A5, SLC26A4, SLC26A7, TPO, DUOX1, DUOX2, DUOXA1, DUOXA2, IYD or TG genes, which usually originate goiter. About 800 genetic mutations have been reported to cause CH in patients so far, including missense, nonsense, in-frame deletion and splice-site variations. Many of these mutations are implicated in specific domains, cysteine residues or glycosylation sites, affecting the maturation of nascent proteins that go through the secretory pathway. Consequently, misfolded proteins are permanently entrapped in the endoplasmic reticulum (ER) and are translocated to the cytosol for proteasomal degradation by the ER-associated degradation (ERAD) machinery. Despite of all these remarkable advances in the field of the CH pathogenesis, several points on the development of this disease remain to be elucidated. The continuous study of thyroid gene mutations with the application of new technologies will be useful for the understanding of the intrinsic mechanisms related to CH. In this review we summarize the present status of knowledge on the disorders in the protein folding caused by thyroid genes mutations.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| | - Karen G Scheps
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|
26
|
Long W, Zhou L, Wang Y, Liu J, Wang H, Yu B. Complicated Relationship between Genetic Mutations and Phenotypic Characteristics in Transient and Permanent Congenital Hypothyroidism: Analysis of Pooled Literature Data. Int J Endocrinol 2020; 2020:6808517. [PMID: 32565793 PMCID: PMC7275948 DOI: 10.1155/2020/6808517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Mutations and phenotypic characteristics remain unclear in patients with congenital hypothyroidism (CH), and no study concerning whether the outcome of transient CH (TCH) or permanent CH (PCH) is determined by mutations has been reported. METHODS We searched the literature up to April 2019. Eligible studies and data extraction were performed. We estimated the relationship between mutations and phenotypic characteristics in pooled patients with CH. RESULTS Two hundred forty-one cases were pooled from 41 eligible studies. The thyroid morphology, classification of mutated genes, and types of mutations were different between 94 patients with TCH and 147 patients with PCH. Heterozygous missense mutations prevailed in PAX8, TSHR, FOXE1, and NKX2-5, and patients with these mutated genes had a higher risk of PCH (OR = 37.38, 95% CI 5.04-277.21, P < 0.001). TCH and PCH have equal shares in patients with mutated DUOX2 or DUOXA2. Dual-site and multisite mutations were frequently detected in DUOX2. High phenotypic heterogeneity was observed in mutated DUOX2 even in the same mutations. However, there was no relationship found between mutations and transient or permanent outcome in patients with mutated DUOX2. CONCLUSION Transient or permanent outcomes were influenced by the biological function of mutated genes instead of types of mutations among patients with CH. Patients whose mutations were related to thyroid dysgenesis (TD) were more likely to have PCH. The relationship between mutations and phenotypic characteristics is complicated, and phenotypic characteristics may be affected by mutations and other factors.
Collapse
Affiliation(s)
- Wei Long
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Lingna Zhou
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Ying Wang
- Department of Pediatrics, Changzhou Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Jiaxuan Liu
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Huaiyan Wang
- Department of Pediatrics, Changzhou Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Bin Yu
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
27
|
Wang F, Zang Y, Li M, Liu W, Wang Y, Yu X, Li H, Wang F, Liu S. DUOX2 and DUOXA2 Variants Confer Susceptibility to Thyroid Dysgenesis and Gland- in-situ With Congenital Hypothyroidism. Front Endocrinol (Lausanne) 2020; 11:237. [PMID: 32425884 PMCID: PMC7212429 DOI: 10.3389/fendo.2020.00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Thyroid dysgenesis (TD), which is caused by gland developmental abnormalities, is the most common cause of congenital hypothyroidism (CH). In addition, advances in diagnostic techniques have facilitated the identification of mild CH patients with a gland-in-situ (GIS) with normal thyroid morphology. Therefore, TD and GIS account for the vast majority of CH cases. Methods: Sixteen known genes to be related to CH were sequenced and screened for variations by next-generation sequencing (NGS) in a cohort of 377 CH cases, including 288 TD cases and 89 GIS cases. Results: In our CH cohort, we found that DUOX2 (21.22%) was the most commonly variant pathogenic gene, while DUOXA2 was prominent in TD (18.75%) and DUOX2 was prominent in GIS (34.83%). Both biallelic and triple variants of DUOX2 were found to be most common in children with TD and children with GIS. The most frequent combination was DUOX2 with DUOXA1 among the 61 patients who carried digenic variants. We also found for the first time that biallelic TG, DUOXA2, and DUOXA1 variants participate in the pathogenesis of TD. In addition, the variant p.Y246X in DUOXA2 was the most common variant hotspot, with 58 novel variants identified in our study. Conclusion: We meticulously described the types and characteristics of variants from sixteen known gene in children with TD and GIS in the Chinese population, suggesting that DUOXA2 and DUOX2 variants may confer susceptibility to TD and GIS via polygenic inheritance and multiple factors, which further expands the genotype-phenotype spectrum of CH in China.
Collapse
Affiliation(s)
- Fengqi Wang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yucui Zang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miaomiao Li
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenmiao Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolong Yu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Fang Wang
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shiguo Liu
| |
Collapse
|
28
|
Fang Y, Sun F, Zhang RJ, Zhang CR, Yan CY, Zhou Z, Zhang QY, Li L, Ying YX, Zhao SX, Liang J, Song HD. Mutation screening of the TSHR gene in 220 Chinese patients with congenital hypothyroidism. Clin Chim Acta 2019; 497:147-152. [PMID: 31356790 DOI: 10.1016/j.cca.2019.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Defects in the human thyroid stimulating hormone receptor (TSHR) gene are reported to be one of the causes of congenital hypothyroidism (CH). We aimed to identify mutations in Chinese patients with CH and analyze the relationships between TSHR phenotypes and clinical phenotypes. METHODS 220 patients with primary CH were screened for TSHR mutations by performing next-generation sequencing. All the exons and exon-intron boundaries of TSHR were analyzed. The function of 8 mutants in TSHR were further investigated in vitro. RESULTS Among 220 patients with CH, 15 distinct TSHR mutations were identified in 13 patients (5.91%, 13/220, including our previous reported 110 patients, carried with 10 mutations in 8 patients). We found five distinct mutations in the additional cohort of 110 CH patients and identified 7 mutations (including a novel mutation, p.S567R) were loss-of-function mutations. CONCLUSION Our study indicated that the prevalence of TSHR mutations was 5.91% among studied Chinese patients with CH. One novel TSHR variant was found and four genetic alterations revealed important role of the Ile216, Ala275, Asn372, Ser567 residues in signaling.
Collapse
Affiliation(s)
- Ya Fang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Feng Sun
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Rui-Jia Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Chang-Run Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Chen-Yan Yan
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Zheng Zhou
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Qian-Yue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Lu Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Ying-Xia Ying
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province 221109, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China; Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province 221109, China.
| |
Collapse
|
29
|
Nadeau G, Ouimet-Grennan E, Aaron M, Drouin S, Bertout L, Shalmiev A, Beaulieu P, St-Onge P, Veilleux LN, Rauch F, Petrykey K, Laverdière C, Sinnett D, Alos N, Krajinovic M. Identification of genetic variants associated with skeletal muscle function deficit in childhood acute lymphoblastic leukemia survivors. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:33-45. [PMID: 31114288 PMCID: PMC6489684 DOI: 10.2147/pgpm.s192924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Background: Although 80% of childhood acute lymphoblastic leukemia (ALL) cases are cured with current treatment protocols, exposure to chemotherapeutics or radiation therapy during a vulnerable period of child development has been associated with a high frequency of late adverse effects (LAE). Previous observations suggest important skeletal muscle size, density and function deficits in ALL survivors. Purpose: Given that only a fraction of all patients will suffer from this particular complication, we investigated whether it could be predicted by genetic markers. Patients and methods: We analysed associations between skeletal muscle force (Fmax) and power (Pmax) and germline genetic variants from 1039 genes derived through whole-exome sequencing. Top-ranking association signals retained after correction for multiple testing were confirmed through genotyping, and further analysed through stratified analyses and multivariate models. Results: Our results show that skeletal muscle function deficit is associated with two common single nucleotide polymorphisms (SNPs) (rs2001616DUOX2, P=0.0002 (Pmax) and rs41270041ADAMTS4, P=0.02 (Fmax)) and two rare ones located in the ALOX15 gene (P=0.001 (Pmax)). These associations were further modulated by sex, body mass index and risk groups, which reflected glucocorticoid dose and radiation therapy (P≤0.02). Conclusion: Occurrence of muscle function deficit in childhood ALL is thus strongly modulated by variations in the DUOX2, ADAMTS4 and ALOX15 genes, which could lead to personalized prevention strategies in childhood ALL survivors.
Collapse
Affiliation(s)
- Geneviève Nadeau
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | | | - Michelle Aaron
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Simon Drouin
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Laurence Bertout
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Albert Shalmiev
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Patrick Beaulieu
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Pascal St-Onge
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | | | - Frank Rauch
- Division of paediatrics, Montreal Shriners Hospital for Children, Montreal, QC, Canada
| | - Kateryna Petrykey
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Caroline Laverdière
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada.,Division of Hemato-Oncology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| | - Daniel Sinnett
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada.,Division of Hemato-Oncology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| | - Nathalie Alos
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada.,Division of Endocrinology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| | - Maja Krajinovic
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada.,Division of Hemato-Oncology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| |
Collapse
|
30
|
Chopra K, Ishibashi S, Amaya E. Zebrafish duox mutations provide a model for human congenital hypothyroidism. Biol Open 2019; 8:bio.037655. [PMID: 30700401 PMCID: PMC6398463 DOI: 10.1242/bio.037655] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thyroid dyshormonogenesis is a leading cause of congenital hypothyroidism, a highly prevalent but treatable condition. Thyroid hormone (TH) synthesis is dependent on the formation of reactive oxygen species (ROS). In humans, the primary sources for ROS production during thyroid hormone synthesis are the NADPH oxidases DUOX1 and DUOX2. Indeed, mutations in DUOX1 and DUOX2 have been linked with congenital hypothyroidism. Unlike humans, zebrafish has a single orthologue for DUOX1 and DUOX2. In this study, we investigated the phenotypes associated with two nonsense mutant alleles, sa9892 and sa13017, of the single duox gene in zebrafish. Both alleles gave rise to readily observable phenotypes reminiscent of congenital hypothyroidism, from the larval stages through to adulthood. By using various methods to examine external and internal phenotypes, we discovered a strong correlation between TH synthesis and duox function, beginning from an early larval stage, when T4 levels are already noticeably absent in the mutants. Loss of T4 production resulted in growth retardation, pigmentation defects, ragged fins, thyroid hyperplasia/external goiter and infertility. Remarkably, all of these defects associated with chronic congenital hypothyroidism could be rescued with T4 treatment, even when initiated when the fish had already reached adulthood. Our work suggests that these zebrafish duox mutants may provide a powerful model to understand the aetiology of untreated and treated congenital hypothyroidism even in advanced stages of development. This article has an associated First Person interview with the first author of the paper. Summary: Zebrafish harbouring two loss-of-function alleles of the single duox gene exhibit various adult phenotypes reminiscent of human congenital hypothyroidism.
Collapse
Affiliation(s)
- Kunal Chopra
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Shoko Ishibashi
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
31
|
Park JS, Choi TI, Kim OH, Hong TI, Kim WK, Lee WJ, Kim CH. Targeted knockout of duox causes defects in zebrafish growth, thyroid development, and social interaction. J Genet Genomics 2019; 46:101-104. [PMID: 30867122 DOI: 10.1016/j.jgg.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/02/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Jong-Su Park
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea; Biosystem Research Group, Korea Institute of Toxicology, Daejeon, 34111, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Ted Inpyo Hong
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Woo-Keun Kim
- Biosystem Research Group, Korea Institute of Toxicology, Daejeon, 34111, South Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
32
|
Chen F, Wang H, Li Q, Li Z, Luo Y. [Progress in the research of negative feedback effect of thyroglobulin]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:125-126. [PMID: 30692078 DOI: 10.12122/j.issn.1673-4254.2019.01.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thyroglobulin is the most important and abundant protein in thyroid follicles and has been widely studied as a tumor marker of thyroid cancer recurrence and persistence. Tg is considered the material basis of thyroid hormone synthesis and does not participate in the regulation of thyroid hormone synthesis and secretion. This review summarizes the recent progress in the research of thyroid hormone synthesis and secretion regulation via a negative feedback regulation mechanism by the thyroid-hypothalamus-pituitary axis. Thyroglobulin can negatively regulate the synthesis of thyroid hormone by thyroid follicular cells and antagonize the positive regulation of thyrotropin TSH. The function of thyroid follicular cells is presumably a result of Tg and TSH interaction, and a follicular cycle model is proposed to explain the causes of follicular heterogeneity in glands. We also discuss the prospects and clinical significance of studies into the negative feedback regulation mechanism of the thyroid-hypothalamus-pituitary axis and compare two theories for this mechanism.
Collapse
Affiliation(s)
- Fei Chen
- Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hongjuan Wang
- Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiang Li
- Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhichao Li
- Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuqian Luo
- Department of Laboratory Medicine, Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
33
|
Cao C, Zhang Y, Jia Q, Wang X, Zheng Q, Zhang H, Song R, Li Y, Luo A, Hong Q, Qin G, Yao J, Zhang N, Wang Y, Wang H, Zhou Q, Zhao J. An exonic splicing enhancer mutation in DUOX2 causes aberrant alternative splicing and severe congenital hypothyroidism in Bama pigs. Dis Model Mech 2019; 12:12/1/dmm036616. [PMID: 30651277 PMCID: PMC6361156 DOI: 10.1242/dmm.036616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Pigs share many similarities with humans in terms of anatomy, physiology and genetics, and have long been recognized as important experimental animals in biomedical research. Using an N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we previously identified a large number of pig mutants, which could be further established as human disease models. However, the identification of causative mutations in large animals with great heterogeneity remains a challenging endeavor. Here, we select one pig mutant, showing congenital nude skin and thyroid deficiency in a recessive inheritance pattern. We were able to efficiently map the causative mutation using family-based genome-wide association studies combined with whole-exome sequencing and a small sample size. A loss-of-function variant (c.1226 A>G) that resulted in a highly conserved amino acid substitution (D409G) was identified in the DUOX2 gene. This mutation, located within an exonic splicing enhancer motif, caused aberrant splicing of DUOX2 transcripts and resulted in lower H2O2 production, which might cause a severe defect in thyroid hormone production. Our findings suggest that exome sequencing is an efficient way to map causative mutations and that DUOX2D409G/D409G mutant pigs could be a potential large animal model for human congenital hypothyroidism. Summary: Here, we show that an exonic splicing enhancer variant in DUOX2 (c.1226 A>G) causes aberrant splicing of DUOX2 transcripts, resulting in lower H2O2 production, to cause severe congenital hypothyroidism in Bama pigs.
Collapse
Affiliation(s)
- Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruigao Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Abstract
Extracellular hydrogen peroxide is required for thyroperoxidase-mediated thyroid hormone synthesis in the follicular lumen of the thyroid gland. Among the NADPH oxidases, dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially identified as thyroid oxidases, based on their level of expression in the thyroid. Despite their high sequence similarity, the two isoforms present distinct regulations, tissue expression, and catalytic functions. Inactivating mutations in many of the genes involved in thyroid hormone synthesis cause thyroid dyshormonogenesis associated with iodide organification defect. This chapter provides an overview of the genetic alterations in DUOX2 and its maturation factor, DUOXA2, causing inherited severe hypothyroidism that clearly demonstrate the physiological implication of this oxidase in thyroid hormonogenesis. Mutations in the DUOX2 gene have been described in permanent but also in transient forms of congenital hypothyroidism. Moreover, accumulating evidence demonstrates that the high phenotypic variability associated with altered DUOX2 function is not directly related to the number of inactivated DUOX2 alleles, suggesting the existence of other pathophysiological factors. The presence of two DUOX isoforms and their corresponding maturation factors in the same organ could certainly constitute an efficient redundant mechanism to maintain sufficient H2O2 supply for iodide organification. Many of the reported DUOX2 missense variants have not been functionally characterized, their clinical impact in the observed phenotype remaining unresolved, especially in mild transient congenital hypothyroidism. DUOX2 function should be carefully evaluated using an in vitro assay wherein (1) DUOXA2 is co-expressed, (2) H2O2 production is activated, (3) and DUOX2 membrane expression is precisely analyzed.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium.
| | - Françoise Miot
- Faculté de Médecine, Université Libre de Bruxelles (ULB), Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
| |
Collapse
|
35
|
Peters C, van Trotsenburg ASP, Schoenmakers N. DIAGNOSIS OF ENDOCRINE DISEASE: Congenital hypothyroidism: update and perspectives. Eur J Endocrinol 2018; 179:R297-R317. [PMID: 30324792 DOI: 10.1530/eje-18-0383] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Congenital hypothyroidism (CH) may be primary, due to a defect affecting the thyroid gland itself, or central, due to impaired thyroid-stimulating hormone (TSH)-mediated stimulation of the thyroid gland as a result of hypothalamic or pituitary pathology. Primary CH is the most common neonatal endocrine disorder, traditionally subdivided into thyroid dysgenesis (TD), referring to a spectrum of thyroid developmental abnormalities, and dyshormonogenesis, where a defective molecular pathway for thyroid hormonogenesis results in failure of hormone production by a structurally intact gland. Delayed treatment of neonatal hypothyroidism may result in profound neurodevelopmental delay; therefore, CH is screened for in developed countries to facilitate prompt diagnosis. Central congenital hypothyroidism (CCH) is a rarer entity which may occur in isolation, or (more frequently) in association with additional pituitary hormone deficits. CCH is most commonly defined biochemically by failure of appropriate TSH elevation despite subnormal thyroid hormone levels and will therefore evade diagnosis in primary, TSH-based CH-screening programmes. This review will discuss recent genetic aetiological advances in CH and summarize epidemiological data and clinical diagnostic challenges, focussing on primary CH and isolated CCH.
Collapse
Affiliation(s)
- C Peters
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - A S P van Trotsenburg
- Department of Paediatric Endocrinology, Emma Children’s Hospital Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - N Schoenmakers
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research
Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
36
|
Yu B, Long W, Yang Y, Wang Y, Jiang L, Cai Z, Wang H. Newborn Screening and Molecular Profile of Congenital Hypothyroidism in a Chinese Population. Front Genet 2018; 9:509. [PMID: 30420871 PMCID: PMC6216286 DOI: 10.3389/fgene.2018.00509] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
is the most gene mutation in Chinese CH patients.
Collapse
Affiliation(s)
- Bin Yu
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Wei Long
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yuqi Yang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Ying Wang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Lihua Jiang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Zhengmao Cai
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Huaiyan Wang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
37
|
Long W, Lu G, Zhou W, Yang Y, Zhang B, Zhou H, Jiang L, Yu B. Targeted next-generation sequencing of thirteen causative genes in Chinese patients with congenital hypothyroidism. Endocr J 2018; 65:1019-1028. [PMID: 30022773 DOI: 10.1507/endocrj.ej18-0156] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify the spectrum and prevalence of thirteen causative genes mutations in congenital hypothyroidism (CH) patients, we collected blood samples and extracted genomic DNA of 106 CH patients, and designed a customized targeted next-generation sequencing panel containing 13 CH-causing genes to detect mutations. A total of 132 mutations were identified in 65.09% of patients (69/106) on the following nine genes: DUOX2, TG, TPO, TSHR, TTF1, TTF2, NKX2-5, PAX8 and GNAS. 69.70% (92/132) mutations related to thyroid dyshormonogenesis genes, including DUOX2 (n = 49), TG (n = 35), and TPO (n = 8). 21.21% (28/132) mutations related to thyroid dysgenesis genes, including TSHR (n = 19), TTF1 (n = 5), TTF2 (n = 1), PAX8 (n = 2), and NKX2-5 (n = 1). 9.09% (12/132) mutations related to GNAS, which was associated with thyrotropin resistance. No mutation of THRA, TSHB, IYD or SLC5A5 was detected. Among 69 mutations detected patients, 41 (59.42%) patients were two or more mutations detected, and mutations of 30 (43.48%) patients related to two or three genes. According to the pathomechanism of the mutant genes, 57.97% CH patients were classified as thyroid dyshormonogenesis. Overall, DUOX2, TG and TSHR mutations were the most common genetic defects in Chinese CH patients, and thyroid dyshormonogenesis could be the first genetic etiology of CH in Chinese. Besides, multiple mutations accounts for a part of genetic pathogenesis.
Collapse
Affiliation(s)
- Wei Long
- Department of Newborn Screening, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou City, 213003, Jiangsu Province, China
| | - Guanting Lu
- Department of Blood Transfusion, Fourth Military Medical University, Xi'an City, 710032, Shanxi Province, China
| | - Wenbai Zhou
- Department of Newborn Screening, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou City, 213003, Jiangsu Province, China
| | - Yuqi Yang
- Department of Newborn Screening, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou City, 213003, Jiangsu Province, China
| | - Bin Zhang
- Department of Newborn Screening, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou City, 213003, Jiangsu Province, China
| | - Hong Zhou
- Department of Newborn Screening, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou City, 213003, Jiangsu Province, China
| | - Lihua Jiang
- Department of Child Health, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou City, 213003, Jiangsu Province, China
| | - Bin Yu
- Department of Newborn Screening, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou City, 213003, Jiangsu Province, China
| |
Collapse
|
38
|
Siffo S, Adrover E, Citterio CE, Miras MB, Balbi VA, Chiesa A, Weill J, Sobrero G, González VG, Papendieck P, Martinez EB, Gonzalez-Sarmiento R, Rivolta CM, Targovnik HM. Molecular analysis of thyroglobulin mutations found in patients with goiter and hypothyroidism. Mol Cell Endocrinol 2018; 473:1-16. [PMID: 29275168 DOI: 10.1016/j.mce.2017.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023]
Abstract
Thyroid dyshormonogenesis due to thyroglobulin (TG) gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Up to now, one hundred seventeen deleterious mutations in the TG gene have been identified and characterized. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report eight patients from seven unrelated families with goiter, hypothyroidism and low levels of serum TG. All patients underwent clinical, biochemical and image evaluation. Sequencing of DNA, genotyping, as well as bioinformatics analysis were performed. Molecular analyses revealed three novel inactivating TG mutations: c.5560G>T [p.E1835*], c.7084G>C [p.A2343P] and c.7093T>C [p.W2346R], and four previously reported mutations: c.378C>A [p.Y107*], c.886C>T [p.R277*], c.1351C>T [p.R432*] and c.7007G>A [p.R2317Q]. Two patients carried homozygous mutations (p.R277*/p.R277*, p.W2346R/p.W2346R), four were compound heterozygous mutations (p.Y107*/p.R277* (two unrelated patients), p.R432*/p.A2343P, p.Y107*/p.R2317Q) and two siblings from another family had a single p.E1835* mutated allele. Additionally, we include the analysis of 48 patients from 31 unrelated families with TG mutations identified in our present and previous studies. Our observation shows that mutations in both TG alleles were found in 27 families (9 as homozygote and 18 as heterozygote compound), whereas in the remaining four families only one mutated allele was detected. The majority of the detected mutations occur in exons 4, 7, 38 and 40. 28 different mutations were identified, 33 of the 96 TG alleles encoded the change p.R277*. In conclusion, our results confirm the genetic heterogeneity of TG defects and the pathophysiological importance of the predicted TG misfolding and therefore thyroid hormone formation as a consequence of truncated TG proteins and/or missense mutations located within its ACHE-like domain.
Collapse
Affiliation(s)
- Sofia Siffo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Mirta B Miras
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Viviana A Balbi
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Jacques Weill
- Clinique de Pédiatrie, Hôpital Jeanne de Flandre, Centre Hospitalier Regional Universitaire de Lille, Lille, France
| | - Gabriela Sobrero
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Verónica G González
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Patricia Papendieck
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Elena Bueno Martinez
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Rogelio Gonzalez-Sarmiento
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
39
|
da Silva MM, Xavier LLF, Gonçalves CFL, Santos-Silva AP, Paiva-Melo FD, de Freitas ML, Fortunato RS, Miranda-Alves L, Ferreira ACF. Bisphenol A increases hydrogen peroxide generation by thyrocytes both in vivo and in vitro. Endocr Connect 2018; 7:/journals/ec/aop/ec-18-0348.xml. [PMID: 30352396 PMCID: PMC6215800 DOI: 10.1530/ec-18-0348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and action have been described, the impact of this compound on thyroid H2O2 generation remains elusive. H2O2 is a reactive oxygen species (ROS) which could have deleterious effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of BPA exposition both in vivo and in vitro on H2O2 generation in thyrocytes, besides other essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) or BPA 40 mg/Kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase (DOUX) activities (H2O2 generation). Hydrogen peroxide generation was increased, while iodide uptake and TPO activity were reduced by BPA exposition. We have also incubated the rat thyroid cell line PCCL3 with 10-9 M BPA and evaluated Nis and Duox mRNA levels, besides H2O2 generation. Similar to that found in vivo, BPA treatment also led to increased H2O2 generation in PCCL3. Nis mRNA levels were reduced and Duox2 mRNA levels were increased in BPA-exposed cells. To evaluate the importance of oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association to n-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative damage thus possibly predisposing to thyroid disease.
Collapse
Affiliation(s)
- Maurício Martins da Silva
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Lueni Lopes Felix Xavier
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carlos Frederico Lima Gonçalves
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Santos-Silva
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- NUMPEXCampus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Francisca Diana Paiva-Melo
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mariana Lopes de Freitas
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rodrigo Soares Fortunato
- Laboratory of Molecular RadiobiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leandro Miranda-Alves
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Andrea Claudia Freitas Ferreira
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- NUMPEXCampus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
40
|
Louzada RA, Corre R, Ameziane-El-Hassani R, Hecht F, Cazarin J, Buffet C, Carvalho DP, Dupuy C. Conformation of the N-Terminal Ectodomain Elicits Different Effects on DUOX Function: A Potential Impact on Congenital Hypothyroidism Caused by a H 2O 2 Production Defect. Thyroid 2018; 28:1052-1062. [PMID: 29845893 DOI: 10.1089/thy.2017.0596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dual oxidases (DUOX1 and DUOX2) were initially identified as H2O2 sources involved in thyroid hormone synthesis. Congenital hypothyroidism (CH) resulting from inactivating mutations in the DUOX2 gene highlighted that DUOX2 is the major H2O2 provider to thyroperoxidase. The role of DUOX1 in the thyroid remains unknown. A recent study suggests that it could compensate for DUOX2 deficiency in CH. Both DUOX enzymes and their respective maturation factors DUOXA1 and DUOXA2 form a stable complex at the cell surface, which is fundamental for their enzymatic activity. Recently, intra- and intermolecular disulfide bridges were identified that are essential for the structure and the function of the DUOX2-DUOXA2 complex. This study investigated the involvement of cysteine residues conserved in DUOX1 toward the formation of disulfide bridges, which could be important for the function of the DUOX1DUOXA1 complex. METHODS To analyze the role of these cysteine residues in both the targeting and function of dual oxidase, different human DUOX1 mutants were constructed, where the cysteine residues were replaced with glycine. The effect of these mutations on cell surface expression and H2O2-generating activity of the DUOX1-DUOXA1 complex was analyzed. RESULTS Mutations of two cysteine residues (C118 and C1165), involved in the formation of the intramolecular disulfide bridge between the N-terminal ectodomain and one of the extracellular loops, mildly altered the function and the targeting of DUOX1, while this bridge is crucial for DUOX2 function. Unlike DUOXA2, with respect to DUOX2, the stability of the maturation factor DUOXA1 is not dependent on the oxidative folding of DUOX1. Only mutation of C579 induced a strong alteration of both targeting and function of the oxidase by preventing the covalent interaction between DUOX1 and DUOXA1. CONCLUSION An intermolecular disulfide bridge rather than an intramolecular disulfide bridge is important for both the trafficking and H2O2-generating activity of the DUOX1-DUOXA1 complex.
Collapse
Affiliation(s)
- Ruy Andrade Louzada
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Raphael Corre
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
| | - Rabii Ameziane-El-Hassani
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 5 Laboratoire de Biologie des Pathologies Humaines "BioPatH," Université Mohammed V , Faculté des Sciences, Rabat, Morocco
| | - Fabio Hecht
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Juliana Cazarin
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Camille Buffet
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
| | - Denise P Carvalho
- 4 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Corinne Dupuy
- 1 Université Paris-Sud , Orsay, France
- 2 UMR 8200 CNRS , Villejuif, France
- 3 Gustave Roussy , Villejuif, France
| |
Collapse
|
41
|
Camargo RY, Kanamura CT, Friguglietti CU, Nogueira CR, Iorcansky S, Tincani AJ, Bezerra AK, Brust E, Koyama FC, Camargo AA, Rego FOR, Galante PAF, Medeiros-Neto G, Rubio IGS. Histopathological Characterization and Whole Exome Sequencing of Ectopic Thyroid: Fetal Architecture in a Functional Ectopic Gland from Adult Patient. Int J Endocrinol 2018; 2018:4682876. [PMID: 29593791 PMCID: PMC5822907 DOI: 10.1155/2018/4682876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Ectopic thyroid results from a migration defect of the developing gland during embryogenesis causing congenital hypothyroidism. But it has also been detected in asymptomatic individuals. This study aimed to investigate the histopathological, functional, and genetic features of human ectopic thyroids. Six samples were histologically examined, and the expression of the specific thyroid proteins was assessed by immunohistochemistry. Two samples were submitted to whole exome sequencing. An oropharynx sample showed immature fetal architecture tissue with clusters or cords of oval thyrocytes and small follicles; one sample exhibited a normal thyroid pattern while four showed colloid goiter. All ectopic thyroids expressed the specific thyroid genes and T4 at similar locations to those observed in normal thyroid. No somatic mutations associated with ectopic thyroid were found. This is the first immature thyroid fetal tissue observed in an ectopic thyroid due to the arrest of structural differentiation early in the colloid stage of development that proved able to synthesize thyroid hormone but not to respond to TSH. Despite the ability of all ectopic thyroids to synthetize specific thyroid proteins and T4, at some point in life, it may be insufficient to support body growth leading to hypothyroidism, as observed in some of the patients.
Collapse
Affiliation(s)
- Rosalinda Yasato Camargo
- Thyroid Unit, Cellular and Molecular Endocrine Laboratory, LIM-25, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Doutor Arnaldo 455, Cerqueira César, 01246-904 São Paulo, SP, Brazil
| | - Cristina Takami Kanamura
- Adolfo Lutz Institute, São Paulo Public Health Service, Av. Dr. Arnaldo 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | | | - Célia Regina Nogueira
- Department of Internal Medicine, Botucatu School of Medicine, UNESP, Av. Prof. Montenegro, s/n Distrito de Rubião Junior, 18618-687 Botucatu, SP, Brazil
| | - Sonia Iorcansky
- Servicio de Endocrinología, Hospital de Pediatría Dr. Juan Garrahan, Combate de los Pozos 1881, C1245AAM Buenos Aires, Argentina
| | - Alfio José Tincani
- Departamento de Cirurgia na Disciplina de Cirurgia de Cabeça e Pescoço da Faculdade de Ciências Médicas da UNICAMP, R. Tessália Vieira de Camargo 126, 13083-887 Campinas, SP, Brazil
| | - Ana Karina Bezerra
- Medicine School, Universidade de Fortaleza (Unifor), Av. Washington Soares 1321, Edson Queiroz, 60811-905 Fortaleza, CE, Brazil
| | - Ester Brust
- Postgraduate Program in Biotechnology, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo 669, 040399-032 São Paulo, SP, Brazil
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo, Departamento de Ciências Biológicas, Postgraduation Programs in Biotechnology and Structural and Functional Biology, UNIFESP, Pedro de Toledo 669, 040399-032 São Paulo, SP, Brazil
| | | | - Anamaria Aranha Camargo
- Molecular Oncology Center, Hospital Sírio-Libanés, Rua Prof. Daher Cutait 69, 01308-060 São Paulo, SP, Brazil
| | - Fernanda Orpinelli R. Rego
- Molecular Oncology Center, Hospital Sírio-Libanés, Rua Prof. Daher Cutait 69, 01308-060 São Paulo, SP, Brazil
| | | | - Geraldo Medeiros-Neto
- Thyroid Unit, Cellular and Molecular Endocrine Laboratory, LIM-25, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Doutor Arnaldo 455, Cerqueira César, 01246-904 São Paulo, SP, Brazil
| | - Ileana Gabriela Sanchez Rubio
- Postgraduate Program in Biotechnology, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo 669, 040399-032 São Paulo, SP, Brazil
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo, Departamento de Ciências Biológicas, Postgraduation Programs in Biotechnology and Structural and Functional Biology, UNIFESP, Pedro de Toledo 669, 040399-032 São Paulo, SP, Brazil
| |
Collapse
|