1
|
Ibrahim Y, Basri NI, Jamil AAM, Nordin N. A plethora of laboratory protocols for vitamin D receptor (VDR) gene variants detection: a systematic review of associations with hypertensive disorders of pregnancy. BMC Pregnancy Childbirth 2025; 25:539. [PMID: 40329233 PMCID: PMC12057019 DOI: 10.1186/s12884-025-07510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
INTRODUCTION Genetic variations in the vitamin D receptor (VDR) gene have been inconsistently linked to hypertensive disorder of pregnancy (HDP) across different populations. This systematic review aims to evaluate the laboratory protocols of VDR detection and association with HDP. METHODS We performed a systematic review using the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guideline and conducted an article search using the Web of Science, PubMed, Scopus, EBSCOhost (MEDLINE and CINAHL) databases. We included all studies involving one or more of the major VDR gene variants (FokI, BsmI, ApaI, and TaqI) and association with HDP. RESULTS Of the 9 studies evaluated, 6 (67%) studies were reported from Asia, 2 (22%) from Europe, and 1 (11%) from Latin America. Our analysis of VDR variant detection protocols revealed that approximately 6 (67%) studies used polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP), of which 3 (33%) reported a significant association with FokI variant. Two (22%) of studies used TaqMan PCR and found an association with FokI variant. Only 1 (11%) study utilised allele-specific PCR (AS-PCR) for ApaI variant genotyping. For association analysis of the variants with HDP in populations, 4 studies (44%) reported an association with FokI variant in Asians. Two studies (22%) reported BsmI variant in Caucasians. TaqI variant was not associated with HDP in all the populations studied. CONCLUSIONS Our findings suggest an association between VDR genetic variation and HDP across different populations. To enhance consistency in these associations, future studies should use reliable detection methods and strict adherence to quality control measures. This could help in the identification of population-specific biomarkers, prevalent variants, and support personalized management strategies to reduce maternal morbidity and mortality related to HDP.
Collapse
Affiliation(s)
- Yakubu Ibrahim
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, 43400, Malaysia
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Nurul Iftida Basri
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, 43400, Malaysia.
| | - Amilia Afzan Mohd Jamil
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Norshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, 43400, Malaysia
| |
Collapse
|
2
|
Silverio CDS, Bonilla C. Vitamin D-associated genetic variants in the Brazilian population: Investigating potential instruments for Mendelian randomization. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:45-53. [PMID: 38648345 PMCID: PMC11349065 DOI: 10.7705/biomedica.6972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/30/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Vitamin D is required for bone and mineral metabolism and participates in the regulation of the immune response. It is also linked to several chronic diseases and conditions, usually in populations of European descent. Brazil presents a high prevalence of vitamin D deficiency and insufficiency despite the widespread availability of sunlight in the country. Thus, it is important to investigate the role of vitamin D as a risk factor for disease and to establish causal relationships between vitamin D levels and health-related outcomes in the Brazilian population. OBJECTIVE To examine genetic variants identified as determinants of serum vitamin D in genome-wide association studies of European populations and check whether the same associations are present in Brazil. If so, these single nucleotide polymorphisms (SNPs) could be developed locally as proxies to use in genetically informed causal inference methods, such as Mendelian randomization. MATERIALS AND METHODS We extracted SNPs associated with vitamin D from the genomewide association studies catalog. We did a literature search to select papers ascertaining these variants and vitamin D concentrations in Brazil. RESULTS GC was the gene with the strongest association with vitamin D levels, in agreement with existing findings in European populations. However, VDR was the most investigated gene, regardless of its non-existing association with vitamin D in the genomewide association studies. CONCLUSIONS More research is needed to validate sound proxies for vitamin D levels in Brazil, for example, prioritizing GC rather than VDR.
Collapse
Affiliation(s)
- Caroline de Souza Silverio
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, BrasilUniversidade de São PauloDepartamento de Medicina PreventivaFaculdade de MedicinaUniversidade de São PauloSão PauloBrazil
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, BrasilUniversidade de São PauloEscola de Artes, Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil
| | - Carolina Bonilla
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, BrasilUniversidade de São PauloDepartamento de Medicina PreventivaFaculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
3
|
Deng J, Wei L, Fan Q, Wu Z, Ji Z. Long-term partial response in a patient with liver metastasis of primary adrenocortical carcinoma with adjuvant mitotane plus transcatheter arterial chemoembolization and microwave ablation: a case report. Front Oncol 2023; 13:1157740. [PMID: 37313469 PMCID: PMC10258337 DOI: 10.3389/fonc.2023.1157740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare, heterogeneous, and aggressive malignancy with a generally poor prognosis. Surgical resection is the optimal treatment plan. After surgery, both mitotane treatment or the etoposide-doxorubicin-cisplatin (EDP) protocol plus mitotane chemotherapy have a certain effect, but there is still an extremely high possibility of recurrence and metastasis. The liver is one of the most common metastatic targets. Therefore, techniques such as transcatheter arterial chemoembolization (TACE) and microwave ablation (MWA) for liver tumors can be attempted in a specific group of patients. We present the case of a 44-year-old female patient with primary ACC, who was diagnosed with liver metastasis 6 years after resection. During mitotane treatment, we performed four courses of TACE and two MWA procedures in accordance with her clinical condition. The patient has maintained the partial response status and has currently returned to normal life to date. This case illustrates the value of the practical application of mitotane plus TACE and MWA treatment.
Collapse
Affiliation(s)
- Jianhua Deng
- Department of Urology, Peking Union Medical College Hospital, Beijing, China
| | - Lihui Wei
- Department of Medicine, Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Qihuang Fan
- Department of Medicine, Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Zoey Wu
- Department of Medicine, Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
4
|
Parlato LA, Welch R, Ong IM, Long J, Cai Q, Steinwandel MD, Blot WJ, Zheng W, Warren Andersen S. Genome-wide association study (GWAS) of circulating vitamin D outcomes among individuals of African ancestry. Am J Clin Nutr 2023; 117:308-316. [PMID: 36811574 PMCID: PMC10196601 DOI: 10.1016/j.ajcnut.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Vitamin D deficiency is more common among African-ancestry individuals and may be associated with adverse health outcomes. Vitamin D binding protein (VDBP) regulates concentrations of biologically active vitamin D. OBJECTIVE We conducted genome-wide association study (GWAS) of VDBP and 25-hydroxyvitamin D among African-ancestry individuals. METHODS Data were collected from 2,602 African American adults from the Southern Community Cohort Study (SCCS) and 6,934 African- or Caribbean-ancestry adults from the UK Biobank. Serum VDBP concentrations were available only in the SCCS and were measured by using the Polyclonal Human VDBP ELISA kit. Serum 25-hydroxyvitamin D concentrations for both study samples were measured by using Diasorin Liason, a chemiluminescent immunoassay. Participants were genotyped for single nucleotide polymorphisms (SNPs) with genome-wide coverage by using Illumina or Affymetrix platforms. Fine-mapping analysis was performed by using forward stepwise linear regression models including all variants with P value < 5 × 10-8 and within 250 kbps of a lead SNP. RESULTS We identified 4 loci notably associated with VDBP concentrations in the SCCS population: rs7041 (per allele β = 0.61 μg/mL, SE = 0.05, P = 1.4 × 10-48) and rs842998 (per allele β = 0.39 μg/mL, SE = 0.03, P = 4.0 × 10-31) in GC, rs8427873 (per allele β = 0.31 μg/mL, SE = 0.04, P = 3.0 × 10-14) near GC and rs11731496 (per allele β = 0.21 μg/mL, SE = 0.03, P = 3.6 × 10-11) in between GC and NPFFR2. In conditional analyses, which included the above-mentioned SNPs, only rs7041 remained notable (P = 4.1 × 10-21). SNP rs4588 in GC was the only GWAS-identified SNP associated with 25-hydroxyvitamin D concentration. Among UK Biobank participants: per allele β = -0.11 μg/mL, SE = 0.01, P = 1.5 × 10-13; in the SCCS: per allele β = -0.12 μg/mL, SE = 0.06, P = 2.8 × 10-02). rs7041 and rs4588 are functional SNPs that influence the binding affinity of VDBP to 25-hydroxyvitamin D. CONCLUSIONS Our results were in line with previous studies conducted in European-ancestry populations, showing that GC, the gene that directly encodes for VDBP, would be important for VDBP and 25-hydroxyvitamin D concentrations. The current study extends our knowledge of the genetics of vitamin D in diverse populations.
Collapse
Affiliation(s)
- Lisa A Parlato
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rene Welch
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Obstetrics and Gynecology, UW-Health Hospital, University of Wisconsin-Madison, Madison, WI, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Department of Obstetrics and Gynecology, UW-Health Hospital, University of Wisconsin-Madison, Madison, WI, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark D Steinwandel
- International Epidemiology Field Station, Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA; International Epidemiology Field Station, Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shaneda Warren Andersen
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
5
|
Best CM, Thummel KE, Hsu S, Lin Y, Zelnick LR, Kestenbaum B, Kushnir MM, de Boer IH, Hoofnagle AN. The plasma free fraction of 25-hydroxyvitamin D 3 is not strongly associated with 25-hydroxyvitamin D 3 clearance in kidney disease patients and controls. J Steroid Biochem Mol Biol 2023; 226:106206. [PMID: 36404469 PMCID: PMC11536320 DOI: 10.1016/j.jsbmb.2022.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Circulating 25-hydroxyvitamin D [25(OH)D] concentration is used to monitor vitamin D status. Plasma protein binding may influence the 25(OH)D dose-response to vitamin D treatment through a direct relationship between the plasma unbound ("free") fraction and clearance of 25(OH)D. We previously evaluated 25(OH)D3 clearance in relation to kidney function using intravenous administration of deuterium labeled 25(OH)D3. In this follow up study, we determined the free fraction of 25(OH)D3 in plasma (i.e., percent free 25(OH)D3) and the serum concentration and haplotype of vitamin D binding protein in these participants. We hypothesized that the percent free 25(OH)D3 would be positively associated with 25(OH)D3 clearance and would mediate associations between clearance and vitamin D binding protein (GC) haplotypes. Participants were mean (SD) age 64 (10) years and included 42 individuals with normal kidney function (controls), 24 individuals with chronic kidney disease, and 19 individuals with kidney failure on hemodialysis. Free plasma 25(OH)D2 and 25(OH)D3 concentrations were quantified with a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Because there is no reference measurement procedure for free 25(OH)D, we compared the new method with a widely-used predictive equation and a commercial immunoassay. The percent free 25(OH)D3 determined by predictive equation was weakly associated with 25(OH)D3 clearance (R = 0.27; P = 0.01). However, this association was absent when percent free 25(OH)D3 was determined using LC-MS/MS-measured free and total 25(OH)D3 concentrations. Method comparison uncovered a negative bias in immunoassay-measured free 25(OH)D concentrations among participants with kidney failure, so immunoassay results were not used to evaluate the association between percent free 25(OH)D3 and clearance. GC2 haplotype carriage was associated with 25(OH)D3 clearance. Among individuals with 2 relative to no GC2 alleles, clearance was 87 (95% CI: 15-158) mL/d greater. However, in contrast with the literature, GC2 carriage was not significantly related to DBP concentration or the percent free 25(OH)D3 (either predicted or measured). In conclusion, the free fraction of 25(OH)D3 is not strongly associated with 25(OH)D3 clearance but may explain small differences in clearance according to GC haplotype.
Collapse
Affiliation(s)
- Cora M Best
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Kidney Research Institute, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Simon Hsu
- Kidney Research Institute, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yvonne Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Leila R Zelnick
- Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - Bryan Kestenbaum
- Kidney Research Institute, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mark M Kushnir
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Ian H de Boer
- Kidney Research Institute, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Puget Sound VA Healthcare System, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Kidney Research Institute, University of Washington, Seattle, WA, USA; Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Hyppönen E, Vimaleswaran KS, Zhou A. Genetic Determinants of 25-Hydroxyvitamin D Concentrations and Their Relevance to Public Health. Nutrients 2022; 14:4408. [PMID: 36297091 PMCID: PMC9606877 DOI: 10.3390/nu14204408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Twin studies suggest a considerable genetic contribution to the variability in 25-hydroxyvitamin D (25(OH)D) concentrations, reporting heritability estimates up to 80% in some studies. While genome-wide association studies (GWAS) suggest notably lower rates (13−16%), they have identified many independent variants that associate with serum 25(OH)D concentrations. These discoveries have provided some novel insight into the metabolic pathway, and in this review we outline findings from GWAS studies to date with a particular focus on 35 variants which have provided replicating evidence for an association with 25(OH)D across independent large-scale analyses. Some of the 25(OH)D associating variants are linked directly to the vitamin D metabolic pathway, while others may reflect differences in storage capacity, lipid metabolism, and pathways reflecting skin properties. By constructing a genetic score including these 25(OH)D associated variants we show that genetic differences in 25(OH)D concentrations persist across the seasons, and the odds of having low concentrations (<50 nmol/L) are about halved for individuals in the highest 20% of vitamin D genetic score compared to the lowest quintile, an impact which may have notable influences on retaining adequate levels. We also discuss recent studies on personalized approaches to vitamin D supplementation and show how Mendelian randomization studies can help inform public health strategies to reduce adverse health impacts of vitamin D deficiency.
Collapse
Affiliation(s)
- Elina Hyppönen
- Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK
- The Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading RG6 6DZ, UK
| | - Ang Zhou
- Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
7
|
Nova A, Baldrighi GN, Fazia T, Graziano F, Saddi V, Piras M, Beecham A, McCauley JL, Bernardinelli L. Heritability Estimation of Multiple Sclerosis Related Plasma Protein Levels in Sardinian Families with Immunochip Genotyping Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071101. [PMID: 35888189 PMCID: PMC9317284 DOI: 10.3390/life12071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
This work aimed at estimating narrow-sense heritability, defined as the proportion of the phenotypic variance explained by the sum of additive genetic effects, via Haseman–Elston regression for a subset of 56 plasma protein levels related to Multiple Sclerosis (MS). These were measured in 212 related individuals (with 69 MS cases and 143 healthy controls) obtained from 20 Sardinian families with MS history. Using pedigree information, we found seven statistically significant heritable plasma protein levels (after multiple testing correction), i.e., Gc (h2 = 0.77; 95%CI: 0.36, 1.00), Plat (h2 = 0.70; 95%CI: 0.27, 0.95), Anxa1 (h2 = 0.68; 95%CI: 0.27, 1.00), Sod1 (h2 = 0.58; 95%CI: 0.18, 0.96), Irf8 (h2 = 0.56; 95%CI: 0.19, 0.99), Ptger4 (h2 = 0.45; 95%CI: 0.10, 0.96), and Fadd (h2 = 0.41; 95%CI: 0.06, 0.84). A subsequent analysis was performed on these statistically significant heritable plasma protein levels employing Immunochip genotyping data obtained in 155 healthy controls (92 related and 63 unrelated); we found a meaningful proportion of heritable plasma protein levels’ variability explained by a small set of SNPs. Overall, the results obtained, for these seven MS-related proteins, emphasized a high additive genetic variance component explaining plasma levels’ variability.
Collapse
Affiliation(s)
- Andrea Nova
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
- Correspondence:
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Francesca Graziano
- Centre of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, 20900 Monza, Italy;
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| |
Collapse
|
8
|
Shraim R, MacDonnchadha C, Vrbanic L, McManus R, Zgaga L. Gene-Environment Interactions in Vitamin D Status and Sun Exposure: A Systematic Review with Recommendations for Future Research. Nutrients 2022; 14:nu14132735. [PMID: 35807923 PMCID: PMC9268458 DOI: 10.3390/nu14132735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is essential for good health. Dermal vitamin D production is dependent on environmental factors such as season and latitude, and personal factors such as time spent outdoors and genetics. Varying heritability of vitamin D status by season has been reported, suggesting that gene-environment interactions (GxE) may play a key role. Thus, understanding GxE might significantly improve our understanding of determinants of vitamin D status. The objective of this review was to survey the existing methods in GxE on vitamin D studies and report on GxE effect estimates. We searched the Embase, Medline (Ovid), and Web of Science (Core Collection) databases. We included only primary research that reported on GxE effects on vitamin D status using 25-hydroxyvitamin D as a biomarker. Sun exposure was the only environmental exposure identified in these studies. The quality assessment followed the Newcastle–Ottawa Scale for cohort studies. Seven studies were included in the final narrative synthesis. We evaluate the limitations and findings of the available GxE in vitamin D research and provide recommendations for future GxE research. The systematic review was registered on PROSPERO (CRD42021238081).
Collapse
Affiliation(s)
- Rasha Shraim
- Department of Public Health and Primary Care, Institute of Population Health, Trinity College Dublin, D24 DH74 Dublin, Ireland; (R.S.); (C.M.); (L.V.)
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland;
- The SFI Centre for Research Training in Genomics Data Sciences, National University of Ireland Galway, H91 CF50 Galway, Ireland
| | - Conor MacDonnchadha
- Department of Public Health and Primary Care, Institute of Population Health, Trinity College Dublin, D24 DH74 Dublin, Ireland; (R.S.); (C.M.); (L.V.)
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland;
| | - Lauren Vrbanic
- Department of Public Health and Primary Care, Institute of Population Health, Trinity College Dublin, D24 DH74 Dublin, Ireland; (R.S.); (C.M.); (L.V.)
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland;
| | - Ross McManus
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland;
| | - Lina Zgaga
- Department of Public Health and Primary Care, Institute of Population Health, Trinity College Dublin, D24 DH74 Dublin, Ireland; (R.S.); (C.M.); (L.V.)
- Correspondence:
| |
Collapse
|
9
|
Ogunmwonyi I, Adebajo A, Wilkinson JM. The genetic and epigenetic contributions to the development of nutritional rickets. Front Endocrinol (Lausanne) 2022; 13:1059034. [PMID: 36619587 PMCID: PMC9815715 DOI: 10.3389/fendo.2022.1059034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Nutritional rickets is an important disease in global health. Although nutritional rickets commonly manifests as bony deformities, there is an increased risk of life-threatening seizures secondary to hypocalcaemia. Dietary vitamin D deficiency is associated with the development of nutritional rickets among children and infants. This is especially true in populations of darker skinned individuals in high-latitude environments due to decreased ultraviolet light exposure, and in populations in tropical and subtropical climates due to cultural practices. A growing body of evidence has demonstrated that genetic factors might influence the likelihood of developing nutritional rickets by influencing an individual's susceptibility to develop deficiencies in vitamin D and/or calcium. This evidence has been drawn from a variety of different techniques ranging from traditional twin studies to next generation sequencing techniques. Additionally, the role of the epigenome in the development of rickets, although poorly understood, may be related to the effects of DNA methylation and non-coding RNAs on genes involved in bone metabolism. This review aims to provide an overview of the current evidence that investigates the genetic and epigenetic determinants of nutritional rickets.
Collapse
|
10
|
Kim YA, Yoon JW, Lee Y, Choi HJ, Yun JW, Bae E, Kwon SH, Ahn SE, Do AR, Jin H, Won S, Park DJ, Shin CS, Seo JH. Unveiling Genetic Variants Underlying Vitamin D Deficiency in Multiple Korean Cohorts by a Genome-Wide Association Study. Endocrinol Metab (Seoul) 2021; 36:1189-1200. [PMID: 34852423 PMCID: PMC8743587 DOI: 10.3803/enm.2021.1241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Epidemiological data have shown that vitamin D deficiency is highly prevalent in Korea. Genetic factors influencing vitamin D deficiency in humans have been studied in Europe but are less known in East Asian countries, including Korea. We aimed to investigate the genetic factors related to vitamin D levels in Korean people using a genome-wide association study (GWAS). METHODS We included 12,642 subjects from three different genetic cohorts consisting of Korean participants. The GWAS was performed on 7,590 individuals using linear or logistic regression meta- and mega-analyses. After identifying significant single nucleotide polymorphisms (SNPs), we calculated heritability and performed replication and rare variant analyses. In addition, expression quantitative trait locus (eQTL) analysis for significant SNPs was performed. RESULTS rs12803256, in the actin epsilon 1, pseudogene (ACTE1P) gene, was identified as a novel polymorphism associated with vitamin D deficiency. SNPs, such as rs11723621 and rs7041, in the group-specific component gene (GC) and rs11023332 in the phosphodiesterase 3B (PDE3B) gene were significantly associated with vitamin D deficiency in both meta- and mega-analyses. The SNP heritability of the vitamin D concentration was estimated to be 7.23%. eQTL analysis for rs12803256 for the genes related to vitamin D metabolism, including glutamine-dependent NAD(+) synthetase (NADSYN1) and 7-dehydrocholesterol reductase (DHCR7), showed significantly different expression according to alleles. CONCLUSION The genetic factors underlying vitamin D deficiency in Korea included polymorphisms in the GC, PDE3B, NADSYN1, and ACTE1P genes. The biological mechanism of a non-coding SNP (rs12803256) for DHCR7/NADSYN1 on vitamin D concentrations is unclear, warranting further investigations.
Collapse
Affiliation(s)
- Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul,
Korea
| | - Ji Won Yoon
- Healthcare System Gangnam Center, Seoul National University Hospital, Seoul,
Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul,
Korea
| | - Hyuk Jin Choi
- Healthcare System Gangnam Center, Seoul National University Hospital, Seoul,
Korea
| | - Jae Won Yun
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul,
Korea
| | - Eunsin Bae
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul,
Korea
| | - Seung-Hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul,
Korea
| | - So Eun Ahn
- Department of Public Health Science, Seoul National University, Seoul,
Korea
| | - Ah-Ra Do
- Department of Public Health Science, Seoul National University, Seoul,
Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul,
Korea
| | - Sungho Won
- Department of Public Health Science, Seoul National University, Seoul,
Korea
- Institute of Health and Environment, Seoul National University, Seoul,
Korea
- RexSoft, Inc.,
Korea
| | - Do Joon Park
- Department of Internal Medicine, Seoul National University, Seoul,
Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University, Seoul,
Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul,
Korea
| |
Collapse
|
11
|
Sampathkumar A, Tan KM, Chen L, Chong MFF, Yap F, Godfrey KM, Chong YS, Gluckman PD, Ramasamy A, Karnani N. Genetic Link Determining the Maternal-Fetal Circulation of Vitamin D. Front Genet 2021; 12:721488. [PMID: 34621292 PMCID: PMC8490770 DOI: 10.3389/fgene.2021.721488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
Vitamin D is an essential micronutrient whose demand is heightened during pregnancy to support the growth of the fetus. Furthermore, the fetus does not produce vitamin D and hence relies exclusively on the supply of maternal vitamin D through the placenta. Vitamin D inadequacy is linked with pregnancy complications and adverse infant outcomes. Hence, early predictive markers of vitamin D inadequacy such as genetic vulnerability are important to both mother and offspring. In this multi-ethnic Asian birth cohort study, we report the first genome-wide association analysis (GWAS) of maternal and fetal vitamin D in circulation. For this, 25-hydroxyvitamin D (25OHD) was measured in the antenatal blood of mothers during mid gestation (n=942), and the cord blood of their offspring at birth (n=812). Around ~7 million single nucleotide polymorphisms (SNPs) were regressed against 25OHD concentrations to identify genetic risk variants. About 41% of mothers had inadequate 25OHD (≤75nmol/L) during pregnancy. Antenatal 25OHD was associated with ethnicity [Malay (Β=−22.32nmol/L, p=2.3×10−26); Indian (Β=−21.85, p=3.1×10−21); reference Chinese], age (Β=0.47/year, p=0.0058), and supplement intake (Β=16.47, p=2.4×10−13). Cord blood 25OHD highly correlated with antenatal vitamin D (r=0.75) and was associated with ethnicity [Malay (Β=−4.44, p=2.2×10−7); Indian (Β=−1.99, p=0.038); reference Chinese]. GWAS analysis identified rs4588, a missense variant in the group-specific component (GC) gene encoding vitamin D binding protein (VDBP), and its defining haplotype, as a risk factor for low antenatal (Β=−8.56/T-allele, p=1.0×10−9) and cord blood vitamin D (Β=−3.22/T-allele, p=1.0×10−8) in all three ethnicities. We also discovered a novel association in a SNP downstream of CYP2J2 (rs10789082), a gene involved in 25-hydroxylation of vitamin D, with vitamin D in pregnant women (Β=−7.68/G-allele, p=1.5×10−8), but not their offspring. As the prevention and early detection of suboptimal vitamin D levels are of profound importance to both mother and offspring’s health, the genetic risk variants identified in this study allow risk assessment and precision in early intervention of vitamin D deficiency.
Collapse
Affiliation(s)
- Aparna Sampathkumar
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Karen M Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Li Chen
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Mary F F Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Saw Swee Hock School of Public Health (SSHPH), National University of Singapore (NUS), Singapore, Singapore
| | - Fabian Yap
- Department of Pediatric Endocrinology, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
| | - Keith M Godfrey
- Lee Kong Chian School of Medicine, Singapore, Singapore.,Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital, Southampton, United Kingdom
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Adaikalavan Ramasamy
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore.,Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
12
|
Bejar CA, Goyal S, Afzal S, Mangino M, Zhou A, van der Most PJ, Bao Y, Gupta V, Smart MC, Walia GK, Verweij N, Power C, Prabhakaran D, Singh JR, Mehra NK, Wander GS, Ralhan S, Kinra S, Kumari M, de Borst MH, Hyppönen E, Spector TD, Nordestgaard BG, Blackett PR, Sanghera DK. A Bidirectional Mendelian Randomization Study to evaluate the causal role of reduced blood vitamin D levels with type 2 diabetes risk in South Asians and Europeans. Nutr J 2021; 20:71. [PMID: 34315477 PMCID: PMC8314596 DOI: 10.1186/s12937-021-00725-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Multiple observational studies have reported an inverse relationship between 25-hydroxyvitamin D concentrations (25(OH)D) and type 2 diabetes (T2D). However, the results of short- and long-term interventional trials concerning the relationship between 25(OH)D and T2D risk have been inconsistent. OBJECTIVES AND METHODS To evaluate the causal role of reduced blood 25(OH)D in T2D, here we have performed a bidirectional Mendelian randomization study using 59,890 individuals (5,862 T2D cases and 54,028 controls) from European and Asian Indian ancestries. We used six known SNPs, including three T2D SNPs and three vitamin D pathway SNPs, as a genetic instrument to evaluate the causality and direction of the association between T2D and circulating 25(OH)D concentration. RESULTS Results of the combined meta-analysis of eight participating studies showed that a composite score of three T2D SNPs would significantly increase T2D risk by an odds ratio (OR) of 1.24, p = 1.82 × 10-32; Z score 11.86, which, however, had no significant association with 25(OH)D status (Beta -0.02nmol/L ± SE 0.01nmol/L; p = 0.83; Z score -0.21). Likewise, the genetically instrumented composite score of 25(OH)D lowering alleles significantly decreased 25(OH)D concentrations (-2.1nmol/L ± SE 0.1nmol/L, p = 7.92 × 10-78; Z score -18.68) but was not associated with increased risk for T2D (OR 1.00, p = 0.12; Z score 1.54). However, using 25(OH)D synthesis SNP (DHCR7; rs12785878) as an individual genetic instrument, a per allele reduction of 25(OH)D concentration (-4.2nmol/L ± SE 0.3nmol/L) was predicted to increase T2D risk by 5%, p = 0.004; Z score 2.84. This effect, however, was not seen in other 25(OH)D SNPs (GC rs2282679, CYP2R1 rs12794714) when used as an individual instrument. CONCLUSION Our new data on this bidirectional Mendelian randomization study suggests that genetically instrumented T2D risk does not cause changes in 25(OH)D levels. However, genetically regulated 25(OH)D deficiency due to vitamin D synthesis gene (DHCR7) may influence the risk of T2D.
Collapse
Affiliation(s)
- Cynthia A Bejar
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, OK, 73104, OK City, USA
| | - Shiwali Goyal
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, OK, 73104, OK City, USA
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, SE1 9RT, London, UK
| | - Ang Zhou
- Australian Center for Precision Health, University of South Australia Cancer Research Institute, Adelaide, Australia
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, NL, The Netherlands
| | - Yanchun Bao
- Department of Mathematical Sciences, University of Essex, Colchester, UK
| | - Vipin Gupta
- Department of Anthropology, University of Delhi, New Delhi, India
| | - Melissa C Smart
- Department of Mathematical Sciences, University of Essex, Colchester, UK
| | | | - Niek Verweij
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christine Power
- Population, Policy and Practice, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | | | - Jai Rup Singh
- Department of Human Genetics, Central University of Punjab, Bathinda, Punjab, India
| | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences and Research, New Delhi, India
| | | | - Sarju Ralhan
- Department of Cardiology, Hero DMC Heart Institute, Ludhiana, India
| | - Sanjay Kinra
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Meena Kumari
- Department of Mathematical Sciences, University of Essex, Colchester, UK
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elina Hyppönen
- Australian Center for Precision Health, University of South Australia Cancer Research Institute, Adelaide, Australia
- Population, Policy and Practice, Institute of Child Health, University College London, London, WC1N 1EH, UK
- Australian Centre for Precision Health, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Piers R Blackett
- Department of Pediatrics, Section of Pediatric Endocrinology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, OK, 73104, OK City, USA.
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
13
|
Patchen BK, Clark AG, Gaddis N, Hancock DB, Cassano PA. Genetically predicted serum vitamin D and COVID-19: a Mendelian randomisation study. BMJ Nutr Prev Health 2021; 4:213-225. [PMID: 34308129 PMCID: PMC8098235 DOI: 10.1136/bmjnph-2021-000255] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To investigate causality of the association of serum vitamin D with the risk and severity of COVID-19 infection. DESIGN Two-sample Mendelian randomisation study. SETTING Summary data from genome-wide analyses in the population-based UK Biobank and SUNLIGHT Consortium, applied to meta-analysed results of genome-wide analyses in the COVID-19 Host Genetics Initiative. PARTICIPANTS 17 965 COVID-19 cases including 11 085 laboratory or physician-confirmed cases, 7885 hospitalised cases and 4336 severe respiratory cases, and 1 370 547 controls, primarily of European ancestry. EXPOSURES Genetically predicted variation in serum vitamin D status, instrumented by genome-wide significant single nucleotide polymorphisms (SNPs) associated with serum vitamin D or risk of vitamin D deficiency/insufficiency. MAIN OUTCOME MEASURES Susceptibility to and severity of COVID-19 infection, including severe respiratory infection and hospitalisation. RESULTS Mendelian randomisation analysis, sufficiently powered to detect effects comparable to those seen in observational studies, provided little to no evidence for an effect of genetically predicted serum vitamin D on susceptibility to or severity of COVID-19 infection. Using SNPs in loci related to vitamin D metabolism as genetic instruments for serum vitamin D concentrations, the OR per SD higher serum vitamin D was 1.04 (95% CI 0.92 to 1.18) for any COVID-19 infection versus population controls, 1.05 (0.84 to 1.31) for hospitalised COVID-19 versus population controls, 0.96 (0.64 to 1.43) for severe respiratory COVID-19 versus population controls, 1.15 (0.99 to 1.35) for COVID-19 positive versus COVID-19 negative and 1.44 (0.75 to 2.78) for hospitalised COVID-19 versus non-hospitalised COVID-19. Results were similar in analyses using SNPs with genome-wide significant associations with serum vitamin D (ie, including SNPs in loci with no known relationship to vitamin D metabolism) and in analyses using SNPs with genome-wide significant associations with risk of vitamin D deficiency or insufficiency. CONCLUSIONS These findings suggest that genetically predicted differences in long-term vitamin D nutritional status do not causally affect susceptibility to and severity of COVID-19 infection, and that associations observed in previous studies may have been driven by confounding. These results do not exclude the possibility of low-magnitude causal effects or causal effects of acute responses to therapeutic doses of vitamin D.
Collapse
Affiliation(s)
- Bonnie K Patchen
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Nathan Gaddis
- GenOmics, Bioinformatics and Translational Research Center, Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Dana B Hancock
- GenOmics, Bioinformatics and Translational Research Center, Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Population Health Sciences, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
14
|
Zumaraga MP, Concepcion MA, Duante C, Rodriguez M. Next Generation Sequencing of 502 Lifestyle and Nutrition related Genetic Polymorphisms reveals Independent Loci for Low Serum 25-hydroxyvitamin D Levels among Adult Respondents of the 2013 Philippine National Nutrition Survey. J ASEAN Fed Endocr Soc 2021; 36:56-63. [PMID: 34177089 PMCID: PMC8214345 DOI: 10.15605/jafes.036.01.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/31/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The study determined the relationship of serum vitamin D levels and 502 lifestyle and nutrition related genetic polymorphisms among adult respondents of the 2013 Philippine National Nutrition Survey (NNS). METHODOLOGY A total of 1,160 adult respondents of the 2013 NNS living in the National Capital Region, Philippines were enrolled. Of the 1,160 sequenced samples, 833 passed the stringent quality control based on multiple parameters and were used for further analysis. Total serum 25-hydroxyvitamin D [25(OH)D] was determined using electro-chemiluminescence binding assay method. Genomic DNA was used for targeted next generation sequencing of 502 lifestyle and nutrition related polymorphisms. Analysis of variance, followed by Tukey post hoc analysis, was employed to compare 25(OH)D serum levels across genotypes. RESULTS Of the study participants, 56% was classified as having low serum 25(OH)D. The lower serum 25(OH)D was observed in the following gene/genotypes: KNG1 rs11924390 T/T; ANKH rs2454873 G/G; NPFFR2 rs4129733 T/G; SH2B1 rs4788102 G/A; RAP1A rs494453 T/T and CRHBP rs7728378 T/C. These genes were previously associated to the risk of osteoporosis, obesity, type 2 diabetes mellitus, and stress response. CONCLUSION Large-scale analysis of genes has shown great utility in the discovery of genetic factors that play a role in vitamin D nutrition. Interestingly, loci found in this Filipino population cohort were mostly independent from the canonical vitamin D synthesis and metabolism pathways. Understanding how genetic variations interact with nutrition and lifestyle may aid in the prevention of diseases through screening and identification of susceptible patients who would not benefit from regular supplementation with vitamin D because of genetic alterations and may also be used as basis for future development of functional food enriched with vitamin D.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- Department of Science and Technology - Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Mae Anne Concepcion
- Department of Science and Technology - Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charmaine Duante
- Department of Science and Technology - Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Marietta Rodriguez
- Department of Science and Technology - Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| |
Collapse
|
15
|
Sallinen RJ, Dethlefsen O, Ruotsalainen S, Mills RD, Miettinen TA, Jääskeläinen TE, Lundqvist A, Kyllönen E, Kröger H, Karppinen JI, Lamberg-Allardt C, Viljakainen H, Kaunisto MA, Kallioniemi O. Genetic Risk Score for Serum 25-Hydroxyvitamin D Concentration Helps to Guide Personalized Vitamin D Supplementation in Healthy Finnish Adults. J Nutr 2021; 151:281-292. [PMID: 33382404 DOI: 10.1093/jn/nxaa391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/26/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genetic factors modify serum 25-hydroxyvitamin D [25(OH)D] concentration and can affect the optimal intake of vitamin D. OBJECTIVES We aimed to personalize vitamin D supplementation by applying knowledge of genetic factors affecting serum 25(OH)D concentration. METHODS We performed a genome-wide association study of serum 25(OH)D concentration in the Finnish Health 2011 cohort (n = 3339) using linear regression and applied the results to develop a population-matched genetic risk score (GRS) for serum 25(OH)D. This GRS was used to tailor vitamin D supplementation for 96 participants of a longitudinal Digital Health Revolution (DHR) Study. The GRS, serum 25(OH)D concentrations, and personalized supplementation and dietary advice were electronically returned to participants. Serum 25(OH)D concentrations were assessed using immunoassays and vitamin D intake using FFQs. In data analyses, cross-sectional and repeated-measures statistical tests and models were applied as described in detail elsewhere. RESULTS GC vitamin D-binding protein and cytochrome P450 family 2 subfamily R polypeptide 1 genes showed genome-wide significant associations with serum 25(OH)D concentration. One single nucleotide polymorphism from each locus (rs4588 and rs10741657) was used to develop the GRS. After returning data to the DHR Study participants, daily vitamin D supplement users increased from 32.6% to 60.2% (P = 6.5 × 10-6) and serum 25(OH)D concentration from 64.4 ± 20.9 nmol/L to 68.5 ± 19.2 nmol/L (P = 0.006) between August and November. Notably, the difference in serum 25(OH)D concentrations between participants with no risk alleles and those with 3 or 4 risk alleles decreased from 20.7 nmol/L to 8.0 nmol/L (P = 0.0063). CONCLUSIONS We developed and applied a population-matched GRS to identify individuals genetically predisposed to low serum 25(OH)D concentration. We show how the electronic return of individual genetic risk, serum 25(OH)D concentrations, and factors affecting vitamin D status can be used to tailor vitamin D supplementation. This model could be applied to other populations and countries.
Collapse
Affiliation(s)
- Riitta J Sallinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Olga Dethlefsen
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Robert D Mills
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Timo A Miettinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tuija E Jääskeläinen
- Finnish Institute for Health and Welfare, Department of Public Health Solutions, Helsinki, Finland
| | - Annamari Lundqvist
- Finnish Institute for Health and Welfare, Department of Public Health Solutions, Helsinki, Finland
| | - Eero Kyllönen
- Physical and Rehabilitation Medicine Division, Oulu University Hospital, Oulu, Finland
| | - Heikki Kröger
- Department of Orthopaedics, Traumatology and Handsurgery, Kuopio University Hospital, Kuopio, Finland.,Kuopio Musculoskeletal Research Unit, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaro I Karppinen
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Finnish Institute of Occupational Health, Oulu, Finland
| | | | - Heli Viljakainen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Galmés S, Serra F, Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients 2020; 12:E2738. [PMID: 32911778 PMCID: PMC7551697 DOI: 10.3390/nu12092738] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The pandemic caused by the new coronavirus has caused shock waves in many countries, producing a global health crisis worldwide. Lack of knowledge of the biological mechanisms of viruses, plus the absence of effective treatments against the disease (COVID-19) and/or vaccines have pulled factors that can compromise the proper functioning of the immune system to fight against infectious diseases into the spotlight. The optimal status of specific nutrients is considered crucial to keeping immune components within their normal activity, helping to avoid and overcome infections. Specifically, the European Food Safety Authority (EFSA) evaluated and deems six vitamins (D, A, C, Folate, B6, B12) and four minerals (zinc, iron, copper and selenium) to be essential for the normal functioning of the immune system, due to the scientific evidence collected so far. In this report, an update on the evidence of the contribution of nutritional factors as immune-enhancing aspects, factors that could reduce their bioavailability, and the role of the optimal status of these nutrients within the COVID-19 pandemic context was carried out. First, a non-systematic review of the current state of knowledge regarding the impact of an optimal nutritional status of these nutrients on the proper functioning of the immune system as well as their potential role in COVID-19 prevention/treatment was carried out by searching for available scientific evidence in PubMed and LitCovid databases. Second, a compilation from published sources and an analysis of nutritional data from 10 European countries was performed, and the relationship between country nutritional status and epidemiological COVID-19 data (available in the Worldometers database) was evaluated following an ecological study design. Furthermore, the potential effect of genetics was considered through the selection of genetic variants previously identified in Genome-Wide Association studies (GWAs) as influencing the nutritional status of these 10 considered nutrients. Therefore, access to genetic information in accessible databases (1000genomes, by Ensembl) of individuals from European populations enabled an approximation that countries might present a greater risk of suboptimal status of the nutrients studied. Results from the review approach show the importance of maintaining a correct nutritional status of these 10 nutrients analyzed for the health of the immune system, highlighting the importance of Vitamin D and iron in the context of COVID-19. Besides, the ecological study demonstrates that intake levels of relevant micronutrients-especially Vitamins D, C, B12, and iron-are inversely associated with higher COVID-19 incidence and/or mortality, particularly in populations genetically predisposed to show lower micronutrient status. In conclusion, nutrigenetic data provided by joint assessment of 10 essential nutrients for the functioning of the immune system and of the genetic factors that can limit their bioavailability can be a fundamental tool to help strengthen the immune system of individuals and prepare populations to fight against infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, NUO Group, Universitat de les Illes Balears, 07122 Palma, Spain; (S.G.); (A.P.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- Alimentómica S.L., Spin-off n.1 of the University of the Balearic Islands, 07121 Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology, NUO Group, Universitat de les Illes Balears, 07122 Palma, Spain; (S.G.); (A.P.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- Alimentómica S.L., Spin-off n.1 of the University of the Balearic Islands, 07121 Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, NUO Group, Universitat de les Illes Balears, 07122 Palma, Spain; (S.G.); (A.P.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Disturbances in mineral metabolism are common among individuals with chronic kidney disease and have consistently been associated with cardiovascular and bone disease. The current review aims to describe the current knowledge of the genetic aspects of mineral metabolism disturbances and to suggest directions for future studies to uncover the cause and pathogenesis of chronic kidney disease - mineral bone disorder. RECENT FINDINGS The most severe disorders of mineral metabolism are caused by highly penetrant, rare, single-gene disruptive mutations. More recently, genome-wide association studies (GWAS) have made an important contribution to our understanding of the genetic determinants of circulating levels of 25-hydroxyvitamin D, calcium, phosphorus, fibroblast growth factor-23, parathyroid hormone, fetuin-A and osteoprotegerin. Although the majority of these genes are known members of mineral homeostasis pathways, GWAS with larger sample sizes have enabled the discovery of many genes not known to be involved in the regulation of mineral metabolism. SUMMARY GWAS have enabled remarkable developments in our ability to discover the genetic basis of mineral metabolism disturbances. Although we are far from using these findings to inform clinical practice, we are gaining understanding of novel biological mechanisms and providing insight into ethnic variation in these traits.
Collapse
|
18
|
Traglia M, Windham GC, Pearl M, Poon V, Eyles D, Jones KL, Lyall K, Kharrazi M, Croen LA, Weiss LA. Genetic Contributions to Maternal and Neonatal Vitamin D Levels. Genetics 2020; 214:1091-1102. [PMID: 32047095 PMCID: PMC7153928 DOI: 10.1534/genetics.119.302792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/05/2020] [Indexed: 02/08/2023] Open
Abstract
Vitamin D is essential for several physiological functions and biological processes. Increasing levels of maternal vitamin D are required throughout pregnancy as a unique source of vitamin D for the fetus, and consequently maternal vitamin D deficiency may result in several adverse outcomes in newborns. However, the genetic regulation of vitamin D in pregnancy and at birth is not yet well understood. We performed genome-wide association studies of maternal midgestational serum-derived and neonatal blood-spot-derived total 25-hydroxyvitamin D from a case-control study of autism spectrum disorder (ASD). We identified one fetal locus (rs4588) significantly associated with neonatal vitamin D levels in the GC gene, encoding the binding protein for the transport and function of vitamin D. We also found suggestive cross-associated loci for neonatal and maternal vitamin D near immune genes, such as CXCL6-IL8 and ACKR1 We found no interactions with ASD. However, when including a set of cases with intellectual disability but not ASD (N = 179), we observed a suggestive interaction between decreased levels of neonatal vitamin D and a specific maternal genotype near the PKN2 gene. Our results suggest that genetic variation influences total vitamin D levels during pregnancy and at birth via proteins in the vitamin D pathway, but also potentially via distinct mechanisms involving loci with known roles in immune function that might be involved in vitamin D pathophysiology in pregnancy.
Collapse
Affiliation(s)
- Michela Traglia
- Department of Psychiatry, Institute for Human Genetics, University of California, San Francisco, California 94143
| | - Gayle C Windham
- California Department of Public Health, Environmental Health Investigations Branch, Richmond, California 94804
| | - Michelle Pearl
- California Department of Public Health, Environmental Health Investigations Branch, Richmond, California 94804
| | - Victor Poon
- Sequoia Foundation, La Jolla, California 92037
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Karen L Jones
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California 95616
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania 191044
| | - Martin Kharrazi
- California Department of Public Health, Environmental Health Investigations Branch, Richmond, California 94804
| | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, California 94612
| | - Lauren A Weiss
- Department of Psychiatry, Institute for Human Genetics, University of California, San Francisco, California 94143
| |
Collapse
|
19
|
Roizen JD, Levine MA. Vitamin D Therapy and the Era of Precision Medicine. J Clin Endocrinol Metab 2020; 105:dgz120. [PMID: 31665328 PMCID: PMC7112971 DOI: 10.1210/clinem/dgz120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jeffrey D Roizen
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael A Levine
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Hatchell KE, Lu Q, Mares JA, Michos ED, Wood AC, Engelman CD. Multi-ethnic analysis shows genetic risk and environmental predictors interact to influence 25(OH)D concentration and optimal vitamin D intake. Genet Epidemiol 2020; 44:208-217. [PMID: 31830327 PMCID: PMC7028464 DOI: 10.1002/gepi.22272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
25-Hydroxyvitamin D (25(OH)D) concentration is a complex trait with genetic and environmental predictors that may determine how much vitamin D exposure is required to reach optimal concentration. Interactions between continuous measures of a polygenic score (PGS) and vitamin D intake (PGS*intake) or available ultraviolet (UV) radiation (PGS*UV) were evaluated in individuals of African (n = 1,099) or European (n = 8,569) ancestries. Interaction terms and joint effects (main and interaction terms) were tested using one-degree of freedom (1-DF) and 2-DF models, respectively. Models controlled for age, sex, body mass index, cohort, and dietary intake/available UV. In addition, in participants achieving Institute of Medicine (IOM) vitamin D intake recommendations, 25(OH)D was evaluated by level PGS. The 2-DF PGS*intake, 1-DF PGS*UV, and 2-DF PGS*UV results were statistically significant in participants of European ancestry (p = 3.3 × 10-18 , p = 2.1 × 10-2 , and p = 2.4 × 10-19 , respectively), but not in those of African ancestry. In European-ancestry participants reaching IOM vitamin D intake guidelines, the percent of participants achieving adequate 25(OH)D ( >20 ng/ml) increased as genetic risk decreased (72% vs. 89% in highest vs. lowest risk; p = .018). Available UV radiation and vitamin D intake interact with genetics to influence 25(OH)D. Individuals with higher genetic risk may require more vitamin D exposure to maintain optimal 25(OH)D concentrations.
Collapse
Affiliation(s)
- Kathryn E. Hatchell
- Department of Population Health Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Julie A. Mares
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Erin D. Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Alexis C. Wood
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| |
Collapse
|
21
|
Ginde AA, Brower RG, Caterino JM, Finck L, Banner-Goodspeed VM, Grissom CK, Hayden D, Hough CL, Hyzy RC, Khan A, Levitt JE, Park PK, Ringwood N, Rivers EP, Self WH, Shapiro NI, Thompson BT, Yealy DM, Talmor D. Early High-Dose Vitamin D 3 for Critically Ill, Vitamin D-Deficient Patients. N Engl J Med 2019; 381:2529-2540. [PMID: 31826336 PMCID: PMC7306117 DOI: 10.1056/nejmoa1911124] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vitamin D deficiency is a common, potentially reversible contributor to morbidity and mortality among critically ill patients. The potential benefits of vitamin D supplementation in acute critical illness require further study. METHODS We conducted a randomized, double-blind, placebo-controlled, phase 3 trial of early vitamin D3 supplementation in critically ill, vitamin D-deficient patients who were at high risk for death. Randomization occurred within 12 hours after the decision to admit the patient to an intensive care unit. Eligible patients received a single enteral dose of 540,000 IU of vitamin D3 or matched placebo. The primary end point was 90-day all-cause, all-location mortality. RESULTS A total of 1360 patients were found to be vitamin D-deficient during point-of-care screening and underwent randomization. Of these patients, 1078 had baseline vitamin D deficiency (25-hydroxyvitamin D level, <20 ng per milliliter [50 nmol per liter]) confirmed by subsequent testing and were included in the primary analysis population. The mean day 3 level of 25-hydroxyvitamin D was 46.9±23.2 ng per milliliter (117±58 nmol per liter) in the vitamin D group and 11.4±5.6 ng per milliliter (28±14 nmol per liter) in the placebo group (difference, 35.5 ng per milliliter; 95% confidence interval [CI], 31.5 to 39.6). The 90-day mortality was 23.5% in the vitamin D group (125 of 531 patients) and 20.6% in the placebo group (109 of 528 patients) (difference, 2.9 percentage points; 95% CI, -2.1 to 7.9; P = 0.26). There were no clinically important differences between the groups with respect to secondary clinical, physiological, or safety end points. The severity of vitamin D deficiency at baseline did not affect the association between the treatment assignment and mortality. CONCLUSIONS Early administration of high-dose enteral vitamin D3 did not provide an advantage over placebo with respect to 90-day mortality or other, nonfatal outcomes among critically ill, vitamin D-deficient patients. (Funded by the National Heart, Lung, and Blood Institute; VIOLET ClinicalTrials.gov number, NCT03096314.).
Collapse
Affiliation(s)
- Adit A Ginde
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Roy G Brower
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Jeffrey M Caterino
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Lani Finck
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Valerie M Banner-Goodspeed
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Colin K Grissom
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Douglas Hayden
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Catherine L Hough
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Robert C Hyzy
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Akram Khan
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Joseph E Levitt
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Pauline K Park
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Nancy Ringwood
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Emanuel P Rivers
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Wesley H Self
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Nathan I Shapiro
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - B Taylor Thompson
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Donald M Yealy
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| | - Daniel Talmor
- The affiliations of the members of the writing committee are as follows: the Department of Emergency Medicine, University of Colorado School of Medicine, Aurora (A.A.G., L.F.); the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore (R.G.B.); the Department of Emergency Medicine, Ohio State University, Columbus (J.M.C.); the Departments of Anesthesia, Critical Care, and Pain Medicine (V.M.B.-G., D.T.) and Emergency Medicine (N.I.S.), Beth Israel Deaconess Medical Center, and the Biostatistics Center (D.H.) and the Department of Medicine (N.R., B.T.T.), Massachusetts General Hospital - all in Boston; the Department of Medicine, Intermountain Medical Center and the University of Utah, Salt Lake City (C.K.G.); the Department of Medicine, University of Washington, Seattle (C.L.H.); the Departments of Medicine (R.C.H.) and Surgery (P.K.P.), University of Michigan, Ann Arbor; the Department of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit (E.P.R.); the Department of Medicine, Oregon Health and Science University, Portland (A.K.); the Department of Medicine, Stanford University, Palo Alto, CA (J.E.L.); the Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville (W.H.S.); and the Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh (D.M.Y.)
| |
Collapse
|
22
|
Kämpe A, Enlund-Cerullo M, Valkama S, Holmlund-Suila E, Rosendahl J, Hauta-alus H, Pekkinen M, Andersson S, Mäkitie O. Genetic variation in GC and CYP2R1 affects 25-hydroxyvitamin D concentration and skeletal parameters: A genome-wide association study in 24-month-old Finnish children. PLoS Genet 2019; 15:e1008530. [PMID: 31841498 PMCID: PMC6936875 DOI: 10.1371/journal.pgen.1008530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/30/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is important for normal skeletal homeostasis, especially in growing children. There are no previous genome-wide association (GWA) studies exploring genetic factors that influence vitamin D metabolism in early childhood. We performed a GWA study on serum 25-hydroxyvitamin D (25(OH)D) and response to supplementation in 761 healthy term-born Finnish 24-month-old children, who participated in a randomized clinical trial comparing effects of 10 μg and 30 μg of daily vitamin D supplementation from age 2 weeks to 24 months. Using the Illumina Infinium Global Screening Array, which has been optimized for imputation, a total of 686085 markers were genotyped across the genome. Serum 25(OH)D was measured at the end of the intervention at 24 months of age. Skeletal parameters reflecting bone strength were determined at the distal tibia at 24 months using peripheral quantitative computed tomography (pQCT) (data available for 648 children). For 25(OH)D, two strong GWA signals were identified, localizing to GC (Vitamin D binding protein) and CYP2R1 (Vitamin D 25-hydroxylase) genes. The GWA locus comprising the GC gene also associated with response to supplementation. Further evidence for the importance of these two genes was obtained by comparing association signals to gene expression data from the Genotype-Tissue Expression project and performing colocalization analyses. Through the identification of haplotypes associated with low or high 25(OH)D concentrations we used a Mendelian randomization approach to show that haplotypes associating with low 25(OH)D were also associated with low pQCT parameters in the 24-month-old children. In this first GWA study on 25(OH)D in this age group we show that already at the age of 24 months genetic variation influences 25(OH)D concentrations and determines response to supplementation, with genome-wide significant associations with GC and CYP2R1. Also, the dual association between haplotypes, 25(OH)D and pQCT parameters gives support for vertical pleiotropy mediated by 25(OH)D.
Collapse
Affiliation(s)
- Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Maria Enlund-Cerullo
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Saara Valkama
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Elisa Holmlund-Suila
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Jenni Rosendahl
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Helena Hauta-alus
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Minna Pekkinen
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Sture Andersson
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
23
|
Hatchell KE, Lu Q, Hebbring SJ, Michos ED, Wood AC, Engelman CD. Ancestry-specific polygenic scores and SNP heritability of 25(OH)D in African- and European-ancestry populations. Hum Genet 2019; 138:1155-1169. [PMID: 31342140 PMCID: PMC7041489 DOI: 10.1007/s00439-019-02049-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023]
Abstract
Vitamin D inadequacy, assessed by 25-hydroxyvitamin D [25(OH)D], affects around 50% of adults in the United States and is associated with numerous adverse health outcomes. Blood 25(OH)D concentrations are influenced by genetic factors that may determine how much vitamin D intake is required to reach optimal 25(OH)D. Despite large genome-wide association studies (GWASs), only a small portion of the genetic factors contributing to differences in 25(OH)D has been discovered. Therefore, knowledge of a fuller set of genetic factors could be useful for risk prediction of 25(OH)D inadequacy, personalized vitamin D supplementation, and prevention of downstream morbidity and mortality. Using PRSice and weights from published African- and European-ancestry GWAS summary statistics, ancestry-specific polygenic scores (PGSs) were created to capture a more complete set of genetic factors in those of European (n = 9569) or African ancestry (n = 2761) from three cohort studies. The PGS for African ancestry was derived using all input SNPs (a p value cutoff of 1.0) and had an R2 of 0.3%; for European ancestry, the optimal PGS used a p value cutoff of 3.5 × 10-4 in the target/tuning dataset and had an R2 of 1.0% in the validation cohort. Those with highest genetic risk had 25(OH)D that was 2.8-3.0 ng/mL lower than those with lowest genetic risk (p = 0.0463-3.2 × 10-13), requiring an additional 467-500 IU of vitamin D intake to maintain equivalent 25(OH)D. PGSs are a powerful predictive tool that could be leveraged for personalized vitamin D supplementation to prevent the negative downstream effects of 25(OH)D inadequacy.
Collapse
Affiliation(s)
- Kathryn E Hatchell
- Department of Population Health Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53706, USA.
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Scott J Hebbring
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Erin D Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53706, USA
| |
Collapse
|
24
|
Rivera-Paredez B, Macías N, Martínez-Aguilar MM, Hidalgo-Bravo A, Flores M, Quezada-Sánchez AD, Denova-Gutiérrez E, Cid M, Martínez-Hernández A, Orozco L, Quiterio M, Flores YN, Salmerón J, Velázquez-Cruz R. Association between Vitamin D Deficiency and Single Nucleotide Polymorphisms in the Vitamin D Receptor and GC Genes and Analysis of Their Distribution in Mexican Postmenopausal Women. Nutrients 2018; 10:E1175. [PMID: 30150596 PMCID: PMC6164456 DOI: 10.3390/nu10091175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies in people with European ancestry suggest that polymorphisms in genes involved in vitamin D (VD) metabolism have an effect on serum concentrations of 25-hydroxyvitamin D. However, nothing is known about these polymorphisms in populations with Amerindian ancestry. Our aim was to evaluate the association between genetic variants on the vitamin D receptor (VDR) and the vitamin D binding protein (GC) genes, involved in the VD pathway, and VD deficiency in 689 unrelated Mexican postmenopausal women. We also described the frequencies of these variants in 355 postmenopausal women from different ethnic groups. Based on our preliminary results of 400 unrelated Mexican postmenopausal women, three single nucleotide polymorphisms (SNPs) were selected for genotyping. The SNPs rs4516035 in VDR and rs2282679 in GC were associated with VD deficiency. Additionally, women who carried three risk alleles had a 3.67 times higher risk of suffering VD deficiency, compared to women with no risk alleles (p = 0.002). The rs4516035-C allele frequency in the Amerindian population was enriched in the South East region of Mexico. In contrast, the highest frequency of the rs2298850-C allele, a proxy for the tag SNP rs2282679, was observed in the South region. Our results indicate that genetic variants in VDR and GC genes are associated with VD deficiency in Mexican postmenopausal women. Moreover, an association was observed for the variants rs3794060 and rs4944957 of the DHCR7/NADSYN1 gene with osteopenia/osteoporosis.
Collapse
Affiliation(s)
- Berenice Rivera-Paredez
- Academic Unit in Epidemiological Research, Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| | - Nayeli Macías
- Nutrition and Health Research Center, National Institute of Public Health (INSP), Cuernavaca, Morelos 62100, Mexico.
| | - Mayeli M Martínez-Aguilar
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico.
| | - Alberto Hidalgo-Bravo
- Department of Genetics, National Institute of Rehabilitation (INR), Mexico City 14389, Mexico.
| | - Mario Flores
- Nutrition and Health Research Center, National Institute of Public Health (INSP), Cuernavaca, Morelos 62100, Mexico.
| | - Amado D Quezada-Sánchez
- Center for Evaluation and Surveys Research, National Institute of Public Health (INSP), Cuernavaca, Morelos 62100, Mexico.
| | - Edgar Denova-Gutiérrez
- Nutrition and Health Research Center, National Institute of Public Health (INSP), Cuernavaca, Morelos 62100, Mexico.
| | - Miguel Cid
- Inmunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico.
| | - Angelica Martínez-Hernández
- Inmunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico.
| | - Lorena Orozco
- Inmunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico.
| | - Manuel Quiterio
- Center for Population Health Research, National Institute of Public Health (INSP), Cuernavaca, Morelos 62100, Mexico.
| | - Yvonne N Flores
- Epidemiology and Health Services Research Unit, Mexican Institute of Social Security, Cuernavaca, Morelos 62000, Mexico.
- UCLA Department of Health Policy and Management, UCLA Kaiser Permanente Center for Health Equity, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA 90001, USA.
| | - Jorge Salmerón
- Academic Unit in Epidemiological Research, Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
- Center for Population Health Research, National Institute of Public Health (INSP), Cuernavaca, Morelos 62100, Mexico.
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico.
| |
Collapse
|
25
|
Jovanovich A, Kendrick J. Personalized Management of Bone and Mineral Disorders and Precision Medicine in End-Stage Kidney Disease. Semin Nephrol 2018; 38:397-409. [PMID: 30082059 PMCID: PMC6615060 DOI: 10.1016/j.semnephrol.2018.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic kidney disease mineral bone disorder (CKD-MBD) is common in end-stage renal disease and is associated with an increased risk of cardiovascular morbidity and mortality. Mainstays of treatment include decreasing serum phosphorus level toward the normal range with dietary interventions and phosphate binders and treating increased parathyroid hormone levels with activated vitamin D and/or calcimimetics. There is significant variation in serum levels of mineral metabolism markers, intestinal absorption of phosphorus, and therapeutic response among individual patients and subgroups of patients with end-stage renal disease. This variation may be partly explained by polymorphisms in genes associated with calcium and phosphorus homeostasis such as the calcium-sensing receptor gene, the vitamin D-binding receptor gene, and genes associated with vascular calcification. In this review, we discuss how personalized medicine may be used for the management of CKD-MBD and how it ultimately may lead to improved clinical outcomes. Although genetic variants may seem attractive targets to tailor CKD-MBD therapy, complete understanding of how these polymorphisms function and their clinical utility and applicability to personalized medicine need to be determined.
Collapse
MESH Headings
- Bone Diseases, Metabolic/etiology
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/therapy
- Calcium/metabolism
- Cardiovascular Diseases
- Humans
- Hyperparathyroidism, Secondary/etiology
- Hyperparathyroidism, Secondary/metabolism
- Hyperparathyroidism, Secondary/therapy
- Intestinal Absorption
- Kidney Failure, Chronic/complications
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/therapy
- Parathyroid Hormone/metabolism
- Phosphorus/metabolism
- Polymorphism, Genetic
- Precision Medicine
- Receptors, Calcium-Sensing/genetics
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vitamin D/metabolism
- Vitamin D-Binding Protein/genetics
Collapse
Affiliation(s)
- Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO.; VA Eastern Colorado Healthcare System, Denver, CO
| | - Jessica Kendrick
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO..
| |
Collapse
|
26
|
Tangpricha V. Vitamin D Supplementation In Obese Africian American Children. J Clin Transl Endocrinol 2018; 12:48-49. [PMID: 29892567 PMCID: PMC5992317 DOI: 10.1016/j.jcte.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|