1
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
2
|
Tilton M, Liao J, Kim C, Shaygani H, Potes MA, Cordova DJ, Kirkland JL, Miller KM. Tracing Cellular Senescence in Bone: Time-Dependent Changes in Osteocyte Cytoskeleton Mechanics and Morphology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408517. [PMID: 40026102 PMCID: PMC11985287 DOI: 10.1002/smll.202408517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Indexed: 03/04/2025]
Abstract
Aging-related bone loss significantly impacts the growing elderly population globally, leading to debilitating conditions such as osteoporosis. Senescent osteocytes play a crucial role in the aging process of bone. This longitudinal study examines the impact of continuous local and paracrine exposure to senescence-associated secretory phenotype (SASP) factors on biophysical and biomolecular markers in osteocytes. Significant cytoskeletal stiffening in irradiated (IR) osteocytes are found, accompanied by expansion of F-actin areas and a decline in dendritic integrity. These changes, correlating with alterations in pro-inflammatory cytokine levels and osteocyte-specific gene expression, support the reliability of biophysical markers for identifying senescent osteocytes. Notably, local accumulation of SASP factors have a more pronounced impact on osteocyte biophysical properties than paracrine effects, suggesting that the interplay between local and paracrine exposure can substantially influence cellular aging. This study underscores the importance of osteocyte mechanical and morphological properties as biophysical markers of senescence, highlighting their time dependence and differential effects of local and paracrine SASP exposure. Collectively, the investigation into biophysical senescence markers offers unique and reliable functional hallmarks for the non-invasive identification of senescent osteocytes, providing insights that can inform therapeutic strategies to mitigate aging-related bone loss.
Collapse
Affiliation(s)
- Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chanul Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hossein Shaygani
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Domenic J. Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - James L. Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kyle M. Miller
- Department of Radiation Oncology Emory University School of Medicine Atlanta, GA 30307, USA
| |
Collapse
|
3
|
Lee Y, Lee HJ, Kim KJ, Shin HB, Shin YA, Jin H, Ham JR, Choi SY, Lee MJ, Lee MK, Son YJ. "Betaone" barley water extract suppresses ovariectomy-induced osteoporosis in vivo and RANKL-induced osteoclast differentiation in vitro. PLoS One 2025; 20:e0317894. [PMID: 39982961 PMCID: PMC11844866 DOI: 10.1371/journal.pone.0317894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/05/2025] [Indexed: 02/23/2025] Open
Abstract
Betaone is a variety of barley developed by the Korea Rural Development Administration. This study investigated the anti-osteoporosis effects of Betaone barley water extract (B1W) on ovariectomy (OVX)-induced bone loss in mice. To elucidate its mechanism, the effect of B1W on osteoclasts was assessed by measuring the protein expression of nuclear factor-activated T cells c1 (NFATc1), the expression of genes involved in osteoclast differentiation, and bone pit assays. B1W (300 mg/kg/day) significantly increased bone mineral density and bone volume fraction, but decreased trabecular separation compared to the OVX group. B1W also showed a trend towards decreasing serum C-telopeptide of collagen type 1 levels in OVX mice. Additionally, B1W reduced the expression of NFATc1 and downregulated the mRNA expression levels of various marker genes such as c-Fos, tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated Ig-like receptor (OSCAR). B1W reduced the osteoclast activity in the receptor activator of nuclear factor-κB ligand (RANKL)-treated osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway. Based on the results, B1W can be considered a useful candidate for a therapeutic agent for treating conditions of bone loss and could also be used as an ingredient in health supplements.
Collapse
Affiliation(s)
- Yongjin Lee
- Department of Nutritional Science & Food Management, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Hyun-Jin Lee
- The DABOM Inc, Seodaemun-gu, Seoul, Republic of Korea
| | - Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Han-Byeol Shin
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Yoon-A Shin
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Holim Jin
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Ju Ri Ham
- Mokpo Marin Food-Industry Research Center, Mokpo-si, Jeollanam-do, Republic of Korea
| | - Soo-Young Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Mi-Ja Lee
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration (RDA), Wanju-si, Jeollabuk-do, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| |
Collapse
|
4
|
Tilton M, Liao J, Kim C, Shaygani H, Potes MA, Cordova D, Kirkland JL, Miller KM. Tracing Cellular Senescence in Bone: Time-Dependent Changes in Osteocyte Cytoskeleton Mechanics and Morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.28.615585. [PMID: 39896626 PMCID: PMC11785097 DOI: 10.1101/2024.09.28.615585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Aging-related bone loss significantly impacts the growing elderly population globally, leading to debilitating conditions such as osteoporosis. Senescent osteocytes play a crucial role in the aging process of bone. This longitudinal study examines the impact of continuous local and paracrine exposure to senescence-associated secretory phenotype (SASP) factors on senescence-associated biophysical and biomolecular markers in osteocytes. We found significant cytoskeletal stiffening in irradiated osteocytes, accompanied by expansion of F-actin areas and a decline in dendritic integrity. These changes, correlating with alterations in pro-inflammatory cytokine levels and osteocyte-specific gene expression, support the reliability of biophysical markers for identifying senescent osteocytes. Notably, local accumulation of SASP factors had a more pronounced impact on osteocyte properties than paracrine effects, suggesting that the interplay between local and paracrine exposure could substantially influence cellular aging. This study underscores the importance of osteocyte mechanical and morphological properties as biophysical markers of senescence, highlighting their time-dependence and differential effects of local and paracrine SASP exposure. Collectively, our investigation into biophysical senescence markers offer unique and reliable functional hallmarks for non-invasive identification of senescent osteocytes, providing insights that could inform therapeutic strategies to mitigate aging-related bone loss.
Collapse
Affiliation(s)
- Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chanul Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hossein Shaygani
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Domenic Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - James L. Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Hald JD, Langdahl B, Folkestad L, Wekre LL, Johnson R, Nagamani SCS, Raggio C, Ralston SH, Semler O, Tosi L, Orwoll E. Osteogenesis Imperfecta: Skeletal and Non-skeletal Challenges in Adulthood. Calcif Tissue Int 2024; 115:863-872. [PMID: 38836890 PMCID: PMC11606788 DOI: 10.1007/s00223-024-01236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a Mendelian connective tissue disorder associated with increased bone fragility and other clinical manifestations most commonly due to abnormalities in production, structure, or post-translational modification of type I collagen. Until recently, most research in OI has focused on the pediatric population and much less attention has been directed at the effects of OI in the adult population. This is a narrative review of the literature focusing on the skeletal as well as non-skeletal manifestations in adults with OI that may affect the aging individual. We found evidence to suggest that OI is a systemic disease which involves not only the skeleton, but also the cardiopulmonary and gastrointestinal system, soft tissues, tendons, muscle, and joints, hearing, eyesight, dental health, and women's health in OI and potentially adds negative affect to health-related quality of life. We aim to guide clinicians as well as draw attention to obvious knowledge gaps and the need for further research in adult OI.
Collapse
Affiliation(s)
- Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Centre for Rare Diseases, Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Folkestad
- Bone and Mineral Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lena Lande Wekre
- TRS National Resource Center for Rare Disorders, Sunnaas Rehabilitation Hospital, Oslo, Norway
| | - Riley Johnson
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - Cathleen Raggio
- Department of Orthopedics, Hospital for Special Surgery, New York, NY, USA
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, EH 2XU, UK
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Laura Tosi
- Division of Orthopaedics & Sports Medicine, Children's National Hospital, Washington, DC, 20010, USA
| | - Eric Orwoll
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, USA
| |
Collapse
|
6
|
Kieronska-Rudek A, Ascencao K, Chlopicki S, Szabo C. Increased hydrogen sulfide turnover serves a cytoprotective role during the development of replicative senescence. Biochem Pharmacol 2024; 230:116595. [PMID: 39454733 DOI: 10.1016/j.bcp.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The mammalian gasotransmitter hydrogen sulfide (H2S) is produced by enzymes such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST). Prior studies suggest that H2S may have cytoprotective and anti-aging effects. This project explores the regulation and role of endogenous H2S in a murine model of replicative senescence. H2S and polysulfide levels in RAW 264.7 murine macrophages (control cells: passage 5-10; senescent cells: passage 30-40) were measured using fluorescent probes. The expression of H2S-related enzymes and the activity of senescence marker beta-galactosidase (SA-β-Gal) were also analyzed. CBS, CSE, and 3-MST were inhibited using selective pharmacological inhibitors. Senescence led to a moderate upregulation of CBS and in a significant increase in CSE and 3-MST. H2S degradation enzymes were also elevated in senescence. Inhibition of H2S-producing enzymes reduced H2S levels but increased polysulfides. Inhibition of H2S production during senescence suppressed cell proliferation, and elevated SA-β-Gal and p21 levels. Comparing young and old mice spleens revealed downregulation of CBS and ETHE1 and upregulation of rhodanese and SUOX in older mice. The results demonstrate that increased reactive sulfur turnover occurs in senescent macrophages and that reactive sulfur species support cell proliferation and regulate cellular senescence.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Cracow, Poland
| | - Kelly Ascencao
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Cracow, Poland; Jagiellonian University Medical College, Chair of Pharmacology, Faculty of Medicine, Cracow, Poland
| | - Csaba Szabo
- Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
7
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Huang Y, Wang S, Hu D, Zhang L, Shi S. ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the m 6A modification of VDAC3. Sci Rep 2024; 14:23461. [PMID: 39379688 PMCID: PMC11461877 DOI: 10.1038/s41598-024-75033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Osteoporosis, a common bone disease in older individuals, involves the progression influenced by N6-methyladenosine (m6A) modification. This study aimed to elucidate the effects of VDAC3 m6A modification on human bone mesenchymal stromal cell (BMSC) senescence and osteogenic differentiation. BMSCs were treated with etoposide to induce senescence. Senescence was assessed by β-galactosidase staining and quantitative real-time PCR (qPCR), and osteogenic differentiation was evaluated using Western blot, alkaline phosphatase, and alizarin red S staining. VDAC3 and ALKBH5 expression were quantified by qPCR, and their interaction was assessed by RNA immunoprecipitation (RIP) and luciferase reporter assay. m6A methylation was analyzed using the Me-RIP assay. VDAC3 expression was significantly decreased in etoposide-treated BMSCs (1.00 ± 0.13 vs. 0.26 ± 0.06). VDAC3 overexpression reduced etoposide-induced senescence and promoted osteogenic differentiation. ALKBH5 overexpression inhibited VDAC3 m6A modification (1.00 ± 0.095 vs. 0.233 ± 0.177) and its stability. ALKBH5 knockdown decreased etoposide-induced senescence and promoted osteogenic differentiation, effects that were reversed by VDAC3 knockdown. YTHDF1 was identified as the m6A methylation reader, and its overexpression inhibited VDAC3 stability. We demonstrated that ALKBH5 inhibited osteogenic differentiation of etoposide-induced senescent cells through the inhibition of VDAC3 m6A modification, and YTHDF1 acted as the m6A methylation reader. These findings provide a novel theoretical basis for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yansheng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Sibo Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Dong Hu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
9
|
Liu XW, Xu HW, Yi YY, Zhang SB, Chang SJ, Pan W, Wang SJ. Inhibition of Mettl3 ameliorates osteoblastic senescence by mitigating m6A modifications on Slc1a5 via Igf2bp2-dependent mechanisms. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167273. [PMID: 38844111 DOI: 10.1016/j.bbadis.2024.167273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Age-related osteoporosis is characterized by a marked decrease in the number of osteoblasts, which has been partly attributed to the senescence of cells of the osteoblastic lineage. Epigenetic studies have provided new insights into the mechanisms of current osteoporosis treatments and bone repair pathophysiology. N6-methyladenosine (m6A) is a novel transcript modification that plays a major role in cellular senescence and is essential for skeletal development and internal environmental stability. Bioinformatics analysis revealed that the expression of the m6A reading protein Igf2bp2 was significantly higher in osteoporosis patients. However, the role of Igf2bp2 in osteoblast senescence has not been elucidated. In this study, we found that Igf2bp2 levels are increased in ageing osteoblasts induced by multiple repetition and H2O2. Increasing Igf2bp2 expression promotes osteoblast senescence by increasing the stability of Slc1a5 mRNA and inhibiting cell cycle progression. Additionally, Mettl3 was identified as Slc1a5 m6A-methylated protein with increased m6A modification. The knockdown of Mettl3 in osteoblasts inhibits the reduction of senescence, whereas the overexpression of Mettl3 promotes the senescence of osteoblasts. We found that administering Cpd-564, a specific inhibitor of Mettl3, induced increased bone mass and decreased bone marrow fat accumulation in aged rats. Notably, in an OVX rat model, Igf2bp2 small interfering RNA delivery also induced an increase in bone mass and decreased fat accumulation in the bone marrow. In conclusion, our study demonstrated that the Mettl3/Igf2bp2-Slc1a5 axis plays a key role in the promotion of osteoblast senescence and age-related bone loss.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Yang Yi
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shu-Bao Zhang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sheng-Jie Chang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wei Pan
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv Biol (Weinh) 2024; 8:e2400079. [PMID: 38935557 DOI: 10.1002/adbi.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Population aging has increased the global prevalence of aging-related diseases, including cancer, sarcopenia, neurological disease, arthritis, and heart disease. Understanding aging, a fundamental biological process, has led to breakthroughs in several fields. Cellular senescence, evinced by flattened cell bodies, vacuole formation, and cytoplasmic granules, ubiquitously plays crucial roles in tissue remodeling, embryogenesis, and wound repair as well as in cancer therapy and aging. The lack of universal biomarkers for detecting and quantifying senescent cells, in vitro and in vivo, constitutes a major limitation. The applications and limitations of major senescence biomarkers, including senescence-associated β-galactosidase staining, telomere shortening, cell-cycle arrest, DNA methylation, and senescence-associated secreted phenotypes are discussed. Furthermore, explore senotherapeutic approaches for aging-associated diseases and cancer. In addition to the conventional biomarkers, this review highlighted the in vitro, in vivo, and disease models used for aging studies. Further, technologies from the current decade including multi-omics and computational methods used in the fields of senescence and aging are also discussed in this review. Understanding aging-associated biological processes by using cellular senescence biomarkers can enable therapeutic innovation and interventions to improve the quality of life of older adults.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon, 34054, Republic of Korea
| |
Collapse
|
12
|
Wanionok NE, Morel GR, Fernández JM. Osteoporosis and Alzheimer´s disease (or Alzheimer´s disease and Osteoporosis). Ageing Res Rev 2024; 99:102408. [PMID: 38969142 DOI: 10.1016/j.arr.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan M Fernández
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina.
| |
Collapse
|
13
|
Alexander M, Cho E, Gliozheni E, Salem Y, Cheung J, Ichii H. Pathology of Diabetes-Induced Immune Dysfunction. Int J Mol Sci 2024; 25:7105. [PMID: 39000211 PMCID: PMC11241249 DOI: 10.3390/ijms25137105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Diabetes is associated with numerous comorbidities, one of which is increased vulnerability to infections. This review will focus on how diabetes mellitus (DM) affects the immune system and its various components, leading to the impaired proliferation of immune cells and the induction of senescence. We will explore how the pathology of diabetes-induced immune dysfunction may have similarities to the pathways of "inflammaging", a persistent low-grade inflammation common in the elderly. Inflammaging may increase the likelihood of conditions such as rheumatoid arthritis (RA) and periodontitis at a younger age. Diabetes affects bone marrow composition and cellular senescence, and in combination with advanced age also affects lymphopoiesis by increasing myeloid differentiation and reducing lymphoid differentiation. Consequently, this leads to a reduced immune system response in both the innate and adaptive phases, resulting in higher infection rates, reduced vaccine response, and increased immune cells' senescence in diabetics. We will also explore how some diabetes drugs induce immune senescence despite their benefits on glycemic control.
Collapse
Affiliation(s)
- Michael Alexander
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Eric Cho
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Eiger Gliozheni
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Yusuf Salem
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Joshua Cheung
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Hirohito Ichii
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| |
Collapse
|
14
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Saito Y, Yamamoto S, Chikenji TS. Role of cellular senescence in inflammation and regeneration. Inflamm Regen 2024; 44:28. [PMID: 38831382 PMCID: PMC11145896 DOI: 10.1186/s41232-024-00342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Cellular senescence is the state in which cells undergo irreversible cell cycle arrest and acquire diverse phenotypes. It has been linked to chronic inflammation and fibrosis in various organs as well as to individual aging. Therefore, eliminating senescent cells has emerged as a potential target for extending healthy lifespans. Cellular senescence plays a beneficial role in many biological processes, including embryonic development, wound healing, and tissue regeneration, which is mediated by the activation of stem cells. Therefore, a comprehensive understanding of cellular senescence, including both its beneficial and detrimental effects, is critical for developing safe and effective treatment strategies to target senescent cells. This review provides an overview of the biological and pathological roles of cellular senescence, with a particular focus on its beneficial or detrimental functions among its various roles.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takako S Chikenji
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
16
|
Sullivan SO', Al Hageh C, Henschel A, Chacar S, Abchee A, Zalloua P, Nader M. HDL levels modulate the impact of type 2 diabetes susceptibility alleles in older adults. Lipids Health Dis 2024; 23:56. [PMID: 38389069 PMCID: PMC10882764 DOI: 10.1186/s12944-024-02039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Type 2 Diabetes (T2D) is influenced by genetic, environmental, and ageing factors. Ageing pathways exacerbate metabolic diseases. This study aimed to examine both clinical and genetic factors of T2D in older adults. METHODS A total of 2,909 genotyped patients were enrolled in this study. Genome Wide Association Study was conducted, comparing T2D patients to non-diabetic older adults aged ≥ 60, ≥ 65, or ≥ 70 years, respectively. Binomial logistic regressions were applied to examine the association between T2D and various risk factors. Stepwise logistic regression was conducted to explore the impact of low HDL (HDL < 40 mg/dl) on the relationship between the genetic variants and T2D. A further validation step using data from the UK Biobank with 53,779 subjects was performed. RESULTS The association of T2D with both low HDL and family history of T2D increased with the age of control groups. T2D susceptibility variants (rs7756992, rs4712523 and rs10946403) were associated with T2D, more significantly with increased age of the control group. These variants had stronger effects on T2D risk when combined with low HDL cholesterol levels, especially in older control groups. CONCLUSIONS The findings highlight a critical role of age, genetic predisposition, and HDL levels in T2D risk. The findings suggest that individuals over 70 years who have high HDL levels without the T2D susceptibility alleles may be at the lowest risk of developing T2D. These insights can inform tailored preventive strategies for older adults, enhancing personalized T2D risk assessments and interventions.
Collapse
Affiliation(s)
- Siobhán O ' Sullivan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Department of Computer Science, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Stephanie Chacar
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Antoine Abchee
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Pierre Zalloua
- Faculty of Medicine, University of Balamand, Balamand, Lebanon.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Moni Nader
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
17
|
Yao C, Sun J, Luo W, Chen H, Chen T, Chen C, Zhang B, Zhang Y. Down-expression of miR-494-3p in senescent osteocyte-derived exosomes inhibits osteogenesis and accelerates age-related bone loss via PTEN/PI3K/AKT pathway. Bone Joint Res 2024; 13:52-65. [PMID: 38295830 PMCID: PMC10830172 DOI: 10.1302/2046-3758.132.bjr-2023-0146.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Aims To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism. Methods In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed. Results The CM and exosomes collected from senescent MLO-Y4 cells inhibited osteogenic differentiation of MC3T3-E1 cells. RNA sequencing detected significantly lower expression of miR-494-3p in senescent MLO-Y4 cell-derived exosomes compared with normal exosomes. The upregulation of exosomal miR-494-3p by miRNA mimics attenuated the effects of senescent MLO-Y4 cell-derived exosomes on osteogenic differentiation. Luciferase reporter assay demonstrated that miR-494-3p targeted phosphatase and tensin homolog (PTEN), which is a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overexpression of PTEN or inhibition of the PI3K/AKT pathway blocked the functions of exosomal miR-494-3p. In SAMP6 mice, senescent MLO-Y4 cell-derived exosomes accelerated bone loss, which was rescued by upregulation of exosomal miR-494-3p. Conclusion Reduced expression of miR-494-3p in senescent osteocyte-derived exosomes inhibits osteogenic differentiation and accelerates age-related bone loss via PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chen Yao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Wanxin Luo
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Tianhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Cao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Bo Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yafeng Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
18
|
Gao P, Pan X, Wang S, Guo S, Dong Z, Wang Z, Liang X, Chen Y, Fang F, Yang L, Huang J, Zhang C, Li C, Luo Y, Peng S, Xu F. Identification of the transcriptome signatures and immune-inflammatory responses in postmenopausal osteoporosis. Heliyon 2024; 10:e23675. [PMID: 38187229 PMCID: PMC10770509 DOI: 10.1016/j.heliyon.2023.e23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 11/25/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Postmenopausal osteoporosis is the most common type of osteoporosis in women. To date, little is known about their transcriptome signatures, although biomarkers from peripheral blood mononuclear cells are attractive for postmenopausal osteoporosis diagnoses. Here, we performed bulk RNA sequencing of 206 samples (124 postmenopausal osteoporosis and 82 normal samples) and described the clinical phenotypic characteristics of postmenopausal women. We then highlighted the gene set enrichment analyses between the extreme T-score group and the heathy control group, revealing that some immune-inflammatory responses were enhanced in postmenopausal osteoporosis, with representative pathways including the mitogen-activated protein kinase (NES = 1.6, FDR <0.11) pathway and B_CELL_RECEPTOR (NES = 1.69, FDR <0.15) pathway. Finally, we developed a combined risk prediction model based on lasso-logistic regression to predict postmenopausal osteoporosis, which combined eleven genes (PTGS2, CXCL16, NECAP1, RPS23, SSR3, CD74, IL4R, BTBD2, PIGS, LILRA2, MAP3K11) and three pieces of clinical information (age, procollagen I N-terminal propeptide, β isomer of C-terminal telopeptide of type I) and provided the best prediction ability (AUC = 0.97). Taken together, this study filled a gap in the large-scale transcriptome signature profiles and revealed the close relationship between immune-inflammatory responses and postmenopausal osteoporosis, providing a unique perspective for understanding the occurrence and development of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Pan Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Cell, Shenzhen 518083, China
- BGI Research, Shenzhen 518083, China
| | - Xiaoguang Pan
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Shang Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Sijia Guo
- BGI Research, Shenzhen 518083, China
| | | | - Zhefeng Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xue Liang
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Yan Chen
- BGI Research, Shenzhen 518083, China
| | - Fang Fang
- BGI Research, Shenzhen 518083, China
| | - Ling Yang
- BGI Research, Shenzhen 518083, China
| | - Jinrong Huang
- BGI Research, Shenzhen 518083, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | | | - Conghui Li
- BGI Research, Shenzhen 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Yonglun Luo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Shenzhen 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Fengping Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Cell, Shenzhen 518083, China
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
19
|
Adejuyigbe B, Kallini J, Chiou D, Kallini JR. Osteoporosis: Molecular Pathology, Diagnostics, and Therapeutics. Int J Mol Sci 2023; 24:14583. [PMID: 37834025 PMCID: PMC10572718 DOI: 10.3390/ijms241914583] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoporosis is a major public health concern affecting millions of people worldwide and resulting in significant economic costs. The condition is characterized by changes in bone homeostasis, which lead to reduced bone mass, impaired bone quality, and an increased risk of fractures. The pathophysiology of osteoporosis is complex and multifactorial, involving imbalances in hormones, cytokines, and growth factors. Understanding the cellular and molecular mechanisms underlying osteoporosis is essential for appropriate diagnosis and management of the condition. This paper provides a comprehensive review of the normal cellular and molecular mechanisms of bone homeostasis, followed by an in-depth discussion of the proposed pathophysiology of osteoporosis through the osteoimmunological, gut microbiome, and cellular senescence models. Furthermore, the diagnostic tools used to assess osteoporosis, including bone mineral density measurements, biochemical markers of bone turnover, and diagnostic imaging modalities, are also discussed. Finally, both the current pharmacological and non-pharmacological treatment algorithms and management options for osteoporosis, including an exploration of the management of osteoporotic fragility fractures, are highlighted. This review reveals the need for further research to fully elucidate the molecular mechanisms underlying the condition and to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Babapelumi Adejuyigbe
- David Geffen School of Medicine, The University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA;
| | - Julie Kallini
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA;
| | - Daniel Chiou
- Department of Orthopedic Surgery, The University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA;
| | - Jennifer R. Kallini
- Department of Orthopedic Surgery, The University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA;
| |
Collapse
|
20
|
Cedeno-Veloz B, Martínez-Velilla N. [Importance of Biomarkers in Osteoporosis: Advances in the Geroscience of the Older Adult]. Rev Esp Geriatr Gerontol 2023; 58:101390. [PMID: 37516544 DOI: 10.1016/j.regg.2023.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Affiliation(s)
- Bernardo Cedeno-Veloz
- Geriatric Department, Hospital Universitario de Navarra (HUN), Pamplona 31008, Navarra, Spain; Navarrabiomed, IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Navarra, Spain.
| | - Nicolás Martínez-Velilla
- Geriatric Department, Hospital Universitario de Navarra (HUN), Pamplona 31008, Navarra, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1135181. [PMID: 37214253 PMCID: PMC10196240 DOI: 10.3389/fendo.2023.1135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
23
|
Wang H, Dai GC, Li YJ, Chen MH, Lu PP, Zhang YW, -Zhang M, Cao MM, Rui YF. Targeting Senescent Tendon Stem/Progenitor Cells to Prevent or Treat Age-Related Tendon Disorders. Stem Cell Rev Rep 2023; 19:680-693. [PMID: 36520409 DOI: 10.1007/s12015-022-10488-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Age-related tendon disorder, a primary motor system disease, is characterized by biological changes in the tendon tissue due to senescence and seriously affects the quality of life of the elderly. The pathogenesis of this disease is not well-understood. Tendon stem/progenitor cells (TSPCs) exhibit multi-differentiation capacity. These cells are important cellular components of the tendon because of their roles in tendon tissue homeostasis, remodeling, and repair. Previous studies revealed alterations in the biological characteristics and tenogenic differentiation potential of TSPCs in senescent tendon tissue, in turn contributing to insufficient differentiation of TSPCs into tenocytes. Poor tendon repair can result in age-related tendinopathies. Therefore, targeting of senescent TSPCs may restore the tenogenic differentiation potential of these cells and achieve homeostasis of the tendon tissue to prevent or treat age-related tendinopathy. In this review, we summarize the biological characteristics of TSPCs and histopathological changes in age-related tendinopathy, as well as the potential mechanisms through which TSPCs contribute to senescence. This information may promote further exploration of innovative treatment strategies to rescue TSPCs from senescence.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Guang-Chun Dai
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Ying-Juan Li
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Min-Hao Chen
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Pan-Pan Lu
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Yuan-Wei Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Ming -Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Mu-Min Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.
| |
Collapse
|
24
|
Research progress on the role of extracellular vesicles derived from aging cells in osteoporosis. Biosci Rep 2023; 43:232531. [PMID: 36734979 PMCID: PMC9939407 DOI: 10.1042/bsr20221775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023] Open
Abstract
The occurrence and development of many diseases are highly associated with the aging of the body. Among them, osteoporosis (OP) is a common age-related disease that tends to occur in the elderly population and is highly related to the aging factors in the body. In the process of aging transmission, the senescence-related secretory phenotype (SASP) can convey the information about aging through the paracrine pathway and endocrine mechanism through the extracellular vesicles (EVs) connected to SASP. EVs can be used as a way of conduction to join the connection between micro-environmental aging and age-related illnesses. EVs are double-layer membranous vesicles separated or secreted from the cell membrane, which mainly include microvesicles (MVs) and exosomes. Vesicular bodies secreted by this exocrine form carry a variety of cell-derived related substances (including a variety of proteins, lipids, DNA, mRNA, miRNAs, etc). These substances are mainly concentrated in human body fluids, especially can be transported to all parts of the body with the blood circulation system, and participate in the interactions between cells. Osteoporosis is closely associated with aging and aging cells, suggesting EVs were active in this pathological process. In this article, the basic mechanisms of aging cells in the occurrence and progression of osteoporosis through EVs will be discussed, to explore the connection between aging and osteoporosis, thereby providing a new perspective on the occurrence and development as well as prevention and treatment of osteoporosis.
Collapse
|
25
|
Abstract
Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- IIIrd Medical Clinic, "Saint Spiridon" Clinic Emergency County Hospital, Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Rezus
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| |
Collapse
|
26
|
Yano C, Yokomoto-Umakoshi M, Fujita M, Umakoshi H, Yano S, Iwahashi N, Katsuhara S, Kaneko H, Ogata M, Fukumoto T, Terada E, Matsuda Y, Sakamoto R, Ogawa Y. Coexistence of bone and vascular disturbances in patients with endogenous glucocorticoid excess. Bone Rep 2022; 17:101610. [PMID: 36035657 PMCID: PMC9398912 DOI: 10.1016/j.bonr.2022.101610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 10/28/2022] Open
Abstract
Purpose Bone and vascular diseases are considered to share pathogenic mechanisms. Excess glucocorticoids, key regulators of cardiovascular and metabolic homeostasis, may promote both diseases simultaneously. We used endogenous Cushing's syndrome (CS) to investigate whether glucocorticoid excess underlies coexisting bone and vascular diseases. Methods We included 194 patients with adrenal tumors (ATs): autonomous cortisol secretion (ACS, n = 97) and non-functional AT (n = 97). ACS was further classified into overt CS (n = 17) and subclinical CS (SCS, n = 80). Arterial stiffness was defined as a brachial-ankle pulse wave velocity (baPWV) ≥ 1800 cm/s. Results Patients with ACS had higher coexistence rates of vertebral fracture and arterial stiffness (23 % vs. 2 %; p < 0.001) and vertebral fracture and abdominal aortic calcification (22 % vs. 1 %; p < 0.001) than those with non-functional AT. In patients with ACS, baPWV was negatively correlated with trabecular bone score (TBS, r = -0.33; p = 0.002), but not with bone mineral density, and vertebral fracture was associated with arterial stiffness in the logistic regression analysis. In the multivariate analysis of variance, the degree of cortisol excess (defined as CS, SCS, and non-functional AT) determined the correlation between TBS and baPWV (partial η2 = 0.07; p < 0.001). In the analysis of covariance, patients with coexisting vertebral fracture and arterial stiffness had higher levels of serum cortisol after the 1-mg dexamethasone suppression test than those without. Conclusion In endogenous glucocorticoid excess, bone and vascular diseases frequently coexisted, and deteriorated bone quality, not bone loss, was related to arterial stiffness. Thus, glucocorticoid excess may perturb the bone-vascular axis.
Collapse
Affiliation(s)
- Chieko Yano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiichi Yano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Katsuhara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Ogata
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tazuru Fukumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Terada
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yayoi Matsuda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
28
|
Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD, Zhu Y. Cellular senescence: a key therapeutic target in aging and diseases. J Clin Invest 2022; 132:e158450. [PMID: 35912854 PMCID: PMC9337830 DOI: 10.1172/jci158450] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a hallmark of aging defined by stable exit from the cell cycle in response to cellular damage and stress. Senescent cells (SnCs) can develop a characteristic pathogenic senescence-associated secretory phenotype (SASP) that drives secondary senescence and disrupts tissue homeostasis, resulting in loss of tissue repair and regeneration. The use of transgenic mouse models in which SnCs can be genetically ablated has established a key role for SnCs in driving aging and age-related disease. Importantly, senotherapeutics have been developed to pharmacologically eliminate SnCs, termed senolytics, or suppress the SASP and other markers of senescence, termed senomorphics. Based on extensive preclinical studies as well as small clinical trials demonstrating the benefits of senotherapeutics, multiple clinical trials are under way. This Review discusses the role of SnCs in aging and age-related diseases, strategies to target SnCs, approaches to discover and develop senotherapeutics, and preclinical and clinical advances of senolytics.
Collapse
Affiliation(s)
- Lei Zhang
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Louise E. Pitcher
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, and
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
29
|
Chen B, Zhu R, Hu H, Zhan M, Wang T, Huang F, Wei F, Chai Y, Ling Z, Zou X. Elimination of Senescent Cells by Senolytics Facilitates Bony Endplate Microvessel Formation and Mitigates Disc Degeneration in Aged Mice. Front Cell Dev Biol 2022; 10:853688. [PMID: 35874831 PMCID: PMC9304574 DOI: 10.3389/fcell.2022.853688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Senolytics are a class of drugs that selectively eliminate senescent cells and ameliorate senescence-associated disease. Studies have demonstrated the accumulation of senescent disc cells and the production of senescence-associated secretory phenotype decrease the number of functional cells in degenerative tissue. It has been determined that clearance of senescent cell by senolytics rejuvenates various cell types in several human organs, including the largest avascular structure, intervertebral disc (IVD). The microvasculature in the marrow space of bony endplate (BEP) are the structural foundation of nutrient exchange in the IVD, but to date, the anti-senescence effects of senolytics on senescent vascular endothelial cells in the endplate subchondral vasculature remains unclear. In this study, the relationships between endothelial cellular senescence in the marrow space of the BEP and IVD degeneration were investigated using the aged mice model. Immunofluorescence staining was used to evaluate the protein expression of P16, P21, and EMCN in vascular endothelial cells. Senescence-associated β-galactosidase staining was used to investigate the senescence of vascular endothelial cells. Meanwhile, the effects of senolytics on cellular senescence of human umbilical vein endothelial cells were investigated using a cell culture model. Preliminary results showed that senolytics alleviate endothelial cellular senescence in the marrow space of BEP as evidenced by reduced senescence-associated secretory phenotype. In the aged mice model, we found decreased height of IVD accompanied by vertebral bone mass loss and obvious changes to the endplate subchondral vasculature, which may lead to the decrease in nutrition transport into IVD. These findings may provide evidence that senolytics can eliminate the senescent cells and facilitate microvascular formation in the marrow space of the BEP. Targeting senescent cellular clearance mechanism to increase nutrient supply to the avascular disc suggests a potential treatment value of senolytics for IVD degenerative diseases.
Collapse
Affiliation(s)
- Bolin Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Runjiu Zhu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingbin Zhan
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingxuan Wang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fangli Huang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yu Chai
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yu Chai, ; Zemin Ling,
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yu Chai, ; Zemin Ling,
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Peng X, Zhou X, Yin Y, Luo B, Liu Y, Yang C. Inflammatory Microenvironment Accelerates Bone Marrow Mesenchymal Stem Cell Aging. Front Bioeng Biotechnol 2022; 10:870324. [PMID: 35646835 PMCID: PMC9133389 DOI: 10.3389/fbioe.2022.870324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
MSC senescence is considered a contributing factor in aging-related diseases. We investigated the influence of the inflammatory microenvironment on bone marrow mesenchymal stem cells (BMSCs) under aging conditions and the underlying mechanism to provide new ideas for stem cell therapy for age-related osteoporosis. The BMSCs were cultured until passage 3 (P3) (young group) and passage 10 (P10) (aging group) in vitro. The supernatant was collected as the conditioned medium (CM). The young BMSCs were cultured in the CM of P3 or P10 cells. The effects of CM from different groups on the aging and stemness of the young BMSCs were examined. A Quantibody® mouse inflammation array on serum extracts from young (aged 8 weeks) and old (aged 78 weeks) mice was performed, and differentially expressed factors were screened out. We discovered that the CM from senescent MSCs changed the physiology of young BMSCs. Systemic inflammatory microenvironments changed with age in the mice. In particular, the pro-inflammatory cytokine IL-6 increased, and the anti-inflammatory cytokine IL-10 decreased. The underlying mechanism was investigated by GO and KEGG analyses, and there was a change in the JAK-STAT signaling pathway, which is closely related to IL-6 and IL-10. Collectively, our results demonstrated that the age-related inflammatory microenvironment has a significant effect on the biological functions of BMSCs. Targeted reversal of this inflammatory environment may provide a new strategy for stem cell therapy to treat aging-related skeletal diseases.
Collapse
Affiliation(s)
- Xin Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | | | | | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Cheng Yang, ; Yang Liu,
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Cheng Yang, ; Yang Liu,
| |
Collapse
|
31
|
BMP9 reduces age-related bone loss in mice by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. Cell Death Dis 2022; 8:254. [PMID: 35523787 PMCID: PMC9076651 DOI: 10.1038/s41420-022-01048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Age-related osteoporosis is characterized by the accumulation of senescent osteoblastic cells in bone microenvironment and significantly reduced osteogenic differentiation. Clearing of the senescent cells is helpful to improve bone formation in aged mice. Bone morphogenetic protein 9 (BMP9), a multifunctional protein produced and secreted by liver, was reported to improve osteoporosis caused by estrogen withdrawal. However, the mechanism of BMP9 has not been fully elucidated, and its effect on senile osteoporosis has not been reported. This study reveals that BMP9 significantly increases bone mass and improves bone biomechanical properties in aged mice. Furthermore, BMP9 reduces expression of senescent genes in bone microenvironment, accompanied by decreased senescence-associated secretory phenotypes (SASPs) such as Ccl5, Mmp9, Hmgb1, Nfkb1, and Vcam1. In vitro, Bmp9 treatment inhibits osteoblast senescence through activating Smad1, which suppresses the transcriptional activity of Stat1, thereby inhibits P21 expression and SASPs production. Furthermore, inhibiting the Smad1 signal in vivo can reverse the inhibitory effect of BMP9 on Stat1 and downstream senescent genes, which eliminates the protection of BMP9 on age-related osteoporosis. These findings highlight the critical role of BMP9 on reducing age-related bone loss by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. BMP9 inhibits cellular senescence by activation of Smad1, which suppresses the transcription of Stat1, resulting in decreased P21 expression and SASPs production in osteoblast. The anti-aging effect of BMP9 is benefit to improving age-related osteoporosis.![]()
Collapse
|
32
|
López-Delgado L, Del Real A, Sañudo C, Garcia-Ibarbia C, Laguna E, Menendez G, Garcia-Montesinos B, Santurtun A, Merino J, Pérez-Núñez MI, Riancho JA. Osteogenic capacity of mesenchymal stem cells from patients with osteoporotic hip fractures in vivo. Connect Tissue Res 2022; 63:243-255. [PMID: 33618587 DOI: 10.1080/03008207.2021.1894140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Human mesenchymal stem cells (MSCs) have the ability to differentiate into bone-forming osteoblasts. The aim of this study was to elucidate if MSCs from patients with OP show a senescent phenotype and explore their bone-forming ability in vivo. MATERIALS AND METHODS MSCs from patients with OP and controls with osteoarthritis (OA) were implanted into the subcutaneous tissue of immunodeficient mice for histological analysis and expression of human genes by RT-PCR. The expression of senescence-associated phenotype (SASP) genes, as well as p16, p21, and galactosidase, was studied in cultures of MSCs. RESULTS In vivo bone formation was evaluated in 103 implants (47 OP, 56 OA). New bone was observed in 45% of the implants with OP cells and 46% of those with OA cells (p = 0.99). The expression of several bone-related genes (collagen, osteocalcin, alkaline phosphatase, sialoprotein) was also similar in both groups. There were no differences between groups in SASP gene expression, p16, and p21 expression, or in senescence-associated galactosidase activity. CONCLUSION Senescence markers and the osteogenic capacity in vivo of MSCs from patients with OP are not inferior to that of cells from controls of similar age with OA. This supports the interest of future studies to evaluate the potential use of autologous MSCs from OP patients in bone regeneration procedures.
Collapse
Affiliation(s)
- Laura López-Delgado
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Alvaro Del Real
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Carmen Garcia-Ibarbia
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Esther Laguna
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Guillermo Menendez
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | | | - Ana Santurtun
- Unit of Legal Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - Jesus Merino
- Department of Molecular Biology, University of Cantabria, IDIVAL, Santander, Spain
| | - María I Pérez-Núñez
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
33
|
Yang Y, Wei Q, An R, Zhang HM, Shen JY, Qin XY, Han XL, Li J, Li XW, Gao XM, He J, Mao HP. Anti-osteoporosis effect of Semen Cuscutae in ovariectomized mice through inhibition of bone resorption by osteoclasts. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114834. [PMID: 34801609 DOI: 10.1016/j.jep.2021.114834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Cuscutae, called Tu-si-zi in Chinese, is a kind of dried mature seed in the Convolvulaceae family. It mainly distributes in China, Korea, Pakistan, Vietnam, India and Thailand. It is used as a kidney-tonifying drug for treatment of aging related diseases such as osteoporosis in traditional Chinese medicine. However, the exact mechanisms on bone resorption are poorly studied. AIM OF THE STUDY The aim of this study was to investigate the potential effect of Semen Cuscutae on ovariectomy (OVX)-induced osteoporosis in mice and clarify the exact mechanisms by which Semen Cuscutae exert the anti-osteoporosis effect. MATERIALS AND METHODS Qualitative and quantitative analyses of Semen Cuscutae were performed by UPLC-Q-TOF-MS and HPLC-MS/MS, respectively. Changes in bone mineral density (BMD) induced by OVX in mice were measured by dual-energy X-ray absorptiometry and micro-computed tomography (μCT). Tartrate-resistant acid phosphatase (TRAP) staining as well as hematoxylin and eosin (HE) staining were used to observe bone microarchitectural changes. ELISA kits were used to assess the therapeutic effects of Semen Cuscutae on the serum levels of osteoprotegerin (OPG), tartrate-resistant acid phosphatase 5b (TRACP-5b), and receptor activator of nuclear factor-κB (RANKL). The effect of Semen Cuscutae on primary cell viability was assessed using CCK-8 and anti-tartrate phosphatase assays. TRAP staining and actin ring staining were used to observe the effect of Semen Cuscutae on osteoclast differentiation. Western blotting was used to measure the effects of Semen Cuscutae on expressions of NFATC1, c-Src kinase, and c-fos. RESULTS Results from UPLC-Q-TOF-MS showed that the main components of Semen Cuscutae were flavonoid compounds that included quercitrin, quercetin, hyperoside, caffeic acid, rutin, chlorogenic acid, luteolin, apigenin, kaempferol, isoquercetin, cryptochlorogenic acid, isorhamnetin-3-O-glucoside, and astragalin. After the Semen Cuscutae extract was orally administered to OVX mice, bone density increased (P < 0.01) and bone microstructure was significantly improved (P < 0.01 or 0.05). Additionally, Semen Cuscutae exhibited a significant descending effect in the levels of serum TRACP-5b and RANKL, while there was a significant increase in OPG in the Semen Cuscutae group compared with the OVX group, especially at high doses. Moreover, we found that increasing of c-fos, c-Src kinase, and NFATC1 protein expressions were reversed by Semen Cuscutae in vitro and in vivo. CONCLUSIONS Our results showed that Semen Cuscutae exhibited anti-osteoporosis effects through the c-fos/c-Src kinase/NFATC1 signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Qiu Wei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Ran An
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Hua-Mei Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Jia-Yuan Shen
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiao-Yan Qin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiao-Ling Han
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Jie Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiao-Wei Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiu-Mei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Jun He
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China.
| | - Hao-Ping Mao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China.
| |
Collapse
|
34
|
Gong Z, Da W, Tian Y, Zhao R, Qiu S, Wu Q, Wen K, Shen L, Zhou R, Tao L, Zhu Y. Exogenous melatonin prevents type 1 diabetes mellitus-induced bone loss, probably by inhibiting senescence. Osteoporos Int 2022; 33:453-466. [PMID: 34519833 PMCID: PMC8813725 DOI: 10.1007/s00198-021-06061-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
UNLABELLED Exogenous melatonin inhibited the senescence of preosteoblast cells in type 1 diabetic (T1D) mice and those cultured in high glucose (HG) by multiple regulations. Exogenous melatonin had a protective effect on diabetic osteoporosis, which may depend on the inhibition of senescence. INTRODUCTION Senescence is thought to play an important role in the pathophysiological mechanisms underlying diabetic bone loss. Increasing evidence has shown that melatonin exerts anti-senescence effects. In this study, we investigated whether melatonin can inhibit senescence and prevent diabetic bone loss. METHODS C57BL/6 mice received a single intraperitoneal injection of 160 mg/kg streptozotocin, followed by the oral administration of melatonin or vehicle for 2 months. Then, tissues were harvested and subsequently examined. MC3T3-E1 cells were cultured under HG conditions for 7 days and then treated with melatonin or not for 24 h. Sirt1-specific siRNAs and MT1- or MT2-specific shRNA plasmids were transfected into MC3T3-E1 cells for mechanistic study. RESULTS The total protein extracted from mouse femurs revealed that melatonin prevented senescence in T1D mice. The micro-CT results indicated that melatonin prevented bone loss in T1D mice. Cellular experiments indicated that melatonin administration prevented HG-induced senescence, whereas knockdown of the melatonin receptors MT1 or MT2 abolished these effects. Sirt1 expression was upregulated by melatonin administration but significantly reduced after MT1 or MT2 was knocked down. Knockdown of Sirt1 blocked the anti-senescence effects of melatonin. Additionally, melatonin promoted the expression of CDK2, CDK4, and CyclinD1, while knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the expression of the polycomb repressive complex (PRC), but knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the protein levels of Sirt1, PRC1/2 complex-, and cell cycle-related proteins. CONCLUSION This work shows that melatonin protects against T1D-induced bone loss, probably by inhibiting senescence. Targeting senescence in the investigation of diabetic osteoporosis may lead to novel discoveries.
Collapse
Affiliation(s)
- Z Gong
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - W Da
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Y Tian
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - R Zhao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - S Qiu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Q Wu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - K Wen
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - L Shen
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - R Zhou
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - L Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Y Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
35
|
Usategui-Martín R, Pérez-Castrillón JL, Mansego ML, Lara-Hernández F, Manzano I, Briongos L, Abadía-Otero J, Martín-Vallejo J, García-García AB, Martín-Escudero JC, Chaves FJ. Association between genetic variants in oxidative stress-related genes and osteoporotic bone fracture. The Hortega follow-up study. Gene 2022; 809:146036. [PMID: 34688818 DOI: 10.1016/j.gene.2021.146036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The most widely accepted etiopathogenesis hypothesis of the origin of osteoporosis and its complications is that they are a consequence of bone aging and other environmental factors, together with a genetic predisposition. Evidence suggests that oxidative stress is crucial in bone pathologies associated with aging. The aim of this study was to determine whether genetic variants in oxidative stress-related genes modified the risk of osteoporotic fracture. We analysed 221 patients and 354 controls from the HORTEGA sample after 12-14 years of follow up. We studied the genotypic and allelic distribution of 53 SNPs in 24 genes involved in oxidative stress. The results showed that being a carrier of the variant allele of the SNP rs4077561 within TXNRD1 was the principal genetic risk factor associated with osteoporotic fracture and that variant allele of the rs1805754 M6PR, rs4964779 TXNRD1, rs406113 GPX6, rs2281082 TXN2 and rs974334 GPX6 polymorphisms are important genetic risk factors for fracture. This study provides information on the genetic factors associated with oxidative stress which are involved in the risk of osteoporotic fracture and reinforces the hypothesis that genetic factors are crucial in the etiopathogenesis of osteoporosis and its complications.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- IOBA, University of Valladolid, Valladolid. Spain; Cooperative Health Network for Research (RETICS), Oftared, National Institute of Health Carlos III, ISCIII, Madrid. Spain.
| | - José Luis Pérez-Castrillón
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain.
| | - María L Mansego
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; Department of Bioinformatics. Making Genetics S.L. Pamplona. Spain
| | | | - Iris Manzano
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Laisa Briongos
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Jesica Abadía-Otero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain
| | - Javier Martín-Vallejo
- Department of Statistics. University of Salamanca. Salamanca Biomedical Research Institute (IBSAL), Salamanca. Spain
| | - Ana B García-García
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| | - Juan Carlos Martín-Escudero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Felipe J Chaves
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| |
Collapse
|
36
|
Hu MC, Moe OW. Phosphate and Cellular Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:55-72. [PMID: 35288873 PMCID: PMC10513121 DOI: 10.1007/978-3-030-91623-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
37
|
Aaron N, Costa S, Rosen CJ, Qiang L. The Implications of Bone Marrow Adipose Tissue on Inflammaging. Front Endocrinol (Lausanne) 2022; 13:853765. [PMID: 35360075 PMCID: PMC8962663 DOI: 10.3389/fendo.2022.853765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is now regarded as a metabolically active organ that plays versatile roles in endocrine function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy conservation. While the regulation of BMAT is inadequately understood, it is recognized as a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to influence the microenvironment. This process is conceivably signaled by the secretion of adipocyte-derived factors including pro-inflammatory cytokines and adipokines. Adipokines participate in the development of a chronic state of low-grade systemic inflammation (inflammaging), which trigger changes in the immune system that are characterized by declining fidelity and efficiency and cause an imbalance between pro-inflammatory and anti-inflammatory networks. In this review, we discuss the local effects of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory changes associated with BMAT accrual, and the downstream effect on endocrine function, energy expenditure, and metabolism. Furthermore, we address therapeutic strategies to prevent BMAT accumulation and associated dysfunction during aging. In sum, BMAT is emerging as a critical player in aging and its explicit characterization still requires further research.
Collapse
Affiliation(s)
- Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pharmacology, Columbia University, New York, NY, United States
| | - Samantha Costa
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology, Columbia University, New York, NY, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| |
Collapse
|
38
|
Saul D, Monroe DG, Rowsey JL, Kosinsky RL, Vos SJ, Doolittle ML, Farr JN, Khosla S. Modulation of fracture healing by the transient accumulation of senescent cells. eLife 2021; 10:69958. [PMID: 34617510 PMCID: PMC8526061 DOI: 10.7554/elife.69958] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Senescent cells have detrimental effects across tissues with aging but may have beneficial effects on tissue repair, specifically on skin wound healing. However, the potential role of senescent cells in fracture healing has not been defined. Here, we performed an in silico analysis of public mRNAseq data and found that senescence and senescence-associated secretory phenotype (SASP) markers increased during fracture healing. We next directly established that the expression of senescence biomarkers increased markedly during murine fracture healing. We also identified cells in the fracture callus that displayed hallmarks of senescence, including distension of satellite heterochromatin and telomeric DNA damage; the specific identity of these cells, however, requires further characterization. Then, using a genetic mouse model (Cdkn2aLUC) containing a Cdkn2aInk4a-driven luciferase reporter, we demonstrated transient in vivo senescent cell accumulation during callus formation. Finally, we intermittently treated young adult mice following fracture with drugs that selectively eliminate senescent cells (‘senolytics’, Dasatinib plus Quercetin), and showed that this regimen both decreased senescence and SASP markers in the fracture callus and significantly accelerated the time course of fracture healing. Our findings thus demonstrate that senescent cells accumulate transiently in the murine fracture callus and, in contrast to the skin, their clearance does not impair but rather improves fracture healing.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - David G Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| | - Jennifer L Rowsey
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States
| | - Stephanie J Vos
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Madison L Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| |
Collapse
|
39
|
Tarantini S, Balasubramanian P, Delfavero J, Csipo T, Yabluchanskiy A, Kiss T, Nyúl-Tóth Á, Mukli P, Toth P, Ahire C, Ungvari A, Benyo Z, Csiszar A, Ungvari Z. Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. GeroScience 2021; 43:2427-2440. [PMID: 34427858 PMCID: PMC8599595 DOI: 10.1007/s11357-021-00440-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Moment-to-moment adjustment of regional cerebral blood flow to neuronal activity via neurovascular coupling (NVC or "functional hyperemia") has a critical role in maintenance of healthy cognitive function. Aging-induced impairment of NVC responses importantly contributes to age-related cognitive decline. Advanced aging is associated with increased prevalence of senescent cells in the cerebral microcirculation, but their role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis that a validated senolytic treatment can improve NVC responses and cognitive performance in aged mice. To achieve this goal, aged (24-month-old) C57BL/6 mice were treated with ABT263/Navitoclax, a potent senolytic agent known to eliminate senescent cells in the aged mouse brain. Mice were behaviorally evaluated (radial arms water maze) and NVC was assessed by measuring CBF responses (laser speckle contrast imaging) in the somatosensory whisker barrel cortex evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. ABT263/Navitoclax treatment improved NVC response, which was associated with significantly improved hippocampal-encoded functions of learning and memory. ABT263/Navitoclax treatment did not significantly affect endothelium-dependent acetylcholine-induced relaxation of aorta rings. Thus, increased presence of senescent cells in the aged brain likely contributes to age-related neurovascular uncoupling, exacerbating cognitive decline. The neurovascular protective effects of ABT263/Navitoclax treatment highlight the preventive and therapeutic potential of senolytic treatments (as monotherapy or as part of combination treatment regimens) as effective interventions in patients at risk for vascular cognitive impairment (VCI).
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
| | - Jordan Delfavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- Department of Pediatrics, University of Szeged, Szeged, Hungary
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, University of Pécs Clinical Center, Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
| | - Zoltan Benyo
- International Training Program in Geroscience/Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience/Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
40
|
Zhang XX, He SH, Liang X, Li W, Li TF, Li DF. Aging, Cell Senescence, the Pathogenesis and Targeted Therapies of Osteoarthritis. Front Pharmacol 2021; 12:728100. [PMID: 34497523 PMCID: PMC8419276 DOI: 10.3389/fphar.2021.728100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, debilitating joint disease characterized by progressive destruction of articular cartilage. For a long time, OA has been considered as a degenerative disease, while recent observations indicate the mechanisms responsible for the pathogenesis of OA are multifaceted. Aging is a key factor in its development. Current treatments are palliative and no disease modifying anti-osteoarthritis drugs (DMOADs) are available. In addition to articular cartilage degradation, cellular senescence, synovial inflammation, and epigenetic alterations may all have a role in its formation. Accumulating data demonstrate a clear relationship between the senescence of articular chondrocytes and OA formation and progression. Inhibition of cell senescence may help identify new agents with the properties of DMOADs. Several anti-cellular senescence strategies have been proposed and these include sirtuin-activating compounds (STACs), senolytics, and senomorphics drugs. These agents may selectively remove senescent cells or ameliorate their harmful effects. The results from preclinical experiments and clinical trials are inspiring. However, more studies are warranted to confirm their efficacy, safety profiles and adverse effects of these agents.
Collapse
Affiliation(s)
- Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Wu Y, Zhang M, Chen X, Zhou Y, Chen Z. Metabolomic analysis to elucidate the change of the n-3 polyunsaturated fatty acids in senescent osteoblasts. Biosci Biotechnol Biochem 2021; 85:611-620. [PMID: 33580670 DOI: 10.1093/bbb/zbaa097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 01/12/2023]
Abstract
Senile osteoporosis is a major public health concern, and yet, effective treatment methods do not exist. Herein, we used metabolomics to analyze the change of n-3 polyunsaturated fatty acids (PUFA) in senescent osteoblasts. We found that with an increase in the number of passages, the osteoblasts proliferative ability, alkaline phosphatase activity, and expression levels of bone metabolism genes decreased, the expression levels of aging-related genes increased, the damage caused by oxidative stress became more severe. Furthermore, levels of n-3 PUFA family members were downregulated in passage 10 than in passage 3 osteoblasts. These findings indicated that multiple passages led to more severe oxidative stress damage in senescent osteoblasts, which could be related to a decrease in n-3 PUFA levels. We believe that unsaturated fatty acid metabolism is a key factor involved in osteoblast senescence and that a proper dietary intake of n-3 PUFA may delay the occurrence senile osteoporosis.
Collapse
Affiliation(s)
- Ying Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Mengjun Zhang
- Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, Fujian, China
| | - Xinwei Chen
- Graduation School of Fujian Medical University, Fuzhou, Fujian, China
| | - Yu Zhou
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhou Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
42
|
Ahumada-Castro U, Puebla-Huerta A, Cuevas-Espinoza V, Lovy A, Cardenas JC. Keeping zombies alive: The ER-mitochondria Ca 2+ transfer in cellular senescence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119099. [PMID: 34274397 DOI: 10.1016/j.bbamcr.2021.119099] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence generates a permanent cell cycle arrest, characterized by apoptosis resistance and a pro-inflammatory senescence-associated secretory phenotype (SASP). Physiologically, senescent cells promote tissue remodeling during development and after injury. However, when accumulated over a certain threshold as happens during aging or after cellular stress, senescent cells contribute to the functional decline of tissues, participating in the generation of several diseases. Cellular senescence is accompanied by increased mitochondrial metabolism. How mitochondrial function is regulated and what role it plays in senescent cell homeostasis is poorly understood. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contacts (MERCs). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate receptors (IP3Rs), a family of three Ca2+ release channels activated by a ligand (IP3). IP3R-mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU), where it modulates the activity of several enzymes and transporters impacting its bioenergetic and biosynthetic function. Here, we review the possible connection between ER to mitochondria Ca2+ transfer and senescence. Understanding the pathways that contribute to senescence is essential to reveal new therapeutic targets that allow either delaying senescent cell accumulation or reduce senescent cell burden to alleviate multiple diseases.
Collapse
Affiliation(s)
- Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Andrea Puebla-Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Victor Cuevas-Espinoza
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Alenka Lovy
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, USA
| | - J Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
43
|
Koo S, Won M, Li H, Kim WY, Li M, Yan C, Sharma A, Guo Z, Zhu WH, Sessler JL, Lee JY, Kim JS. Harnessing α-l-fucosidase for in vivo cellular senescence imaging. Chem Sci 2021; 12:10054-10062. [PMID: 34377399 PMCID: PMC8317655 DOI: 10.1039/d1sc02259h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Precise detection of cellular senescence may allow its role in biological systems to be evaluated more effectively, while supporting studies of therapeutic candidates designed to evade its detrimental effect on physical function. We report here studies of α-l-fucosidase (α-fuc) as a biomarker for cellular senescence and the development of an α-fuc-responsive aggregation induced emission (AIE) probe, termed QM-NHαfuc designed to complement more conventional probes based on β-galactosidase (β-gal). Using QM-NHαfuc, the onset of replicative-, reactive oxygen species (ROS)-, ultraviolet A (UVA)-, and drug-induced senescence could be probed effectively. QM-NHαfuc also proved capable of identifying senescent cells lacking β-gal expression. The non-invasive real-time senescence tracking provided by QM-NHαfuc was validated in an in vivo senescence model. The results presented in this study lead us to suggest that the QM-NHαfuc could emerge as a useful tool for investigating senescence processes in biological systems. Evidence of close association of α-fuc with senescence induction highlights the potential of α-fuc as a novel biomarker for cellular senescence. Here, an α-fuc-responsive AIE probe (QM-NHαfuc) allows for the identification of senescent cell in vivo.![]()
Collapse
Affiliation(s)
- Seyoung Koo
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Miae Won
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Won Young Kim
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Mingle Li
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Chenxu Yan
- Institute of Fine Chemicals, East China University of Science and Technology Shanghai 200237 China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation Sector-30C Chandigarh 160030 India
| | - Zhiqian Guo
- Institute of Fine Chemicals, East China University of Science and Technology Shanghai 200237 China
| | - Wei-Hong Zhu
- Institute of Fine Chemicals, East China University of Science and Technology Shanghai 200237 China
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin Austin Texas 78712-1224 USA
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University Seoul 02841 Korea
| |
Collapse
|
44
|
Zhou Y, Xin X, Wang L, Wang B, Chen L, Liu O, Rowe DW, Xu M. Senolytics improve bone forming potential of bone marrow mesenchymal stem cells from aged mice. NPJ Regen Med 2021; 6:34. [PMID: 34117259 PMCID: PMC8195980 DOI: 10.1038/s41536-021-00145-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) declines dramatically with aging. By using a calvarial defect model, we showed that a senolytic cocktail (dasatinib+quercetin; D + Q) improved osteogenic capacity of aged BMSC both in vitro and in vivo. The study presented a model to assess strategies to improve bone-forming potential on aged BMSCs. D + Q might hold promise for improving BMSC function in aged populations.
Collapse
Affiliation(s)
- Yueying Zhou
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.,UConn Center on Aging, Farmington, CT, USA.,Center for Regenerative Medicine and Skeletal Development, Farmington, CT, USA
| | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, Farmington, CT, USA
| | - Lichao Wang
- UConn Center on Aging, Farmington, CT, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Binsheng Wang
- UConn Center on Aging, Farmington, CT, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Li Chen
- Center for Regenerative Medicine and Skeletal Development, Farmington, CT, USA
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, Farmington, CT, USA.
| | - Ming Xu
- UConn Center on Aging, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
45
|
Folkestad L, Stochholm K, Groth K, Hove H, Andersen NH, Gravholt CH. Fracture Rates and Fracture Risk in Patients With Marfan Syndrome: A Nationwide Register-Based Cohort Study. J Bone Miner Res 2021; 36:901-909. [PMID: 33567127 DOI: 10.1002/jbmr.4258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Marfan syndrome (MFS), a rare genetic disease, has a prevalence of 6.5 in 100,000. Studies show that patients with MFS have reduced areal bone mineral density (BMD) compared with non-MFS individuals. We have previously shown that patients with MFS have reduced volumetric BMD and compromised trabecular and cortical bone microarchitecture. The present study was a registry-based, nationwide, population-based, cohort study using register data, aimed to evaluate fracture risk and fracture rates in MFS. We included 406 (196 women) patients with MFS through the Danish National Patient Register and 40,724 (19,327 women) persons, randomly selected and matched from the Civil Registry System. A total of 21.9% of the MFS and 18.9% of the reference population had experienced at least one fracture from 1995 to 2018. The fracture incidence rate was 27.5 per 1000 person-years in the MFS cohort (highest in young men and old women with MFS), and 20.3 per 1000 person-years in the reference population. The overall incidence rate ratio between the MFS and the reference population was 1.35 (95% confidence interval [CI ] 1.18-1.55) for all fractures. When evaluating the risk of being registered with an osteoporosis diagnosis in the Danish National Patient Register, starting relevant treatment for osteoporosis or experiencing a hip or spine fracture, 10.3% of the MFS cohort and 3.3% of the reference population could be classified as being osteoporotic. The between-group subhazard ratio was 3.97 (95% CI 2.56-6.25). Patients with MFS started treatment with an antiosteoporotic drug at a younger age than the reference population (57 [interquartile range 55-67] versus 71 [63-73]) years. The life expectancy in MFS is increasing, resulting in more patients facing diseases that are related to old age, such as age-related bone loss and increased risk of fractures. Our data suggest that bone health and fracture prevention needs to be part of the standard care for patients with MFS. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lars Folkestad
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirstine Stochholm
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kristian Groth
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Hove
- Department of Pediatrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,The RAREDIS Database, Section of Rare Diseases, Department of Clinical Genetics and Pediatrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
46
|
Abdelgawad IY, Sadak KT, Lone DW, Dabour MS, Niedernhofer LJ, Zordoky BN. Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence. Pharmacol Ther 2021; 221:107751. [PMID: 33275998 PMCID: PMC8084867 DOI: 10.1016/j.pharmthera.2020.107751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Cancer treatment has been associated with accelerated aging that can lead to early-onset health complications typically experienced by older populations. In particular, cancer survivors have an increased risk of developing premature cardiovascular complications. In the last two decades, cellular senescence has been proposed as an important mechanism of premature cardiovascular diseases. Cancer treatments, specifically anthracyclines and radiation, have been shown to induce senescence in different types of cardiovascular cells. Additionally, clinical studies identified increased systemic markers of senescence in cancer survivors. Preclinical research has demonstrated the potential of several approaches to mitigate cancer therapy-induced senescence. However, strategies to prevent and/or treat therapy-induced cardiovascular senescence have not yet been translated to the clinic. In this review, we will discuss how therapy-induced senescence can contribute to cardiovascular complications. Thereafter, we will summarize the current in vitro, in vivo, and clinical evidence regarding cancer therapy-induced cardiovascular senescence. Then, we will discuss interventional strategies that have the potential to protect against therapy-induced cardiovascular senescence. To conclude, we will highlight challenges and future research directions to mitigate therapy-induced cardiovascular senescence in cancer survivors.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Karim T Sadak
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA; University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Diana W Lone
- University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA
| | - Mohamed S Dabour
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
Wen J, Bao M, Tang M, He X, Yao X, Li L. Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats. Aging (Albany NY) 2021; 13:12031-12045. [PMID: 33888646 PMCID: PMC8109117 DOI: 10.18632/aging.202907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/18/2021] [Indexed: 04/14/2023]
Abstract
Dysfunction of bone marrow mesenchymal stem cells (BMSCs), osteoblasts and osteocytes may be one of the main causes of bone loss in the elderly. In the present study, we found osteogenic cells from aged rats all exhibited senescence changes, with the most pronounced senescence changes in osteocytes. Meanwhile, the proliferative capacity and functional activity of osteogenic cells from aged rats were suppressed. Osteogenic differentiation capacity of BMSCs from aged rats decreased while adipogenic capacity increased. The mineralization capacity, ALP activity and osteogenic proteins expression of osteoblasts from aged rats decreased. Additionally, osteocytes from aged rats up-expressed sclerosteosis protein, a negative regulator of bone formation. To inhibit osteogenic cell senescence, we use low magnitude vibration (LMV) to eliminate the senescent osteogenic cells. After LMV treatment, the number of osteogenic cells staining positively for senescence-associated-β-galactosidase (SA-β-Gal) decreased significantly. Besides, the expression of anti-aging protein SIRT1 was upregulated significantly, while p53 and p21 were downregulated significantly after LMV treatment. Thus, the LMV can inhibit the senescence of osteogenic cells partly through the Sirt1/p53/p21 axis. Furthermore, LMV was found to promote bone formation of aged rats. These results suggest that the inhibition of osteogenic cell senescence by LMV is a valuable treatment to prevent or delay osteoporosis.
Collapse
Affiliation(s)
- Jirui Wen
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mingyue Bao
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Tang
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xueling He
- Laboratory Animal Center, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
48
|
Zheng X, Wang Q, Xie Z, Li J. The elevated level of IL-1α in the bone marrow of aged mice leads to MSC senescence partly by down-regulating Bmi-1. Exp Gerontol 2021; 148:111313. [PMID: 33740618 DOI: 10.1016/j.exger.2021.111313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
Osteoporosis is becoming increasingly prevalent with individual aging. Recent studies found that bone marrow mesenchymal stem cells (MSCs) undergo senescence along with the progression of age-related osteoporosis, leading to a decreased rate of new bone formation and fracture repair. The underlying mechanism of MSC senescence in the aged bone marrow has not been clarified yet. Here we found that MSCs from aged mice (12-month-old, O-MSCs) exhibited apparent senescent phenotypes compared with those from young controls (2-month-old, Y-MSCs), including lower proliferation rate, impaired self-renewal capacity, increased p16Ink4a expression and shifted differentiation balance to favor adipocytes over osteoblasts. Bmi-1, one of the main factors that regulate stem cell self-renewal, is dramatically decreased in O-MSCs. Knocking-down of Bmi-1 in Y-MSCs lead to cellular senescence, while over-expression of it rejuvenated O-MSCs. We further showed that the level of IL-1α is much higher in the bone marrow fluid of aged mice, which significantly inhibited Bmi-1 expression in MSCs. Our present study indicated that IL-1α, a key component of the senescence-associated secretory phenotype (SASP), is elevated in the aged bone marrow microenvironment, leading to decreased Bmi-1 expression in MSCs and consequently, MSC senescence.
Collapse
Affiliation(s)
- Xueling Zheng
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qianxing Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhuo Xie
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| |
Collapse
|
49
|
Guida JL, Agurs-Collins T, Ahles TA, Campisi J, Dale W, Demark-Wahnefried W, Dietrich J, Fuldner R, Gallicchio L, Green PA, Hurria A, Janelsins MC, Jhappan C, Kirkland JL, Kohanski R, Longo V, Meydani S, Mohile S, Niedernhofer LJ, Nelson C, Perna F, Schadler K, Scott JM, Schrack JA, Tracy RP, van Deursen J, Ness KK. Strategies to Prevent or Remediate Cancer and Treatment-Related Aging. J Natl Cancer Inst 2021; 113:112-122. [PMID: 32348501 PMCID: PMC7850536 DOI: 10.1093/jnci/djaa060] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Up to 85% of adult cancer survivors and 99% of adult survivors of childhood cancer live with an accumulation of chronic conditions, frailty, and/or cognitive impairments resulting from cancer and its treatment. Thus, survivors often show an accelerated development of multiple geriatric syndromes and need therapeutic interventions. To advance progress in this area, the National Cancer Institute convened the second of 2 think tanks under the auspices of the Cancer and Accelerated Aging: Advancing Research for Healthy Survivors initiative. Experts assembled to share evidence of promising strategies to prevent, slow, or reverse the aging consequences of cancer and its treatment. The meeting identified research and resource needs, including geroscience-guided clinical trials; comprehensive assessments of functional, cognitive, and psychosocial vulnerabilities to assess and predict age-related outcomes; preclinical and clinical research to determine the optimal dosing for behavioral (eg, diet, exercise) and pharmacologic (eg, senolytic) therapies; health-care delivery research to evaluate the efficacy of integrated cancer care delivery models; optimization of intervention implementation, delivery, and uptake; and patient and provider education on cancer and treatment-related late and long-term adverse effects. Addressing these needs will expand knowledge of aging-related consequences of cancer and cancer treatment and inform strategies to promote healthy aging of cancer survivors.
Collapse
Affiliation(s)
- Jennifer L Guida
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tanya Agurs-Collins
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tim A Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Fuldner
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Gallicchio
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Paige A Green
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Michelle C Janelsins
- Department of Surgery and Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Chamelli Jhappan
- Division of Cancer Biology, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Ronald Kohanski
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Valter Longo
- University of Southern California, Los Angeles, California, USA
- IFOM Institute, Milan, Italy
| | - Simin Meydani
- Jean Mayer USDA Human Nutritional Research Center on Aging, Tufts University, Boston, MA, USA
| | - Supriya Mohile
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christian Nelson
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frank Perna
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Keri Schadler
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine, and Biochemistry, Larner College of Medicine, University of Vermont, Colchester, VT, USA
| | | | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
50
|
Só BB, Silveira FM, Llantada GS, Jardim LC, Calcagnotto T, Martins MAT, Martins MD. Effects of osteoporosis on alveolar bone repair after tooth extraction: A systematic review of preclinical studies. Arch Oral Biol 2021; 125:105054. [PMID: 33667958 DOI: 10.1016/j.archoralbio.2021.105054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE This systematic review aimed to address whether the alveolar socket repair after a tooth extraction is impacted by an osteoporotic phenotype and propose methodological observations. DESIGN A search strategy in MEDLINE/PubMed, EMBASE, Web of Science, and Scopus databases was performed. Quality assessment was carried out through the SYRCLE Risk of Bias tool. RESULTS Out of the 1147 potentially relevant records, 25 met the inclusion criteria. Most of the studies were performed in rats, and ovariectomy (OVX) was the most frequent osteoporosis induction method. Histomorphometry, micro-computed tomography (microCT), and immunohistochemistry were the main bone repair evaluation methods. Most of the included studies (88 %) presented negative impacts of osteoporosis on the alveolar socket repair. Only three studies (12 %) showed no statistical differences among groups. Overall, most of the quality assessment categories presented a high percentage of unclear risk of bias due to insufficient information in the studies. CONCLUSIONS The results indicated that an osteoporotic phenotype seems to impair alveolar socket repair after tooth extraction. However, there is still a lack of information and standardization. Therefore, further studies should consider the proposed methodological aspects regarding animal characteristics, OVX associated with a low calcium diet, waiting 8 weeks to osteoporosis induction, maxillary molars as the best option for tooth extraction, confirming and reporting OVX and osteoporosis success, and an appropriate method of repair analysis.
Collapse
Affiliation(s)
- Bruna Barcelos Só
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Felipe Martins Silveira
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, CEP: 13414-903, Piracicaba, SP, Brazil
| | - Gabriela Sauer Llantada
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Luisa Comerlato Jardim
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Thiago Calcagnotto
- Oral and Maxillofacial Surgery Department, FATEC Dental CEEO, Igrejinha, R. Independência, 290, CEP: 95650-000, RS, Brazil
| | - Marco Antonio Trevizani Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2492, CEP: 90035-003, Porto Alegre, RS, Brazil; Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, CEP: 13414-903, Piracicaba, SP, Brazil.
| |
Collapse
|