1
|
Ahi EP, Panda B, Primmer CR. The hippo pathway: a molecular bridge between environmental cues and pace of life. BMC Ecol Evol 2025; 25:35. [PMID: 40275190 DOI: 10.1186/s12862-025-02378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The pace of life (POL) is shaped by a complex interplay between genetic and environmental factors, influencing growth, maturation, and lifespan across species. The Hippo signaling pathway, a key regulator of organ size and cellular homeostasis, has emerged as a central integrator of environmental cues that modulate POL traits. In this review, we explore how the Hippo pathway links environmental factors-such as temperature fluctuations and dietary energy availability-to molecular mechanisms governing metabolic balance, hormonal signaling, and reproductive timing. Specifically, we highlight the regulatory interactions between the Hippo pathway and metabolic sensors (AMPK, mTOR, SIRT1 and DLK1-Notch), as well as hormonal signals (IGF-1, kisspeptin, leptin, cortisol, thyroid and sex steroids), which together orchestrate key life-history traits, including growth rates, lifespan and sexual maturation, with a particular emphasis on their role in reproductive timing. Furthermore, we consider its role as a potential coordinator of POL-related molecular processes, such as telomere dynamics and epigenetic mechanisms, within a broader regulatory network. By integrating insights from molecular biology and eco-evolutionary perspectives, we propose future directions to dissect the Hippo pathway's role in POL regulation across taxa. Understanding these interactions will provide new perspectives on how organisms adaptively adjust life-history strategies in response to environmental variability.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| | - Bineet Panda
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Sazhenova EA, Vasilyeva OY, Fonova EA, Kankanam Pathiranage MB, Sambyalova AY, Khramova EE, Rychkova LV, Vasilyev SA, Lebedev IN. Genetic variants of the DLK1, KISS1R, MKRN3 genes in girls with precocious puberty. Vavilovskii Zhurnal Genet Selektsii 2025; 29:301-309. [PMID: 40264804 PMCID: PMC12011626 DOI: 10.18699/vjgb-25-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 04/24/2025] Open
Abstract
Precocious puberty (PP, E30.1, Е22.8, Е30.9 according to ICD 10, MIM 176400, 615346) in children is a disorder in which secondary sexual characteristics appear earlier than the age norm. The timing of puberty is regulated by a complex interaction of genetic and epigenetic factors, as well as environmental and nutritional factors. This study aimed to search for pathogenic, likely pathogenic variants or variants of uncertain significance (VUS) in the KISS1, GPR54, DLK1, and MKRN3 genes in patients with the clinical picture of PP and normal karyotype by massive parallel sequencing. All identified genetic variants were confirmed by Sanger sequencing. The pathogenicity of identified genetic variants and the functional significance of the protein synthesized by them were analyzed according to recommendations for interpretation of NGS analysis results using online algorithms for pathogenicity prediction (Variant Effect Predictor, Franklin, Varsome, and PolyPhen2). Clinically significant genetic variants were detected in the heterozygous state in the KISS1R, DLK1, and MKRN3 genes in 5 of 52 probands (9.6 %) with PP, including 3 of 33 (9.1 %) in the group with central PP and 2 of 19 (10.5 %) in the group with gonadotropin-independent PP. Two children with gonadotropin-independent PP had VUS in the KISS1R gene (c.191T>C, p.Ile64Thr and c.233A>G, p.Asn78Ser), one of which was inherited from the father and the second, from the mother. The remaining patients with central PP had likely pathogenic genetic variants: DLK1:c.373delC(p.Gln125fs) de novo and DLK1:c.480delT(p.Gly161Alafs*49) of paternal origin. The third proband had a VUS variant in the MKRN3 gene (c.1487A>G, p.His496Arg), inherited from the father. All identified genetic variants were described for the first time in PP. Thus, in the present study, genetic variants in the KISS1R, DLK1, and MKRN3 genes in girls with PP were characterized.
Collapse
Affiliation(s)
- E A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - O Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E A Fonova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | | | - A Yu Sambyalova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - E E Khramova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L V Rychkova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
3
|
Narusawa H, Ogawa T, Yagasaki H, Nagasaki K, Urakawa T, Saito T, Soneda S, Kinjo S, Sano S, Mamada M, Terashita S, Dateki S, Narumi S, Naiki Y, Horikawa R, Ogata T, Fukami M, Kagami M. Comprehensive Study on Central Precocious Puberty: Molecular and Clinical Analyses in 90 Patients. J Clin Endocrinol Metab 2025; 110:1023-1036. [PMID: 39324648 DOI: 10.1210/clinem/dgae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
CONTEXT Defects in MKRN3, DLK1, KISS1, and KISS1R and some disorders, such as Temple syndrome (TS14), cause central precocious puberty (CPP). Recently, pathogenic variants (PVs) in MECP2 have been reported to be associated with CPP. OBJECTIVE We aimed to clarify the contribution of (epi)genetic abnormalities to CPP and clinical and hormonal features in each etiology. METHODS We conducted targeted sequencing for MKRN3, DLK1, MECP2, KISS1, and KISS1R and methylation analysis for screening of imprinting disorders such as TS14 associated with CPP in 90 patients with CPP (no history of brain injuries and negative brain magnetic resonance imaging) and collected their clinical and laboratory data. We measured serum DLK1 levels in 3 patients with TS14 and serum MKRN3 levels in 2 patients with MKRN3 genetic defects, together with some etiology-unknown patients with CPP and controls. RESULTS We detected 8 patients with TS14 (6, epimutation; 1, mosaic maternal uniparental disomy chromosome 14; 1, microdeletion) and 3 patients with MKRN3 genetic defects (1, PV; 1, 13-bp deletion in the 5'-untranslated region [5'-UTR]; 1, microdeletion) with family histories of paternal early puberty. There were no patients with PVs identified in MECP2, KISS1, or KISS1R. We confirmed low serum MKRN3 level in the patient with a deletion in 5'-UTR. The median height at initial evaluation of TS14 patients was lower than that of all patients. Six patients with TS14 were born small for gestational age (SGA). CONCLUSION (Epi)genetic causes were identified in 12.2% of patients with CPP at our center. For patients with CPP born SGA or together with family histories of paternal early puberty, (epi)genetic testing for TS14 and MKRN3 genetic defects should be considered.
Collapse
Affiliation(s)
- Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Tomoe Ogawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hideaki Yagasaki
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tomohiro Saito
- Department of Pediatrics, Yamanashi Prefectural Central Hospital, Kofu 400-0027, Japan
| | - Shun Soneda
- Tanaka Growth Clinic, Tokyo 158-0097, Japan
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-0015, Japan
| | - Saori Kinjo
- Department of Pediatrics, Okinawa Chubu Hospital, Uruma 904-2293, Japan
| | - Shinichiro Sano
- Department of Pediatric Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka 420-0953, Japan
| | - Mitsukazu Mamada
- Department of Pediatrics, Japanese Red Cross Wakayama Medical Center, Wakayama 640-8558, Japan
| | - Shintaro Terashita
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yasuhiro Naiki
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu 432-8580, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
4
|
Iwanishi M, Yorifuji T, Yamamoto Y, Ito-Kobayashi J, Shimatsu A, Kikugawa S, Kagami M. A Male Japanese Patient with Temple Syndrome Complicated by Type 2 Diabetes Mellitus. Intern Med 2025; 64:251-259. [PMID: 38749734 PMCID: PMC11802230 DOI: 10.2169/internalmedicine.2743-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/03/2024] [Indexed: 01/30/2025] Open
Abstract
We herein present the case of a 21-year-old male Japanese diabetic patient with Temple syndrome, caused by maternal uniparental disomy of chromosome 14. The patient was overweight and had type 2 diabetes, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and microalbuminuria. He had an increased fat mass in the truncal region and a decreased lean mass throughout the body. This may lead to insulin resistance due to the absence of delta-like homolog 1 (DLK1) and retrotransposon gag-like 1 (RTL1). The patient had experienced social withdrawal at home (hikikomori in Japanese), had poorly controlled type 2 diabetes, and was overweight despite receiving diet therapy and oral hypoglycemic agents.
Collapse
Affiliation(s)
| | - Tohru Yorifuji
- Second Department of Internal Medicine, Date Red Cross Hospital, Japan
| | - Yukako Yamamoto
- Department of Diabetes and Endocrinology, Omi Medical Center, Japan
| | | | - Akira Shimatsu
- Department of Diabetes and Endocrinology, Omi Medical Center, Japan
| | | | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Japan
| |
Collapse
|
5
|
Canton APM, Macedo DB, Abreu AP, Latronico AC. Genetics and Epigenetics of Human Pubertal Timing: The Contribution of Genes Associated With Central Precocious Puberty. J Endocr Soc 2025; 9:bvae228. [PMID: 39839367 PMCID: PMC11746960 DOI: 10.1210/jendso/bvae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Indexed: 01/23/2025] Open
Abstract
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH. In the past decade, the identification of genetic causes of CPP has largely expanded, revealing hypothalamic regulatory factors of pubertal timing. Among them, 3 genes associated with CPP are linked to mechanisms involving DNA methylation, reinforcing the strong role of epigenetics underlying this disorder. Loss-of-function mutations in Makorin Ring-Finger Protein 3 (MKRN3) and Delta-Like Non-Canonical Notch Ligand 1 (DLK1), 2 autosomal maternally imprinted genes, have been described as relevant monogenic causes of CPP with the phenotype exclusively associated with paternal transmission. MKRN3 has proven to be a key component of the hypothalamic inhibitory input on GnRH neurons through different mechanisms. Additionally, rare heterozygous variants in the Methyl-CpG-Binding Protein 2 (MECP2), an X-linked gene that is a key factor of DNA methylation machinery, were identified in girls with sporadic CPP with or without neurodevelopmental disorders. In this mini-review, we focus on how the identification of genetic causes of CPP has revealed epigenetic regulators of human pubertal timing, summarizing the latest knowledge on the associations of puberty with MKRN3, DLK1, and MECP2.
Collapse
Affiliation(s)
- Ana Pinheiro Machado Canton
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Delanie Bulcao Macedo
- Integrated Medical Care Center, Center for Health Sciences, University of Fortaleza (Unifor), Fortaleza 60811-905, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
- Discipline of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Sao Paulo, 05403-000, Sao Paulo, Brazil
| |
Collapse
|
6
|
Ghasemzadeh Hasankolaei M, Evans NP, Elcombe CS, Lea RG, Sinclair KD, Padmanabhan V, Bellingham M. In-utero exposure to real-life environmental chemicals disrupts gene expression within the hypothalamo-pituitary-gonadal axis of prepubertal and adult rams. ENVIRONMENTAL RESEARCH 2025; 264:120303. [PMID: 39510237 DOI: 10.1016/j.envres.2024.120303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Environmental chemicals (ECs) have been associated with a broad range of disorders and diseases. Daily exposure to various ECs in the environment, or real-life exposure, has raised significant public health concerns. Utilizing the biosolids-treated pasture (BTP) sheep model, this study demonstrates that in-utero exposure to a real-life EC mixture disrupts hypothalamo-pituitary-gonadal (HPG) axis gene expression and reproductive traits in prepubertal (8-week-old, 8w) and adult (11-month-old) male sheep. Ewes were maintained on either BTP or pastures fertilized with inorganic fertilizer [control (C)] from approximately one month prior to insemination until around parturition. Thereafter, all animals were kept under control conditions. Effects on reproductive parameters including testosterone concentrations and the expression of key genes in the HPG axis were evaluated in eight-week-old and adult male offspring from both C and biosolids-exposed (B) groups. Results showed that, at 8w, relative to C (n = 11), B males (n = 11) had lower body weight, and altered testicular expression of HSD3B1, LHR and HSD17B3, BMP4, ABP, P27kip and CELF1. Principal component analysis (PCA) identified two 8w B subgroups, based on hypothalamic expression of GnRH, ESR1, and AR, and pituitary expression of KISSR. The two subgroups also exhibited different serum testosterone concentrations. The largest biosolids effects were observed in the hypothalamus of adult rams with NKB, ESR1, KISS1, AR, DLK1 and GNRH1 mRNA expression differing between B (n = 10) and C (n = 11) rams. Testicular steroidogenic enzymes CYP11A1 and HSD3B1 mRNA expression also differed between exposure groups. PCA identified two adult B subgroups, with BS1 (n = 6) displaying hypothalamic effects and BS2 (n = 4) both hypothalamic and testicular effects. The subgroups also differed in circulating testosterone concentrations. These findings demonstrate that exposure to a real-life EC mixture may predispose some males to infertility, by disrupting key functional HPG markers before puberty with consequent downstream effects on steroid hormones and spermatogenesis.
Collapse
Affiliation(s)
- Mohammad Ghasemzadeh Hasankolaei
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Chris S Elcombe
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
7
|
Auvinen P, Vehviläinen J, Rämö K, Laukkanen I, Marjonen-Lindblad H, Wallén E, Söderström-Anttila V, Kahila H, Hydén-Granskog C, Tuuri T, Tiitinen A, Kaminen-Ahola N. Genome-wide DNA methylation and gene expression in human placentas derived from assisted reproductive technology. COMMUNICATIONS MEDICINE 2024; 4:267. [PMID: 39702541 DOI: 10.1038/s43856-024-00694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Assisted reproductive technology (ART) has been associated with increased risks for growth disturbance, disrupted imprinting as well as cardiovascular and metabolic disorders. However, the molecular mechanisms and whether they are a result of the ART procedures or the underlying subfertility are unknown. METHODS We performed genome-wide DNA methylation (EPIC Illumina microarrays) and gene expression (mRNA sequencing) analyses for a total of 80 ART and 77 control placentas. The separate analyses for placentas from different ART procedures and sexes were performed. To separate the effects of ART procedures and subfertility, 11 placentas from natural conception of subfertile couples and 12 from intrauterine insemination treatments were included. RESULTS Here we show that ART-associated changes in the placenta enriche in the pathways of hormonal regulation, insulin secretion, neuronal development, and vascularization. Observed decreased number of stromal cells as well as downregulated TRIM28 and NOTCH3 expressions in ART placentas indicate impaired angiogenesis and growth. DNA methylation changes in the imprinted regions and downregulation of TRIM28 suggest defective stabilization of the imprinting. Furthermore, downregulated expression of imprinted endocrine signaling molecule DLK1 associates with both ART and subfertility. CONCLUSIONS Decreased expressions of TRIM28, NOTCH3, and DLK1 bring forth potential mechanisms for several phenotypic features associated with ART. Our results support previous procedure specific findings: the changes associated with growth and metabolism link more prominently to the fresh embryo transfer with smaller placentas and newborns, than to the frozen embryo transfer with larger placentas and newborns. Furthermore, since the observed changes associate also with subfertility, they offer a precious insight to the molecular background of infertility.
Collapse
Affiliation(s)
- Pauliina Auvinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jussi Vehviläinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Karita Rämö
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ida Laukkanen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Heidi Marjonen-Lindblad
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Essi Wallén
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | | | - Hanna Kahila
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Christel Hydén-Granskog
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Aila Tiitinen
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Guzmán-Jiménez A, González-Muñoz S, Cerván-Martín M, Garrido N, Castilla JA, Gonzalvo MC, Clavero A, Molina M, Luján S, Santos-Ribeiro S, Vilches MÁ, Espuch A, Maldonado V, Galiano-Gutiérrez N, Santamaría-López E, González-Ravina C, Quintana-Ferraz F, Gómez S, Amorós D, Martínez-Granados L, Ortega-González Y, Burgos M, Pereira-Caetano I, Bulbul O, Castellano S, Romano M, Albani E, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Carmona FD, Bossini-Castillo L. A comprehensive study of common and rare genetic variants in spermatogenesis-related loci identifies new risk factors for idiopathic severe spermatogenic failure. Hum Reprod Open 2024; 2024:hoae069. [PMID: 39678461 PMCID: PMC11645127 DOI: 10.1093/hropen/hoae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Indexed: 12/17/2024] Open
Abstract
STUDY QUESTION Can genome-wide genotyping data be analysed using a hypothesis-driven approach to enhance the understanding of the genetic basis of severe spermatogenic failure (SPGF) in male infertility? SUMMARY ANSWER Our findings revealed a significant association between SPGF and the SHOC1 gene and identified three novel genes (PCSK4, AP3B1, and DLK1) along with 32 potentially pathogenic rare variants in 30 genes that contribute to this condition. WHAT IS KNOWN ALREADY SPGF is a major cause of male infertility, often with an unknown aetiology. SPGF can be due to either multifactorial causes, including both common genetic variants in multiple genes and environmental factors, or highly damaging rare variants. Next-generation sequencing methods are useful for identifying rare mutations that explain monogenic forms of SPGF. Genome-wide association studies (GWASs) have become essential approaches for deciphering the intricate genetic landscape of complex diseases, offering a cost-effective and rapid means to genotype millions of genetic variants. Novel methods have demonstrated that GWAS datasets can be used to infer rare coding variants that are causal for male infertility phenotypes. However, this approach has not been previously applied to characterize the genetic component of a whole case-control cohort. STUDY DESIGN SIZE DURATION We employed a hypothesis-driven approach focusing on all genetic variation identified, using a GWAS platform and subsequent genotype imputation, encompassing over 20 million polymorphisms and a total of 1571 SPGF patients and 2431 controls. Both common (minor allele frequency, MAF > 0.01) and rare (MAF < 0.01) variants were investigated within a total of 1797 loci with a reported role in spermatogenesis. This gene panel was meticulously assembled through comprehensive searches in the literature and various databases focused on male infertility genetics. PARTICIPANTS/MATERIALS SETTING METHODS This study involved a European cohort using previously and newly generated data. Our analysis consisted of three independent methods: (i) variant-wise association analyses using logistic regression models, (ii) gene-wise association analyses using combined multivariate and collapsing burden tests, and (iii) identification and characterisation of highly damaging rare coding variants showing homozygosity only in SPGF patients. MAIN RESULTS AND THE ROLE OF CHANCE The variant-wise analyses revealed an association between SPGF and SHOC1-rs12347237 (P = 4.15E-06, odds ratio = 2.66), which was likely explained by an altered binding affinity of key transcription factors in regulatory regions and the disruptive effect of coding variants within the gene. Three additional genes (PCSK4, AP3B1, and DLK1) were identified as novel relevant players in human male infertility using the gene-wise burden test approach (P < 5.56E-04). Furthermore, we linked a total of 32 potentially pathogenic and recessive coding variants of the selected genes to 35 different cases. LARGE SCALE DATA Publicly available via GWAS catalog (accession number: GCST90239721). LIMITATIONS REASONS FOR CAUTION The analysis of low-frequency variants presents challenges in achieving sufficient statistical power to detect genetic associations. Consequently, independent studies with larger sample sizes are essential to replicate our results. Additionally, the specific roles of the identified variants in the pathogenic mechanisms of SPGF should be assessed through functional experiments. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight the benefit of using GWAS genotyping to screen for both common and rare variants potentially implicated in idiopathic cases of SPGF, whether due to complex or monogenic causes. The discovery of novel genetic risk factors for SPGF and the elucidation of the underlying genetic causes provide new perspectives for personalized medicine and reproductive counselling. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Spanish Ministry of Science and Innovation through the Spanish National Plan for Scientific and Technical Research and Innovation (PID2020-120157RB-I00) and the Andalusian Government through the research projects of 'Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)' (ref. PY20_00212) and 'Proyectos de Investigación aplicada FEDER-UGR 2023' (ref. C-CTS-273-UGR23). S.G.-M. was funded by the previously mentioned projects (ref. PY20_00212 and PID2020-120157RB-I00). A.G.-J. was funded by MCIN/AEI/10.13039/501100011033 and FSE 'El FSE invierte en tu futuro' (grant ref. FPU20/02926). IPATIMUP integrates the i3S Research Unit, which is partially supported by the Portuguese Foundation for Science and Technology (FCT), financed by the European Social Funds (COMPETE-FEDER) and National Funds (projects PEstC/SAU/LA0003/2013 and POCI-01-0145-FEDER-007274). S.S. is supported by FCT funds (10.54499/DL57/2016/CP1363/CT0019), ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, and is also partially supported by the Portuguese Foundation for Science and Technology (UIDP/00009/2020 and UIDB/00009/2020). S. Larriba received support from Instituto de Salud Carlos III (grant: DTS18/00101), co-funded by FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe) and from 'Generalitat de Catalunya' (grant 2021SGR052). S. Larriba is also sponsored by the 'Researchers Consolidation Program' from the SNS-Dpt. Salut Generalitat de Catalunya (Exp. CES09/020). All authors declare no conflict of interest related to this study.
Collapse
Affiliation(s)
- Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), CSIC, Granada, Spain
| | - Nicolás Garrido
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - M Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Marta Molina
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Ángel Vilches
- Ovoclinic & Ovobank, Clínicas de Reproducción Asistida y Banco de óvulos, Marbella, Málaga, Spain
| | - Andrea Espuch
- Hospital Universitario Torrecárdenas, Unidad de Reproducción Humana Asistida, Almería, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | | | | | - Cristina González-Ravina
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Fernando Quintana-Ferraz
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Susana Gómez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - David Amorós
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal
| | - Ozgur Bulbul
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Stefano Castellano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Massimo Romano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Albani
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal
- ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- CGPP-IBMC—Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
9
|
d'Aniello F, Mariniello K, Al Sayed Y, Bhavsar K, Read JE, Guasti L, Howard SR. The Role of DLK1 Deficiency in Central Precocious Puberty and Association with Metabolic Dysregulation. Horm Res Paediatr 2024:1-11. [PMID: 39419009 DOI: 10.1159/000541554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Precocious puberty is defined as the appearance of secondary sexual characteristics before the age of 8 years in girls and 9 years in boys. Central precocious puberty (CPP) is a rare condition that is diagnosed when premature activation of the hypothalamic-pituitary-gonadal axis is detected, in association with precocious breast development or testicular growth. Idiopathic CPP is historically considered to be the most common form, but in recent years defects in a small but growing number of genes regulating the timing of puberty have been identified in an increasing proportion of cases of CPP. Delta-like non-canonical Notch ligand 1 (DLK1) is understood to be one of the key genes involved in the etiology of CPP, although its mechanistic role is not yet fully understood. CASE PRESENTATION We identified a novel de novo variant of DLK1 (c.835C>T; p.Gln279*) in an 8-year-old girl of Bangladeshi origin. She presented with an advanced Tanner staging of B4P4A2, significantly advanced bone age (BA, 13 years), a near-adult proportioned uterus, with a history of menarche at the age of 7.4 years. Diagnosis was confirmed by raised basal luteinizing hormone concentration. She was found to have truncal obesity associated with abnormal fasting insulin levels and mildly elevated cholesterol levels. These findings are consistent with previous literature describing an association between patients with DLK1 deficiency and an impaired metabolic profile. The patient was treated for 2 years with GnRH agonists with ongoing biochemical follow-up into adolescence. CONCLUSION This case illustrates the susceptibility to metabolic derangement for patients with mutations in DLK1 and the need for ongoing monitoring after puberty. Our summary of previously identified DLK1 variants and their metabolic consequences demonstrates the frequency of obesity, lipid abnormalities, and insulin dysregulation in this patient cohort in childhood and beyond. This knowledge can guide future clinical practice for patients with CPP patients due to DLK1 deficiency.
Collapse
Affiliation(s)
- Francesco d'Aniello
- School of Pediatrics, University of Rome Tor Vergata, Rome, Italy,
- Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy,
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK,
| | - Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yasmin Al Sayed
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Karishma Bhavsar
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jordan E Read
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
10
|
Zhao K, So HC, Lin Z. scParser: sparse representation learning for scalable single-cell RNA sequencing data analysis. Genome Biol 2024; 25:223. [PMID: 39152499 PMCID: PMC11328435 DOI: 10.1186/s13059-024-03345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
The rapid rise in the availability and scale of scRNA-seq data needs scalable methods for integrative analysis. Though many methods for data integration have been developed, few focus on understanding the heterogeneous effects of biological conditions across different cell populations in integrative analysis. Our proposed scalable approach, scParser, models the heterogeneous effects from biological conditions, which unveils the key mechanisms by which gene expression contributes to phenotypes. Notably, the extended scParser pinpoints biological processes in cell subpopulations that contribute to disease pathogenesis. scParser achieves favorable performance in cell clustering compared to state-of-the-art methods and has a broad and diverse applicability.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zhixiang Lin
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
11
|
Jiang H, Wang Y, Yin C, Pan H, Chen L, Feng K, Chang Y, Sun H. SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation. Comput Biol Med 2024; 178:108690. [PMID: 38879931 DOI: 10.1016/j.compbiomed.2024.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/19/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
Prevalent Gene Regulatory Network (GRN) construction methods rely on generalized correlation analysis. However, in biological systems, regulation is essentially a causal relationship that cannot be adequately captured solely through correlation. Therefore, it is more reasonable to infer GRNs from a causal perspective. Existing causal discovery algorithms typically rely on Directed Acyclic Graphs (DAGs) to model causal relationships, but it often requires traversing the entire network, which result in computational demands skyrocketing as the number of nodes grows and make causal discovery algorithms only suitable for small networks with one or two hundred nodes or fewer. In this study, we propose the SLIVER (cauSaL dIscovery Via dimEnsionality Reduction) algorithm which integrates causal structural equation model and graph decomposition. SLIVER introduces a set of factor nodes, serving as abstractions of different functional modules to integrate the regulatory relationships between genes based on their respective functions or pathways, thus reducing the GRN to the product of two low-dimensional matrices. Subsequently, we employ the structural causal model (SCM) to learn the GRN within the gene node space, enforce the DAG constraint in the low-dimensional space, and guide each factor to aggregate various functions through cosine similarity. We evaluate the performance of the SLIVER algorithm on 12 real single cell transcriptomic datasets, and demonstrate it outperforms other 12 widely used methods both in GRN inference performance and computational resource usage. The analysis of the gene information integrated by factor nodes also demonstrate the biological explanation of factor nodes in GRNs. We apply it to scRNA-seq of Type 2 diabetes mellitus to capture the transcriptional regulatory structural changes of β cells under high insulin demand.
Collapse
Affiliation(s)
- Hongyang Jiang
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Yuezhu Wang
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Chaoyi Yin
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Hao Pan
- College of Software, Jilin University, Changchun, 130012, China
| | - Liqun Chen
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Ke Feng
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Yi Chang
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China; International Center of Future Science, Jilin University, Changchun, China; Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China
| | - Huiyan Sun
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China; International Center of Future Science, Jilin University, Changchun, China; Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China.
| |
Collapse
|
12
|
Karaman V, Karakilic-Ozturan E, Poyrazoglu S, Gelmez MY, Bas F, Darendeliler F, Uyguner ZO. Novel variants ensued genomic imprinting in familial central precocious puberty. J Endocrinol Invest 2024; 47:2041-2052. [PMID: 38367171 PMCID: PMC11266277 DOI: 10.1007/s40618-023-02300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
INTRODUCTION Central precocious puberty (CPP) is characterized by the early onset of puberty and is associated with the critical processes involved in the pubertal switch. The puberty-related gene pool in the human genome is considerably large though few have been described in CPP. Within those genes, the genomic imprinting features of the MKRN3 and DLK1 genes add additional complexity to the understanding of the pathologic pathways. This study aimed to investigate the molecular etiology in the CPP cohort. METHODS Eighteen familial CPP cases were investigated by Sanger sequencing for five CPP-related genes; DLK1, KISS1, KISS1R, MKRN3, and PROKR2. Segregation analysis was performed in all patients with pathogenic variants. Using an ELISA test, the functional pathogenicity of novel variants was also investigated in conjunction with serum delta-like 1 homolog (DLK1) concentrations. RESULTS In three probands, a known variant in the MKRN3 gene (c.982C>T/p.(Arg328Cys)) and two novel variants in the DLK1 gene (c.357C>G/p.(Tyr119Ter) and c.67+78C>T) were identified. All three were inherited from the paternal allele. The individuals carrying the DLK1 variants had low detectable DLK1 levels in their serum. CONCLUSIONS The frequencies were 5.5% (1/18) for MKRN3 11% (2/18) for DLK1, and none for either KISS1, KISS1R, and PROKR2. Low serum DLK1 levels in affected individuals supported the relationship between here described novel DLK1 gene variants with CPP. Nonsense nature of c.357C>G/p.(Tyr119Ter) and an alteration in the evolutionarily conserved nucleotide c.67+78C>T suggested the disruptive nature of the variant's compatibility with CPP.
Collapse
Affiliation(s)
- V Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey.
| | - E Karakilic-Ozturan
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - S Poyrazoglu
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Y Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - F Bas
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - F Darendeliler
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Z O Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey
| |
Collapse
|
13
|
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024; 14:361. [PMID: 39057684 PMCID: PMC11278577 DOI: 10.3390/metabo14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) exhibit greater adiposity at birth. This early-life phenotype may increase offspring risk of developing obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease later in life. Infants born to women with GDM have a dysregulation of several hormones, cytokines, and growth factors related to fetal fat mass growth. One of the molecular mechanisms of GDM influencing these factors is epigenetic alterations, such as DNA methylation (DNAm). This review will examine the role of DNAm as a potential biomarker for monitoring fetal growth during pregnancy in women with GDM. This information is relevant since it may provide useful new biomarkers for the diagnosis, prognosis, and treatment of fetal growth and its later-life health consequences.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Magalhi Robledo-Clemente
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
14
|
Liu Y, Du M, Zhang L, Wang N, He Q, Cao J, Zhao B, Li X, Li B, Bou G, Zhao Y, Dugarjaviin M. Comparative Analysis of mRNA and lncRNA Expression Profiles in Testicular Tissue of Sexually Immature and Sexually Mature Mongolian Horses. Animals (Basel) 2024; 14:1717. [PMID: 38929336 PMCID: PMC11200857 DOI: 10.3390/ani14121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Testicular development and spermatogenesis are tightly regulated by both coding and non-coding genes, with mRNA and lncRNA playing crucial roles in post-transcriptional gene expression regulation. However, there are significant differences in regulatory mechanisms before and after sexual maturity. Nevertheless, the mRNAs and lncRNAs in the testes of Mongolian horses have not been systematically identified. In this study, we first identified the testicular tissues of sexually immature and sexually mature Mongolian horses at the tissue and protein levels, and comprehensively analyzed the expression profiles of mRNA and lncRNA in the testes of 1-year-old (12 months, n = 3) and 10-year-old (n = 3) Mongolian horses using RNA sequencing technology. Through gene expression analysis, we identified 16,582 mRNAs and 2128 unknown lncRNAs that are commonly expressed in both sexually immature and sexually mature Mongolian horses. Meanwhile, 9217 mRNAs (p < 0.05) and 2191 unknown lncRNAs (p < 0.05) were identified as differentially expressed between the two stages, which were further validated by real-time fluorescent quantitative PCR and analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The analysis results showed that genes in the sexually immature stage were mainly enriched in terms related to cellular infrastructure, while genes in the sexually mature stage were enriched in terms associated with hormones, metabolism, and spermatogenesis. In summary, the findings of this study provide valuable resources for a deeper understanding of the molecular mechanisms underlying testicular development and spermatogenesis in Mongolian horses and offer new perspectives for future related research.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jialong Cao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bei Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
15
|
Canton APM, Seraphim CE, Montenegro LR, Krepischi ACV, Mendonca BB, Latronico AC, Brito VN. The genetic etiology is a relevant cause of central precocious puberty. Eur J Endocrinol 2024; 190:479-488. [PMID: 38857188 DOI: 10.1093/ejendo/lvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/14/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVES The etiology of central precocious puberty (CPP) has expanded with identification of new genetic causes, including the monogenic deficiency of Makorin-Ring-Finger-Protein-3 (MKRN3). We aimed to assess the prevalence of CPP causes and the predictors of genetic involvement in this phenotype. DESIGN A retrospective cohort study for an etiological survey of patients with CPP from a single academic center. METHODS All patients with CPP had detailed medical history, phenotyping, and brain magnetic resonance imaging (MRI); those with negative brain MRI (apparently idiopathic) were submitted to genetic studies, mainly DNA sequencing studies, genomic microarray, and methylation analysis. RESULTS We assessed 270 patients with CPP: 50 (18.5%) had CPP-related brain lesions (34 [68%] congenital lesions), whereas 220 had negative brain MRI. Of the latter, 174 (165 girls) were included for genetic studies. Genetic etiologies were identified in 22 patients (20 girls), indicating an overall frequency of genetic CPP of 12.6% (22.2% in boys and 12.1% in girls). The most common genetic defects were MKRN3, Delta-Like-Non-Canonical-Notch-Ligand-1 (DLK1), and Methyl-CpG-Binding-Protein-2 (MECP2) loss-of-function mutations, followed by 14q32.2 defects (Temple syndrome). Univariate logistic regression identified family history (odds ratio [OR] 3.3; 95% CI 1.3-8.3; P = .01) and neurodevelopmental disorders (OR 4.1; 95% CI 1.3-13.5; P = .02) as potential clinical predictors of genetic CPP. CONCLUSIONS Distinct genetic causes were identified in 12.6% patients with apparently idiopathic CPP, revealing the genetic etiology as a relevant cause of CPP in both sexes. Family history and neurodevelopmental disorders were suggested as predictors of genetic CPP. We originally proposed an algorithm to investigate the etiology of CPP including genetic studies.
Collapse
Affiliation(s)
- Ana Pinheiro Machado Canton
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Carlos Eduardo Seraphim
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Luciana Ribeiro Montenegro
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | | | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, 01246-903 Sao Paulo, Brazil
| | - Ana Claudia Latronico
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Vinicius Nahime Brito
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
| |
Collapse
|
16
|
Carvalho LML, Jorge AADL, Bertola DR, Krepischi ACV, Rosenberg C. A Comprehensive Review of Syndromic Forms of Obesity: Genetic Etiology, Clinical Features and Molecular Diagnosis. Curr Obes Rep 2024; 13:313-337. [PMID: 38277088 DOI: 10.1007/s13679-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Syndromic obesity refers to obesity occurring with additional clinical findings, such as intellectual disability/developmental delay, dysmorphic features, and congenital malformations. PURPOSE OF REVIEW: To present a narrative review regarding the genetic etiology, clinical description, and molecular diagnosis of syndromic obesity, which is a rare condition with high phenotypic variability and genetic heterogeneity. The following syndromes are presented in this review: Prader-Willi, Bardet-Biedl, Pseudohypoparathyroidism, Alström, Smith-Magenis, Cohen, Temple, 1p36 deletion, 16p11.2 microdeletion, Kleefstra, SIM1-related, Börjeson-Forssman-Lehmann, WAGRO, Carpenter, MORM, and MYT1L-related syndromes. RECENT FINDINGS: There are three main groups of mechanisms for syndromic obesity: imprinting, transcriptional activity regulation, and cellular cilia function. For molecular diagnostic, methods of genome-wide investigation should be prioritized over sequencing of panels of syndromic obesity genes. In addition, we present novel syndromic conditions that need further delineation, but evidences suggest they have a higher frequency of obesity. The etiology of syndromic obesity tends to be linked to disrupted neurodevelopment (central) and is associated with a diversity of genes and biological pathways. In the genetic investigation of individuals with syndromic obesity, the possibility that the etiology of the syndromic condition is independent of obesity should be considered. The accurate genetic diagnosis impacts medical management, treatment, and prognosis, and allows proper genetic counseling.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Onsoi W, Numsriskulrat N, Aroonparkmongkol S, Supornsilchai V, Srilanchakon K. Kisspeptin and DLK1 levels for monitoring treatment of girls with central precocious puberty. Clin Exp Pediatr 2024; 67:296-302. [PMID: 38772409 DOI: 10.3345/cep.2023.01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Kisspeptin and delta-like 1 homolog (DLK1) are neuropeptides that reportedly play an important role in pubertal timing by activating and inhibiting the hypothalamic-pituitary-gonadal axis, respectively. Consequently, serum kisspeptin and DLK1 levels may be novel biomarkers for differentiating between central precocious puberty (CPP) and premature thelarche (PT) in girls and used to monitor CPP treatment. PURPOSE To compare baseline serum kisspeptin and DLK1 levels in girls with CPP at diagnosis and after treatment to age-matched girls with PT. METHODS This prospective longitudinal study included girls with precocious puberty and girls with PT who experienced breast development before 8 years of age and peak luteinizing hormone levels of ≥6 versus <6 IU/L after a gonadotropin-releasing hormone (GnRH) stimulation test. Serum kisspeptin and DLK1 levels were determined in both groups at baseline and after 6 months of GnRH analog treatment in the CPP group and analyzed by enzyme-linked immunosorbent assay. RESULTS The study divided a total of 48 girls into CPP (n=24; mean age, 7.7±0.7 years) and PT (n=24; mean age, 7.4±0.8 years) groups. The baseline median serum kisspeptin levels were 50.5 pg/mL (range, 38.2-77 pg/mL) and 49.5 pg/mL (range, 39.7-67.6 pg/mL), respectively (P=0.89), while the baseline median serum DLK1 levels were 6.5 ng/mL (range, 5.9-7.5 ng/mL) and 6 ng/mL (4.4-14.4 ng/mL), respectively (P=0.68). After 6 months of GnRH analog treatment in the CPP group, the median serum kisspeptin level was lower (46.4 ng/mL; range, 37.1-60 ng/mL) than that at baseline (P=0.002), while the median serum DLK1 level was higher (7 ng/mL; range, 6.7-8.9) than that at baseline (P=0.002). CONCLUSION Our findings suggest that baseline serum kisspeptin and DLK1 levels are not reliable biomarkers for differentiating between CPP and PT. However, significant changes in serum kisspeptin and DLK1 levels may be used to monitor CPP treatment.
Collapse
Affiliation(s)
- Witchuwan Onsoi
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattakarn Numsriskulrat
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suphab Aroonparkmongkol
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vichit Supornsilchai
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Khomsak Srilanchakon
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Murthy VL, Mosley JD, Perry AS, Jacobs DR, Tanriverdi K, Zhao S, Sawicki KT, Carnethon M, Wilkins JT, Nayor M, Das S, Abel ED, Freedman JE, Clish CB, Shah RV. Metabolic liability for weight gain in early adulthood. Cell Rep Med 2024; 5:101548. [PMID: 38703763 PMCID: PMC11148768 DOI: 10.1016/j.xcrm.2024.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/27/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.
Collapse
Affiliation(s)
- Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Jonathan D Mosley
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kahraman Tanriverdi
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | - Matthew Nayor
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Saumya Das
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane E Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
19
|
Baena N, Monk D, Aguilera C, Fraga MF, Fernández AF, Gabau E, Corripio R, Capdevila N, Trujillo JP, Ruiz A, Guitart M. Novel 14q32.2 paternal deletion encompassing the whole DLK1 gene associated with Temple syndrome. Clin Epigenetics 2024; 16:62. [PMID: 38715103 PMCID: PMC11077747 DOI: 10.1186/s13148-024-01652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.
Collapse
Affiliation(s)
- Neus Baena
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.
| | - David Monk
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Cinthia Aguilera
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Elisabeth Gabau
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Raquel Corripio
- Paediatric Endocrinology Department, Parc Tauli Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Nuria Capdevila
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Juan Pablo Trujillo
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Anna Ruiz
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Miriam Guitart
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
20
|
Kolska M, Agier J, Kozłowska E. Evaluation of preadipocyte factor-1 (Pref-1) level in cord blood of newborns born by mothers with gestational diabetes mellitus (GDM). BMC Pregnancy Childbirth 2024; 24:313. [PMID: 38664725 PMCID: PMC11044594 DOI: 10.1186/s12884-024-06517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common metabolic complication, which leads to short and long-term consequences in both mother and fetus exposed to hyperglycemia. The aetiology of this condition is proposed to be based on the dysfunction of the adipose tissue, which is characterised by the aberrant generation of adipokines. One of them is preadipocyte factor-1 (Pref-1), which could mediate controlling the adaptation of the maternal metabolism to pregnancy. AIMS The study aims to examine the level of Pref-1 in the cord blood of healthy pregnant women's neonates and fetuses born to mothers with GDM. MATERIALS AND METHODS Cord blood samples were collected from 30 newborns of mothers with GDM and 40 newborns of healthy pregnant women. Pref-1 concentrations were measured with an ELISA kit. RESULTS Fetal Pref-1 concentrations were significantly lower in newborns of mothers with GDM compared to the normal pregnancy group children (5.32 ± 0.29 vs. 7.38 ± 0.53; p < 0.001). Mothers with GDM had a significantly higher index of BMI before pregnancy, maternal gestational weight gain, and maternal fasting glucose. In-depth analysis through multiple variant linear regression revealed a significant association between fetal serum Pref-1 levels, exposure to GDM, and gestational age. CONCLUSION These findings contribute valuable insights into maternal-fetal health and pave the way for more targeted and effective clinical interventions.
Collapse
Affiliation(s)
- Monika Kolska
- Department of Microbiology, Genetics and Experimental Immunology, Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, Lodz, 92-215, Poland.
| | - Justyna Agier
- Department of Microbiology, Genetics and Experimental Immunology, Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, Lodz, 92-215, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology, Genetics and Experimental Immunology, Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, Lodz, 92-215, Poland
| |
Collapse
|
21
|
Song X, Lv T, Fang W, Lv J. Exploring the role of DLK1 in inducing NLRP3 inflammasome activation in bladder epithelial cells in patients with interstitial cystitis. Asian J Surg 2024; 47:1907-1908. [PMID: 38185550 DOI: 10.1016/j.asjsur.2023.12.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Xin Song
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Tingting Lv
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Weilin Fang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Jianwei Lv
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China.
| |
Collapse
|
22
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
23
|
张 余, 罗 飞. [Recent advances in the genetic etiology of central precocious puberty]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:302-307. [PMID: 38557384 PMCID: PMC10986386 DOI: 10.7499/j.issn.1008-8830.2309098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024]
Abstract
Central precocious puberty (CPP) is a developmental disorder caused by early activation of the hypothalamic-pituitary-gonadal axis. The incidence of CPP is rapidly increasing, but the underlying mechanisms are not fully understood. Previous studies have shown that gain-of-function mutations in the KISS1R and KISS1 genes and loss-of-function mutations in the MKRN3, LIN28, and DLK1 genes may lead to early initiation of pubertal development. Recent research has also revealed the significant role of epigenetic factors such as DNA methylation and microRNAs in the regulation of gonadotropin-releasing hormone neurons, as well as the modulating effect of gene networks involving multiple variant genes on pubertal initiation. This review summarizes the genetic etiology and pathogenic mechanisms underlying CPP.
Collapse
|
24
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Yang T, Yan C, Yang L, Tan J, Jiang S, Hu J, Gao W, Wang Q, Li Y. Identification and validation of core genes for type 2 diabetes mellitus by integrated analysis of single-cell and bulk RNA-sequencing. Eur J Med Res 2023; 28:340. [PMID: 37700362 PMCID: PMC10498638 DOI: 10.1186/s40001-023-01321-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The exact mechanisms of type 2 diabetes mellitus (T2DM) remain largely unknown. We intended to authenticate critical genes linked to T2DM progression by tandem single-cell sequencing and general transcriptome sequencing data. METHODS T2DM single-cell RNA-sequencing data were submitted by the Gene Expression Omnibus (GEO) database and ArrayExpress (EBI), from which gene expression matrices were retrieved. The common cell clusters and representative marker genes were ascertained by principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), CellMarker, and FindMarkers in two datasets (GSE86469 and GSE81608). T2DM-related differentially expressed marker genes were defined by intersection analysis of marker genes and GSE86468-differentially expressed genes. Receiver operating characteristic (ROC) curves were utilized to assign representative marker genes with diagnostic values by GSE86468, GSE29226 and external validation GSE29221, and their prospective target compounds were forecasted by PubChem. Besides, the R package clusterProfiler-based functional annotation was designed to unveil the intrinsic mechanisms of the target genes. At last, western blot was used to validate the alternation of CDKN1C and DLK1 expression in primary pancreatic islet cells cultured with or without 30mM glucose. RESULTS Three common cell clusters were authenticated in two independent T2DM single-cell sequencing data, covering neurons, epithelial cells, and smooth muscle cells. Functional ensemble analysis disclosed an intimate association of these cell clusters with peptide/insulin secretion and pancreatic development. Pseudo-temporal trajectory analysis indicated that almost all epithelial and smooth muscle cells were of neuron origin. We characterized CDKN1C and DLK1, which were notably upregulated in T2DM samples, with satisfactory availability in recognizing three representative marker genes in non-diabetic and T2DM samples, and they were also robustly interlinked with the clinical characteristics of patients. Western blot also demonstrated that, compared with control group, the expression of CDKN1C and DLK1 were increased in primary pancreatic islet cells cultured with 30 mM glucose for 48 h. Additionally, PubChem projected 11 and 21 potential compounds for CDKN1C and DLK1, respectively. CONCLUSION It is desirable that the emergence of the 2 critical genes indicated (CDKN1C and DLK1) could be catalysts for the investigation of the mechanisms of T2DM progression and the exploitation of innovative therapies.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jialu Tan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shiqiu Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Juan Hu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
26
|
Montenegro L, Seraphim C, Tinano F, Piovesan M, Canton APM, McElreavey K, Brabant S, Boris NP, Magnuson M, Carroll RS, Kaiser UB, Argente J, Barrios V, Brito VN, Brauner R, Latronico AC. Familial central precocious puberty due to DLK1 deficiency: novel genetic findings and relevance of serum DLK1 levels. Eur J Endocrinol 2023; 189:422-428. [PMID: 37703313 PMCID: PMC10519858 DOI: 10.1093/ejendo/lvad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Several rare loss-of-function mutations of delta-like noncanonical notch ligand 1 (DLK1) have been described in non-syndromic children with familial central precocious puberty (CPP). OBJECTIVE We investigated genetic abnormalities of DLK1 gene in a French cohort of children with idiopathic CPP. Additionally, we explored the pattern of DLK1 serum levels in patients with CPP and in healthy children at puberty, as well as in wild-type female mice. PATIENTS AND METHODS Genomic DNA was obtained from 121 French index cases with CPP. Automated sequencing of the coding region of the DLK1 gene was performed in all cases. Serum DLK1 levels were measured by enzyme linked immunosorbent assay (ELISA) in 209 individuals, including 191 with normal pubertal development and in female mice during postnatal pubertal maturation. RESULTS We identified 2 rare pathogenic DLK1 allelic variants: A stop gain variant (c.372C>A; p.Cys124X) and a start loss variant (c.2T>G; p.Met1?, or p.0) in 2 French girls with CPP. Mean serum DLK1 levels were similar between healthy children and idiopathic CPP children. In healthy individuals, DLK1 levels correlated with pubertal stage: In girls, DLK1 decreased between Tanner stages III and V, whereas in boys, DLK1 decreased between Tanner stages II and V (P = .008 and .016, respectively). Serum levels of Dlk1 also decreased in wild-type female mice. CONCLUSIONS Novel loss-of-function mutations in DLK1 gene were identified in 2 French girls with CPP. Additionally, we demonstrated a pattern of dynamic changes in circulating DLK1 serum levels in humans and mice during pubertal stages, reinforcing the role of this factor in pubertal timing.
Collapse
Affiliation(s)
- Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| | - Carlos Seraphim
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| | - Flávia Tinano
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 021115, United States
| | - Maiara Piovesan
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| | - Ana P M Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institute Pasteur, Paris, 75724, France
| | - Severine Brabant
- Assistance Publique Hopitaux de Paris, Department of Functional Explorations, Necker Enfants Malades Hospital, Paris-Centre University, Paris Cedex, 75015, France
| | - Natalia P Boris
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 021115, United States
| | - Melissa Magnuson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 021115, United States
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 021115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 021115, United States
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- IMDEA Food Institute, CEIUAM+CSIC, Madrid, 28049, Spain
| | - Vicente Barrios
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- IMDEA Food Institute, CEIUAM+CSIC, Madrid, 28049, Spain
| | - Vinicius N Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| | - Raja Brauner
- Pediatric Endocrinology Unit, Hôpital Fondation Adolphe de Rothschild and Université Paris Cité, Paris, 75019, France
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, 05403-000, Brazil
| |
Collapse
|
27
|
Kilberg MJ, Vogiatzi MG. Approach to the Patient: Central Precocious Puberty. J Clin Endocrinol Metab 2023; 108:2115-2123. [PMID: 36916130 DOI: 10.1210/clinem/dgad081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 03/15/2023]
Abstract
Central precocious puberty (CPP) classically refers to premature activation of the hypothalamic-pituitary-gonadal axis with onset of sexual development before the age of 8 years in girls and 9 years in boys. A decrease in the age of thelarche has been reported over the past several decades; however, the tempo of pubertal progression can be slower and adult height may not be adversely affected in many of the girls who experience thelarche at 6-8 years. Outside of this secular trend in the development itself, the past several decades have also brought about advances in diagnosis and management. This includes the widespread use of an ultrasensitive luteinizing hormone assay, decreasing the need for stimulation testing and a better understanding of the genetics that govern the onset of puberty. Additionally, management of CPP using gonadotropin-releasing hormone analogs (GnRHas) has changed with the advent of new longer-acting formulations. Emerging long-term outcomes of GnRHa administration with regards to obesity, cardiovascular risk factors and fertility are reassuring. Despite these advancements, clinical care in CPP is hampered by the lack of well-designed controlled studies, and management decisions are frequently not supported by clear practice guidelines. Data in boys with CPP are limited and this article focuses on the diagnosis and management of CPP in girls, particularly, in those who present with thelarche at the age of 6-8 years.
Collapse
Affiliation(s)
- Marissa J Kilberg
- Children's Hospital of Philadelphia, Endocrinology and Diabetes, Philadelphia, PA 19104, USA
| | - Maria G Vogiatzi
- Children's Hospital of Philadelphia, Endocrinology and Diabetes, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Magnotto JC, Mancini A, Bird K, Montenegro L, Tütüncüler F, Pereira SA, Simas V, Garcia L, Roberts SA, Macedo D, Magnuson M, Gagliardi P, Mauras N, Witchel SF, Carroll RS, Latronico AC, Kaiser UB, Abreu AP. Novel MKRN3 Missense Mutations Associated With Central Precocious Puberty Reveal Distinct Effects on Ubiquitination. J Clin Endocrinol Metab 2023; 108:1646-1656. [PMID: 36916482 PMCID: PMC10653150 DOI: 10.1210/clinem/dgad151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
CONTEXT Loss-of-function mutations in the maternally imprinted genes, MKRN3 and DLK1, are associated with central precocious puberty (CPP). Mutations in MKRN3 are the most common known genetic etiology of CPP. OBJECTIVE This work aimed to screen patients with CPP for MKRN3 and DLK1 mutations and analyze the effects of identified mutations on protein function in vitro. METHODS Participants included 84 unrelated children with CPP (79 girls, 5 boys) and, when available, their first-degree relatives. Five academic medical institutions participated. Sanger sequencing of MKRN3 and DLK1 5' upstream flanking and coding regions was performed on DNA extracted from peripheral blood leukocytes. Western blot analysis was performed to assess protein ubiquitination profiles. RESULTS Eight heterozygous MKRN3 mutations were identified in 9 unrelated girls with CPP. Five are novel missense mutations, 2 were previously identified in patients with CPP, and 1 is a frameshift variant not previously associated with CPP. No pathogenic variants were identified in DLK1. Girls with MKRN3 mutations had an earlier age of initial pubertal signs and higher basal serum luteinizing hormone and follicle-stimulating hormone compared to girls with CPP without MRKN3 mutations. Western blot analysis revealed that compared to wild-type MKRN3, mutations within the RING finger domain reduced ubiquitination whereas the mutations outside this domain increased ubiquitination. CONCLUSION MKRN3 mutations were present in 10.7% of our CPP cohort, consistent with previous studies. The novel identified mutations in different domains of MKRN3 revealed different patterns of ubiquitination, suggesting distinct molecular mechanisms by which the loss of MRKN3 results in early pubertal onset.
Collapse
Affiliation(s)
- John C Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandra Mancini
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keisha Bird
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Filiz Tütüncüler
- Department of Pediatrics and Pediatric Endocrinology Unit, Trakya University Faculty of Medicine, Edirne 22030, Turkey
| | - Sidney A Pereira
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vitoria Simas
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonardo Garcia
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie A Roberts
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Delanie Macedo
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Magnuson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Priscila Gagliardi
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Selma F Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Tinano FR, Canton APM, Montenegro LR, de Castro Leal A, Faria AG, Seraphim CE, Brauner R, Jorge AA, Mendonca BB, Argente J, Brito VN, Latronico AC. Clinical and Genetic Characterization of Familial Central Precocious Puberty. J Clin Endocrinol Metab 2023; 108:1758-1767. [PMID: 36611250 DOI: 10.1210/clinem/dgac763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
CONTEXT Central precocious puberty (CPP) can have a familial form in approximately one-quarter of the children. The recognition of this inherited condition increased after the identification of autosomal dominant CPP with paternal transmission caused by mutations in the MKRN3 and DLK1 genes. OBJECTIVE We aimed to characterize the inheritance and estimate the prevalence of familial CPP in a large multiethnic cohort; to compare clinical and hormonal features, as well as treatment response to GnRH analogs (GnRHa), in children with distinct modes of transmission; and to investigate the genetic basis of familial CPP. METHODS We retrospectively studied 586 children with a diagnosis of CPP. Patients with familial CPP (n = 276) were selected for clinical and genetic analysis. Data from previous studies were grouped, encompassing sequencing of MKRN3 and DLK1 genes in 204 patients. Large-scale parallel sequencing was performed in 48 individuals from 34 families. RESULTS The prevalence of familial CPP was estimated at 22%, with a similar frequency of maternal and paternal transmission. Pedigree analyses of families with maternal transmission suggested an autosomal dominant inheritance. Clinical and hormonal features, as well as treatment response to GnRHa, were similar among patients with different forms of transmission of familial CPP. MKRN3 loss-of-function mutations were the most prevalent cause of familial CPP, followed by DLK1 loss-of-function mutations, affecting, respectively, 22% and 4% of the studied families; both affected exclusively families with paternal transmission. Rare variants of uncertain significance were identified in CPP families with maternal transmission. CONCLUSION We demonstrated a similar prevalence of familial CPP with maternal and paternal transmission. MKRN3 and DLK1 loss-of-function mutations were the major causes of familial CPP with paternal transmission.
Collapse
Affiliation(s)
- Flávia Rezende Tinano
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Ana Pinheiro Machado Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Luciana R Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Andrea de Castro Leal
- Departamento de Saúde Integrada, Universidade do Estado do Pará (UEPA), Santarém, 68040-090 Pará, Brasil
| | - Aline G Faria
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Carlos E Seraphim
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Raja Brauner
- Pediatric Endocrinology Unit, Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, 75019 Paris, France
| | - Alexander A Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM/25, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departments of Paediatrics and Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain
- Instituto de Investigación La Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IMDEA Food Institute, CEIUAM+CSIC, 28049 Madrid, Spain
| | - Vinicius N Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| |
Collapse
|
30
|
Kutlu E, Ozgen LT, Bulut H, Kocyigit A, Ustunova S, Hüseyinbas O, Torun E, Cesur Y. Investigation of irisin's role in pubertal onset physiology in female rats. Peptides 2023; 163:170976. [PMID: 36796677 DOI: 10.1016/j.peptides.2023.170976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVE The timing of pubertal development is closely related to metabolic status and energy reserves. It is thought that irisin, which is involved in the regulation of energy metabolism and is shown to be present in the hypothalamo-pituitary-gonadal (HPG) axis, may play a role in this process. In our study, we aimed to investigate the effect of irisin administration on pubertal development and HPG axis in rats. DESIGN-METHODS 36 female rats were included in the study were divided into 3 groups: 100 ng/kg/day irisin treatment group (irisin-100), 50 ng/kg/day irisin treatment group (irisin-50), and control group. On the 38th day, serum samples were taken to determine levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), estradiol and irisin. Brain hypothalamus samples were taken to determine levels of pulsatile gonadotropin-releasing hormone (GnRH), kisspeptin, neurokinin-B, dynorphin (Dyn), and makorin ring finger protein-3 (MKRN3). RESULTS Vaginal opening and estrus were seen firstly in the irisin-100 group. At the end of the study, the highest rate of vaginal patency was found in the irisin-100 group. Hypothalamic protein expression levels of GnRH, NKB and Kiss1 in homogenates; serum FSH, LH, and estradiol levels were the highest in the irisin-100 group, followed by the irisin-50 and control groups, respectively. Ovarian sizes were significantly greater in the irisin-100 group compared to the other groups. The hypothalamic protein expression levels of MKRN3 and Dyn were the lowest in the irisin-100 group. CONCLUSIONS In this experimental study, irisin triggered the onset of puberty in a dose-dependent manner. Irisin administration caused the excitatory system to dominate in the hypothalamic GnRH pulse generator.
Collapse
Affiliation(s)
- Esra Kutlu
- Health Sciences University Istanbul Umraniye Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Umraniye, Istanbul, Turkey.
| | - Lker Tolga Ozgen
- Bezmialem Vakif University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Fatih, Istanbul, Turkey
| | - Huri Bulut
- Istinye University, Faculty of Medicine, Department of Biochemistry, Zeytinburnu, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Bezmialem Vakif University, Faculty of Medicine, Department of Biochemistry, Fatih, Istanbul, Turkey
| | - Savas Ustunova
- Bezmialem Vakif University, Faculty of Medicine, Department of Physiology, Fatih, Istanbul, Turkey
| | - Onder Hüseyinbas
- Bezmialem Vakif University, Faculty of Medicine, Animal Research Laboratory, Fatih, Istanbul, Turkey
| | - Emel Torun
- Bezmialem Vakif University, Faculty of Medicine, Department of Pediatrics, Fatih, Istanbul, Turkey
| | - Yasar Cesur
- Bezmialem Vakif University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Fatih, Istanbul, Turkey
| |
Collapse
|
31
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
32
|
Argente J, Dunkel L, Kaiser UB, Latronico AC, Lomniczi A, Soriano-Guillén L, Tena-Sempere M. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol 2023; 11:203-216. [PMID: 36620967 PMCID: PMC10198266 DOI: 10.1016/s2213-8587(22)00339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 01/07/2023]
Abstract
Puberty is a major maturational event; its mechanisms and timing are driven by genetic determinants, but also controlled by endogenous and environmental cues. Substantial progress towards elucidation of the neuroendocrine networks governing puberty has taken place. However, key aspects of the mechanisms responsible for the precise timing of puberty and its alterations have only recently begun to be deciphered, propelled by epidemiological data suggesting that pubertal timing is changing in humans, via mechanisms that are not yet understood. By integrating basic and clinical data, we provide a comprehensive overview of current advances on the physiological basis of puberty, with a particular focus on the roles of kisspeptins and other central transmitters, the underlying molecular and endocrine mechanisms, and the pathways involved in pubertal modulation by nutritional and metabolic cues. Additionally, we have summarised molecular features of precocious and delayed puberty in both sexes, as revealed by clinical and genetic studies. This Review is a synoptic up-to-date view of how puberty is controlled and of the pathogenesis of major pubertal alterations, from both a clinical and translational perspective. We also highlight unsolved challenges that will seemingly concentrate future research efforts in this active domain of endocrinology.
Collapse
Affiliation(s)
- Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Universidad Autónoma de Madrid, University Hospital Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain.
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, London, UK
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Latronico
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics, LIM42, Department of Endocrinology and Metabolism, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Leandro Soriano-Guillén
- Service of Pediatrics, University Hospital Fundación Jiménez Díaz, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Córdoba, Spain; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
33
|
Zhang S, Pei Z, Lei C, Zhu S, Deng K, Zhou J, Yang J, Lu D, Sun X, Xu C, Xu C. Detection of cryptic balanced chromosomal rearrangements using high-resolution optical genome mapping. J Med Genet 2023; 60:274-284. [PMID: 35710108 DOI: 10.1136/jmedgenet-2022-108553] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chromosomal rearrangements have profound consequences in diverse human genetic diseases. Currently, the detection of balanced chromosomal rearrangements (BCRs) mainly relies on routine cytogenetic G-banded karyotyping. However, cryptic BCRs are hard to detect by karyotyping, and the risk of miscarriage or delivering abnormal offspring with congenital malformations in carrier couples is significantly increased. In the present study, we aimed to investigate the potential of single-molecule optical genome mapping (OGM) in unravelling cryptic chromosomal rearrangements. METHODS Eleven couples with normal karyotypes that had abortions/affected offspring with unbalanced rearrangements were enrolled. Ultra-high-molecular-weight DNA was isolated from peripheral blood cells and processed via OGM. The genome assembly was performed followed by variant calling and annotation. Meanwhile, multiple detection strategies, including FISH, long-range-PCR amplicon-based next-generation sequencing and Sanger sequencing were implemented to confirm the results obtained from OGM. RESULTS High-resolution OGM successfully detected cryptic reciprocal translocation in all recruited couples, which was consistent with the results of FISH and sequencing. All high-confidence cryptic chromosomal translocations detected by OGM were confirmed by sequencing analysis of rearrangement breakpoints. Moreover, OGM revealed additional complex rearrangement events such as inverted aberrations, further refining potential genetic interpretation. CONCLUSION To the best of our knowledge, this is the first study wherein OGM facilitate the rapid and robust detection of cryptic chromosomal reciprocal translocations in clinical practice. With the excellent performance, our findings suggest that OGM is well qualified as an accurate, comprehensive and first-line method for detecting cryptic BCRs in routine clinical testing.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke Deng
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenming Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
34
|
Toutoudaki K, Paltoglou G, Papadimitriou DT, Eleftheriades A, Tsarna E, Christopoulos P. The Role of SNPs in the Pathogenesis of Idiopathic Central Precocious Puberty in Girls. CHILDREN (BASEL, SWITZERLAND) 2023; 10:450. [PMID: 36980008 PMCID: PMC10047240 DOI: 10.3390/children10030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
The initiation of puberty is a crucial timepoint of development, with its disruptions being associated with multiple physical and psychological complications. Idiopathic Central Precocious Puberty (iCPP) has been correlated with Single-Nucleotide Polymorphisms (SNPs) of certain genes that are implicated in various steps of the process of pubertal onset. The aim of this review was to gather current knowledge on SNPs of genes associated with iCPP. We searched articles published on the PubMed, EMBASE and Google Scholar platforms and gathered current literature. KISS1, KISS1R, PLCB1, PRKCA, ITPR1, MKRN3, HPG axis genes, NPVF/NPFFR1, DLK1, KCNK9Q, LIN28B, PROK2R, IGF-1, IGF2, IGF-1R, IGF-2R, IGFBP-3, insulin, IRS-1, LEP/LEPR, PPARγ2, TAC3, TACR3, Estrogen receptors, CYP3A4 and CYP19A1 were studied for implication in the development of precocious puberty. SNPs discovered in genes KISS1, KISS1R, PLCB1, MKRN3, NPVF, LIN28B, PROK2R, IRS-1 TAC3, and CYP3A4 were significantly correlated with CPP, triggering or protecting from CPP. Haplotype (TTTA)13 in CYP19A1 was a significant contributor to CPP. Further investigation of the mechanisms implicated in the pathogenesis of CPP is required to broaden the understanding of these genes' roles in CPP and possibly initiate targeted therapies.
Collapse
Affiliation(s)
- Konstantina Toutoudaki
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, ‘Aghia Sophia’ Children’s Hospital First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios T. Papadimitriou
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Anna Eleftheriades
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ermioni Tsarna
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
35
|
Heger S, Reschke F. Genetische und epigenetische Einflüsse auf den Pubertätsverlauf in Bezug auf Pubertas praecox vera und Pubertas tarda. GYNAKOLOGISCHE ENDOKRINOLOGIE 2023. [DOI: 10.1007/s10304-022-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Palumbo S, Cirillo G, Sanchez G, Aiello F, Fachin A, Baldo F, Pellegrin MC, Cassio A, Salerno M, Maghnie M, Faienza MF, Wasniewska M, Fintini D, Giacomozzi C, Ciccone S, Miraglia Del Giudice E, Tornese G, Grandone A. A new DLK1 defect in a family with idiopathic central precocious puberty: elucidation of the male phenotype. J Endocrinol Invest 2022; 46:1233-1240. [PMID: 36577869 DOI: 10.1007/s40618-022-01997-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE We aimed to investigate a cohort of female and male patients with idiopathic central precocious puberty (CPP), negative for Makorin Ring Finger Protein 3 (MKRN3) defect, by molecular screening for Delta-like 1 homolog (DLK1) defects. DLK1 is an imprinted gene, whose mutations have been described as a rare cause of CPP in girls and adult women with precocious menarche, obesity and metabolic derangement. METHODS We enrolled 14 girls with familial CPP and 13 boys with familial or sporadic CPP from multiple academic hospital centers. Gene sequencing of DLK1 gene was performed. Circulating levels of DLK1 were measured and clinical and biochemical characteristics were described in those with DLK1 defects. RESULTS A novel heterozygous mutation in DLK1, c.288_289insC (p.Cys97Leufs*16), was identified in a male proband, his sister and their father. Age at onset of puberty was in line with previous reports in the girl and 8 years in the boy. The father with untreated CPP showed short stature. No metabolic derangement was present in the father except hypercholesterolemia. Undetectable Dlk1 serum levels indicated the complete lack of protein production in the three affected patients. CONCLUSION A DLK1 defect has been identified for the first time in a boy, underscoring the importance of genetic testing in males with idiopathic or sporadic CPP. The short stature reported by his untreated father suggests the need for timely diagnosis and treatment of subjects with DLK1 defects.
Collapse
Affiliation(s)
- S Palumbo
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - G Cirillo
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - G Sanchez
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - F Aiello
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - A Fachin
- University of Trieste, Trieste, Italy
| | - F Baldo
- University of Trieste, Trieste, Italy
| | - M C Pellegrin
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - A Cassio
- Pediatric Endocrine Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - M Salerno
- Pediatric Endocrine Unit, Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - M Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - M F Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University of Bari A. Moro, Bari, Italy
| | - M Wasniewska
- Unit of Paediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - D Fintini
- Endocrinology Unit, University-Hospital Pediatric Department, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - C Giacomozzi
- Unit of Pediatrics, Department of Maternal and Child Health, Carlo Poma Hospital, ASST-Mantova, Mantua, Italy
| | - S Ciccone
- Pediatric Unit-"M. Bufalini" Hospital - Cesena, Cesena, Italy
| | - E Miraglia Del Giudice
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - G Tornese
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - A Grandone
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy.
| |
Collapse
|
37
|
Roberts SA, Naulé L, Chouman S, Johnson T, Johnson M, Carroll RS, Navarro VM, Kaiser UB. Hypothalamic Overexpression of Makorin Ring Finger Protein 3 Results in Delayed Puberty in Female Mice. Endocrinology 2022; 163:bqac132. [PMID: 35974456 PMCID: PMC10233297 DOI: 10.1210/endocr/bqac132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Makorin ring finger protein 3 (MKRN3) is an important neuroendocrine player in the control of pubertal timing and upstream inhibitor of gonadotropin-releasing hormone secretion. In mice, expression of Mkrn3 in the hypothalamic arcuate and anteroventral periventricular nucleus is high early in life and declines before the onset of puberty. Therefore, we aimed to explore if the persistence of hypothalamic Mkrn3 expression peripubertally would result in delayed puberty. Female mice that received neonatal bilateral intracerebroventricular injections of a recombinant adeno-associated virus expressing Mkrn3 had delayed vaginal opening and first estrus compared with animals injected with control virus. Subsequent estrous cycles and fertility were normal. Interestingly, male mice treated similarly did not exhibit delayed puberty onset. Kiss1, Tac2, and Pdyn mRNA levels were increased in the mediobasal hypothalamus in females at postnatal day 28, whereas kisspeptin and neurokinin B protein levels in the arcuate nucleus were decreased, following Mkrn3 overexpression, compared to controls. Cumulatively, these data suggest that Mkrn3 may directly or indirectly target neuropeptides of Kiss1 neurons to degradation pathways. This mouse model suggests that MKRN3 may be a potential contributor to delayed onset of puberty, in addition to its well-established roles in central precocious puberty and the timing of menarche.
Collapse
Affiliation(s)
- Stephanie A Roberts
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Soukayna Chouman
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Tatyana Johnson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marciana Johnson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Bidlingmaier M, Gleeson H, Latronico AC, Savage MO. Applying precision medicine to the diagnosis and management of endocrine disorders. Endocr Connect 2022; 11:e220177. [PMID: 35968864 PMCID: PMC9513637 DOI: 10.1530/ec-22-0177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022]
Abstract
Precision medicine employs digital tools and knowledge of a patient's genetic makeup, environment and lifestyle to improve diagnostic accuracy and to develop individualised treatment and prevention strategies. Precision medicine has improved management in a number of disease areas, most notably in oncology, and it has the potential to positively impact others, including endocrine disorders. The accuracy of diagnosis in young patients with growth disorders can be improved by using biomarkers. Insulin-like growth factor I (IGF-I) is the most widely accepted biomarker of growth hormone secretion, but its predictive value for recombinant human growth hormone treatment response is modest and various factors can affect the accuracy of IGF-I measurements. These factors need to be taken into account when considering IGF-I as a component of precision medicine in the management of growth hormone deficiency. The use of genetic analyses can assist with diagnosis by confirming the aetiology, facilitate treatment decisions, guide counselling and allow prompt intervention in children with pubertal disorders, such as central precocious puberty and testotoxicosis. Precision medicine has also proven useful during the transition of young people with endocrine disorders from paediatric to adult services when patients are at heightened risk of dropping out from medical care. An understanding of the likelihood of ongoing GH deficiency, using tools such as MRI, detailed patient history and IGF-I levels, can assist in determining the need for continued recombinant human growth hormone treatment during the process of transitional care.
Collapse
Affiliation(s)
- Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians University, Munich, Germany
| | - Helena Gleeson
- Department of Endocrinology, Queen Elizabeth Hospital, Birmingham, UK
| | - Ana-Claudia Latronico
- Department of Internal Medicine, Discipline of Endocrinology and Metabolism, Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, UK
| |
Collapse
|
39
|
Crespo RP, Rocha TP, Montenegro LR, Nishi MY, Jorge AAL, Maciel GAR, Baracat E, Latronico AC, Mendonca BB, Gomes LG. High Throughput Sequencing to Identify Monogenic Etiologies in a Preselected Polycystic Ovary Syndrome Cohort. J Endocr Soc 2022; 6:bvac106. [PMID: 35898701 PMCID: PMC9309801 DOI: 10.1210/jendso/bvac106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Context Polycystic ovary syndrome (PCOS) etiology remains to be elucidated, but familial clustering and twin studies have shown a strong heritable component. Objective The purpose of this study was to identify rare genetic variants that are associated with the etiology of PCOS in a preselected cohort. Methods This prospective study was conducted among a selected group of women with PCOS. The study’s inclusion criteria were patients with PCOS diagnosed by the Rotterdam criteria with the following phenotypes: severe insulin resistance (IR), normoandrogenic–normometabolic phenotype, adrenal hyperandrogenism, primary amenorrhea, and familial PCOS. Forty-five patients were studied by target sequencing, while 8 familial cases were studied by whole exome sequencing. Results Patients were grouped according to the inclusion criteria with the following distribution: 22 (41.5%) with severe IR, 13 (24.5%) with adrenal hyperandrogenism, 7 (13.2%) with normoandrogenic phenotype, 3 (5.7%) with primary amenorrhea, and 8 (15.1%) familial cases. DNA sequencing analysis identified 1 pathogenic variant in LMNA, 3 likely pathogenic variants in INSR, PIK3R1, and DLK1, and 6 variants of uncertain significance level with interesting biologic rationale in 5 genes (LMNA, GATA4, NR5A1, BMP15, and FSHR). LMNA was the most prevalent affected gene in this cohort (3 variants). Conclusion Several rare variants in genes related to IR were identified in women with PCOS. Although IR is a common feature of PCOS, patients with extreme or atypical phenotype should be carefully evaluated to rule out monogenic conditions.
Collapse
Affiliation(s)
- Raiane P Crespo
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Thais P Rocha
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Luciana R Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética (LIM 25), Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Gustavo A R Maciel
- Disciplina de Ginecologia, Faculdade de Medicina da Universidade de São Paulo , Brasil
| | - Edmund Baracat
- Disciplina de Ginecologia, Faculdade de Medicina da Universidade de São Paulo , Brasil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| | - Larissa G Gomes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo , São Paulo, Brasil
| |
Collapse
|
40
|
Lin Y, He Y, Sun W, Wang Y, Yu J. Recent advances on the relationship between the DLK1 system and central precocious puberty. Biol Reprod 2022; 107:679-683. [PMID: 35594453 DOI: 10.1093/biolre/ioac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Precocious puberty, as a common pediatric endocrine disease, can be divided into central precocious puberty (CPP) and peripheral precocious puberty (PPP), even though most cases of precocious puberty are diagnosed as CPP. According to its etiology, CPP can be further divided into organic and idiopathic CPP. However, the mechanisms of idiopathic CPP have not yet been fully elucidated. Currently, four genes, including the kisspeptin gene (KISS1), the kisspeptin receptor gene (KISS1R), the makorin ring finger protein 3 (MKRN3), and the Delta-like non-canonical Notch ligand 1 (DLK1), have been implicated in CPP cases, of which DLK1 has been determined to represent a key, recently found CPP-related gene. In this review, we will not only highlight the latest discoveries on the relationship between the DLK1 system and CPP but also explore the involvement of the system as well as the Notch signaling pathway in CPP occurrence.
Collapse
Affiliation(s)
- Yating Lin
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yuanyuan He
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Wen Sun
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yonghong Wang
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jian Yu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| |
Collapse
|
41
|
Abstract
Pubertal onset is known to result from reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, which is controlled by complex interactions of genetic and nongenetic factors. Most cases of precocious puberty (PP) are diagnosed as central PP (CPP), defined as premature activation of the HPG axis. The cause of CPP in most girls is not identifiable and, thus, referred to as idiopathic CPP (ICPP), whereas boys are more likely to have an organic lesion in the brain. ICPP has a genetic background, as supported by studies showing that maternal age at menarche is associated with pubertal timing in their offspring. A gain of expression in the kisspeptin gene (KISS1), gain-of-function mutation in the kisspeptin receptor gene (KISS1R), loss-of-function mutation in makorin ring finger protein 3 (MKRN3), and loss-of-function mutations in the delta-like homolog 1 gene (DLK1) have been associated with ICPP. Other genes, such as gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), lin-28 homolog B (LIN28B), neuropeptide Y (NPYR), tachykinin 3 (TAC3), and tachykinin receptor 3 (TACR3), have been implicated in the progression of ICPP, although their relationships require elucidation. Environmental and socioeconomic factors may also be correlated with ICPP. In the progression of CPP, epigenetic factors such as DNA methylation, histone posttranslational modifications, and noncoding ribonucleic acids may mediate the relationship between genetic and environmental factors. CPP is correlated with short- and long-term adverse health outcomes, which forms the rationale for research focusing on understanding its genetic and nongenetic factors.
Collapse
Affiliation(s)
- Young Suk Shim
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
42
|
Li Y, Wang W, Wu M, Zhu P, Zhou Z, Gong Y, Gu Y. LncRNA LINC01315 silencing modulates cancer stem cell properties and epithelial-to-mesenchymal transition in colorectal cancer via miR-484/DLK1 axis. Cell Cycle 2022; 21:851-873. [PMID: 35156543 PMCID: PMC8973332 DOI: 10.1080/15384101.2022.2033415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA long intergenic non-protein coding RNA 01315 (LncRNA LINC01315) has been found to be implicated in various cancers, but its role and functions in colorectal cancer (CRC) remain to be addressed. Data on LINC01315 expression in CRC were gathered using bioinformatics analysis, and cancer stem cells (CSCs) were sorted by aldehyde dehydrogenase (ALDH) assay and flow cytometry. Migration, invasion, and stemness of CSCs isolated from CRC cells after transfection were determined by scratch, Transwell, and sphere-formation assays, respectively. Tumor xenograft model was constructed. Target genes and potential-binding sites were predicted using online databases and further confirmed via dual-luciferase reporter assay. Relative factors expressions were determined via quantitative real-time polymerase-chain reaction and Western blot as needed. LINC01315 was high-expressed in CRC and ALDH+ cells. LINC01315 silencing suppressed the migration, invasion, and sphere formation of CRC cells and tumor growth, and downregulated expressions of CSC molecules (ALDH, cluster of difference 44 (CD44), Prominin, and sex determining region Y-box 2 (SOX2)), Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Vimentin but upregulated E-Cadherin expression. MiR-484 could competitively bind with LINC01315, and LINC01315 silencing promoted miR-484 expression. The level of Delta Like Non-Canonical Notch Ligand 1 (DLK1), the target gene of miR-484, was enhanced by overexpressed LINC01315 yet was suppressed by LINC01315 silencing. Also, DLK1 silencing reversed the effects of downregulated miR-484 on migration, invasion, sphere formation, and CSC molecules expressions in CRC cells. LINC01315 silencing modulated CSC properties and epithelial-to-mesenchymal transition via miR-484/DLK1 axis.
Collapse
Affiliation(s)
- Youran Li
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Wei Wang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Minna Wu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Ping Zhu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Zailong Zhou
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Yuxia Gong
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China
| | - Yunfei Gu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, China,CONTACT Yunfei GuJiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing City, Jiangsu Province210029, China. +86-02586617141-71116
| |
Collapse
|
43
|
Aberrant Notch Signaling Pathway as a Potential Mechanism of Central Precocious Puberty. Int J Mol Sci 2022; 23:ijms23063332. [PMID: 35328752 PMCID: PMC8950842 DOI: 10.3390/ijms23063332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
The Notch signaling pathway is highly conserved during evolution. It has been well documented that Notch signaling regulates cell proliferation, migration, and death in the nervous, cardiac, and endocrine systems. The Notch pathway is relatively simple, but its activity is regulated by numerous complex mechanisms. Ligands bind to Notch receptors, inducing their activation and cleavage. Various post-translational processes regulate Notch signaling by affecting the synthesis, secretion, activation, and degradation of Notch pathway-related proteins. Through such post-translational regulatory processes, Notch signaling has versatile effects in many tissues, including the hypothalamus. Recently, several studies have reported that mutations in genes related to the Notch signaling pathway were found in patients with central precocious puberty (CPP). CPP is characterized by the early activation of the hypothalamus–pituitary–gonadal (HPG) axis. Although genetic factors play an important role in CPP development, few associated genetic variants have been identified. Aberrant Notch signaling may be associated with abnormal pubertal development. In this review, we discuss the current knowledge about the role of the Notch signaling pathway in puberty and consider the potential mechanisms underlying CPP.
Collapse
|
44
|
Morad H, Abou-Elzahab MM, Aref S, EL-Sokkary AMA. Diagnostic Value of 1H NMR-Based Metabolomics in Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia, and Breast Cancer. ACS OMEGA 2022; 7:8128-8140. [PMID: 35284729 PMCID: PMC8908535 DOI: 10.1021/acsomega.2c00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/10/2022] [Indexed: 05/05/2023]
Abstract
Cancer refers to a massive number of diseases distinguished by the development of abnormal cells that divide uncontrollably and have the capability of infiltration and destroying the normal body tissue. It is critical to detect biomarkers that are early detectable and noninvasive to save millions of lives. The aim of the present work is to use NMR as a noninvasive diagnostic tool for cancer diseases. This study included 30 plasma and 21 urine samples of patients diagnosed with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), 25 plasma and 17 urine samples of patients diagnosed with breast cancer (BC), and 9 plasma and urine samples obtained from healthy individuals as controls. They were prepared for NMR measurements; then, the metabolites were identified and the data were analyzed using multivariate statistical procedures. The OPLS-DA score plots clearly discriminated ALL, AML, and BC from healthy controls. Plots of the PLS-DA loadings and S-line plots showed that all metabolites in plasma were greater in BC than in the healthy controls, whereas lactate, O-acetylcarnitine, pyruvate, trimethylamine-N-oxide (TMAO), and glucose were higher in healthy controls than in ALL and AML. On the other hand, urine samples showed lower amounts of lactate, melatonin, pyruvate, and succinate in all of the studied types of cancer when compared to those of healthy controls. 1H NMR can be a successful and noninvasive tool for the diagnosis of different types of cancer.
Collapse
Affiliation(s)
- Hanaa
M. Morad
- Biochemistry
Division, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | - Salah Aref
- Department
of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. EL-Sokkary
- Biochemistry
Division, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
45
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Soriano-Guillén L, Tena-Sempere M, Seraphim CE, Latronico AC, Argente J. Precocious sexual maturation: Unravelling the mechanisms of pubertal onset through clinical observations. J Neuroendocrinol 2022; 34:e12979. [PMID: 33904190 DOI: 10.1111/jne.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023]
Abstract
Puberty is a crucial biological process normally occurring at a specific time during the lifespan, during which sexual and somatic maturation are completed, and reproductive capacity is reached. Pubertal timing is not only determined by genetics, but also by endogenous and environmental cues, including nutritional and metabolic signals. During the last decade, we have learned much regarding the essential roles of kisspeptins and the neuropeptide pathways that converge on these neurones to modulate kisspeptin signalling, as well as neurokinin B and dynorphin, the co-transmitters of Kiss1 neurones in the arcuate nucleus, and the effects of melanocortins on puberty. Indeed, melanocortins are involved in transmitting the regulatory actions of metabolic cues on pubertal maturation. Intracellular metabolic sensors, such as the AMP-activated protein kinase and the fuel-sensing deacetylase SIRT1, have been shown to contribute to puberty. Further understanding of these signals and regulatory circuits will help uncover the intimacies of the central control of puberty, as well as how alterations in metabolic status, ranging from undernutrition to obesity, affect the pubertal process. Precocious puberty is rare and has a clear female predominance. Central precocious puberty (CPP) is diagnosed when premature activation of the hypothalamic-pituitary axis occurs. Its causes are heterogeneous, with alterations of the central nervous system being of special interest, and with environmental factors also playing a role in some cases. During the last decade, several mutations in different genes (including KISS1, KISS1R, MKRN3 and DLK1) that cause CPP have been discovered. Loss-of-function mutations in MKRN3 are the most common monogenic cause of CPP known to date. Here, we review and update what is known regarding the genotype-phenotype relationship in patients with CPP.
Collapse
Affiliation(s)
- Leandro Soriano-Guillén
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Instituto de Investigación Fundación Jiménez Díaz, Madrid, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Carlos E Seraphim
- Laboratory of Hormones and Molecular Genetics, LIM42, Developmental Endocrinology Unit, Department of Internal Medicine, Discipline Endocrinology and Metabolism, Faculty of Medicine, Clinicas Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana C Latronico
- Laboratory of Hormones and Molecular Genetics, LIM42, Developmental Endocrinology Unit, Department of Internal Medicine, Discipline Endocrinology and Metabolism, Faculty of Medicine, Clinicas Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain
| |
Collapse
|
47
|
Liu Y, Chen S, Pang D, Zhou J, Xu X, Yang S, Huang Z, Yu B. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring. Epigenetics Chromatin 2022; 15:3. [PMID: 35063005 PMCID: PMC8780762 DOI: 10.1186/s13072-022-00437-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although paternal exposure to cigarette smoke may contribute to obesity and metabolic syndrome in offspring, the underlying mechanisms remain uncertain. METHODS In the present study, we analyzed the sperm DNA-methylation profiles in tobacco-smoking normozoospermic (SN) men, non-tobacco-smoking normozoospermic (N) men, and non-smoking oligoasthenozoospermic (OA) men. Using a mouse model, we also analyzed global methylation and differentially methylated regions (DMRs) of the DLK1 gene in paternal spermatozoa and the livers of progeny. In addition, we quantified DLK1 expression, executed an intra-peritoneal glucose tolerance test (IPGTT), measured serum metabolites, and analyzed liver lipid accumulation in the F1 offspring. RESULTS Global sperm DNA-methylation levels were significantly elevated (p < 0.05) in the SN group, and the methylation patterns were different among N, SN, and OA groups. Importantly, the methylation level of the DLK1 locus (cg11193865) was significantly elevated in the SN group compared to both N and OA groups (p < 0.001). In the mouse model, the group exposed to cigarette smoke extract (CSE) exhibited a significantly higher global methylation DNA level in spermatozoa (p < 0.001) and on the DMR sites of Dlk1 in 10-week-old male offspring (p < 0.05), with a significant increase in Dlk1 expression in their livers (p < 0.001). In addition, IPGTT and LDL levels were significantly altered (p < 0.001), with elevated liver fat accumulation (p < 0.05) in F1 offspring. CONCLUSION Paternal exposure to cigarette smoke led to increased global methylation of sperm DNA and alterations to the DMR of the DLK1 gene in the F1 generation, which may be inherited parentally and may perturb long-term metabolic function.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Shengzhu Chen
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Dejian Pang
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Jiayi Zhou
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Xiuting Xu
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Si Yang
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bolan Yu
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
48
|
Abstract
Puberty marks the end of childhood and is a period when individuals undergo physiological and psychological changes to achieve sexual maturation and fertility. The onset of puberty is first detected as an increase in pulsatile secretion of gonadotropin-releasing hormone (GnRH). Pubertal onset is regulated by genetic, nutritional, environmental, and socio-economic factors. Disturbances affecting pubertal timing result in adverse health conditions later in life. Human genetic studies show that around 50-80% of the variation in pubertal onset is genetically determined. The genetic control of pubertal timing has been a field of active investigation in attempt to better understand the neuroendocrine control of this relevant period of life. Large populational studies and patient cohort-based studies have provided insights into the genetic regulation of pubertal onset. In this review, we discuss these discoveries and discuss potential mechanisms for how implicated genes may affect pubertal timing.
Collapse
Affiliation(s)
- Alessandra Mancini
- Department of Medicine, Harvard Medical School, Division of Endocrinology Diabetes and Hypertension, Brigham and Women's Hospital, Boston, USA.
| | - John C Magnotto
- Department of Medicine, Harvard Medical School, Division of Endocrinology Diabetes and Hypertension, Brigham and Women's Hospital, Boston, USA.
| | - Ana Paula Abreu
- Department of Medicine, Harvard Medical School, Division of Endocrinology Diabetes and Hypertension, Brigham and Women's Hospital, Boston, USA.
| |
Collapse
|
49
|
Tajima T. Genetic causes of central precocious puberty. Clin Pediatr Endocrinol 2022; 31:101-109. [PMID: 35928377 PMCID: PMC9297165 DOI: 10.1297/cpe.2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Central precocious puberty (CPP) is a condition in which the
hypothalamus–pituitary–gonadal system is activated earlier than the normal developmental
stage. The etiology includes organic lesions in the brain; however, in the case of
idiopathic diseases, environmental and/or genetic factors are involved in the development
of CPP. A genetic abnormality in KISS1R, that encodes the kisspeptin
receptor, was first reported in 2008 as a cause of idiopathic CPP. Furthermore, genetic
alterations in KISS1, MKRN3, DLK1, and
PROKR2 have been reported in idiopathic and/or familial CPP. Of these,
MKRN3 has the highest frequency of pathological variants associated
with CPP worldwide; but, abnormalities in MKRN3 are rare in patients in
East Asia, including Japan. MKRN3 and DLK1 are maternal
imprinting genes; thus, CPP develops when a pathological variant is inherited from the
father. The mechanism of CPP due to defects in MKRN3 and
DLK1 has not been completely clarified, but it is suggested that both
may negatively control the progression of puberty. CPP due to such a single gene
abnormality is extremely rare, but it is important to understand the mechanisms of puberty
and reproduction. A further development in the genetics of CPP is expected in the
future.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University Tochigi Children’ Medical Center, Tochigi, Japan
| |
Collapse
|
50
|
Koneshamoorthy A, Seniveratne-Epa D, Calder G, Sawyer M, Kay TWH, Farrell S, Loudovaris T, Mariana L, McCarthy D, Lyu R, Liu X, Thorn P, Tong J, Chin LK, Zacharin M, Trainer A, Taylor S, MacIsaac RJ, Sachithanandan N, Thomas HE, Krishnamurthy B. Case Report: Hypoglycemia Due to a Novel Activating Glucokinase Variant in an Adult - a Molecular Approach. Front Endocrinol (Lausanne) 2022; 13:842937. [PMID: 35370948 PMCID: PMC8969599 DOI: 10.3389/fendo.2022.842937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
We present a case of an obese 22-year-old man with activating GCK variant who had neonatal hypoglycemia, re-emerging with hypoglycemia later in life. We investigated him for asymptomatic hypoglycemia with a family history of hypoglycemia. Genetic testing yielded a novel GCK missense class 3 variant that was subsequently found in his mother, sister and nephew and reclassified as a class 4 likely pathogenic variant. Glucokinase enables phosphorylation of glucose, the rate-limiting step of glycolysis in the liver and pancreatic β cells. It plays a crucial role in the regulation of insulin secretion. Inactivating variants in GCK cause hyperglycemia and activating variants cause hypoglycemia. Spleen-preserving distal pancreatectomy revealed diffuse hyperplastic islets, nuclear pleomorphism and periductular islets. Glucose stimulated insulin secretion revealed increased insulin secretion in response to glucose. Cytoplasmic calcium, which triggers exocytosis of insulin-containing granules, revealed normal basal but increased glucose-stimulated level. Unbiased gene expression analysis using 10X single cell sequencing revealed upregulated INS and CKB genes and downregulated DLK1 and NPY genes in β-cells. Further studies are required to see if alteration in expression of these genes plays a role in the metabolic and histological phenotype associated with glucokinase pathogenic variant. There were more large islets in the patient's pancreas than in control subjects but there was no difference in the proportion of β cells in the islets. His hypoglycemia was persistent after pancreatectomy, was refractory to diazoxide and improved with pasireotide. This case highlights the variable phenotype of GCK mutations. In-depth molecular analyses in the islets have revealed possible mechanisms for hyperplastic islets and insulin hypersecretion.
Collapse
Affiliation(s)
- Anojian Koneshamoorthy
- Department of Endocrinology and Diabetes, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Dilan Seniveratne-Epa
- Department of Endocrinology and Diabetes, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Genevieve Calder
- Department of Endocrinology and Diabetes, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Matthew Sawyer
- Department of Endocrinology and Diabetes, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Thomas W. H. Kay
- Department of Endocrinology and Diabetes, St. Vincent’s Hospital, Melbourne, VIC, Australia
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Stephen Farrell
- Department of Surgery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Thomas Loudovaris
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Lina Mariana
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Davis McCarthy
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, University of Melbourne, Melbourne, VIC, Australia
| | - Ruqian Lyu
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
| | - Xin Liu
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Thorn
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Jason Tong
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Lit Kim Chin
- Department of Diabetes and Endocrinology, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Margaret Zacharin
- Department of Diabetes and Endocrinology, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Alison Trainer
- Department of Genomic Medicine, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Shelby Taylor
- Department of Genomic Medicine, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Richard J. MacIsaac
- Department of Endocrinology and Diabetes, St. Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Nirupa Sachithanandan
- Department of Endocrinology and Diabetes, St. Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Helen E. Thomas
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Balasubramanian Krishnamurthy
- Department of Endocrinology and Diabetes, St. Vincent’s Hospital, Melbourne, VIC, Australia
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, Melbourne, VIC, Australia
- *Correspondence: Balasubramanian Krishnamurthy,
| |
Collapse
|