1
|
Plachy L, Dusatkova P, Amaratunga SA, Neuman V, Sumnik Z, Lebl J, Pruhova S. Monogenic causes of familial short stature. Front Endocrinol (Lausanne) 2024; 15:1506323. [PMID: 39749023 PMCID: PMC11693446 DOI: 10.3389/fendo.2024.1506323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Genetic factors play a crucial role in determining human height. Short stature commonly affects multiple family members and therefore, familial short stature (FSS) represents a significant proportion of growth disorders. Traditionally, FSS was considered a benign polygenic condition representing a subcategory of idiopathic short stature (ISS). However, advancements in genetic research have revealed that FSS can also be monogenic, inherited in an autosomal dominant manner and can result from different mechanisms including primary growth plate disorders, growth hormone deficiency/insensitivity or by the disruption of fundamental intracellular pathways. These discoveries have highlighted a broader phenotypic spectrum for monogenic forms of short stature, which may exhibit mild manifestations indistinguishable from ISS. Given the overlapping features and the difficulty in differentiating polygenic from monogenic FSS without genetic testing, some researchers redefine FSS as a descriptive term that encompasses any familial occurrence of short stature, regardless of the underlying cause. This shift emphasizes the complexity of diagnosing and managing short stature within families, reflecting the diverse genetic landscape that influences human growth.
Collapse
Affiliation(s)
| | | | - Shenali Anne Amaratunga
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | | | | | | | | |
Collapse
|
2
|
Gregorova K, Plachy L, Dusatkova P, Maratova K, Neuman V, Kolouskova S, Snajderova M, Obermannova B, Drnkova L, Soucek O, Lebl J, Sumnik Z, Pruhova S. Genetic Testing of Children With Familial Tall Stature: Is it Worth Doing? J Clin Endocrinol Metab 2024; 109:e2009-e2015. [PMID: 38307035 DOI: 10.1210/clinem/dgae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
CONTEXT Familial tall stature (FTS) is considered to be a benign variant of growth with a presumed polygenic etiology. However, monogenic disorders with possible associated pathological features could also be hidden under the FTS phenotype. OBJECTIVE To elucidate the genetic etiology in families with FTS and to describe their phenotype in detail. METHODS Children with FTS (the life-maximum height in both the child and his/her taller parent > 2 SD for age and sex) referred to the Endocrinology center of Motol University Hospital were enrolled into the study. Their DNA was examined cytogenetically and via a next-generation sequencing panel of 786 genes associated with growth. The genetic results were evaluated by the American College of Molecular Genetics and Genomics guidelines. All of the participants underwent standard endocrinological examination followed by specialized anthropometric evaluation. RESULTS In total, 34 children (19 girls) with FTS were enrolled in the study. Their median height and their taller parent's height were 3.1 SD and 2.5 SD, respectively. The genetic cause of FTS was elucidated in 11/34 (32.4%) children (47,XXX and 47,XYY karyotypes, SHOX duplication, and causative variants in NSD1 [in 2], SUZ12 [in 2], FGFR3, CHD8, GPC3, and PPP2R5D genes). Ten children had absent syndromic signs and 24 had dysmorphic features. CONCLUSION Monogenic (and cytogenetic) etiology of FTS can be found among children with FTS. Genetic examination should be considered in all children with FTS regardless of the presence of dysmorphic features.
Collapse
Affiliation(s)
- Katerina Gregorova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Lukas Plachy
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Klara Maratova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Vit Neuman
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Marta Snajderova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Lenka Drnkova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Ondrej Soucek
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague 5, 150 06, Czech Republic
| |
Collapse
|
3
|
Kurup U, Lim DBN, Palau H, Maharaj AV, Ishida M, Davies JH, Storr HL. Approach to the Patient With Suspected Silver-Russell Syndrome. J Clin Endocrinol Metab 2024; 109:e1889-e1901. [PMID: 38888172 PMCID: PMC11403326 DOI: 10.1210/clinem/dgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Silver-Russell syndrome (SRS) is a clinical diagnosis requiring the fulfillment of ≥ 4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥ 4/6 NH-CSS (or ≥ 3/6 with strong clinical suspicion) warrants (epi)genetic confirmation, identifiable in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The most common etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify more common molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest that NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfill NH-CSS criteria but have distinct genetic etiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystemic disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation, and highlight the differences in clinical management strategies.
Collapse
Affiliation(s)
- Uttara Kurup
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - David B N Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Helena Palau
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Miho Ishida
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| |
Collapse
|
4
|
Doi H, Kageyama I, Katoh-Fukui Y, Hattori A, Fukami M, Shimura N. Homozygous 6-bp deletion of IGFALS in a prepubertal boy with short stature. Hum Genome Var 2024; 11:27. [PMID: 39060265 PMCID: PMC11282113 DOI: 10.1038/s41439-024-00285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Biallelic IGFALS variants lead to acid‒labile subunit (ALS) deficiency characterized by growth hormone resistance with or without delayed puberty. Here, we report a prepubertal boy with a homozygous 2-amino acid deletion within the fourth N-glycosylation motif (c.1103_1108del, p.N368_S370delinsT) associated with parental consanguinity. He showed short stature consistent with ALS deficiency. This case expands the mutation spectrum of IGFALS to include the elimination of only one N-glycosylation motif of ALS.
Collapse
Affiliation(s)
- Hibiki Doi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Ikuko Kageyama
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Naoto Shimura
- Department of Pediatrics, Tokyo Rinkai Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Joustra SD, Isik E, Wit JM, Catli G, Anik A, Haliloglu B, Kandemir N, Ozsu E, Hendriks YMC, de Bruin C, Kant SG, Campos-Barros A, Challis RC, Parry D, Harley ME, Jackson A, Losekoot M, van Duyvenvoorde HA. Genetic Findings in Short Turkish Children Born to Consanguineous Parents. Horm Res Paediatr 2024:1-11. [PMID: 38838658 PMCID: PMC7616538 DOI: 10.1159/000539696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
INTRODUCTION The diagnostic yield of genetic analysis in the evaluation of children with short stature depends on associated clinical characteristics, but the additional effect of parental consanguinity has not been well documented. METHODS This observational case series of 42 short children from 34 consanguineous families was collected by six referral centres of paediatric endocrinology (inclusion criteria: short stature and parental consanguinity). In 18 patients (12 families, group 1), the clinical features suggested a specific genetic defect in the growth hormone (GH) insulin-like growth factor I (IGF-I) axis, and a candidate gene approach was used. In others (group 2), a hypothesis-free approach was chosen (gene panels, microarray analysis, and whole exome sequencing) and further subdivided into 11 patients with severe short stature (height <-3.5 standard deviation score [SDS]) and microcephaly (head circumference <-3.0 SDS) (group 2a), 10 patients with syndromic short stature (group 2b), and 3 patients with nonspecific isolated GH deficiency (group 2c). RESULTS In all 12 families from group 1, (likely) pathogenic variants were identified in GHR, IGFALS, GH1, and STAT5B. In 9/12 families from group 2a, variants were detected in PCNT, SMARCAL1, SRCAP, WDR4, and GHSR. In 5/9 families from group 2b, variants were found in TTC37, SCUBE3, NSD2, RABGAP1, and 17p13.3 microdeletions. In group 2c, no genetic cause was found. Homozygous, compound heterozygous, and heterozygous variants were found in 21, 1, and 4 patients, respectively. CONCLUSION Genetic testing in short children from consanguineous parents has a high diagnostic yield, especially in cases of severe GH deficiency or insensitivity, microcephaly, and syndromic short stature.
Collapse
Affiliation(s)
- Sjoerd D Joustra
- Department of Paediatrics, Division of Pediatric Endocrinology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Emregul Isik
- Department of Paediatrics, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Jan M Wit
- Department of Paediatrics, Division of Pediatric Endocrinology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonul Catli
- Department of Paediatric Endocrinology, Izmir Katip Celebi University Faculty of Medicine, Izmir, Turkey
- Department of Paediatric Endocrinology, Istinye University Faculty of Medicine, Istanbul, Turkey
| | - Ahmet Anik
- Department of Paediatric Endocrinology, Dokuz Eylul University, Izmir, Turkey
| | - Belma Haliloglu
- Department of Paediatric Endocrinology and Diabetology, Marmara University School of Medicine, Istanbul, Turkey
| | - Nurgun Kandemir
- Department of Paediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Elif Ozsu
- Department of Paediatric Endocrinology and Diabetes, University of Ankara, Ankara, Turkey
| | - Yvonne M C Hendriks
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christiaan de Bruin
- Department of Paediatrics, Division of Pediatric Endocrinology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarina G Kant
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Angel Campos-Barros
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- Rare Diseases Biomedical Research Network (CIBERER; U 753), ISCIII, Madrid, Spain
| | - Rachel C Challis
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David Parry
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Margaret E Harley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew Jackson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
6
|
Andrade NLM, Rezende RC, Crisostomo LG, Dantas NCB, Cellin LP, de Souza V, Quedas EPS, Lerario AM, Vasques GA, Jorge AAL. Clinical Characteristics of Children with THRA Mutations: Variable Phenotype and Good Response to Recombinant Human Growth Hormone Therapy. Horm Res Paediatr 2024:1-8. [PMID: 38744258 DOI: 10.1159/000539348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Mutations in the thyroid hormone receptor alpha (THRA) gene are a rare cause of thyroid hormone resistance, which leads to a pleomorphic phenotypic spectrum. Hormonal profiles are variable and subtle, making laboratory diagnoses challenging. Genetic evaluation can be a helpful tool in diagnosing these cases. CASE PRESENTATION Three patients (P1, P2, and P3) from unrelated families presented to their endocrinologists with short stature and abnormalities in thyroid function results. P1 showed hypoactivity and mild thyroid-stimulating hormone (TSH) elevation. P2 presented with a mild developmental delay and a hormonal profile initially interpreted as central hypothyroidism. Patient P3 had severe symptoms, including hypotonia, developmental delay, normal TSH, hypercholesterolemia, severe hypertriglyceridemia, high amylase levels, and mild pericardial effusion. All the patients had low free thyroxine (FT4) levels, mild constipation, and short stature. The patients underwent exome sequencing analysis that identified three different heterozygous variants in the THRA gene (P1 and P2 had missense variants, and P3 had a stop codon variant). All patients were treated with levothyroxine replacement, improving their clinical symptoms, such as constipation, and neurological symptoms. P1 and P2 were also treated with the recombinant human growth hormone (rhGH). The improvements in growth velocity and height standard deviation scores (SDS) were remarkable. Notably, P1 had a total height gain of 2.5 SDS, reaching an adult height within the normal range. CONCLUSION THRA gene defects can lead to growth disorders with different phenotypes. Children with THRA mutations can benefit from adequate treatment with levothyroxine and may respond well to rhGH treatment.
Collapse
Affiliation(s)
- Nathalia L M Andrade
- Unidade de Endocrinologia Genética (LIM 25), Hospital Das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Raissa C Rezende
- Unidade de Endocrinologia Genética (LIM 25), Hospital Das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Lindiane G Crisostomo
- Departamento de Pediatria, Faculdade de Medicina do Centro Universitário São Camilo, São Paulo, Brazil
| | - Naiara C B Dantas
- Unidade de Endocrinologia Genética (LIM 25), Hospital Das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Laurana P Cellin
- Unidade de Endocrinologia Genética (LIM 25), Hospital Das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Vinicius de Souza
- Unidade de Endocrinologia Genética (LIM 25), Hospital Das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Elisangela P S Quedas
- Unidade de Endocrinologia Genética (LIM 25), Hospital Das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Antonio M Lerario
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabriela A Vasques
- Unidade de Endocrinologia Genética (LIM 25), Hospital Das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética (LIM 25), Hospital Das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
7
|
Shangguan H, Wang J, Lin J, Huang X, Zeng Y, Chen R. A study on genotypes and phenotypes of short stature caused by epigenetic modification gene variants. Eur J Pediatr 2024; 183:1403-1414. [PMID: 38170291 DOI: 10.1007/s00431-023-05385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Mendelian disorders of the epigenetic machinery (MDEMs) are caused by genetic mutations, a considerable fraction of which are associated with epigenetic modification. These MDEMs exhibit phenotypic overlap broadly characterized by multiorgan abnormalities. The variant detected in genes associated with epigenetic modification can lead to short stature accompanied with multiple system abnormalities. This study is aimed at presenting and summarizing the diagnostic rate, clinical, and genetic profile of MDEMs-associated short stature. Two hundred and fourteen short-stature patients with multiorgan abnormalities were enrolled. Clinical information and whole exome sequence (WES) were analyzed for these patients. WES identified 33 pathogenic/likely pathogenic variants in 19 epigenetic modulation genes (KMT2A, KMT2D, KDM6A, SETD5, KDM5C, HUWE1, UBE2A, NIPBL, SMC1A, RAD21, CREBBP, CUL4B, BPTF, ANKRD11, CHD7, SRCAP, CTCF, MECP2, UBE3A) in 33 patients (15.4%). Of note, 19 variants had never been reported previously. Furthermore, these 33 variants were associated with 16 different disorders with overlapping clinical features characterized by development delay/intelligence disability (31/33; 93.9%), small hands (14/33; 42.4%), clinodactyly of the 5th finger (14/33; 42.4%), long eyelashes (13/33; 39.4%), and hearing impairment (9/33; 27.3%). Additionally, several associated phenotypes are reported for the first time: clubbing with KMT2A variant, webbed neck with SETD5 variant, retinal detachment with CREBBP variant, sparse lateral eyebrow with HUWE1 variant, and long palpebral fissure with eversion of the lateral third of the low eyelid with SRCAP variant.Conclusions: Our study provided a new conceptual framework for further understanding short stature. Specific clinical findings may indicate that a short-stature patient may have an epigenetic modified gene variant.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Jian Wang
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, Shanghai, 200127, China
| | - Jinduan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Xiaozhen Huang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Yan Zeng
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
8
|
Maharaj AV, Cottrell E, Thanasupawat T, Joustra SD, Triggs-Raine B, Fujimoto M, Kant SG, van der Kaay D, Clement-de Boers A, Brooks AS, Aguirre GA, Martín del Estal I, Castilla de Cortázar Larrea MI, Massoud A, van Duyvenvoorde HA, De Bruin C, Hwa V, Klonisch T, Hombach-Klonisch S, Storr HL. Characterization of HMGA2 variants expands the spectrum of Silver-Russell syndrome. JCI Insight 2024; 9:e169425. [PMID: 38516887 PMCID: PMC11063932 DOI: 10.1172/jci.insight.169425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and postnatal growth retardation. HMGA2 variants are a rare cause of SRS and its functional role in human linear growth is unclear. Patients with suspected SRS negative for 11p15LOM/mUPD7 underwent whole-exome and/or targeted-genome sequencing. Mutant HMGA2 protein expression and nuclear localization were assessed. Two Hmga2-knockin mouse models were generated. Five clinical SRS patients harbored HMGA2 variants with differing functional impacts: 2 stop-gain nonsense variants (c.49G>T, c.52C>T), c.166A>G missense variant, and 2 frameshift variants (c.144delC, c.145delA) leading to an identical, extended-length protein. Phenotypic features were highly variable. Nuclear localization was reduced/absent for all variants except c.166A>G. Homozygous knockin mice recapitulating the c.166A>G variant (Hmga2K56E) exhibited a growth-restricted phenotype. An Hmga2Ter76-knockin mouse model lacked detectable full-length Hmga2 protein, similarly to patient 3 and 5 variants. These mice were infertile, with a pygmy phenotype. We report a heterogeneous group of individuals with SRS harboring variants in HMGA2 and describe the first Hmga2 missense knockin mouse model (Hmga2K56E) to our knowledge causing a growth-restricted phenotype. In patients with clinical features of SRS but negative genetic screening, HMGA2 should be included in next-generation sequencing testing approaches.
Collapse
Affiliation(s)
- Avinaash V. Maharaj
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, United Kingdom
| | - Emily Cottrell
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, United Kingdom
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sjoerd D. Joustra
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Masanobu Fujimoto
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Sarina G. Kant
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Danielle van der Kaay
- Division of Paediatric Endocrinology, Department of Paediatrics, Erasmus University Medical Centre, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Agnes Clement-de Boers
- Department of Paediatrics, Juliana Children’s Hospital/Haga Teaching Hospital, The Hague, Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | | | | | - Ahmed Massoud
- Department of Paediatrics and Child Health, HCA Healthcare UK, London, United Kingdom
| | - Hermine A. van Duyvenvoorde
- Laboratory for Diagnostic Genome analysis (LDGA), Department of Clinical Genetics, Leiden University Medical Centre, Leiden, Netherlands
| | - Christiaan De Bruin
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, and
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, and
| | - Helen L. Storr
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, United Kingdom
| |
Collapse
|
9
|
Li Q, Chen Z, Wang J, Xu K, Fan X, Gong C, Wu Z, Zhang TJ, Wu N. Molecular Diagnostic Yield of Exome Sequencing and Chromosomal Microarray in Short Stature: A Systematic Review and Meta-Analysis. JAMA Pediatr 2023; 177:1149-1157. [PMID: 37695591 PMCID: PMC10495925 DOI: 10.1001/jamapediatrics.2023.3566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 09/12/2023]
Abstract
Importance Currently, the diagnostic yield of exome sequencing (ES) and chromosomal microarray analysis (CMA) for short stature cohorts is uncertain. Despite previous studies reporting the widespread use of ES and CMA, a definitive diagnostic yield has not been established. Objective To investigate the diagnostic yield of ES and CMA in short stature. Data Sources A systematic literature search was conducted using relevant keywords in 3 databases (PubMed, Embase, and Web of Science) in February 2023. Study Selection Eligible studies for meta-analysis were those that had at least 10 participants with short stature who were diagnosed using either ES or CMA and the number of diagnosed patients was reported. Of 5222 identified studies, 20 were eventually included in the study. Data Extraction and Synthesis Two independent investigators extracted relevant information from each study, which was then synthesized using proportional meta-analysis to obtain the overall diagnostic yield of ES and CMA. Main Outcomes and Measures The primary outcome measure was to determine the overall diagnostic yield of ES and CMA. A subgroup meta-analysis was also performed to assess if the diagnostic yield varied depending on whether ES was used as a first-tier or last-resort test. Additionally, a meta-regression was carried out to investigate how the diagnostic yield varied over time. Results Twenty studies were included, comprising 1350 patients with short stature who underwent ES and 1070 patients who completed CMA. The overall diagnostic yield of ES among the cohorts and CMA among the cohorts was found to be 27.1% (95% CI, 18.1%-37.2%) and 13.6% (95% CI, 9.2%-18.7%), respectively. No statistically significant difference was observed between the first-tier (27.8%; 95% CI, 15.7%-41.8%) and last-resort groups (25.6%; 95% CI, 13.6%-39.6%) (P = .83) or in the percentage of positively diagnosed patients over time. No statistically significant difference was observed between the first-tier (27.8%; 95% CI, 15.7%-41.8%) and last-resort groups (25.6%; 95% CI, 13.6%-39.6%) (P = .83) or in the percentage of positively diagnosed patients over time. Conclusion and Relevance This systematic review and meta-analysis provides high-level evidence supporting the diagnostic efficacy of ES and CMA in patients with short stature. The findings serve as a solid reference for clinicians when making informed decisions about recommending these genetic tests.
Collapse
Affiliation(s)
- Qing Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity; Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, China
| | - Zefu Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity; Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, China
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity; Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity; Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, China
| | - Xin Fan
- Department of Pediatric, The second affiliated hospital of Guangxi Medical University, Guangxi, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity; Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity; Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity; Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences; Beijing, China
| |
Collapse
|
10
|
Kim YM, Lim HH, Kim E, Kim G, Kim M, So H, Lee BK, Kwon Y, Min J, Lee YS. Exploring the Genetic Causes for Postnatal Growth Failure in Children Born Non-Small for Gestational Age. J Clin Med 2023; 12:6508. [PMID: 37892645 PMCID: PMC10607479 DOI: 10.3390/jcm12206508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The most common causes of short stature (SS) in children are familial short stature (FSS) and idiopathic short stature (ISS). Recently, growth plate dysfunction has been recognized as the genetic cause of FSS or ISS. The aim of this study was to investigate monogenic growth failure in patients with ISS and FSS. Targeted exome sequencing was performed in patients categorized as ISS or FSS and the subsequent response to growth hormone (GH) therapy was analyzed. We found 17 genetic causes involving 12 genes (NPR2, IHH, BBS1, COL1A1, COL2A1, TRPS1, MASP1, SPRED1, PTPTN11, ADNP, NADSYN1, and CERT1) and 2 copy number variants. A genetic cause was found in 45.5% and 35.7% of patients with FSS and ISS, respectively. The genetic yield in patients with syndromic and non-syndromic SS was 90% and 23.1%, respectively. In the 11 genetically confirmed patients, a gain in height from -2.6 to -1.3 standard deviations after 2 years of GH treatment was found. The overall diagnostic yield in this study was 41.7%. We identified several genetic causes involving paracrine signaling, the extracellular matrix, and basic intracellular processes. Identification of the causative gene may provide prognostic evidence for the use of GH therapy in non-SGA children.
Collapse
Affiliation(s)
- Yoo-Mi Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Han-Hyuk Lim
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Pediatrics, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Eunhee Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Geena Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minji Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyejin So
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Byoung Kook Lee
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoowon Kwon
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Jeesu Min
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Young Seok Lee
- Department of Radiology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| |
Collapse
|
11
|
Öztürk AP, Yavas Abali Z, Aslanger AD, Bas F, Toksoy G, Karaman V, Bagirova G, Poyrazoglu S, Uyguner ZO, Darendeliler F. Phenotype-Genotype Correlations of GH1 Gene Variants in Patients with Isolated Growth Hormone Deficiency or Multiple Pituitary Hormone Deficiency. Horm Res Paediatr 2023; 97:126-133. [PMID: 37315542 PMCID: PMC11126197 DOI: 10.1159/000531113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Genetic forms of growth hormone deficiency (GHD) may occur as isolated GHD (IGHD) or as a component of multiple pituitary hormone deficiency (MPHD). This study aimed to present the clinical and molecular characteristics of patients with IGHD/MPHD due to the GH1 gene variants. METHODS A gene panel accommodating 25 genes associated with MPHD and short stature was used to search for small sequence variants. Multiplex ligation-dependent probe amplification was performed in patients with normal panel results to investigate gross deletion/duplications. Segregation in the family was performed by Sanger sequencing. RESULTS The GH1 gene variants were detected in 5 patients from four unrelated families. One patient had IGHD IA due to homozygous whole GH1 gene deletion and one had IGHD IB due to novel homozygous c.162C>G/p.(Tyr54*) variant. Two patients from a family had previously reported heterozygous c.291+1G>A/p.(?) variant in which clinical and genetic characteristics were compatible with IGHD II accompanying MPHD. One patient had clinical and laboratory characteristics of IGHD II with MPHD but the heterozygous c.468 C>T/p.(R160W) variant had conflicting results about the relationship with the phenotype. CONCLUSION Expanding our knowledge of the spectrum of GH1 gene variants by apprehending clinical and molecular data of more cases, helps to identify the genotype-phenotype correlation of IGHD/MPHD and the GH1 gene variants. These patients must be regularly followed up for the occurrence of additional pituitary hormone deficiencies.
Collapse
Affiliation(s)
- Ayşe Pınar Öztürk
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zehra Yavas Abali
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey,
- Department of Pediatric Endocrinology, Pendik Research and Training Hospital, Marmara University, Istanbul, Turkey,
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey,
| | - Ayça Dilruba Aslanger
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Firdevs Bas
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Volkan Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gulandam Bagirova
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukran Poyrazoglu
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Feyza Darendeliler
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Toni L, Plachy L, Dusatkova P, Amaratunga SA, Elblova L, Sumnik Z, Kolouskova S, Snajderova M, Obermannova B, Pruhova S, Lebl J. The Genetic Landscape of Children Born Small for Gestational Age with Persistent Short Stature. Horm Res Paediatr 2023; 97:40-52. [PMID: 37019085 DOI: 10.1159/000530521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
INTRODUCTION Among children born small for gestational age, 10-15% fail to catch up and remain short (SGA-SS). The underlying mechanisms are mostly unknown. We aimed to decipher genetic aetiologies of SGA-SS within a large single-centre cohort. METHODS Out of 820 patients treated with growth hormone (GH), 256 were classified as SGA-SS (birth length and/or birth weight <-2 SD for gestational age and life-minimum height <-2.5 SD). Those with the DNA triplet available (child and both parents) were included in the study (176/256). Targeted testing (karyotype/FISH/MLPA/specific Sanger sequencing) was performed if a specific genetic disorder was clinically suggestive. All remaining patients underwent MS-MLPA to identify Silver-Russell syndrome, and those with unknown genetic aetiology were subsequently examined using whole-exome sequencing or targeted panel of 398 growth-related genes. Genetic variants were classified using ACMG guidelines. RESULTS The genetic aetiology was elucidated in 74/176 (42%) children. Of these, 12/74 (16%) had pathogenic or likely pathogenic (P/LP) gene variants affecting pituitary development (LHX4, OTX2, PROKR2, PTCH1, POU1F1), the GH-IGF-1 or IGF-2 axis (GHSR, IGFALS, IGF1R, STAT3, HMGA2), 2/74 (3%) the thyroid axis (TRHR, THRA), 17/74 (23%) the cartilaginous matrix (ACAN, various collagens, FLNB, MATN3), and 7/74 (9%) the paracrine chondrocyte regulation (FGFR3, FGFR2, NPR2). In 12/74 (16%), we revealed P/LP affecting fundamental intracellular/intranuclear processes (CDC42, KMT2D, LMNA, NSD1, PTPN11, SRCAP, SON, SOS1, SOX9, TLK2). SHOX deficiency was found in 7/74 (9%), Silver-Russell syndrome in 12/74 (16%) (11p15, UPD7), and miscellaneous chromosomal aberrations in 5/74 (7%) children. CONCLUSIONS The high diagnostic yield sheds a new light on the genetic landscape of SGA-SS, with a central role for the growth plate with substantial contributions from the GH-IGF-1 and thyroid axes and intracellular regulation and signalling.
Collapse
Affiliation(s)
- Ledjona Toni
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Lukas Plachy
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Shenali Anne Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Stanislava Kolouskova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Marta Snajderova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Barbora Obermannova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| |
Collapse
|
13
|
Tornese G. 'Growth hormone deficiency' or rather 'short stature unresponsive to stimulation tests'? Arch Dis Child 2023; 108:176-177. [PMID: 35086811 PMCID: PMC9985715 DOI: 10.1136/archdischild-2021-323426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Gianluca Tornese
- Institute for maternal and child health IRCCS 'Burlo Garofolo', Trieste, Italy
| |
Collapse
|
14
|
Wit JM, Joustra SD. Long-acting PEGylated growth hormone in children with idiopathic short stature: time to reconsider our diagnostic and treatment policy? Eur J Endocrinol 2023; 188:6979711. [PMID: 36651155 DOI: 10.1093/ejendo/lvac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Idiopathic short stature (ISS) is a diagnosis of exclusion, and therefore each child with short stature or slow growth referred to a paediatrician deserves a full medical history and physical examination, as well as radiological and laboratory screening tests. In patients with an increased likelihood of a genetic cause, genetic testing is indicated. Idiopathic short stature is an approved indication for recombinant human growth hormone (rhGH) in the USA but not in most other parts of the world. In a recent article published in this journal, Luo et al reported on the 1-year's results of a multicentre randomized controlled trial (n = 360) on the efficacy and safety of two dosages of long-acting PEGylated rhGH (PEG-rhGH, Jintrolong®) (0.1 or 0.2 mg/kg body weight per week, respectively) in children with ISS compared with an untreated control group. The growth response to the higher dosage was similar to reported data on daily rhGH. In this commentary, we discuss whether the recent data on genetic causes of short stature in children who initially were labelled ISS, and data on the long-term safety of daily rhGH, may influence the balance between risks and benefits of rhGH treatment in children with ISS. We further discuss the pharmacokinetic and -dynamic profile of PEG-rhGH and its potential consequences for long-term safety.
Collapse
Affiliation(s)
- Jan M Wit
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Sjoerd D Joustra
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
15
|
Idiopathic Short Stature: What to Expect from Genomic Investigations. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Short stature is a common concern for physicians caring for children. In traditional investigations, about 70% of children are healthy, without producing clinical and laboratory findings that justify their growth disorder, being classified as having constitutional short stature or idiopathic short stature (ISS). In such scenarios, the genetic approach has emerged as a great potential method to understand ISS. Over the last 30 years, several genes have been identified as being responsible for isolated short stature, with almost all of them being inherited in an autosomal-dominant pattern. Most of these defects are in genes related to the growth plate, followed by genes related to the growth hormone (GH)–insulin-like growth factor 1 (IGF1) axis and RAS-MAPK pathway. These patients usually do not have a specific phenotype, which hinders the use of a candidate gene approach. Through multigene sequencing analyses, it has been possible to provide an answer for short stature in 10–30% of these cases, with great impacts on treatment and follow-up, allowing the application of the concept of precision medicine in patients with ISS. This review highlights the historic aspects and provides an update on the monogenic causes of idiopathic short stature and suggests what to expect from genomic investigations in this field.
Collapse
|
16
|
Andrade NLM, Funari MFDA, Malaquias AC, Collett-Solberg PF, Gomes NLRA, Scalco R, Dantas NCB, Rezende RC, Tiburcio AMFP, Souza MAR, Freire BL, Krepischi ACV, Longui CA, Lerario AM, Arnhold IJP, Jorge AAL, Vasques GA. Diagnostic yield of a multigene sequencing approach in children classified as idiopathic short stature. Endocr Connect 2022; 11:e220214. [PMID: 36373817 PMCID: PMC9716379 DOI: 10.1530/ec-22-0214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Objective Most children with short stature remain without an etiologic diagnosis after extensive clinical and laboratory evaluation and are classified as idiopathic short stature (ISS). This study aimed to determine the diagnostic yield of a multigene analysis in children classified as ISS. Design and methods We selected 102 children with ISS and performed the genetic analysis as part of the initial investigation. We developed customized targeted panel sequencing, including all genes already implicated in the isolated short-stature phenotype. Rare and deleterious single nucleotide or copy number variants were assessed by bioinformatic tools. Results We identified 20 heterozygous pathogenic (P) or likely pathogenic (LP) genetic variants in 17 of 102 patients (diagnostic yield = 16.7%). Three patients had more than one P/LP genetic alteration. Most of the findings were in genes associated with the growth plate differentiation: IHH (n = 4), SHOX (n = 3), FGFR3 (n = 2), NPR2 (n = 2), ACAN (n = 2), and COL2A1 (n = 1) or involved in the RAS/MAPK pathway: NF1 (n = 2), PTPN11 (n = 1), CBL (n = 1), and BRAF (n = 1). None of these patients had clinical findings to guide a candidate gene approach. The diagnostic yield was higher among children with severe short stature (35% vs 12.2% for height SDS ≤ or > -3; P = 0.034). The genetic diagnosis had an impact on clinical management for four children. Conclusion A multigene sequencing approach can determine the genetic etiology of short stature in up to one in six children with ISS, removing the term idiopathic from their clinical classification.
Collapse
Affiliation(s)
| | - Mariana Ferreira de Assis Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | | | - Paulo Ferrez Collett-Solberg
- Disciplina de Endocrinologia, Departamento de Medicina Interna, Faculdade de Ciências Medicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Nathalia L R A Gomes
- Serviço de Endocrinologia, Unidade de Crescimento, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brasil
| | - Renata Scalco
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
- Departamento de Medicina, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil
| | - Naiara Castelo Branco Dantas
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
| | - Raissa C Rezende
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
| | - Angelica M F P Tiburcio
- Serviço de Endocrinologia, Unidade de Crescimento, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brasil
| | - Micheline A R Souza
- Serviço de Endocrinologia do Instituto de Puericultura e Pediatria Martagao Gesteira/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bruna L Freire
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | - Ana C V Krepischi
- Centro de Pesquisa em Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de Sao Paulo, São Paulo, Brasil
| | - Carlos Alberto Longui
- Departamento de Pediatria, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil
| | - Antonio Marcondes Lerario
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| | - Gabriela Andrade Vasques
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
| |
Collapse
|
17
|
Dusatkova P, Pavlikova M, Elblova L, Larionov V, Vesela K, Kolarova K, Sumnik Z, Lebl J, Pruhova S. Search for a time- and cost-saving genetic testing strategy for maturity-onset diabetes of the young. Acta Diabetol 2022; 59:1169-1178. [PMID: 35737141 PMCID: PMC9219402 DOI: 10.1007/s00592-022-01915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
AIMS Correct genetic diagnosis of maturity-onset diabetes of the young (MODY) is beneficial for person's diabetes management compared to no genetic testing. Aim of the present study was a search for optimal time- and cost-saving strategies by comparing two approaches of genetic testing of participants with clinical suspicion of MODY. METHODS A total of 121 consecutive probands referred for suspicion of MODY (Group A) were screened using targeted NGS (tNGS), while the other 112 consecutive probands (Group B) underwent a single gene test based on phenotype, and in cases of negative findings, tNGS was conducted. The study was performed in two subsequent years. The genetic results, time until reporting of the final results and financial expenses were compared between the groups. RESULTS MODY was confirmed in 30.6% and 40.2% probands from Groups A and B, respectively; GCK-MODY was predominant (72.2% in Group A and 77.8% in Group B). The median number of days until results reporting was 184 days (IQR 122-258) in Group A and 91 days (44-174) in Group B (p < 0.00001). Mean costs per person were higher for Group A (639 ± 30 USD) than for Group B (584 ± 296 USD; p = 0.044). CONCLUSIONS The two-step approach represented a better strategy for genetic investigation of MODY concerning time and costs compared to direct tNGS. Although a single-gene investigation clarified the diabetes aetiology in the majority of cases, tNGS could reveal rare causes of MODY and expose possible limitations of both standard genetic techniques and clinical evaluation.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovska 83, 18675, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Vladyslav Larionov
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Klara Vesela
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Katerina Kolarova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| |
Collapse
|
18
|
Wu S, Wang C, Cao Q, Zhu Z, Liu Q, Gu X, Zheng B, Zhou W, Jia Z, Gu W, Li X. The Spectrum of ACAN Gene Mutations in a Selected Chinese Cohort of Short Stature: Genotype-Phenotype Correlation. Front Genet 2022; 13:891040. [PMID: 35620465 PMCID: PMC9127616 DOI: 10.3389/fgene.2022.891040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: Mutations in the ACAN gene have been reported to cause short stature. However, the prevalence estimates of pathogenic ACAN variants in individuals with short stature vary, and the correlation between ACAN genotype and clinical phenotype remain to be evaluated. To determine the prevalence of ACAN variants among Chinese people with short stature and analyze the relationship between genotype and main clinical manifestations of short stature and advanced bone age among patients with ACAN variants. Methods: We performed next-generation sequencing-based genetic analyses on 442 individuals with short stature. ACAN variants were summarized, previously reported cases were retrospectively analyzed, and an association analysis between genotype and phenotype was conducted. Result: We identified 15 novel and two recurrent ACAN gene variants in 16 different pedigrees that included index patients with short stature. Among the patients with ACAN variants, 12 of 18 had advanced bone age and 7 of 18 received growth hormone therapy, 5 (71.4%) of whom exhibited variable levels of height standard deviation score improvement. Further analysis showed that patients with ACAN truncating variants had shorter height standard deviation scores (p = 0.0001) and larger bone age–chronological age values (p = 0.0464). Moreover, patients in this Asian population had a smaller mean bone age–chronological age value than those that have been determined in European and American populations (p = 0.0033). Conclusion: Our data suggest that ACAN mutation is a common cause of short stature in China, especially among patients with a family history of short stature but also among those who were born short for their gestational age without a family history. Patients with truncating variants were shorter in height and had more obvious advanced bone age, and the proportion of patients with advanced bone age was lower in this Asian population than in Europe and America.
Collapse
Affiliation(s)
- Su Wu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Cao
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqi Liu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Gu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Blum WF, Ranke MB, Keller E, Keller A, Barth S, de Bruin C, Wudy SA, Wit JM. A Novel Method for Adult Height Prediction in Children with Idiopathic Short Stature Derived from a German-Dutch Cohort. J Endocr Soc 2022; 6:bvac074. [PMID: 35668996 PMCID: PMC9155597 DOI: 10.1210/jendso/bvac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 11/19/2022] Open
Abstract
Context Prediction of adult height (AH) is important in clinical management of short children. The conventional methods of Bayley-Pinneau (BP) or Roche-Wainer-Thissen (RWT) have limitations. Objective We aimed to develop a set of algorithms for AH prediction in patients with idiopathic short stature (ISS) which are specific for combinations of predicting variables. Methods Demographic and auxologic data were collected in childhood (1980s) and at AH (1990s). Data were collected by Dutch and German referral centers for pediatric endocrinology. A total of 292 subjects with ISS (219 male, 73 female) were enrolled. The population was randomly split into modeling (n = 235) and validation (n = 57) cohorts. Linear multi-regression analysis was performed with predicted AH (PAH) as response variable and combinations of chronological age (CA), baseline height, parental heights, relative bone age (BA/CA), birth weight, and sex as exploratory variables. Results Ten models including different exploratory variables were selected with adjusted R² ranging from 0.84 to 0.78 and prediction errors from 3.16 to 3.68 cm. Applied to the validation cohort, mean residuals (PAH minus observed AH) ranged from −0.29 to −0.82 cm, while the conventional methods showed some overprediction (BP: +0.53 cm; RWT: +1.33 cm; projected AH: +3.81 cm). There was no significant trend of residuals with PAH or any exploratory variables, in contrast to BP and projected AH. Conclusion This set of 10 multi-regression algorithms, developed specifically for children with ISS, provides a flexible tool for AH prediction with better accuracy than the conventional methods.
Collapse
Affiliation(s)
- Werner F Blum
- Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, Giessen, Germany
| | - Michael B Ranke
- Dept of Pediatric Endocrinology, University Children’s Hospital, Tübingen, Germany
| | - Eberhard Keller
- Dept of Pediatrics, University Children’s Hospital, Leipzig, Germany
| | | | - Sandra Barth
- Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, Giessen, Germany
| | - Christiaan de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan A Wudy
- Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, Giessen, Germany
| | - Jan M Wit
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Wit JM, Joustra SD, Losekoot M, van Duyvenvoorde HA, de Bruin C. Differential Diagnosis of the Short IGF-I-Deficient Child with Apparently Normal Growth Hormone Secretion. Horm Res Paediatr 2022; 94:81-104. [PMID: 34091447 DOI: 10.1159/000516407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
The current differential diagnosis for a short child with low insulin-like growth factor I (IGF-I) and a normal growth hormone (GH) peak in a GH stimulation test (GHST), after exclusion of acquired causes, includes the following disorders: (1) a decreased spontaneous GH secretion in contrast to a normal stimulated GH peak ("GH neurosecretory dysfunction," GHND) and (2) genetic conditions with a normal GH sensitivity (e.g., pathogenic variants of GH1 or GHSR) and (3) GH insensitivity (GHI). We present a critical appraisal of the concept of GHND and the role of 12- or 24-h GH profiles in the selection of children for GH treatment. The mean 24-h GH concentration in healthy children overlaps with that in those with GH deficiency, indicating that the previously proposed cutoff limit (3.0-3.2 μg/L) is too high. The main advantage of performing a GH profile is that it prevents about 20% of false-positive test results of the GHST, while it also detects a low spontaneous GH secretion in children who would be considered GH sufficient based on a stimulation test. However, due to a considerable burden for patients and the health budget, GH profiles are only used in few centres. Regarding genetic causes, there is good evidence of the existence of Kowarski syndrome (due to GH1 variants) but less on the role of GHSR variants. Several genetic causes of (partial) GHI are known (GHR, STAT5B, STAT3, IGF1, IGFALS defects, and Noonan and 3M syndromes), some responding positively to GH therapy. In the final section, we speculate on hypothetical causes.
Collapse
Affiliation(s)
- Jan M Wit
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sjoerd D Joustra
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Christiaan de Bruin
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
21
|
Plachy L, Amaratunga SA, Dusatkova P, Maratova K, Neuman V, Petruzelkova L, Zemkova D, Obermannova B, Snajderova M, Kolouskova S, Sumnik Z, Lebl J, Pruhova S. Isolated growth hormone deficiency in children with vertically transmitted short stature: What do the genes tell us? Front Endocrinol (Lausanne) 2022; 13:1102968. [PMID: 36714562 PMCID: PMC9880029 DOI: 10.3389/fendo.2022.1102968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The growth hormone deficiency (GHD) diagnosis is controversial especially due to low specificity of growth hormone (GH) stimulation tests. It is therefore believed that children diagnosed with GHD form a heterogeneous group with growth disorder frequently independent on GH function. No study evaluating the complex etiology of growth failure in children with diagnosed GHD has been performed thus far. AIMS To discover genetic etiology of short stature in children with diagnosed GHD from families with short stature. METHODS Fifty-two children diagnosed with primary GHD and vertically transmitted short stature (height SDS in the child and his/her shorter parent <-2 SD) were included to our study. The GHD diagnosis was based on growth data suggestive of GHD, absence of substantial disproportionality (sitting height to total height ratio <-2 SD or >+2 SD), IGF-1 levels <0 for age and sex specific SD and peak GH concentration <10 ug/L in two stimulation tests. All children were examined using next-generation sequencing methods, and the genetic variants were subsequently evaluated by American College of Medical Genetics standards and guidelines. RESULTS The age of children at enrollment into the study was 11 years (median, IQR 9-14 years), their height prior to GH treatment was -3.0 SD (-3.6 to -2.8 SD), IGF-1 concentration -1.4 SD (-2.0 to -1.1 SD), and maximal stimulated GH 6.3 ug/L (4.8-7.6 ug/L). No child had multiple pituitary hormone deficiency or a midbrain region pathology. Causative variant in a gene that affects growth was discovered in 15/52 (29%) children. Of them, only 2 (13%) had a genetic variant affecting GH secretion or function (GHSR and OTX2). Interestingly, in 10 (67%) children we discovered a primary growth plate disorder (ACAN, COL1A2, COL11A1, COL2A1, EXT2, FGFR3, NF1, NPR2, PTPN11 [2x]), in one (7%) a genetic variant impairing IGF-1 action (IGFALS) and in two (12%) a variant in miscellaneous genes (SALL4, MBTPS2). CONCLUSIONS In children with vertically transmitted short stature, genetic results frequently did not correspond with the clinical diagnosis of GH deficiency. These results underline the doubtful reliability of methods standardly used to diagnose GH deficiency.
Collapse
|
22
|
He D, Li Y, Yang W, Chen S, Sun H, Li P, Zhang M, Ban B. Molecular diagnosis for growth hormone deficiency in Chinese children and adolescents and evaluation of impact of rare genetic variants on treatment efficacy of growth hormone. Clin Chim Acta 2022; 524:1-10. [PMID: 34826401 DOI: 10.1016/j.cca.2021.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Growth hormone is an effective therapy for growth hormone deficiency (GHD) but with a rather variable individual sensitivity. It is unclear whether rare genetic variants may contribute to the differential GH responsiveness. METHODS The present study aims to investigate the molecular etiology of GHD in Chinese children and adolescents and evaluate the impact of rare variants on therapeutic efficacies of GH. RESULTS Twenty-one rare heterozygous variant were classified as promising uncertain significance (n = 14), pathogenic (n = 5) or likely pathogenic (n = 2) for 21 of the 93 GHD patients. After GHD patients harboring these rare variants were excluded, inter-individual variability in the response to GH therapy obviously reduced and the negative correlation between initiation age of treatment and height SDS change became stronger in the group without rare variants. Among rare variants, 7 (likely) pathogenic variants (7.5%, 7/93) involved a total of 6 genes not only associated with GH secretion (PROKR2, LZTR1), but also growth plate chondrocyte signaling (ACAN, FBN1, COL9A1) or genetic syndromes (PTPN11). CONCLUSIONS Rare genetic variants are an important factor contributing to differential GH responsiveness and genetic testing should be factored into accurate diagnosis and treatment decision making in the future. CLINICAL TRIAL REGISTRATION NUMBER ChiCTR1900026510.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, PR China
| | - Shuxiong Chen
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Hailing Sun
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Ping Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China.
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China.
| |
Collapse
|
23
|
Chen M, Miao H, Liang H, Ke X, Yang H, Gong F, Wang L, Duan L, Chen S, Pan H, Zhu H. Clinical Characteristics of Short-Stature Patients With Collagen Gene Mutation and the Therapeutic Response to rhGH. Front Endocrinol (Lausanne) 2022; 13:820001. [PMID: 35250876 PMCID: PMC8889571 DOI: 10.3389/fendo.2022.820001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/06/2022] [Indexed: 12/03/2022] Open
Abstract
CONTEXT Clinical genetic evaluation has been demonstrated as an important tool to elucidate the causes of growth disorders. Genetic defects of collagen formation (the collagenopathies) have been reported to be associated with short stature and skeletal dysplasias. Etiological diagnosis of skeletal abnormality-related short stature is challenging, and less is known about recombinant human growth hormone (rhGH) therapy. OBJECTIVE This is a single-center cohort study which aims at exploring the genetic architecture of short-stature children with skeletal abnormalities and evaluating the frequency of collagenopathies to determine their phenotype, including the rhGH treatment response. PATIENTS AND METHODS One hundred and six children with short stature and skeletal abnormalities were enrolled who were evaluated by next-generation sequencing (NGS) to detect variants in the skeletal collagen genes including COL1A1, COL1A2, COL2A1, COL9A1, COL9A2, COL9A3, COL10A1, COL11A1, and COL11A2. The results were evaluated using American College of Medical Genetics and Genomics (ACMG) guidelines. Clinical characteristics and rhGH treatment response were summarized. RESULTS Twenty-four pathogenic or likely pathogenic variants of collagen genes were found in 26 of 106 (24.5%) short-stature patients with skeletal abnormalities, of which COL2A1 mutations were the most common, accounting for about 57.7%. Other frequent mutations associated with skeletal development include FGFR3, ACAN, NPR2, COMP, and FBN1 in 12.2%, 0.9%, 0.8%, 0.4%, and 0.4%, respectively, resulting in significantly different degrees of short stature. An overview of clinical features of collagenopathies showed growth retardation, skeletal abnormalities, and heterogeneous syndromic abnormalities involving facial, eye, hearing, and cardiac abnormalities. The average height of 9 patients who received rhGH treatment improved from a median of -3.2 ± 0.9 SDS to -2.2 ± 1.3 SDS after 2.8 ± 2.1 years. The most significant height improvement of 2.3 SDS and 1.7 SDS was also seen in two patients who had been treated for more than 6 years. CONCLUSIONS A proband-based NGS revealed that distinct genetic architecture underlies short stature in varying degrees and clinical features. Skeletal abnormality-related short stature involving multiple systems should be tested for skeletal collagen gene mutation. Limited rhGH treatment data indicate an improved growth rate and height, and close monitoring of adverse reactions such as scoliosis is required.
Collapse
|
24
|
Sun J, Jiang L, Liu G, Ma C, Zheng J, Niu L. Evaluation of Growth Hormone Therapy in Seven Chinese Children With Familial Short Stature Caused by Novel ACAN Variants. Front Pediatr 2022; 10:819074. [PMID: 35330881 PMCID: PMC8940281 DOI: 10.3389/fped.2022.819074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE ACAN gene variants are an important cause of familial short stature (FSS). Appropriate growth-promoting therapies effectively improve the patient height. Here, we report a therapeutic assessment of cases of seven families of FSS patients with heterozygous ACAN variants. Our findings provide a valuable theoretical basis for the clinical diagnosis and treatment of this disease. METHODS From December 2020 to June 2021, 32 FSS patients were examined in Tianjin Medical University General Hospital (Tianjin, China) by whole-exome sequencing to determine whether ACAN variants were present. Their clinical data were summarized and scrupulously analyzed. RESULTS We found seven novel heterozygous ACAN variants: c.1051 + 2T > A, c.313T > C (p.S105P), c.2660C > G (p.S887X), c.2153C > A (p. T718K), c.7243delG (p.D2415Tfs*4), c.2911G > T (p.G971X), c.758-7T > C. All seven patients had proportionate short stature and mild skeletal dysplasia. Endocrine examination results were normal. Only one of the patients had an advanced bone age (1.1 years older than chronological age), whereas the other patients had normal bone ages. All of them had a family history of short stature, with or without osteoarthritis or intervertebral disc disease. All seven patients accepted treatment with recombinant human growth hormone (rhGH) and were regularly followed up. One patient did not come at the follow-up visit. The height of the remaining six patients before and after the treatment was -2.89 ± 0.68 SDS, -1.91 ± 0.93 SDS, respectively, with a treatment course of 1.85 ± 1.91 years. A good therapeutic response was observed in all of them. CONCLUSIONS In this study, seven novel heterozygous variants in ACAN were discovered, which expanded the spectrum of the already established ACAN pathogenic variants. In FSS cohort, the proportion of ACAN variants accounted was large. The treatment with rhGH effectively increased the patient height, but further studies with longer follow-up periods and more extensive observations are required to elucidate the long-term effect.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lihong Jiang
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Geli Liu
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Ma
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaqi Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lele Niu
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
25
|
Wei M, Ying Y, Li Z, Weng Y, Luo X. Identification of novel ACAN mutations in two Chinese families and genotype-phenotype correlation in patients with 74 pathogenic ACAN variations. Mol Genet Genomic Med 2021; 9:e1823. [PMID: 34605228 PMCID: PMC8606199 DOI: 10.1002/mgg3.1823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Background ACAN (OMIM 155760) is located on chromosome 15q26 and encodes the production of aggrecan. Aggrecan is a large chondroitin sulfate proteoglycan with a molecular weight of 254 kDa and contains 2530 amino acids. It is a critical structural component of the extracellular matrix of cartilage, including growth plate, articular, and intervertebral disk cartilage. It plays a key role in bone development. Methods Here, we describe two pedigrees with loss‐of‐function variants in ACAN. Whole exome sequencing was performed for the probands from each family. We illustrate the clinical variability associated with ACAN variants. Results The proband of pedigree A manifested short stature, relative macrocephaly, mild flat nasal bridge, low‐set ears, short neck, and short thumbs. The proband of pedigree B had short height, abnormal vertebral development, and central precocious puberty. By trio‐based whole exome sequencing and in silico analyses, we identified two de novo heterozygous variants of ACAN: NM_013227.4: c.116dupT, p.Arg40Glufs*51 and NM_013227.4: c.2367delC, p.Ser790Glnfs*20 (accession number: AC103982.10). Conclusion The clinical manifestations of ACAN gene variants are diverse. ACAN gene variants are important genetic factors for short stature and should be considered as the differential diagnosis of children with idiopathic short stature (ISS).
Collapse
Affiliation(s)
- Ming Wei
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuxi Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Weng
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development. Cells 2021; 10:cells10082063. [PMID: 34440832 PMCID: PMC8392544 DOI: 10.3390/cells10082063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro—and sometimes also in vivo—functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease.
Collapse
|
27
|
Hosoe J, Kawashima-Sonoyama Y, Miya F, Kadowaki H, Suzuki K, Kato T, Matsuzawa F, Aikawa SI, Okada Y, Tsunoda T, Hanaki K, Kanzaki S, Shojima N, Yamauchi T, Kadowaki T. Genotype-Structure-Phenotype Correlations of Disease-Associated IGF1R Variants and Similarities to Those of INSR Variants. Diabetes 2021; 70:1874-1884. [PMID: 34074726 DOI: 10.2337/db20-1145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022]
Abstract
We previously reported genotype-phenotype correlations in 12 missense variants causing severe insulin resistance, located in the second and third fibronectin type III (FnIII) domains of the insulin receptor (INSR), containing the α-β cleavage and part of insulin-binding sites. This study aimed to identify genotype-phenotype correlations in FnIII domain variants of IGF1R, a structurally related homolog of INSR, which may be associated with growth retardation, using the recently reported crystal structures of IGF1R. A structural bioinformatics analysis of five previously reported disease-associated heterozygous missense variants and a likely benign variant in the FnIII domains of IGF1R predicted that the disease-associated variants would severely impair the hydrophobic core formation and stability of the FnIII domains or affect the α-β cleavage site, while the likely benign variant would not affect the folding of the domains. A functional analysis of these variants in CHO cells showed impaired receptor processing and autophosphorylation in cells expressing the disease-associated variants but not in those expressing the wild-type form or the likely benign variant. These results demonstrated genotype-phenotype correlations in the FnIII domain variants of IGF1R, which are presumably consistent with those of INSR and would help in the early diagnosis of patients with disease-associated IGF1R variants.
Collapse
Affiliation(s)
- Jun Hosoe
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawashima-Sonoyama
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- CREST, Japan Science and Technology Agency, Tokyo
| | | | - Ken Suzuki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Kato
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- CREST, Japan Science and Technology Agency, Tokyo
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keiichi Hanaki
- School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Susumu Kanzaki
- Asahigawaso Rehabilitation and Medical Center, Okayama, Japan
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
28
|
Vishnopolska SA, Mercogliano MF, Camilletti MA, Mortensen AH, Braslavsky D, Keselman A, Bergadá I, Olivieri F, Miranda L, Marino R, Ramírez P, Pérez Garrido N, Patiño Mejia H, Ciaccio M, Di Palma MI, Belgorosky A, Martí MA, Kitzman JO, Camper SA, Pérez-Millán MI. Comprehensive Identification of Pathogenic Gene Variants in Patients With Neuroendocrine Disorders. J Clin Endocrinol Metab 2021; 106:1956-1976. [PMID: 33729509 PMCID: PMC8208670 DOI: 10.1210/clinem/dgab177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/12/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis. METHODS We conducted target panel genetic screening using single-molecule molecular inversion probes sequencing to assess the frequency of mutations in known hypopituitarism genes and new candidates in Argentina. We captured genomic deoxyribonucleic acid from 170 pediatric patients with CH, either alone or with other abnormalities. We performed promoter activation assays to test the functional effects of patient variants in LHX3 and LHX4. RESULTS We found variants classified as pathogenic, likely pathogenic, or with uncertain significance in 15.3% of cases. These variants were identified in known CH causative genes (LHX3, LHX4, GLI2, OTX2, HESX1), in less frequently reported genes (FOXA2, BMP4, FGFR1, PROKR2, PNPLA6) and in new candidate genes (BMP2, HMGA2, HNF1A, NKX2-1). CONCLUSION In this work, we report the prevalence of mutations in known CH genes in Argentina and provide evidence for new candidate genes. We show that CH is a genetically heterogeneous disease with high phenotypic variation and incomplete penetrance, and our results support the need for further gene discovery for CH. Identifying population-specific pathogenic variants will improve the capacity of genetic data to predict eventual clinical outcomes.
Collapse
Affiliation(s)
- Sebastian Alexis Vishnopolska
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Florencia Mercogliano
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Andrea Camilletti
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Amanda Helen Mortensen
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Federico Olivieri
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Lucas Miranda
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Roxana Marino
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Pablo Ramírez
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Natalia Pérez Garrido
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Helen Patiño Mejia
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Marta Ciaccio
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Maria Isabel Di Palma
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Alicia Belgorosky
- Hospital de Pediatría Garrahan-CONICET, Ciudad de Buenos Aires, Argentina
| | - Marcelo Adrian Martí
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Jacob Otto Kitzman
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Sally Ann Camper
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| | - Maria Ines Pérez-Millán
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| |
Collapse
|
29
|
Lin L, Li M, Luo J, Li P, Zhou S, Yang Y, Chen K, Weng Y, Ge X, Mireguli M, Wei H, Yang H, Li G, Sun Y, Cui L, Zhang S, Chen J, Zeng G, Xu L, Luo X, Shen Y. A High Proportion of Novel ACAN Mutations and Their Prevalence in a Large Cohort of Chinese Short Stature Children. J Clin Endocrinol Metab 2021; 106:e2711-e2719. [PMID: 33606014 PMCID: PMC8208663 DOI: 10.1210/clinem/dgab088] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Aggrecan, encoded by the ACAN gene, is the main proteoglycan component in the extracellular cartilage matrix. Heterozygous mutations in ACAN have been reported to cause idiopathic short stature. However, the prevalence of ACAN pathogenic variants in Chinese short stature patients and clinical phenotypes remain to be evaluated. OBJECTIVE We sought to determine the prevalence of ACAN pathogenic variants among Chinese short stature children and characterize the phenotypic spectrum and their responses to growth hormone therapies. PATIENTS AND METHODS Over 1000 unrelated short stature patients ascertained across China were genetically evaluated by next-generation sequencing-based test. RESULT We identified 10 novel likely pathogenic variants and 2 recurrent pathogenic variants in this cohort. None of ACAN mutation carriers exhibited significant dysmorphic features or skeletal abnormities. The prevalence of ACAN defect is estimated to be 1.2% in the whole cohort; it increased to 14.3% among those with advanced bone age and to 35.7% among those with both advanced bone age and family history of short stature. Nonetheless, 5 of 11 ACAN mutation carries had no advanced bone age. Two individuals received growth hormone therapy with variable levels of height SD score improvement. CONCLUSION Our data suggest that ACAN mutation is 1 of the common causes of Chinese pediatric short stature. Although it has a higher detection rate among short stature patients with advanced bone age and family history, part of affected probands presented with delayed bone age in Chinese short stature population. The growth hormone treatment was moderately effective for both individuals.
Collapse
Affiliation(s)
- Li Lin
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Mengting Li
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pin Li
- Department of Endocrinology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhou
- Department of Endocrinology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yang
- Affiliation Children’s Hospital of Nanchang University, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Ka Chen
- Affiliation Children’s Hospital of Nanchang University, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Ying Weng
- Department of Pediatrics, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuying Ge
- Linyi Maternal and Child Health Care Hospital, Linyi, Shandong, China
| | - Maimaiti Mireguli
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, China
| | - Haiyan Wei
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haihua Yang
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lanwei Cui
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shulin Zhang
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Chen
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guozhang Zeng
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Lijun Xu
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
- Correspondence: Xiaoping Luo, Department of Pediatrics, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430074, China. E-mail:
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Neurology, Harvard Medical School, Boston, MA, USA
- Yiping Shen, Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China. E-mail:
| |
Collapse
|
30
|
Lack of Catch-Up Growth with Growth Hormone Treatment in a Child Born Small for Gestational Age Leading to a Diagnosis of Noonan Syndrome with a Pathogenic PTPN11 Variant. Case Rep Endocrinol 2021; 2021:5571524. [PMID: 34194850 PMCID: PMC8203378 DOI: 10.1155/2021/5571524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background Growth hormone (GH) treatment increases the adult height of short children born small for gestational age (SGA). Catch-up growth is associated with a younger age, shorter height, and prepubertal status at the onset of GH treatment. We report a 12 11/12-year-old girl born SGA who received GH for 5 years without catch-up growth and was diagnosed with Noonan Syndrome (NS). Results A 5-year-and-9-month-old 46, XX girl born SGA was started on GH treatment at a dose of 0.32 mg/kg/week. Her midparental target height is 158.6 cm. Endocrine work up showed an IGF-1 level 69 ng/ml (Normal (N): 55–238 ng/ml), IGFBP3 2.6 mg/L (N: 1.9–5.2 mg/L), TSH 3.2 mIU/L (N: 0.35–5.5 mIU/L), and a normal skeletal survey. Height was 96 cm (0.1%; Ht SDS −2.9), weight 14 kgs (1%; Wt SDS −2.3), and Tanner 1 breast and pubic hair were observed. Due to the poor catch-up growth on GH treatment, she was referred to Genetics to elucidate genetic or syndromic causes of short stature. She was noted to have posteriorly rotated ears and slight down slanting of the palpebral fissures. Genetic findings showed a heterozygous pathogenic variant in PTPN11 (c.922A > G (p.Asn308Asp)) diagnostic for NS. This finding is de novo given negative parental testing. She was noted to have a heterozygous missense variant of unknown significance (VUS) in FGFR3: c.746C > A (p.Ser249Tyr). FGFR3 is associated with multiple skeletal dysplasias including thanatophoric dysplasia, achondroplasia, and Crouzon syndrome and hypochondroplasia. Clinical correlation is poor for these syndromes. Conclusion Diminished catch-up growth and response to GH treatment in a child born SGA led to the diagnosis of NS. The concomitant diagnosis of SGA and NS may have affected the responsiveness of this child to the growth promoting effect of GH treatment.
Collapse
|
31
|
Plachy L, Dusatkova P, Maratova K, Petruzelkova L, Elblova L, Kolouskova S, Snajderova M, Obermannova B, Zemkova D, Sumnik Z, Lebl J, Pruhova S. Familial Short Stature-A Novel Phenotype of Growth Plate Collagenopathies. J Clin Endocrinol Metab 2021; 106:1742-1749. [PMID: 33570564 DOI: 10.1210/clinem/dgab084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Collagens are the most abundant proteins in the human body. In a growth plate, collagen types II, IX, X, and XI are present. Defects in collagen genes cause heterogeneous syndromic disorders frequently associated with short stature. Less is known about oligosymptomatic collagenopathies. OBJECTIVE This work aims to evaluate the frequency of collagenopathies in familial short stature (FSS) children and to describe their phenotype, including growth hormone (GH) treatment response. METHODS Eighty-seven FSS children (pretreatment height ≤ -2 SD both in the patient and his or her shorter parent) treated with GH were included in the study. Next-generation sequencing was performed to search for variants in the COL2A1, COL9A1, COL9A2, COL9A3, COL10A1, COL11A1, and COL11A2 genes. The results were evaluated using American College of Medical Genetics and Genomics guidelines. The GH treatment response of affected children was retrospectively evaluated. RESULTS A likely pathogenic variant in the collagen gene was found in 10 of 87 (11.5%) children. Detailed examination described mild asymmetry with shorter limbs and mild bone dysplasia signs in 2 of 10 and 4 of 10 affected children, respectively. Their growth velocity improved from a median of 5.3 cm/year to 8.7 cm/year after 1 year of treatment. Their height improved from a median of -3.1 SD to -2.6 SD and to -2.2 SD after 1 and 3 years of therapy, respectively. The final height reached by 4 of 10 children differed by -0.67 to +1.0 SD and -0.45 to +0.5 SD compared to their pretreatment height and their affected untreated parent's height, respectively. CONCLUSION Oligosymptomatic collagenopathies are a frequent cause of FSS. The short-term response to GH treatment is promising.
Collapse
Affiliation(s)
- Lukas Plachy
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Klara Maratova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Lenka Petruzelkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Lenka Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Marta Snajderova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Dana Zemkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| |
Collapse
|
32
|
Prevalence of children born small for gestational age with short stature who qualify for growth hormone treatment. Ital J Pediatr 2021; 47:82. [PMID: 33794966 PMCID: PMC8015030 DOI: 10.1186/s13052-021-01026-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Recombinant human growth hormone (rhGH) is approved in Europe as a treatment for short children born small for gestational age (SGA) since 2003. However, no study evaluated the prevalence of SGA children with short stature who qualify for rhGH in Europe so far. This study aimed to investigate in an Italian population the prevalence of children born SGA, of short stature in children born SGA, and of SGA children who qualify for rhGH treatment at 4 years of age. METHODS We conducted a population-based study on primary care pediatricians' databases in Trieste, Italy. Data was collected on 3769 children born between 2004 and 2014. SGA was defined as birth weight and/or birth length ≤ - 2 SDS. Data on height and weight were registered at the closest well-being visit to 1, 2, 3, 4 years of age. Short stature was defined as height ≤ - 2 SDS. Short children born SGA who qualify for rhGH treatment were identified according to Note AIFA #39 criteria (age ≥ 4 years; height ≤ - 2.5 SDS; growth velocity < 50th percentile). RESULTS Full data at birth were available for 3250 children. The SGA prevalence was 3.6% (0.8% SGA for weight, 2.2% SGA for length, 0.6% SGA for both weight and length). The prevalence of short stature among SGA children was 9% at 1 year of age, 6% at 2 years (significantly higher in preterm in the first 2 years), 4% at 3 years, 3% at 4 years (all born at term). At 4 years of age, median height SDS was - 0.52. One child born SGA was eligible for GH treatment (0.8% among SGA children). CONCLUSIONS The prevalence in a general pediatric population of children born SGA who qualify for GH treatment was 1:3250. Although the prevalence of SGA in our population was similar to previous studies, catch-up growth was recorded earlier in our sample compared to previous reports, and term babies had late catch-up. Height SDS of children born SGA at 4 years of age was lower than expected (- 0.52 SDS).
Collapse
|
33
|
Hwa V, Fujimoto M, Zhu G, Gao W, Foley C, Kumbaji M, Rosenfeld RG. Genetic causes of growth hormone insensitivity beyond GHR. Rev Endocr Metab Disord 2021; 22:43-58. [PMID: 33029712 PMCID: PMC7979432 DOI: 10.1007/s11154-020-09603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Masanobu Fujimoto
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Gaohui Zhu
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China
| | - Wen Gao
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Corinne Foley
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Meenasri Kumbaji
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
34
|
Faienza MF, Chiarito M, Brunetti G, D'Amato G. Growth plate gene involment and isolated short stature. Endocrine 2021; 71:28-34. [PMID: 32504378 DOI: 10.1007/s12020-020-02362-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Short stature is a common clinical presentation, thus it is widely accepted that it is a polygenic trait. However, genome wide association and next generation sequencing studies have recently challenged this view, suggesting that many of the children classified as idiopathic short stature could instead have monogenic defects. Linear growth is determined primarily by chondrogenesis at the growth plate. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is perfectly coordinated by complex networks of local paracrine and endocrine factors. Alterations in genes which control growth plate development can explain a large number of cases of isolated short stature, allowing an etiological diagnosis. METHODS/RESULTS We reviewed recent data on the genetic alterations in fundamental cellular processes, paracrine signaling, and cartilage matrix formation associated with impaired growth plate chondrogenesis. In particular we focused on growth plate gene involvement in nonsyndromic short stature. CONCLUSIONS The identification of genetic basis of growth failure will have a significant impact on the care of children affected with short stature.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Mariangela Chiarito
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari "A. Moro", Bari, Italy
| | | |
Collapse
|
35
|
Walczak M, Szalecki M, Horneff G, Lebl J, Kalina-Faska B, Giemza T, Moldovanu F, Nanu M, Zouater H. Long-term follow up of carbohydrate metabolism and adverse events after termination of Omnitrope® treatment in children born small for gestational age. Ther Adv Endocrinol Metab 2021; 12:20420188211013121. [PMID: 34104396 PMCID: PMC8111548 DOI: 10.1177/20420188211013121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Recombinant human growth hormone (rhGH) therapy can affect carbohydrate metabolism and lead to impaired glucose tolerance during treatment. In addition, short children born small for gestational age (SGA) are predisposed to metabolic abnormalities. This study assessed the long-term safety of rhGH (Omnitrope®) use in short children born SGA. METHODS This was a follow-up observational study of patients from a phase IV study. The baseline visit was the final visit of the phase IV study. Further visits were planned after 6 months (F1), 1 year (F2), 5 years (F3), and 10 years (F4). The primary objective was to evaluate the long-term effect of rhGH treatment on the development of diabetes mellitus; secondary objectives included incidence/severity of adverse events (AEs). RESULTS In total, 130 subjects were enrolled in the follow-up study; 99 completed F1, 88 completed F2, and 13 completed F3 (no subject reached F4). The full analysis set for evaluation comprised 118 patients (64 female). Mean (standard deviation) duration of follow up was 39.6 (24.4) months. No subject was newly diagnosed with diabetes. The results for carbohydrate metabolism parameters were consistent with this finding. A total of 144 AEs were reported in 54 subjects; these were mostly of mild-to-moderate intensity (96.5%) and not suspected to be related to previous rhGH treatment (94.4%). Serious AEs (n = 18) were reported in eight patients; three (in one patient) were suspected as possibly related to previous rhGH treatment (anemia, menorrhagia, oligomenorrhoea). One fatal event occurred (sepsis), which was judged as not related to previous rhGH treatment. CONCLUSIONS None of the participating subjects, who had all been previously treated with Omnitrope® in a phase IV study, developed diabetes during this follow-up study. In addition, no other unexpected or concerning safety signals were observed.
Collapse
Affiliation(s)
- Mieczyslaw Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Zachodniopomorskie, Poland
| | - Mieczyslaw Szalecki
- Collegium Medicum UJK, Kielce, Children’s Memorial Health Institute, Warsaw, Poland
| | - Gerd Horneff
- Department of Pediatrics, Center for Pediatric Rheumatology, Asklepios Clinic Sankt Augustin, Sankt Augustin, Germany
- Department of Pediatric and Adolescents Medicine, University Hospital of Cologne, Cologne, Germany
| | - Jan Lebl
- Department of Pediatrics, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Barbara Kalina-Faska
- Department of Pediatrics and Pediatric Endocrinology, Medical University of Silesia, Faculty of Medical Science, Katowice, Slaskie, Poland
| | | | - Florentina Moldovanu
- National Institute for Mother and Child Health, ‘Alessandrescu Rusescu’, Bucharest, Romania
| | - Michaela Nanu
- National Institute for Mother and Child Health, ‘Alessandrescu Rusescu’, Bucharest, Romania
| | | |
Collapse
|
36
|
Yu C, Xie B, Zhao Z, Zhao S, Liu L, Cheng X, Li X, Cao B, Shao J, Chen J, Zhao H, Yan Z, Su C, Niu Y, Song Y, Wei L, Wang Y, Ren X, Fan L, Zhang B, Li C, Gui B, Zhang Y, Wang L, Chen S, Zhang J, Wu Z, Gong C, Fan X, Wu N. Whole Exome Sequencing Uncovered the Genetic Architecture of Growth Hormone Deficiency Patients. Front Endocrinol (Lausanne) 2021; 12:711991. [PMID: 34589056 PMCID: PMC8475633 DOI: 10.3389/fendo.2021.711991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Congenital growth hormone deficiency (GHD) is a rare and etiologically heterogeneous disease. We aim to screen disease-causing mutations of GHD in a relatively sizable cohort and discover underlying mechanisms via a candidate gene-based mutational burden analysis. METHODS We retrospectively analyzed 109 short stature patients associated with hormone deficiency. All patients were classified into two groups: Group I (n=45) with definitive GHD and Group II (n=64) with possible GHD. We analyzed correlation consistency between clinical criteria and molecular findings by whole exome sequencing (WES) in two groups. The patients without a molecular diagnosis (n=90) were compared with 942 in-house controls for the mutational burden of rare mutations in 259 genes biologically related with the GH axis. RESULTS In 19 patients with molecular diagnosis, we found 5 possible GHD patients received known molecular diagnosis associated with GHD (NF1 [c.2329T>A, c.7131C>G], GHRHR [c.731G>A], STAT5B [c.1102delC], HRAS [c.187_207dup]). By mutational burden analysis of predicted deleterious variants in 90 patients without molecular diagnosis, we found that POLR3A (p = 0.005), SUFU (p = 0.006), LHX3 (p = 0.021) and CREB3L4 (p = 0.040) represented top genes enriched in GHD patients. CONCLUSION Our study revealed the discrepancies between the laboratory testing and molecular diagnosis of GHD. These differences should be considered when for an accurate diagnosis of GHD. We also identified four candidate genes that might be associated with GHD.
Collapse
Affiliation(s)
- Chenxi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bobo Xie
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lian Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xi Cheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bingyan Cao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Jiashen Shao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiajia Chen
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanning Song
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Liya Wei
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Xiaoya Ren
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Lijun Fan
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Beibei Zhang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Chuan Li
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Baoheng Gui
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lianlei Wang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoke Chen
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| | - Xin Fan
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| |
Collapse
|
37
|
Liang H, Miao H, Pan H, Yang H, Gong F, Duan L, Chen S, Wang L, Zhu H. Growth-Promoting Therapies May Be Useful In Short Stature Patients With Nonspecific Skeletal Abnormalities Caused By Acan Heterozygous Mutations: Six Chinese Cases And Literature Review. Endocr Pract 2020; 26:1255-1268. [PMID: 33471655 DOI: 10.4158/ep-2019-0518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE There are numerous reasons for short stature, including mutations in osteochondral development genes. ACAN, one such osteochondral development gene in which heterozygous mutations can cause short stature, has attracted attention from researchers in recent years. Therefore, we analyzed six cases of short stature with heterozygous ACAN mutations and performed a literature review. METHODS Clinical information and blood samples from 6 probands and their family members were collected after consent forms were signed. Gene mutations in the probands were detected by whole-exome sequencing. Then, we searched the literature, performed statistical analyses, and summarized the characteristics of all reported cases. RESULTS We identified six novel mutations in ACAN: c.1411C>T, c.1817C>A, c.1762C>T, c.2266G>C, c.7469G>A, and c.1733-1G>A. In the literature, more than 200 affected individuals have been diagnosed genetically with a similar condition (height standard deviation score [SDS] -3.14 ± 1.15). Among affected individuals receiving growth-promoting treatment, their height before and after treatment was SDS -2.92±1.07 versus SDS -2.14±1.23 (P<.001). As of July 1, 2019, a total of 57 heterozygous ACAN mutations causing nonsyndromic short stature had been reported, including the six novel mutations found in our study. Approximately half of these mutations can lead to protein truncation. CONCLUSIONS This study used clinical and genetic means to examine the relationship between the ACAN gene and short stature. To some extent, clear diagnosis is difficult, since most of these affected individuals' characteristics are not prominent. Growth-promoting therapies may be beneficial for increasing the height of affected patients. ABBREVIATIONS AI = aromatase inhibitor; ECM = extracellular matrix; GnRHa = gonadotropin-releasing hormone analogue; IQR = interquartile range; MIM = Mendelian Inheritance in Man; PGHD = partial growth hormone deficiency; rhGH = recombinant human growth hormone; SDS = standard deviation score; SGA = small for gestational age; SGHD = severe growth hormone deficiency.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Miao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China..
| |
Collapse
|
38
|
Hübner CT, Meyer R, Kenawy A, Ambrozaityte L, Matuleviciene A, Kraft F, Begemann M, Elbracht M, Eggermann T. HMGA2 Variants in Silver-Russell Syndrome: Homozygous and Heterozygous Occurrence. J Clin Endocrinol Metab 2020; 105:5839772. [PMID: 32421827 DOI: 10.1210/clinem/dgaa273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Silver-Russell syndrome (SRS) is a clinical and molecular heterogeneous disorder associated with short stature, typical facial gestalt, and body asymmetry. Though molecular causes of SRS can be identified in a significant number of patients, about one-half of patients currently remain without a molecular diagnosis. However, determination of the molecular cause is required for a targeted treatment and genetic counselling. OBJECTIVE The aim of this study was to corroborate the role of HMGA2 as an SRS-causing gene and reevaluate its mode of inheritance. DESIGN, SETTING, PATIENTS Patients were part of an ongoing study aiming on SRS-causing genes. They were classified according to the Netchine-Harbison clinical scoring system, and DNA samples were investigated by whole exome sequencing. Common molecular causes of SRS were excluded before. RESULTS Three novel pathogenic HMGA2 variants were identified in 5 patients from 3 SRS families, and fulfilling diagnostic criteria of SRS. For the first time, homozygosity for a variant in HMGA2 could be identified in a severely affected sibpair, whereas parents carrying heterozygous variants had a mild phenotype. Treatment with recombinant growth hormone led to a catch-up growth in 1 patient, whereas all others did not receive growth hormone and stayed small. One patient developed type 2 diabetes at age 30 years. CONCLUSIONS Identification of novel pathogenic variants confirms HMGA2 as an SRS-causing gene; thus, HMGA2 testing should be implemented in molecular SRS diagnostic workup. Furthermore, inheritance of HMGA2 is variable depending on the severity of the variant and its consequence for protein function.
Collapse
Affiliation(s)
| | - Robert Meyer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Asmaa Kenawy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Laima Ambrozaityte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ausra Matuleviciene
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
39
|
Lin YJ, Cheng CF, Wang CH, Liang WM, Tang CH, Tsai LP, Chen CH, Wu JY, Hsieh AR, Lee MTM, Lin TH, Liao CC, Huang SM, Zhang Y, Tsai CH, Tsai FJ. Genetic Architecture Associated With Familial Short Stature. J Clin Endocrinol Metab 2020; 105:5805154. [PMID: 32170311 DOI: 10.1210/clinem/dgaa131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Human height is an inheritable, polygenic trait under complex and multilocus genetic regulation. Familial short stature (FSS; also called genetic short stature) is the most common type of short stature and is insufficiently known. OBJECTIVE To investigate the FSS genetic profile and develop a polygenic risk predisposition score for FSS risk prediction. DESIGN AND SETTING The FSS participant group of Han Chinese ancestry was diagnosed by pediatric endocrinologists in Taiwan. PATIENTS AND INTERVENTIONS The genetic profiles of 1163 participants with FSS were identified by using a bootstrapping subsampling and genome-wide association studies (GWAS) method. MAIN OUTCOME MEASURES Genetic profile, polygenic risk predisposition score for risk prediction. RESULTS Ten novel genetic single nucleotide polymorphisms (SNPs) and 9 reported GWAS human height-related SNPs were identified for FSS risk. These 10 novel SNPs served as a polygenic risk predisposition score for FSS risk prediction (area under the curve: 0.940 in the testing group). This FSS polygenic risk predisposition score was also associated with the height reduction regression tendency in the general population. CONCLUSION A polygenic risk predisposition score composed of 10 genetic SNPs is useful for FSS risk prediction and the height reduction tendency. Thus, it might contribute to FSS risk in the Han Chinese population from Taiwan.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Fung Cheng
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chung-Hsing Wang
- Children's Hospital of China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Li-Ping Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Chien-Hsiun Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei City, Taiwan
| | | | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Chang-Hai Tsai
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Children's Hospital of China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
40
|
Inzaghi E, Reiter E, Cianfarani S. The Challenge of Defining and Investigating the Causes of Idiopathic Short Stature and Finding an Effective Therapy. Horm Res Paediatr 2020; 92:71-83. [PMID: 31578025 DOI: 10.1159/000502901] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/26/2019] [Indexed: 11/19/2022] Open
Abstract
Idiopathic short stature (ISS) comprises a wide range of conditions associated with short stature that elude the conventional diagnostic work-up and are often caused by still largely unknown genetic variants. In the last decade, the improvement of diagnostic techniques has led to the discovery of causal mutations in genes involved in the function of the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis as well as in growth plate physiology. However, many cases of ISS remain idiopathic. In the future, the more frequent identification of the underlying causes will allow a better stratification of subjects and offer a tailored management. GH therapy has been proposed and approved in some countries for the treatment of children with ISS. To improve the efficacy of GH therapy, trials with GH combined with GnRH agonists, aromatase inhibitors, and even IGF-I have been conducted. This review aims to revise the current definition of ISS and discuss the management of children with ISS on the basis of the most recent evidence.
Collapse
Affiliation(s)
- Elena Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero Bambino Gesù Children's Hospital - Tor Vergata University, Rome, Italy
| | - Edward Reiter
- Baystate Children's Hosptal, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts, USA
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero Bambino Gesù Children's Hospital - Tor Vergata University, Rome, Italy, .,Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden,
| |
Collapse
|
41
|
Abstract
CONTEXT Recent advances in genetics and genomics present unique opportunities for enhancing knowledge of human physiology and disease susceptibility. An outstanding example of these new insights may be seen in the study of human height, of which it has been estimated that approximately 80% is genetically determined. Over the past decade, large-scale population analyses have led to the identification of novel variation in genes and loci individually associated with changes in adult height of as much as 2 cm. OBJECTIVE To assess these same variants in the genomes of 213 158 individuals compiled by the Genome Aggregation Database (GnomAD) consortium, representing different population groups from around the world. RESULTS The majority of these height-changing alleles are substantially less prevalent in GnomAD than found previously in other cohorts, with 4 of 5 amino acid substitution variants with the largest impact on adult height being more frequent in the European population than in other groups. CONCLUSIONS A larger-scale analysis of individuals from diverse backgrounds will be necessary to ensure a full and accurate understanding of the genetic underpinnings of human height throughout the world, and additional studies will be needed to discern the biochemical and molecular mechanisms governing the physiological processes that explain how these variant proteins might selectively impact the biology of the growth plate. Broader understanding of the genetics of height also should set the stage for more comprehensive investigation into the causes of prevalent polygenic human diseases.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas
| |
Collapse
|
42
|
Dauber A. Response to Letter to the Editor: "Genetic Testing for the Child with Short Stature: Has the Time Come to Change Our Diagnostic Paradigm?". J Clin Endocrinol Metab 2020; 105:5613501. [PMID: 31689347 DOI: 10.1210/clinem/dgz178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 02/13/2023]
Affiliation(s)
- Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, DC, US
| |
Collapse
|
43
|
Plachy L, Dusatkova P, Maratova K, Petruzelkova L, Zemkova D, Elblova L, Kucerova P, Toni L, Kolouskova S, Snajderova M, Sumnik Z, Lebl J, Pruhova S. NPR2 Variants Are Frequent among Children with Familiar Short Stature and Respond Well to Growth Hormone Therapy. J Clin Endocrinol Metab 2020; 105:5716766. [PMID: 31990356 DOI: 10.1210/clinem/dgaa037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT The C-type natriuretic peptide receptor encoded by the NPR2 gene is a paracrine regulator of the growth plate; heterozygous NPR2 variants cause short stature with possible presence of different signs of bone dysplasia. To date, the effect of growth hormone (GH) treatment has been described in a few individuals with NPR2 gene variants with inconsistent results. OBJECTIVES To identify NPR2 gene variants among children with familial short stature (FSS) and to describe their phenotype, including GH treatment response. DESIGN, SETTINGS AND PATIENTS Out of 747 patients with short stature treated with GH in a single center, 87 with FSS met the inclusion criteria (pretreatment height ≤ -2 standard deviation in both the patient and the shorter parent, unknown genetic etiology). Next-generation sequencing methods were performed to search for NPR2 gene variants. The results were evaluated using the American College of Medical Genetics and Genomics guidelines. The GH treatment response (growth velocity improvement and height standard deviation score development over the first 5 years of treatment) was evaluated. RESULTS In 5/87 children (5.7%), a (likely) pathogenic variant in the NPR2 gene was identified (p.Ile558Thr [in 2], p.Arg205*, p.Arg557His, p.Ser603Thr). Two children had disproportionate short-limbed short stature, 1 a dysplastic 5th finger phalanx. The growth velocity in the first year of GH treatment accelerated by 3.6 to 4.2 cm/year; the height improved by 1.2 to 1.8 SD over 5 years of treatment. CONCLUSIONS NPR2 gene variants cause FSS in a significant proportion of children. Their GH treatment response is promising. Studies including final height data are necessary to assess the long-term efficacy of this therapy.
Collapse
Affiliation(s)
- Lukas Plachy
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Klara Maratova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Lenka Petruzelkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Dana Zemkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Lenka Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Petra Kucerova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Ledjona Toni
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Marta Snajderova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, 150 06, Czech Republic
| |
Collapse
|
44
|
Stavber L, Hovnik T, Kotnik P, Lovrečić L, Kovač J, Tesovnik T, Bertok S, Dovč K, Debeljak M, Battelino T, Avbelj Stefanija M. High frequency of pathogenic ACAN variants including an intragenic deletion in selected individuals with short stature. Eur J Endocrinol 2020; 182:243-253. [PMID: 31841439 PMCID: PMC7087498 DOI: 10.1530/eje-19-0771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT Defining the underlying etiology of idiopathic short stature (ISS) improves the overall management of an individual. OBJECTIVE To assess the frequency of pathogenic ACAN variants in selected individuals. DESIGN The single-center cohort study was conducted at a tertiary university children's hospital. From 51 unrelated patients with ISS, the 16 probands aged between 3 and 18 years (12 females) with advanced bone age and/or autosomal dominant inheritance pattern of short stature were selected for the study. Fifteen family members of ACAN-positive probands were included. Exome sequencing was performed in all probands, and additional copy number variation (CNV) detection was applied in selected probands with a distinct ACAN-associated phenotype. RESULTS Systematic phenotyping of the study cohort yielded 37.5% (6/16) ACAN-positive probands, with all novel pathogenic variants, including a 6.082 kb large intragenic deletion, detected by array comparative genomic hybridization (array CGH) and exome data analysis. All variants were co-segregated with short stature phenotype, except in one family member with the intragenic deletion who had an unexpected growth pattern within the normal range (-0.5 SDS). One patient presented with otosclerosis, a sign not previously associated with aggrecanopathy. CONCLUSIONS ACAN pathogenic variants presented a common cause of familial ISS. The selection criteria used in our study were suggested for a personalized approach to genetic testing of the ACAN gene in clinical practice. Our results expanded the number of pathogenic ACAN variants, including the first intragenic deletion, and suggested CNV evaluation in patients with typical clinical features of aggrecanopathy as reasonable. Intra-familial phenotypic variability in growth patterns should be considered.
Collapse
Affiliation(s)
- L Stavber
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Hovnik
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - P Kotnik
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - L Lovrečić
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - J Kovač
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Tesovnik
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - S Bertok
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - K Dovč
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - M Debeljak
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - M Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Correspondence should be addressed to M Avbelj Stefanija;
| |
Collapse
|