1
|
Ahluwalia S, Choudhary D, Tyagi P, Kumar V, Vivekanandan P. Vitamin D signaling inhibits HBV activity by directly targeting the HBV core promoter. J Biol Chem 2021; 297:101233. [PMID: 34562448 PMCID: PMC8517215 DOI: 10.1016/j.jbc.2021.101233] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Clinical and epidemiological studies support a role for vitamin D in suppressing hepatitis B virus (HBV). This antiviral role of vitamin D is widely attributed to vitamin D receptor (VDR)/retinoid X receptor-mediated regulation of host immunomodulatory genes through vitamin D response elements (VDREs) in their promoters. Here, we investigated the ability of calcitriol (1α,25-dihydroxyvitamin D3, metabolically activated vitamin D) to directly regulate HBV activity through this signaling pathway. We observed that calcitriol selectively inhibited only the HBV core promoter without affecting the HBV-PreS1, HBV-PreS2/S, or HBx promoters. We then identified a VDRE cluster in the HBV core promoter that is highly conserved across most HBV genotypes. Disruption of this VDRE cluster abrogated calcitriol-mediated suppression of the HBV core promoter. Furthermore, we showed that VDR interacts directly with the VDRE cluster in the HBV core promoter independent of retinoid X receptor. This demonstrates that calcitriol inhibits HBV core promoter activity through a noncanonical calcitriol-activated VDR pathway. Finally, we observed that calcitriol suppressed expression of the canonical HBV core promoter transcripts, pregenomic RNA, and precore RNA in multiple HBV cell culture models. In addition, calcitriol inhibited the secretion of hepatitis B "e" antigen and hepatitis B surface antigen (HBV-encoded proteins linked to poor disease prognosis), without affecting virion secretion. Our findings identify VDR as a novel regulator of HBV core promoter activity and also explain at least in part the correlation of vitamin D levels to HBV activity observed in clinical studies. Furthermore, this study has implications on the potential use of vitamin D along with anti-HBV therapies, and lays the groundwork for studies on vitamin D-mediated regulation of viruses through VDREs in virus promoters.
Collapse
Affiliation(s)
- Shivaksh Ahluwalia
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary sciences, New Delhi, India
| | - Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary sciences, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
2
|
Caputo M, Pigni S, Agosti E, Daffara T, Ferrero A, Filigheddu N, Prodam F. Regulation of GH and GH Signaling by Nutrients. Cells 2021; 10:1376. [PMID: 34199514 PMCID: PMC8227158 DOI: 10.3390/cells10061376] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) and insulin-like growth factor-1 (IGF-I) are pleiotropic hormones with important roles in lifespan. They promote growth, anabolic actions, and body maintenance, and in conditions of energy deprivation, favor catabolic feedback mechanisms switching from carbohydrate oxidation to lipolysis, with the aim to preserve protein storages and survival. IGF-I/insulin signaling was also the first one identified in the regulation of lifespan in relation to the nutrient-sensing. Indeed, nutrients are crucial modifiers of the GH/IGF-I axis, and these hormones also regulate the complex orchestration of utilization of nutrients in cell and tissues. The aim of this review is to summarize current knowledge on the reciprocal feedback among the GH/IGF-I axis, macro and micronutrients, and dietary regimens, including caloric restriction. Expanding the depth of information on this topic could open perspectives in nutrition management, prevention, and treatment of GH/IGF-I deficiency or excess during life.
Collapse
Affiliation(s)
- Marina Caputo
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Stella Pigni
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Emanuela Agosti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Tommaso Daffara
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Alice Ferrero
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Flavia Prodam
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
3
|
Martínez-Ordoñez A, Seoane S, Avila L, Eiro N, Macía M, Arias E, Pereira F, García-Caballero T, Gómez-Lado N, Aguiar P, Vizoso F, Perez-Fernandez R. POU1F1 transcription factor induces metabolic reprogramming and breast cancer progression via LDHA regulation. Oncogene 2021; 40:2725-2740. [PMID: 33714987 PMCID: PMC8049871 DOI: 10.1038/s41388-021-01740-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/31/2023]
Abstract
Metabolic reprogramming is considered hallmarks of cancer. Aerobic glycolysis in tumors cells has been well-known for almost a century, but specific factors that regulate lactate generation and the effects of lactate in both cancer cells and stroma are not yet well understood. In the present study using breast cancer cell lines, human primary cultures of breast tumors, and immune deficient murine models, we demonstrate that the POU1F1 transcription factor is functionally and clinically related to both metabolic reprogramming in breast cancer cells and fibroblasts activation. Mechanistically, we demonstrate that POU1F1 transcriptionally regulates the lactate dehydrogenase A (LDHA) gene. LDHA catalyzes pyruvate into lactate instead of leading into the tricarboxylic acid cycle. Lactate increases breast cancer cell proliferation, migration, and invasion. In addition, it activates normal-associated fibroblasts (NAFs) into cancer-associated fibroblasts (CAFs). Conversely, LDHA knockdown in breast cancer cells that overexpress POU1F1 decreases tumor volume and [18F]FDG uptake in tumor xenografts of mice. Clinically, POU1F1 and LDHA expression correlate with relapse- and metastasis-free survival. Our data indicate that POU1F1 induces a metabolic reprogramming through LDHA regulation in human breast tumor cells, modifying the phenotype of both cancer cells and fibroblasts to promote cancer progression.
Collapse
Affiliation(s)
- Anxo Martínez-Ordoñez
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain ,grid.5386.8000000041936877XPresent Address: Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA
| | - Samuel Seoane
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Leandro Avila
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Noemi Eiro
- Research Unit, Hospital Fundación de Jove, Gijón, Spain
| | - Manuel Macía
- grid.488911.d0000 0004 0408 4897Department of Obstetrics and Gynecology, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Efigenia Arias
- grid.488911.d0000 0004 0408 4897Department of Obstetrics and Gynecology, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Fabio Pereira
- grid.488911.d0000 0004 0408 4897Department of Radiation Oncology, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomas García-Caballero
- grid.488911.d0000 0004 0408 4897Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS)-University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Noemi Gómez-Lado
- grid.11794.3a0000000109410645Molecular Imaging Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, and Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Aguiar
- grid.11794.3a0000000109410645Molecular Imaging Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, and Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Román Perez-Fernandez
- grid.11794.3a0000000109410645Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Esposito S, Leonardi A, Lanciotti L, Cofini M, Muzi G, Penta L. Vitamin D and growth hormone in children: a review of the current scientific knowledge. J Transl Med 2019; 17:87. [PMID: 30885216 PMCID: PMC6421660 DOI: 10.1186/s12967-019-1840-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/09/2019] [Indexed: 12/23/2022] Open
Abstract
Background Human growth is a complex mechanism that depends on genetic, environmental, nutritional and hormonal factors. The main hormone involved in growth at each stage of development is growth hormone (GH) and its mediator, insulin-like growth factor 1 (IGF-1). In contrast, vitamin D is involved in the processes of bone growth and mineralization through the regulation of calcium and phosphorus metabolism. Nevertheless, no scientific study has yet elucidated how they interact with one another, especially as a dysfunction in which one influences the other, even if numerous biochemical and clinical studies confirm the presence of a close relationship. Main body We reviewed and analyzed the clinical studies that have considered the relationship between vitamin D and the GH/IGF-1 axis in pediatric populations. We found two main areas of interest: the vitamin D deficiency status in patients affected by GH deficit (GHD) and the relationship between serum vitamin D metabolites and IGF-1. Although limited by some bias, from the analysis of the studies presented in the scientific literature, it is possible to hypothesize a greater frequency of hypovitaminosis D in the subjects affected by GHD, a reduced possibility of its correction with only substitution treatment with recombinant growth hormone (rGH) and an improvement of IGF-1 levels after supplementation treatment with vitamin D. Conclusions These results could be followed by preventive interventions aimed at reducing the vitamin D deficit in pediatric age. In addition, further research is needed to fully understand how vitamin D and growth are intertwined.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy.
| | - Alberto Leonardi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy
| | - Lucia Lanciotti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy
| | - Giulia Muzi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy
| | - Laura Penta
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy
| |
Collapse
|
5
|
Martinez-Ordoñez A, Seoane S, Cabezas P, Eiro N, Sendon-Lago J, Macia M, Garcia-Caballero T, Gonzalez LO, Sanchez L, Vizoso F, Perez-Fernandez R. Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis. Oncogene 2018; 37:1430-1444. [PMID: 29321662 DOI: 10.1038/s41388-017-0036-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/13/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Development of human tumors is driven by accumulation of alterations in tumor suppressor genes and oncogenes in cells. The POU1F1 transcription factor (also known Pit-1) is expressed in the mammary gland and its overexpression induces profound phenotypic changes in proteins involved in breast cancer progression. Patients with breast cancer and elevated expression of Pit-1 show a positive correlation with the occurrence of distant metastasis and poor overall survival. However, some mediators of Pit-1 actions are still unknown. Here, we show that CXCR4 chemokine receptor and its ligand CXCL12 play a critical role in the pro-tumoral process induced by Pit-1. We found that Pit-1 increases mRNA and protein in both CXCR4 and CXCL12. Knock-down of CXCR4 reduces tumor growth and spread of Pit-1 overexpressing cells in a zebrafish xenograft model. Furthermore, we described for the first time pro-angiogenic effects of Pit-1 through the CXCL12-CXCR4 axis, and that extravasation of Pit-1 overexpressing breast cancer cells is strongly reduced in CXCL12-deprived target tissues. Finally, in breast cancer patients, expression of Pit-1 in primary tumors was found to be positively correlated with CXCR4 and CXCL12, with specific metastasis in liver and lung, and with clinical outcome. Our results suggest that Pit-1-CXCL12-CXCR4 axis could be involved in chemotaxis guidance during the metastatic process, and may represent prognostic and/or therapeutic targets in breast tumors.
Collapse
Affiliation(s)
- Anxo Martinez-Ordoñez
- Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Samuel Seoane
- Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Cabezas
- Department of Genetics, University of Santiago de Compostela, Campus de Lugo, Lugo, Spain
| | - Noemi Eiro
- Research Unit, Hospital Fundacion de Jove, Gijón, Spain
| | - Juan Sendon-Lago
- Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Macia
- Department of Obstetrics and Gynecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomas Garcia-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Laura Sanchez
- Department of Genetics, University of Santiago de Compostela, Campus de Lugo, Lugo, Spain
| | | | - Roman Perez-Fernandez
- Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Nandi A, Sinha N, Ong E, Sonmez H, Poretsky L. Is there a role for vitamin D in human reproduction? Horm Mol Biol Clin Investig 2016; 25:15-28. [PMID: 26943610 DOI: 10.1515/hmbci-2015-0051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/24/2016] [Indexed: 12/27/2022]
Abstract
Vitamin D is a steroid hormone with canonical roles in calcium metabolism and bone modeling. However, in recent years there has been a growing body of literature presenting associations between vitamin D levels and a variety of disease processes, including metabolic disorders such as diabetes and prediabetes and autoimmune conditions such as thyroid disease. This review focuses on the potential role of vitamin D in both male and female reproductive function. The vitamin D receptor (VDR) is expressed throughout central and peripheral organs of reproduction. VDR is often co-localized with its metabolizing enzymes, suggesting the importance of tissue specific modulation of active vitamin D levels. Both animal and human studies in males links vitamin D deficiency with hypogonadism and decreased fertility. In females, there is evidence for its role in polycystic ovary syndrome (PCOS), endometriosis, leiomyomas, in-vitro fertilization, and pregnancy outcomes. Studies evaluating the effects of replacing vitamin D have shown variable results. There remains some concern that the effects of vitamin D on reproduction are not direct, but rather secondary to the accompanying hypocalcemia or estrogen dysregulation.
Collapse
|
7
|
Vitamin D and the Epithelial to Mesenchymal Transition. Stem Cells Int 2016; 2016:6213872. [PMID: 26880977 PMCID: PMC4736588 DOI: 10.1155/2016/6213872] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022] Open
Abstract
Several studies support reciprocal regulation between the active vitamin D derivative 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the epithelial to mesenchymal transition (EMT). Thus, 1,25(OH)2D3 inhibits EMT via the induction of a variety of target genes that encode cell adhesion and polarity proteins responsible for the epithelial phenotype and through the repression of key EMT inducers. Both direct and indirect regulatory mechanisms mediate these effects. Conversely, certain master EMT inducers inhibit 1,25(OH)2D3 action by repressing the transcription of VDR gene encoding the high affinity vitamin D receptor that mediates 1,25(OH)2D3 effects. Consequently, the balance between the strength of 1,25(OH)2D3 signaling and the induction of EMT defines the cellular phenotype in each context. Here we review the current understanding of the genes and mechanisms involved in the interplay between 1,25(OH)2D3 and EMT.
Collapse
|
8
|
Lips CJ, Valk GD, Dreijerink KM, Timmers M, van der Luijt RB, Links TP, van Nesselrooij BP, Vriens M, Höppener JW, Rinkes IB, van der Horst-Schrivers AN. Multiple Endocrine Neoplasia Type 1 (MEN1). GENETIC DIAGNOSIS OF ENDOCRINE DISORDERS 2016:343-359. [DOI: 10.1016/b978-0-12-800892-8.00024-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Seoane S, Arias E, Sigueiro R, Sendon-Lago J, Martinez-Ordoñez A, Castelao E, Eiró N, Garcia-Caballero T, Macia M, Lopez-Lopez R, Maestro M, Vizoso F, Mouriño A, Perez-Fernandez R. Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment. Oncotarget 2015; 6:14456-71. [PMID: 25992773 PMCID: PMC4546479 DOI: 10.18632/oncotarget.3894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/25/2015] [Indexed: 11/25/2022] Open
Abstract
The POU class 1 homeobox 1 (POU1F1, also known as Pit-1), pertaining to the Pit-Oct-Unc (POU) family of transcription factors, has been related to tumor growth and metastasis in breast. However, its role in response to breast cancer therapy is unknown. We found that Pit-1 down-regulated DNA-damage and repair genes, and specifically inhibited BRCA1 gene expression, sensitizing breast cancer cells to DNA-damage agents. Administration of 1α, 25-dihydroxy-3-epi-vitamin D3 (3-Epi, an endogenous low calcemic vitamin D metabolite) reduced Pit-1 expression, and synergized with cisplatin, thus, decreasing cell proliferation and apoptosis in vitro, and reducing tumor growth in vivo. In addition, fifteen primary cultures of human breast tumors showed significantly decreased proliferation when treated with 3-Epi+cisplatin, compared to cisplatin alone. This response positively correlated with Pit-1 levels. Our findings demonstrate that high levels of Pit-1 and reduced BRCA1 levels increase breast cancer cell susceptibility to 3-Epi+cisplatin therapy.
Collapse
Affiliation(s)
- Samuel Seoane
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Center for Research in Molecular Medicine and Chronic Diseases-CIMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Efigenia Arias
- Center for Research in Molecular Medicine and Chronic Diseases-CIMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Department of Obstetrics and Gynecology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Rita Sigueiro
- Department Organic Chemistry, Research Laboratory Ignacio Rivas, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Juan Sendon-Lago
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Center for Research in Molecular Medicine and Chronic Diseases-CIMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Anxo Martinez-Ordoñez
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Center for Research in Molecular Medicine and Chronic Diseases-CIMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Esteban Castelao
- Oncology and Genetics Unit, Biomedical Research Institute of Vigo (IBIV), Complejo Hospitalario Universitario de Vigo, Servicio Galego de Saude (SERGAS), Vigo 36036, Spain
| | - Noemí Eiró
- Research Unit, Fundación Hospital de Jove, Gijón 33290, Spain
| | - Tomás Garcia-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Manuel Macia
- Department of Obstetrics and Gynecology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Rafael Lopez-Lopez
- Department of Clinical Oncology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Miguel Maestro
- Department Organic Chemistry, Research Laboratory Ignacio Rivas, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | - Antonio Mouriño
- Department Organic Chemistry, Research Laboratory Ignacio Rivas, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Roman Perez-Fernandez
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Center for Research in Molecular Medicine and Chronic Diseases-CIMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
10
|
Sendon-Lago J, Seoane S, Eiro N, Bermudez MA, Macia M, Garcia-Caballero T, Vizoso FJ, Perez-Fernandez R. Cancer progression by breast tumors with Pit-1-overexpression is blocked by inhibition of metalloproteinase (MMP)-13. Breast Cancer Res 2014; 16:505. [PMID: 25527274 PMCID: PMC4305241 DOI: 10.1186/s13058-014-0505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/12/2014] [Indexed: 02/22/2023] Open
Abstract
Introduction The POU class 1 homeobox 1 transcription factor (POU1F1, also known as Pit-1) is expressed in the mammary gland and its overexpression induces profound phenotypic changes in proteins involved in cell proliferation, apoptosis, and invasion. Patients with breast cancer and elevated expression of Pit-1 show a positive correlation with the occurrence of distant metastasis. In this study we evaluate the relationship between Pit-1 and two collagenases: matrix metalloproteinase-1 (MMP-1) and matrix metalloproteinase-13 (MMP-13), which have been related to metastasis in breast cancer. Methods We began by transfecting the MCF-7 and MDA-MB-231 human breast adenocarcinoma cell lines with the Pit-1 overexpression vector (pRSV-hPit-1). Afterward, the mRNA, protein, and transcriptional regulation of both MMP-1 and MMP-13 were evaluated by real-time PCR, Western blot, chromatin immunoprecipitation (ChIP), and luciferase reporter assays. We also evaluated Pit-1 overexpression with MMP-1 and MMP-13 knockdown in a severe combined immunodeficiency (SCID) mouse tumor xenograft model. Finally, by immunohistochemistry we correlated Pit-1 with MMP-1 and MMP-13 protein expression in 110 human breast tumors samples. Results Our data show that Pit-1 increases mRNA and protein of both MMP-1 and MMP-13 through direct transcriptional regulation. In SCID mice, knockdown of MMP-13 completely blocked lung metastasis in Pit-1-overexpressing MCF-7 cells injected into the mammary fat pad. In breast cancer patients, expression of Pit-1 was found to be positively correlated with the presence of both MMP-1 and MMP-13. Conclusions Our data indicates that Pit-1 regulates MMP-1 and MMP-13, and that inhibition of MMP-13 blocked invasiveness to lung in Pit-1-overexpressed breast cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Sendon-Lago
- Department of Physiology- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), School of Medicine, University of Santiago de Compostela, Praza do Obradoiro, Santiago de Compostela, 15782, Spain.
| | - Samuel Seoane
- Department of Physiology- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), School of Medicine, University of Santiago de Compostela, Praza do Obradoiro, Santiago de Compostela, 15782, Spain.
| | - Noemi Eiro
- Unidad de Investigación, Fundacion Hospital de Jove, Avenida Eduardo Castro, Gijón, 33290, Spain.
| | - Maria A Bermudez
- Department of Physiology- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), School of Medicine, University of Santiago de Compostela, Praza do Obradoiro, Santiago de Compostela, 15782, Spain.
| | - Manuel Macia
- Departments of Obstetrics and Gynecology, School of Medicine, University of Santiago de Compostela, Praza do Obradoiro, Santiago de Compostela, 15782, Spain.
| | - Tomas Garcia-Caballero
- Departments of Morphological Sciences, School of Medicine, University of Santiago de Compostela, Praza do Obradoiro, Santiago de Compostela, 15782, Spain.
| | - Francisco J Vizoso
- Unidad de Investigación, Fundacion Hospital de Jove, Avenida Eduardo Castro, Gijón, 33290, Spain.
| | - Roman Perez-Fernandez
- Department of Physiology- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), School of Medicine, University of Santiago de Compostela, Praza do Obradoiro, Santiago de Compostela, 15782, Spain.
| |
Collapse
|
11
|
Larriba MJ, González-Sancho JM, Bonilla F, Muñoz A. Interaction of vitamin D with membrane-based signaling pathways. Front Physiol 2014; 5:60. [PMID: 24600406 PMCID: PMC3927071 DOI: 10.3389/fphys.2014.00060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/30/2014] [Indexed: 12/28/2022] Open
Abstract
Many studies in different biological systems have revealed that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) modulates signaling pathways triggered at the plasma membrane by agents such as Wnt, transforming growth factor (TGF)-β, epidermal growth factor (EGF), and others. In addition, 1α,25(OH)2D3 may affect gene expression by paracrine mechanisms that involve the regulation of cytokine or growth factor secretion by neighboring cells. Moreover, post-transcriptional and post-translational effects of 1α,25(OH)2D3 add to or overlap with its classical modulation of gene transcription rate. Together, these findings show that vitamin D receptor (VDR) cannot be considered only as a nuclear-acting, ligand-modulated transcription factor that binds to and controls the transcription of target genes. Instead, available data support the view that much of the complex biological activity of 1α,25(OH)2D3 resides in its capacity to interact with membrane-based signaling pathways and to modulate the expression and secretion of paracrine factors. Therefore, we propose that future research in the vitamin D field should focus on the interplay between 1α,25(OH)2D3 and agents that act at the plasma membrane, and on the analysis of intercellular communication. Global analyses such as RNA-Seq, transcriptomic arrays, and genome-wide ChIP are expected to dissect the interactions at the gene and molecular levels.
Collapse
Affiliation(s)
- María Jesús Larriba
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| | - Félix Bonilla
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda Majadahonda, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
12
|
Lips CJ, Dreijerink KM, Links TP, Höppener JW. Recent results of basic and clinical research in MEN1: opportunities to improve early detection and treatment. Expert Rev Endocrinol Metab 2012; 7:331-344. [PMID: 30780845 DOI: 10.1586/eem.12.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to the variable expression of multiple endocrine neoplasia type 1 (MEN1), it is difficult to predict the course of the disease. However, knowledge about the normal function of the MEN1 gene product, together with the effects of cellular derangement by subsequent genetic events, has increased considerably. At first, the possible existence of a genotype-phenotype correlation is discussed. Thus, mild- and late-onset phenotypes may be distinguished from more malignant phenotypes depending on the character of the primary MEN1 disease gene mutation. Subsequently, tumor-promoting factors such as gender, additional genetic mutations and ecogenetic factors may contribute to the course of the disease. New developments in management are based on the knowledge and experience of the multidisciplinary teams involved. Finally, the metabolic effects of MEN1 mutations in aged patients are discussed. Early identification of predisposition to the disease, together with knowledge about the natural history of specific mutations, risks of additional mutations and periodic clinical monitoring, allow early treatment and may improve life expectancy and quality of life.
Collapse
Affiliation(s)
- Cornelis Jm Lips
- a Department of Internal Medicine and Endocrinology, University Medical Center, Utrecht & The Hague, The Netherlands
- d Department of Internal Medicine and Endocrinology, University Medical Center, Utrecht & The Hague, The Netherlands.
| | - Koen Ma Dreijerink
- a Department of Internal Medicine and Endocrinology, University Medical Center, Utrecht & The Hague, The Netherlands
| | - Thera P Links
- b Department of Endocrinology, University Medical Center Groningen, The Netherlands
| | - Jo Wm Höppener
- c Department of Metabolic Diseases, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
13
|
Nguyen HH, Takata R, Akamatsu S, Shigemizu D, Tsunoda T, Furihata M, Takahashi A, Kubo M, Kamatani N, Ogawa O, Fujioka T, Nakamura Y, Nakagawa H. IRX4 at 5p15 suppresses prostate cancer growth through the interaction with vitamin D receptor, conferring prostate cancer susceptibility. Hum Mol Genet 2012; 21:2076-85. [PMID: 22323358 DOI: 10.1093/hmg/dds025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent genome-wide association studies (GWAS) identified a number of prostate cancer (PC) susceptibility loci, but most of their functional significances are not elucidated. Through our previous GWAS for PC in a Japanese population and subsequent resequencing and fine mapping, we here identified that IRX4 (Iroquois homeobox 4), coding Iroquois homeobox 4, is a causative gene of the PC susceptibility locus (rs12653946) at chromosome 5p15. IRX4 is expressed specifically in the prostate and heart, and quantitative expression analysis revealed a significant association between the genotype of rs12653946 and IRX4 expression in normal prostate tissues. Knockdown of IRX4 in PC cells enhanced their growth and IRX4 overexpression in PC cells suppressed their growth, indicating the functional association of IRX4 with PC and its tumor suppressive effect. Immunoprecipitation confirmed its protein-protein interaction to vitamin D receptor (VDR), and we found a significant interaction between IRX4 and VDR in their reciprocal transcriptional regulation. These findings indicate that the PC-susceptibility locus represented by rs12653946 at 5p15 is likely to regulate IRX4 expression in prostate which could suppress PC growth by interacting with the VDR pathway, conferring to PC susceptibility.
Collapse
Affiliation(s)
- Hai Ha Nguyen
- Laboratory for Biomarker Development, Center for Genome Medicine, RIKEN, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lips CJ, Dreijerink KM, Höppener JW. Variable clinical expression in patients with a germline MEN1 disease gene mutation: clues to a genotype-phenotype correlation. Clinics (Sao Paulo) 2012; 67 Suppl 1:49-56. [PMID: 22584706 PMCID: PMC3328827 DOI: 10.6061/clinics/2012(sup01)10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multiple endocrine neoplasia type 1 is an inherited endocrine tumor syndrome, predominantly characterized by tumors of the parathyroid glands, gastroenteropancreatic tumors, pituitary adenomas, adrenal adenomas, and neuroendocrine tumors of the thymus, lungs or stomach. Multiple endocrine neoplasia type 1 is caused by germline mutations of the multiple endocrine neoplasia type 1 tumor suppressor gene. The initial germline mutation, loss of the wild-type allele, and modifying genetic and possibly epigenetic and environmental events eventually result in multiple endocrine neoplasia type 1 tumors. Our understanding of the function of the multiple endocrine neoplasia type 1 gene product, menin, has increased significantly over the years. However, to date, no clear genotype-phenotype correlation has been established. In this review we discuss reports on exceptional clinical presentations of multiple endocrine neoplasia type 1, which may provide more insight into the pathogenesis of this disorder and offer clues for a possible genotype-phenotype correlation.
Collapse
Affiliation(s)
- Cornelis J Lips
- Department of Internal Medicine & Endocrinology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
15
|
Ben-Batalla I, Seoane S, Garcia-Caballero T, Gallego R, Macia M, Gonzalez LO, Vizoso F, Perez-Fernandez R. Deregulation of the Pit-1 transcription factor in human breast cancer cells promotes tumor growth and metastasis. J Clin Invest 2010; 120:4289-302. [PMID: 21060149 DOI: 10.1172/jci42015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 09/15/2010] [Indexed: 12/28/2022] Open
Abstract
The Pit-1 transcription factor (also know as POU1F1) plays a critical role in cell differentiation during organogenesis of the anterior pituitary in mammals and is a transcriptional activator for pituitary gene transcription. Increased expression of Pit-1 has been reported in human tumorigenic breast cells. Here, we found that Pit-1 overexpression or knockdown in human breast cancer cell lines induced profound phenotypic changes in the expression of proteins involved in cell proliferation, apoptosis, and invasion. Some of these protumorigenic effects of Pit-1 were mediated by upregulation of Snai1, an inductor of the epithelial-mesenchymal transition. In immunodeficient mice, Pit-1 overexpression induced tumoral growth and promoted metastasis in lung. In patients with invasive ductal carcinoma of the breast and node-positive tumor, high expression of Pit-1 was significantly correlated with Snai1 positivity. Notably, in these patients elevated expression of Pit-1 was significantly and independently associated with the occurrence of distant metastasis. These findings suggest that Pit-1 could help to make a more accurate prognosis in patients with node-positive breast cancer and may represent a new therapeutic target.
Collapse
Affiliation(s)
- Isabel Ben-Batalla
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ben-Batalla I, Seoane S, Macia M, Garcia-Caballero T, Gonzalez LO, Vizoso F, Perez-Fernandez R. The Pit-1/Pou1f1 transcription factor regulates and correlates with prolactin expression in human breast cell lines and tumors. Endocr Relat Cancer 2010; 17:73-85. [PMID: 19808898 PMCID: PMC2828808 DOI: 10.1677/erc-09-0100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transcription factor Pit-1/Pou1f1 regulates GH and prolactin (PRL) secretion in the pituitary gland. Pit-1 expression and GH regulation by Pit-1 have also been demonstrated in mammary gland. However, no data are available on the role of Pit-1 on breast PRL. To evaluate this role, several human breast cancer cell lines were transfected with either the Pit-1 expression vector or a Pit-1 small interference RNA construct, followed by PRL mRNA and protein evaluation. In addition, transient transfection of MCF-7 cells by a reporter construct containing the proximal PRL promoter, and ChIP assays were performed. Our data indicate that Pit-1 regulates mammary PRL at transcriptional level by binding to the proximal PRL promoter. We also found that Pit-1 raises cyclin D1 expression before increasing PRL levels, suggesting a PRL-independent effect of Pit-1 on cell proliferation. By using immunohistochemistry, we found a significant correlation between Pit-1 and PRL expression in 94 human breast invasive ductal carcinomas. Considering the possible role of PRL in breast cancer disorders, the function of Pit-1 in breast should be the focus of further research.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Cell Division
- Cell Line, Tumor/drug effects
- Cyclin D1/biosynthesis
- Female
- Gene Expression Regulation, Neoplastic
- Genes, bcl-1
- Humans
- Mice
- Mutagenesis, Site-Directed
- NIH 3T3 Cells/drug effects
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Prolactin/biosynthesis
- Prolactin/genetics
- Promoter Regions, Genetic
- RNA Interference
- RNA, Small Interfering/pharmacology
- Transcription Factor Pit-1/antagonists & inhibitors
- Transcription Factor Pit-1/genetics
- Transcription Factor Pit-1/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- I Ben-Batalla
- Department of Physiology, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
| | - S Seoane
- Department of Physiology, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
| | - M Macia
- Department of Obstetrics and Gynecology, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
| | - T Garcia-Caballero
- Department of Morphological Sciences, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
| | - L O Gonzalez
- Unidad de Investigación del Hospital de Jove33920, GijónSpain
| | - F Vizoso
- Unidad de Investigación del Hospital de Jove33920, GijónSpain
| | - R Perez-Fernandez
- Department of Physiology, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
- (Correspondence should be addressed to R Perez-Fernandez, Departamento de Fisiología, Facultad de Medicina, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; )
| |
Collapse
|
17
|
Identification of the functional vitamin D response elements in the human MDR1 gene. Biochem Pharmacol 2008; 76:531-42. [PMID: 18602086 DOI: 10.1016/j.bcp.2008.05.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/22/2008] [Accepted: 05/22/2008] [Indexed: 12/19/2022]
Abstract
P-glycoprotein, encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. The expression of MDR1 is induced by a variety of compounds, of which 1alpha,25-dihydroxyvitamin D(3) is known to be an effective inducer. However, it remains unclear how 1alpha,25-dihydroxyvitamin D(3) regulates the expression of MDR1. In this study, we demonstrated that the vitamin D receptor (VDR) induces MDR1 expression in a 1alpha,25-dihydroxyvitamin D(3)-dependent manner. Luciferase assays revealed that the region between -7.9 and -7.8k bp upstream from the transcription start site of the MDR1 is responsible for the induction by 1alpha,25-dihydroxyvitamin D(3). Electrophoretic mobility shift assays revealed that several binding sites for the VDR/retinoid X receptor alpha (RXRalpha) heterodimer are located between the -7880 and -7810 bp region, to which the three molecules of VDR/RXRalpha are able to simultaneously bind with different affinities. Luciferase assays using mutated constructs revealed that the VDR-binding sites of DR3, DR4(I), MdC3, and DR4(III) contribute to the induction, indicating that these binding sites act as vitamin D response elements (VDREs). The contribution of each VDRE to the inducibility was different for each response element. An additive effect of the individual VDREs on induced luciferase activity by 1alpha,25-dihydroxyvitamin D(3) was also observed. These results indicate that the induction of MDR1 by 1alpha,25-dihydroxyvitamin D(3) is mediated by VDR/RXRalpha binding to several VDREs located between -7880 and -7810bp, in which every VDRE additively contributes to the 1alpha,25-dihydroxyvitamin D(3) response.
Collapse
|
18
|
Bondioni S, Angioni AR, Corbetta S, Locatelli M, Ferrero S, Ferrante E, Mantovani G, Olgiati L, Beck-Peccoz P, Spada A, Lania AG. Effect of 9-cis retinoic acid on dopamine D2 receptor expression in pituitary adenoma cells. Exp Biol Med (Maywood) 2008; 233:439-46. [PMID: 18367633 DOI: 10.3181/0704-rm-94] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The dopamine receptor subtype 2 (D2R) promoter contains a functional retinoic acid response element involved in the control of D2R expression. The aim of the study was to evaluate the effect of 9-cis retinoic acid (9-cis RA) on D2R protein expression in human pituitary adenomas and GH3 cell line. Treatment with 9-cis RA (100 nM for 48 hrs) caused a 109 +/- 32% increase of basal D2R levels in five of eight growth hormone (GH)-secreting adenomas (GH-omas), a 129 +/- 28% increase in 7 of 11 nonfunctioning adenomas, and no effect in two resistant prolactinomas by Western blotting. The lack of D2R induction in some tumors was not associated with a different pattern of retinoid x receptor (RXR) and retinoic acid receptor (RAR) isoform expression that was similar in all tumors by immunohistochemistry. While the induction of D2R did not affect the slight but significant inhibitory effect exerted by dopamine (10 nM) on in vitro GH release by GH-oma cultured cells, in pituitary GH3 cell lines cis-9 RA enhanced the dopamine-induced inhibition of in vitro GH release (% inhibition: 16 +/- 2 versus 26 +/- 5, P < 0.05), cell proliferation (25 +/- 2% versus 44 +/- 5%, P < 0.05) and cell viability (16 +/- 0.8% versus 29 +/- 1%, P < 0.05), likely by activating caspase-3 (28 +/- 3% versus basal, P < 0.05). In conclusion, this study provides novel evidence for a permissive role of retinoids on the expression of D2R in a good proportion of pituitary tumors and on the generation of pro-apoptotic signals in GH3 cell line.
Collapse
Affiliation(s)
- Sara Bondioni
- Endocrine Unit, Department of Medical Sciences, University of Milan, Fondazione Ospedale Maggiore IRCCS, 20122 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Timmermans-Sprang EPM, Rao NAS, Mol JA. Transactivation of a growth hormone (GH) promoter-luciferase construct in canine mammary cells. Domest Anim Endocrinol 2008; 34:403-10. [PMID: 18262383 DOI: 10.1016/j.domaniend.2007.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/31/2007] [Accepted: 11/11/2007] [Indexed: 11/21/2022]
Abstract
The gene encoding growth hormone (GH) is expressed not only in the pituitary but also in a variety of non-pituitary tissues. In the female dog, progestins are known to stimulate GH expression in the mammary gland. In order to investigate the regulation of the GH gene expression in the mammary gland, we transfected the canine mammary tumor cell line CMT-U229 with 3 different canine GH promoter-luciferase constructs. The constructs, varying in length between 252 bp and 673 bp, were transfected followed by an incubation for 4 h, 24 h and 48 h with cAMP, all-trans-retinoic acid (RA), 3,3',5-triiodothyronine (T3), 1,25-dihydroxy-vitamin D (VitD), progesterone and EGF. Promoter activity was stimulated by cAMP, T3 and RA whereas VitD clearly inhibited gene expression. However, despite the presence of nuclear and membrane receptors for progesterone, no direct effects of progesterone on promoter activity could be demonstrated. It is concluded that progesterone alone has no direct stimulatory effect on GH transcription. This finding is discussed in relation to the slow onset of progesterone-stimulated GH release in vivo and the absence of Pit-1 in canine mammary tissue.
Collapse
Affiliation(s)
- Elpetra P M Timmermans-Sprang
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | | | | |
Collapse
|
20
|
Poser I, Sarov M, Hutchins JRA, Hériché JK, Toyoda Y, Pozniakovsky A, Weigl D, Nitzsche A, Hegemann B, Bird AW, Pelletier L, Kittler R, Hua S, Naumann R, Augsburg M, Sykora MM, Hofemeister H, Zhang Y, Nasmyth K, White KP, Dietzel S, Mechtler K, Durbin R, Stewart AF, Peters JM, Buchholz F, Hyman AA. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 2008; 5:409-15. [PMID: 18391959 PMCID: PMC2871289 DOI: 10.1038/nmeth.1199] [Citation(s) in RCA: 494] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/17/2008] [Indexed: 12/11/2022]
Abstract
The interpretation of genome sequences requires reliable and standardized methods to assess protein function at high throughput. Here we describe a fast and reliable pipeline to study protein function in mammalian cells based on protein tagging in bacterial artificial chromosomes (BACs). The large size of the BAC transgenes ensures the presence of most, if not all, regulatory elements and results in expression that closely matches that of the endogenous gene. We show that BAC transgenes can be rapidly and reliably generated using 96-well-format recombineering. After stable transfection of these transgenes into human tissue culture cells or mouse embryonic stem cells, the localization, protein-protein and/or protein-DNA interactions of the tagged protein are studied using generic, tag-based assays. The same high-throughput approach will be generally applicable to other model systems.
Collapse
Affiliation(s)
- Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Seoane S, Ben I, Centeno V, Perez-Fernandez R. Cellular Expression Levels of the Vitamin D Receptor Are Critical to Its Transcriptional Regulation by the Pituitary Transcription Factor Pit-1. Mol Endocrinol 2007; 21:1513-25. [PMID: 17456792 DOI: 10.1210/me.2006-0554] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe biological role of 1,25-dihydroxyvitamin D3 has generally been related to calcium homeostasis, but this hormone also has fundamental effects on processes of cellular proliferation and differentiation. The genomic actions of 1,25-dihydroxyvitamin D3 are mediated by the vitamin D receptor (VDR) present in target cells. However, VDR transcriptional regulation is not well understood, probably attributable to the complexity of the VDR gene and its promoter. In the present study, it is demonstrated that administration of the pituitary transcription factor Pit-1 (originally found in the pituitary gland but also present in other nonpituitary cell types and tissues) to the MCF-7 (human breast adenocarcinoma) cell line induces a significant increase in VDR mRNA and protein levels. Conversely, Pit-1-targeted small interference RNA markedly reduced expression of VDR in MCF-7 cells. Reporter gene assays demonstrated that the effect of Pit-1 is mediated by its binding to a region located between −254 and −246 bp from the VDR transcription start site. Selective mutations of this site completely abolished VDR transcription. Chromatin immunoprecipitation analysis showed that binding of Pit-1 to the VDR promoter leads additionally to recruitment of cAMP response element-binding protein binding protein, acetylated histone H4, and RNA polymerase II. Surprisingly, Pit-1 binding also recruits VDR protein to the VDR promoter. Using several cell lines with different levels of VDR expression, it was demonstrated that up-regulation of VDR transcription by Pit-1 is dependent on the presence of VDR protein, suggesting that transcriptional expression of VDR in a given cell type is dependent on, among other factors, its own expression levels.
Collapse
Affiliation(s)
- Samuel Seoane
- Department of Physiology, School of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
22
|
Huang YC, Hung WC. 1,25-dihydroxyvitamin D3 transcriptionally represses p45Skp2 expression via the Sp1 sites in human prostate cancer cells. J Cell Physiol 2006; 209:363-9. [PMID: 16883603 DOI: 10.1002/jcp.20741] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Upregulation of p27Kip1 protein in 1,25-dihydroxyvitamin D3-treated cancer cells is mediated via enhancement of gene transcription and reduction of protein degradation. 1,25-dihydroxyvitamin D3 inhibits the expression of p45Skp2, the F-box protein which is implicated in p27Kip1 degradation, to reduce turnover of p27Kip1 protein. In this study, we elucidate the underlying mechanism by which 1,25-dihydroxyvitamin D3 inhibits p45Skp2 in human LNCaP prostate cancer cells. Western blot and RT-PCR analysis suggest that 1,25-dihydroxyvitamin D3 suppresses p45Skp2 via transcriptional repression. Promoter activity assays indicate that 1,25-dihydroxyvitamin D3 directly inhibits p45Skp2 promoter activity. Deletion analysis shows that 1,25-dihydroxyvitamin D3 response element is localized at -447/-291 bp region from the translational start site of the p45Skp2 promoter. Mutation analysis suggests that two Sp1 sites localized at -386/-380 and -309/-294 bp region are required for transcriptional repression. Chromatin immunoprecipitation (CHIP) assay demonstrates that VDR indirectly binds to these Sp1 sites in vivo and this binding is increased after 1,25-dihydroxyvitamin D3 treatment. Re-CHIP assay suggests that VDR and Sp1 form a complex to bind to the Sp1 sites. DNA affinity precipitation assay (DAPA) shows that histone deacetylase 1 (HDAC1) is recruited to the Sp1 sites after 1,25-dihydroxyvitamin D3 stimulation. Re-CHIP assay verifies that binding of Sp1 and HDAC1 to p45Skp2 promoter is enhanced after 1,25-dihydroxyvitamin D3 treatment. HDAC inhibitor trichostatin A (TSA) reverses the inhibition of p45Skp2 promoter activity by 1,25-dihydroxyvitamin D3. Collectively, our results suggest that 1,25-dihydroxyvitamin D3 induces the formation of VDR/Sp1 complex and acts via a Sp1- and HDAC1-depedent pathway to inhibit p45Skp2 transcription.
Collapse
Affiliation(s)
- Yu-Chun Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China
| | | |
Collapse
|