1
|
Gregoricchio S, Kojic A, Hoogstraat M, Schuurman K, Stelloo S, Severson TM, O'Mara TA, Droog M, Singh AA, Glubb DM, Wessels LFA, Vermeulen M, van Leeuwen FE, Zwart W. Endometrial tumorigenesis involves epigenetic plasticity demarcating non-coding somatic mutations and 3D-genome alterations. Genome Biol 2025; 26:124. [PMID: 40346709 PMCID: PMC12063248 DOI: 10.1186/s13059-025-03596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The incidence and mortality of endometrial cancer (EC) is on the rise. Eighty-five percent of ECs depend on estrogen receptor alpha (ERα) for proliferation, but little is known about its transcriptional regulation in these tumors. RESULTS We generate epigenomics, transcriptomics, and Hi-C datastreams in healthy and tumor endometrial tissues, identifying robust ERα reprogramming and profound alterations in 3D genome organization that lead to a gain of tumor-specific enhancer activity during EC development. Integration with endometrial cancer risk single-nucleotide polymorphisms and whole-genome sequencing data from primary tumors and metastatic samples reveals a striking enrichment of risk variants and non-coding somatic mutations at tumor-enriched ERα sites. Through machine learning-based predictions and interaction proteomics analyses, we identify an enhancer mutation which alters 3D genome conformation, impairing recruitment of the transcriptional repressor EHMT2/G9a/KMT1C, thereby alleviating transcriptional repression of ESR1 in EC. CONCLUSIONS In summary, we identify a complex genomic-epigenomic interplay in EC development and progression, altering 3D genome organization to enhance expression of the critical driver ERα.
Collapse
Affiliation(s)
- Sebastian Gregoricchio
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Aleksandar Kojic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marlous Hoogstraat
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Suzan Stelloo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525GA, Nijmegen, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Tracy A O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Marjolein Droog
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Abhishek A Singh
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Dylan M Glubb
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525GA, Nijmegen, The Netherlands
- Division of Molecular Genetics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Flora E van Leeuwen
- Department of Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Todorović-Raković N, Milovanović J, Durosaro SO, Radulovic M. The prognostic value of cyclin D1 in breast cancer patients treated with hormonal therapy: A pilot study. Pathol Res Pract 2021; 222:153430. [PMID: 33839437 DOI: 10.1016/j.prp.2021.153430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
THE AIM of the study was to determine the clinical relevance of cyclin D1 (cD1) and its association with clinicopathological parameters in breast cancer patients treated with hormonal therapy. MATERIAL AND METHODS The study included 96 primary breast cancer patients with known clinicopathological parameters. In adjuvant setting, 44 patients were tamoxifen-treated and 52 were treated with ovarian irradiation/ablation. The cD1 status (gene amplified/nonamplified) was determined on formalin-fixed paraffin-embedded tumor tissue sections by chromogenic in situ hybridization. Associations between parameters were analyzed by Chi-square and Spearman's rank order correlation tests. Cox proportional hazards regression test was performed. Survival curves for relapse-free survival were constructed according to the Kaplan-Meier method. RESULTS There were no significant associations between cyclin D1 and clinicopathological parameters in either patient group. Amplified cyclin D1 associated significantly with the actual relapse incidence in the ovarian ablation patient group (p = 0.01, HR = 3.1), but not in the tamoxifen-treated patient group. Estrogen receptor and cyclin D1 have proven to be independent parameters of poor outcome in the ovarian ablation patient group (p = 0.03, HR = 2.9; and p = 0.009, HR = 2.5; respectively). CONCLUSIONS Cyclin D1 might be a candidate biomarker of poor outcome in breast cancer patients treated with ovarian ablation, suggesting its possible involvement in acquirement of hormonal resistance. The role of cyclin D1 as potential parameter of response to tamoxifen was not as pronounced.
Collapse
Affiliation(s)
- Nataša Todorović-Raković
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Jelena Milovanović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Samuel Olutunde Durosaro
- Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B. 2240, Abeokuta, Ogun State, Nigeria.
| | - Marko Radulovic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| |
Collapse
|
3
|
Korkmaz G, Manber Z, Lopes R, Prekovic S, Schuurman K, Kim Y, Teunissen H, Flach K, Wit ED, Galli GG, Zwart W, Elkon R, Agami R. A CRISPR-Cas9 screen identifies essential CTCF anchor sites for estrogen receptor-driven breast cancer cell proliferation. Nucleic Acids Res 2019; 47:9557-9572. [PMID: 31372638 PMCID: PMC6765117 DOI: 10.1093/nar/gkz675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 01/07/2023] Open
Abstract
Estrogen receptor α (ERα) is an enhancer activating transcription factor, a key driver of breast cancer and a main target for cancer therapy. ERα-mediated gene regulation requires proper chromatin-conformation to facilitate interactions between ERα-bound enhancers and their target promoters. A major determinant of chromatin structure is the CCCTC-binding factor (CTCF), that dimerizes and together with cohesin stabilizes chromatin loops and forms the boundaries of topologically associated domains. However, whether CTCF-binding elements (CBEs) are essential for ERα-driven cell proliferation is unknown. To address this question in a global manner, we implemented a CRISPR-based functional genetic screen targeting CBEs located in the vicinity of ERα-bound enhancers. We identified four functional CBEs and demonstrated the role of one of them in inducing chromatin conformation changes in favor of activation of PREX1, a key ERα target gene in breast cancer. Indeed, high PREX1 expression is a bona-fide marker of ERα-dependency in cell lines, and is associated with good outcome after anti-hormonal treatment. Altogether, our data show that distinct CTCF-mediated chromatin structures are required for ERα- driven breast cancer cell proliferation.
Collapse
Affiliation(s)
- Gozde Korkmaz
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Zohar Manber
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rui Lopes
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Yongsoo Kim
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Koen Flach
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Giorgio G Galli
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
| | - Ran Elkon
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Erasmus MC, Rotterdam University, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Schrijver W, Schuurman K, van Rossum A, Droog M, Jeronimo C, Salta S, Henrique R, Wesseling J, Moelans C, Linn SC, van den Heuvel M, van Diest P, Zwart W. FOXA1 levels are decreased in pleural breast cancer metastases after adjuvant endocrine therapy, and this is associated with poor outcome. Mol Oncol 2018; 12:1884-1894. [PMID: 29972720 PMCID: PMC6210032 DOI: 10.1002/1878-0261.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/04/2018] [Accepted: 06/24/2018] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor-alpha (ERα)-positive breast cancer is often treated with antihormonal regimens. However, resistance to treatment is common, leading to metastatic disease. ERα activity requires the functional involvement of pioneer factors FOXA1 and GATA3, which enable ERα-chromatin binding and are crucial for ERα-driven cell proliferation. FOXA1 was found increased in metastatic breast cancers in relation to the primary tumor, but a comprehensive clinical assessment thereof, in relation to different metastatic sites and endocrine therapy usage, is currently lacking. Prior cell line-based reports, however, have revealed that FOXA1 is required for tamoxifen-resistant tumor cell proliferation. We studied expression levels of ERα, GATA3, and FOXA1 by immunohistochemistry in samples from both primary tumors and various metastatic sites. For all factors, expression levels varied between the metastatic sites. For pleural metastases, strong variation was found in FOXA1 and GATA3 levels. Although GATA3 levels remained unaltered between primary breast cancer and pleural metastases, FOXA1 levels were reduced exclusively in metastases of patients who received endocrine therapies in the adjuvant setting, even though ERα was still expressed. Importantly, decreased FOXA1 levels in pleural metastases correlated with hormone irresponsiveness in the palliative setting, while no such correlation was found for GATA3. With this, we show divergent clinical correlations of the two ERα pioneer factors FOXA1 and GATA3 in metastatic breast cancer, where endocrine therapy resistance was associated with decreased FOXA1 levels in pleural metastases.
Collapse
Affiliation(s)
| | - Karianne Schuurman
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Annelot van Rossum
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Marjolein Droog
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Carmen Jeronimo
- Cancer Biology and Epigenetics GroupResearch Center (CI‐IPOP)Portuguese Oncology Institute of PortoPortugal
| | - Sofia Salta
- Cancer Biology and Epigenetics GroupResearch Center (CI‐IPOP)Portuguese Oncology Institute of PortoPortugal
| | - Rui Henrique
- Department of PathologyPortuguese Oncology Institute of Porto (IPO Porto)Portugal
| | - Jelle Wesseling
- Division of PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Cathy Moelans
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
| | - Sabine C. Linn
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Michel van den Heuvel
- Division of Thoracic OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Paul van Diest
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
| | - Wilbert Zwart
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyThe Netherlands
| |
Collapse
|
5
|
Beelen K, Opdam M, Severson T, Koornstra R, Vincent A, Wesseling J, Sanders J, Vermorken J, van Diest P, Linn S. Mitotic count can predict tamoxifen benefit in postmenopausal breast cancer patients while Ki67 score cannot. BMC Cancer 2018; 18:761. [PMID: 30041599 PMCID: PMC6057037 DOI: 10.1186/s12885-018-4516-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background Controversy exists for the use of Ki67 protein expression as a predictive marker to select patients who do or do not derive benefit from adjuvant endocrine therapy. Whether other proliferation markers, like Cyclin D1, and mitotic count can also be used to identify those estrogen receptor α (ERα) positive breast cancer patients that derive benefit from tamoxifen is not well established. We tested the predictive value of these markers for tamoxifen benefit in ERα positive postmenopausal breast cancer patients. Methods We collected primary tumor blocks from 563 ERα positive patients who had been randomized between tamoxifen (1 to 3 years) vs. no adjuvant therapy (IKA trial) with a median follow-up of 7.8 years. Mitotic count, Ki67 and Cyclin D1 protein expression were centrally assessed by immunohistochemistry on tissue microarrays. In addition, we tested the predictive value of CCND1 gene copy number variation using MLPA technology. Multivariate Cox proportional hazard models including interaction between marker and treatment were used to test the predictive value of these markers. Results Patients with high Ki67 (≥5%) as well as low (< 5%) expressing tumors equally benefitted from adjuvant tamoxifen (adjusted hazard ratio (HR) 0.5 for both groups)(p for interaction 0.97). We did not observe a significant interaction between either Cyclin D1 or Ki67 and tamoxifen, indicating that the relative benefit from tamoxifen was not dependent on the level of these markers. Patients with tumors with low mitotic count derived substantial benefit from tamoxifen (adjusted HR 0.24, p < 0.0001), while patients with tumors with high mitotic count derived no significant benefit (adjusted HR 0.64, p = 0.14) (p for interaction 0.03). Conclusion Postmenopausal breast cancer patients with high Ki67 counts do significantly benefit from adjuvant tamoxifen, while those with high mitotic count do not. Mitotic count is a better selection marker for reduced tamoxifen benefit than Ki67. Electronic supplementary material The online version of this article (10.1186/s12885-018-4516-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karin Beelen
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Opdam
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa Severson
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rutger Koornstra
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew Vincent
- Departments of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle Wesseling
- Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan Vermorken
- Department of Medical Oncology, University Hospital Antwerpen, Edegem, Belgium
| | - Paul van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Linn
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Induction of HEXIM1 activities by HMBA derivative 4a1: Functional consequences and mechanism. Cancer Lett 2016; 379:60-9. [PMID: 27238569 DOI: 10.1016/j.canlet.2016.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
We have been studying the role of Hexamethylene bisacetamide (HMBA) Induced Protein 1 (HEXIM1) as a tumor suppressor whose expression is decreased in tamoxifen resistant and metastatic breast cancer. HMBA was considered the most potent and specific inducer for HMBA inducible protein 1 (HEXIM1) prior to our studies. Moreover, the ability of HMBA to induce differentiation is advantageous for its therapeutic use when compared to cytotoxic agents. However, HMBA induced HEXIM1 expression required at mM concentrations and induced dose limiting toxicity, thrombocytopenia. Thus we structurally optimized HMBA and identified a more potent inducer of HEXIM1 expression, 4a1. The studies reported herein tested the ability of 4a1 to induce HEXIM1 activities using a combination of biochemical, cell phenotypic, and in vivo assays. 4a1 induced breast cell differentiation, including the stem cell fraction in triple negative breast cancer cells. Clinically relevant HEXIM1 activities that are also induced by 4a1 include enhancement of the inhibitory effects of tamoxifen and inhibition of breast tumor metastasis. We also provide mechanistic basis for the phenotypic effects of 4a1. Our results support the potential of an unsymmetrical HMBA derivative, such as 4a1, as lead compound for further drug development.
Collapse
|
7
|
Bentin Toaldo C, Alexi X, Beelen K, Kok M, Hauptmann M, Jansen M, Berns E, Neefjes J, Linn S, Michalides R, Zwart W. Protein Kinase A-induced tamoxifen resistance is mediated by anchoring protein AKAP13. BMC Cancer 2015; 15:588. [PMID: 26272591 PMCID: PMC4536754 DOI: 10.1186/s12885-015-1591-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 08/03/2015] [Indexed: 11/16/2022] Open
Abstract
Background Estrogen Receptor alpha (ERα)-positive breast cancer patients receive endocrine therapy, often in the form of tamoxifen. However, resistance to tamoxifen is frequently observed. A signalling cascade that leads to tamoxifen resistance is dictated by activation of the Protein Kinase A (PKA) pathway, which leads to phosphorylation of ERα on Serine 305 and receptor activation, following tamoxifen binding. Thus far, it remains elusive what protein complexes enable the PKA-ERα interaction resulting in ERα Serine 305 phosphorylation. Methods We performed immunohistochemistry to detect ERαSerine 305 phosphorylation in a cohort of breast cancer patients who received tamoxifen treatment in the metastatic setting. From the same tumor specimens, Agilent 44 K gene expression analyses were performed and integrated with clinicopathological data and survival information. In vitro analyses were performed using MCF7 breast cancer cells, which included immunoprecipitations and Fluorescence Resonance Energy Transfer (FRET) analyses to illustrate ERα complex formation. siRNA mediated knockdown experiments were performed to assess effects on ERαSerine 305 phosphorylation status, ERα/PKA interactions and downstream responsive gene activity. Results Stratifying breast tumors on ERα Serine 305 phosphorylation status resulted in the identification of a gene network centered upon AKAP13. AKAP13 mRNA expression levels correlate with poor outcome in patients who received tamoxifen treatment in the metastatic setting. In addition, AKAP13 mRNA levels correlate with ERαSerine 305 phosphorylation in breast tumor samples, suggesting a functional connection between these two events. In a luminal breast cancer cell line, AKAP13 was found to interact with ERα as well as with a regulatory subunit of PKA. Knocking down of AKAP13 prevented PKA-mediated Serine 305 phosphorylation of ERα and abrogated PKA-driven tamoxifen resistance, illustrating that AKAP13 is an essential protein in this process. Conclusions We show that the PKA-anchoring protein AKAP13 is essential for the phosphorylation of ERαS305, which leads to tamoxifen resistance both in cell lines and tamoxifen-treated breast cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1591-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristiane Bentin Toaldo
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Xanthippi Alexi
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Karin Beelen
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Marleen Kok
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Michael Hauptmann
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Maurice Jansen
- Department of Medical Oncology, Josephine Nefkens Institute and Cancer Genomics Center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Els Berns
- Department of Medical Oncology, Josephine Nefkens Institute and Cancer Genomics Center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Jacques Neefjes
- Division of Cell Biology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Sabine Linn
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Rob Michalides
- Division of Cell Biology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Wilbert Zwart
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Rosell M, Nevedomskaya E, Stelloo S, Nautiyal J, Poliandri A, Steel JH, Wessels LFA, Carroll JS, Parker MG, Zwart W. Complex formation and function of estrogen receptor α in transcription requires RIP140. Cancer Res 2014; 74:5469-79. [PMID: 25145671 DOI: 10.1158/0008-5472.can-13-3429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RIP140 is a transcriptional coregulator involved in energy homeostasis, ovulation, and mammary gland development. Although conclusive evidence is lacking, reports have implicated a role for RIP140 in breast cancer. Here, we explored the mechanistic role of RIP140 in breast cancer and its involvement in estrogen receptor α (ERα) transcriptional regulation of gene expression. Using ChIP-seq analysis, we demonstrate that RIP140 shares more than 80% of its binding sites with ERα, colocalizing with its interaction partners FOXA1, GATA3, p300, CBP, and p160 family members at H3K4me1-demarcated enhancer regions. RIP140 is required for ERα-complex formation, ERα-mediated gene expression, and ERα-dependent breast cancer cell proliferation. Genes affected following RIP140 silencing could be used to stratify tamoxifen-treated breast cancer cohorts, based on clinical outcome. Importantly, this gene signature was only effective in endocrine-treated conditions. Cumulatively, our data suggest that RIP140 plays an important role in ERα-mediated transcriptional regulation in breast cancer and response to tamoxifen treatment.
Collapse
Affiliation(s)
- Meritxell Rosell
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ekaterina Nevedomskaya
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands. Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Suzan Stelloo
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jaya Nautiyal
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ariel Poliandri
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jennifer H Steel
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jason S Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm G Parker
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Wilbert Zwart
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Alexander A, Keyomarsi K. Exploiting Cell Cycle Pathways in Cancer Therapy: New (and Old) Targets and Potential Strategies. NUCLEAR SIGNALING PATHWAYS AND TARGETING TRANSCRIPTION IN CANCER 2014. [DOI: 10.1007/978-1-4614-8039-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Droog M, Beelen K, Linn S, Zwart W. Tamoxifen resistance: from bench to bedside. Eur J Pharmacol 2013; 717:47-57. [PMID: 23545365 DOI: 10.1016/j.ejphar.2012.11.071] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/20/2012] [Accepted: 11/23/2012] [Indexed: 01/09/2023]
Abstract
Although tamoxifen is a classical example of a targeted drug, a substantial proportion of estrogen receptor alpha positive breast cancer patients does not benefit from the drug. Over the last few decades, many potential biomarkers have been discovered in cell biological studies that may aid in the prediction of tamoxifen sensitivity and guide in treatment selection. Nonetheless, the transition of such a biomarker from the scientific community towards a diagnostic test that can be used in daily clinical practice has been far from ideal, and such markers seldom face clinical introduction. From a large number of potential predictive biomarkers as described in cell biological literature, the clinical (translational) scientist has to make a decision which of these biomarkers should be tested in clinical material to determine their clinical validity. This problem is not trivial, since patient samples with clinical follow-up are a valuable asset that should therefore be cherished. In this review, we will describe a number of 'cell biological biomarkers' for tamoxifen resistance and their possible clinical implications. This may guide the clinical scientist in choosing what potential biomarkers to test on tumour samples, which may catalyse the translation of scientific discoveries into daily clinical practice of breast cancer medicine.
Collapse
Affiliation(s)
- Marjolein Droog
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
12
|
Abstract
One crucial barrier to progress in the treatment of cancer has been the inability to control the balance between cell proliferation and apoptosis: enter ceramide. Discoveries over the past 15 years have elevated this sphingolipid to the lofty position of a regulator of cell fate. Ceramide, it turns out, is a powerful tumour suppressor, potentiating signalling events that drive apoptosis, autophagic responses and cell cycle arrest. However, defects in ceramide generation and metabolism in cancer cells contribute to tumour cell survival and resistance to chemotherapy. This Review focuses on ceramide signalling and the targeting of specific metabolic junctures to amplify the tumour suppressive activities of ceramide. The potential of ceramide-based therapeutics in the treatment of cancer is also discussed.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Experimental Therapeutics, John Wayne Cancer Institute at Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, California 90404, USA.
| | | |
Collapse
|
13
|
Lundgren K, Brown M, Pineda S, Cuzick J, Salter J, Zabaglo L, Howell A, Dowsett M, Landberg G. Effects of cyclin D1 gene amplification and protein expression on time to recurrence in postmenopausal breast cancer patients treated with anastrozole or tamoxifen: a TransATAC study. Breast Cancer Res 2012; 14:R57. [PMID: 22475046 PMCID: PMC3446392 DOI: 10.1186/bcr3161] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/18/2012] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Gene amplification of CCND1 is observed in a subgroup of breast cancers with poor prognosis, whereas overexpression of the protein cyclin D1 has been linked to both worse and better clinical outcome. CCND1 amplification and protein overexpression have also been associated with resistance to treatment with tamoxifen or even to a potentially detrimental effect of tamoxifen. METHODS To clarify these challenging and partly contrasting treatment predictive and prognostic links for cyclin D1 we analysed a large cohort of postmenopausal breast cancer patients randomised to receive either adjuvant anastrozole or tamoxifen, as part of the Arimidex, Tamoxifen, Alone or in Combination (ATAC) trial. The CCND1 amplification status and protein expression of cyclin D1 were assessed by chromogenic in situ hybridisation and immunohistochemistry, respectively, in 1,155 postmenopausal, oestrogen-receptor-positive breast cancer patients included in the TransATAC substudy. RESULTS Amplification of CCND1 was observed in 8.7% of the tumours and was associated with increased risk of disease recurrence (hazard ratio = 1.61; 95% confidence interval, 1.08 to 2.41) after adjustment for other clinicopathological parameters. In contrast, nuclear expression of cyclin D1 protein was associated with decreased recurrence rate (hazard ratio = 0.6; 95% confidence interval, 0.39 to 0.92). The intensity of nuclear or cytoplasmic expression was not of prognostic value. There was no significant interaction between cyclin D1 status and treatment efficacy, ruling out any major detrimental effect of tamoxifen in CCND1-amplified postmenopausal breast cancer. CONCLUSIONS In summary, CCND1 amplification and low nuclear expression of cyclin D1 predicted poor clinical outcome in postmenopausal breast cancer patients treated with either anastrozole or tamoxifen. TRIAL REGISTRATION Current Controlled Trials ISRCTN18233230.
Collapse
Affiliation(s)
- Katja Lundgren
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden
- Breakthrough Breast Cancer Research Unit, School of Cancer, Enabling Sciences and Technology, University of Manchester, Manchester Academic Health Science Centre Paterson Institute for Cancer Research, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Matthew Brown
- Breakthrough Breast Cancer Research Unit, School of Cancer, Enabling Sciences and Technology, University of Manchester, Manchester Academic Health Science Centre Paterson Institute for Cancer Research, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Silvia Pineda
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Queen Mary University of London, Wolfson Institute of Preventive Medicine, London EC1M 6BQ, UK
| | - Jack Cuzick
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Queen Mary University of London, Wolfson Institute of Preventive Medicine, London EC1M 6BQ, UK
| | - Janine Salter
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Lila Zabaglo
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Anthony Howell
- Breakthrough Breast Cancer Research Unit, School of Cancer, Enabling Sciences and Technology, University of Manchester, Manchester Academic Health Science Centre Paterson Institute for Cancer Research, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Mitch Dowsett
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Royal Marsden Hospital, 237 Fulham Road, London SW3 6JJ, UK
| | - Göran Landberg
- Breakthrough Breast Cancer Research Unit, School of Cancer, Enabling Sciences and Technology, University of Manchester, Manchester Academic Health Science Centre Paterson Institute for Cancer Research, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Sahlgrenska Cancer Center, University of Gothenburg, 405 30 Göteborg, Sweden
| |
Collapse
|
14
|
Miermont AM, Cabrera MC, Frech SM, Nakles RE, Diaz-Cruz ES, Shiffert MT, Furth PA. Association of Over-Expressed Estrogen Receptor Alpha with Development of Tamoxifen Resistant Hyperplasia and Adenocarcinomas in Genetically Engineered Mice. ACTA ACUST UNITED AC 2012; Suppl 12. [PMID: 24575359 PMCID: PMC3932557 DOI: 10.4172/2161-0940.s12-001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Estrogen receptor alpha (ERα) and cyclin D1 are frequently co-expressed in human breast cancer. Some, but not all, studies link tamoxifen resistance to co-expression of cyclin D1 and ERα. In mice over-expression of either cyclin D1 or ERα in mammary epithelial cells is sufficient to induce mammary hyperplasia. Cyclin D1 over-expression in mice leads to mammary adenocarcinoma associated with activated estrogen signaling pathways. ERα over-expression in mice leads to mammary hyperplasia and cancer. Significantly, disease development in these mice is abrogated by loss of cyclin D1. METHODS Genetically engineered mouse models were used to determine whether or not ERα over-expression demonstrated cooperativity with cyclin D1 over-expression in cancer development, reaction to the chemical carcinogen DMBA, or tamoxifen response. RESULTS Adding ERα over-expression to cyclin D1 over-expression increased the prevalence of hyperplasia but not cancer. Single dose DMBA exposure did not increase cancer prevalence in any of the genotypes although cyclin D1 over-expressing mice demonstrated a significant increase in hyperplasia. Tamoxifen treatment was initiated at both young and older ages to test for genotype-specific differences in response. Although normal ductal structures regressed in all genotypes at both younger and older ages, tamoxifen did not significantly reduce the prevalence of either hyperplasia or cancer in any of the genotypes. All of the cancers that developed were hormone receptor positive, including those that developed on tamoxifen, and all showed expression of nuclear-localized cyclin D1. In summary, development of tamoxifen resistant hyperplasia and cancer was associated with expression of ERα and cyclin D1. CONCLUSION These preclinical models will be useful to test strategies for overcoming tamoxifen resistance, perhaps by simultaneously targeting cell cycle regulatory pathways associated with cyclin D1.
Collapse
Affiliation(s)
- Anne M Miermont
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Marina Carla Cabrera
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Silvina M Frech
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Rebecca E Nakles
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Edgar S Diaz-Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Maddalena Tilli Shiffert
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA ; Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Priscilla A Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA ; Department of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA ; Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714, Korea
| |
Collapse
|
15
|
Wang Z, Fukushima H, Gao D, Inuzuka H, Wan L, Lau AW, Liu P, Wei W. The two faces of FBW7 in cancer drug resistance. Bioessays 2011; 33:851-9. [PMID: 22006825 DOI: 10.1002/bies.201100101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 07/31/2011] [Accepted: 08/01/2011] [Indexed: 12/15/2022]
Abstract
Chemotherapy is an important therapeutic approach for cancer treatment. However, drug resistance is an obstacle that often impairs the successful use of chemotherapies. Therefore, overcoming drug resistance would lead to better therapeutic outcomes for cancer patients. Recently, studies by our own and other groups have demonstrated that there is an intimate correlation between the loss of the F-box and WD repeat domain-containing 7 (FBW7) tumor suppressor and the incurring drug resistance. While loss of FBW7 sensitizes cancer cells to certain drugs, FBW7-/- cells are more resistant to other types of chemotherapies. FBW7 exerts its tumor suppressor function by promoting the degradation of various oncoproteins that regulate many cellular processes, including cell cycle progression, cellular metabolism, differentiation, and apoptosis. Since loss of the FBW7 tumor suppressor is linked to drug resistance, FBW7 may represent a novel therapeutic target to increase drug sensitivity of cancer cells to conventional chemotherapeutics. This paper thus focuses on the new functional aspects of FBW7 in drug resistance.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ketchart W, Ogba N, Kresak A, Albert JM, Pink JJ, Montano MM. HEXIM1 is a critical determinant of the response to tamoxifen. Oncogene 2011; 30:3563-9. [PMID: 21423213 PMCID: PMC3136650 DOI: 10.1038/onc.2011.76] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 12/21/2022]
Abstract
Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER)-positive patients. We have previously reported that hexamethylene bis-acetamide-inducible protein 1 (HEXIM1) inhibits ERα activity by competing with ERα for binding to cyclin T1, a subunit of positive transcription elongation b (P-TEFb). This results in the inhibition of the phosphorylation of RNA polymerase II (RNAPII) at serine 2 and the inhibition of transcription elongation of ERα target genes. As HEXIM1 can inhibit ER activity, we examined whether it has a critical role in the inhibitory effects of tamoxifen on ER. We observed that tamoxifen-induced HEXIM1 recruitment to the promoter region of ER target genes and decreased the recruitment of cyclin T1 and serine 2 phosphorylated RNAPII to the coding regions of these genes. Conversely, in cells wherein HEXIM1 expression has been downregulated we observed attenuation of the inhibitory effects of tamoxifen on estrogen-induced cyclin T1 recruitment to coding regions of ER target genes. As a consequence, downregulation of HEXIM1 resulted in the attenuation of the repressive effects of tamoxifen on estrogen-induced gene expression and proliferation. Conferring clinical relevance to our studies is our analysis of human breast cancer tissue samples that indicated association of lower expression of HEXIM1 with tumor recurrence in patients who received tamoxifen. Our studies provide a better understanding of the mechanistic basis for the inhibitory effect of tamoxifen on ER activity and may suggest new therapeutic targets for the treatment of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Wannarasmi Ketchart
- Department of Pharmacology, Case Western Reserve University Cleveland, OH 44106
| | - Ndiya Ogba
- Department of Pharmacology, Case Western Reserve University Cleveland, OH 44106
| | - Adam Kresak
- Department of Pathology, Case Western Reserve University Cleveland, OH 44106
| | - Jeffrey M. Albert
- Department of Epidemiology and Biostatistics, Case Western Reserve University Cleveland, OH 44106
| | - John J. Pink
- Division of General Medical Science- Oncology Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH 44106
| | - Monica M. Montano
- Department of Pharmacology, Case Western Reserve University Cleveland, OH 44106
| |
Collapse
|
17
|
de Leeuw R, Neefjes J, Michalides R. A role for estrogen receptor phosphorylation in the resistance to tamoxifen. Int J Breast Cancer 2011; 2011:232435. [PMID: 22295213 PMCID: PMC3262574 DOI: 10.4061/2011/232435] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/17/2011] [Indexed: 01/06/2023] Open
Abstract
About two thirds of all human breast cancer cases are estrogen receptor positive. The drug of first choice for these patients is tamoxifen. However, about half of the recurrences after removal of the primary tumor are or become resistant to this drug. While many mechanisms have been identified for tamoxifen resistance in the lab, at present only a few have been translated to the clinic. This paper highlights the role in tamoxifen resistance of phosphorylation by different kinases on different sites of the estrogen receptor. We will discuss the molecular pathways and kinases that are involved in phosphorylation of ERα and how these affect tamoxifen resistance. Finally, we will elaborate on the clinical translation of these observations and the possibility to predict tamoxifen responses in patient tumor samples before treatment onset. The findings made originally on the bench may translate into a better and personalized treatment of breast cancer patients using an old and safe anticancer drug: tamoxifen.
Collapse
Affiliation(s)
- Renée de Leeuw
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Mittal MK, Singh K, Misra S, Chaudhuri G. SLUG-induced elevation of D1 cyclin in breast cancer cells through the inhibition of its ubiquitination. J Biol Chem 2010; 286:469-79. [PMID: 21044962 DOI: 10.1074/jbc.m110.164384] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UbcH5c, a member of the UbcH5 family of protein ubiquitin conjugase E2 enzymes, is a critical component of biological processes in human cells, being the initial ubiquitinating enzyme of substrates like IκB, TP53, and cyclin D1. We report here that the metastasis regulator protein SLUG inhibits the expression of UbcH5c directly through chromatin remodeling and thus, among other downstream effects, elevates the level of cyclin D1, thus enhancing the growth rates of breast cancer cells. Overexpression of SLUG in the SLUG-deficient breast cancer cells significantly decreased the levels of mRNA and protein of UbcH5c but only elevated the protein levels of cyclin D1. On the contrary, knockdown of SLUG in SLUG-high breast cancer cells elevated the levels of UbcH5c while decreasing the level of cyclin D1 protein. SLUG is recruited at the E2-box sequence at the UbcH5c gene promoter along with the corepressor CtBP1 and the effector HDAC1 to silence the expression of this gene. Knockdown of UbcH5c in the SLUG-deficient human breast cells elevated the level of cyclin D1 as well as the rates of proliferation and invasiveness of these cells. Whereas the growth rates of the cells are enhanced due to overexpression of SLUG or knockdown of UbcH5c in the breast cancer cells tested, ER(+) cells also acquire resistance to the anti-estrogen 4-hydroxytamoxifen due to the rise of cyclin D1 levels in these cells. This study thus implicates high levels of SLUG and low levels of UbcH5c as a determinant in the progression of metastatic breast cancer.
Collapse
Affiliation(s)
- Mukul K Mittal
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208, USA. and
| | | | | | | |
Collapse
|
19
|
Chu R, Zhao X, Griffin C, Staub RE, Shoemaker M, Climent J, Leitman D, Cohen I, Shtivelman E, Fong S. Selective concomitant inhibition of mTORC1 and mTORC2 activity in estrogen receptor negative breast cancer cells by BN107 and oleanolic acid. Int J Cancer 2010; 127:1209-19. [PMID: 20027631 DOI: 10.1002/ijc.25116] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hormonal, targeted and chemotherapeutic strategies largely depend on the expression of their cognate receptors and are often accompanied by intolerable toxicities. Effective and less toxic therapies for estrogen receptor negative (ER-) breast cancers are urgently needed. Here, we present the potential molecular mechanisms mediating the selective pro-apoptotic effect induced by BN107 and its principle terpene, oleanolic acid (OA), on ER- breast cancer cells. A panel of breast cancer cell lines was examined and the most significant cytotoxic effect was observed in ER- breast lines. Apoptosis was the major cellular pathway mediating the cytotoxicity of BN107. We demonstrated that sensitivity to BN107 was correlated to the status of ERalpha. Specifically, the presence of functional ERalpha protected cells from BN107-induced apoptosis and absence of ERalpha increased the sensitivity. BN107, an extract rich in OA derivatives, caused rapid alterations in cholesterol homeostasis, presumably by depleting cholesterol in lipid rafts (LRs), which subsequently interfered with signaling mediated by LRs. We showed that BN107 or OA treatment in ER- breast cancer cells resulted in rapid and specific inhibition of LR-mediated survival signaling, namely mTORC1 and mTORC2 activities, by decreasing the levels of the mTOR/FRAP1, RAPTOR and RICTOR. Cotreatment with cholesterol abolished the proapoptotic effect and restored the disrupted mTOR activities. This is the first report demonstrating possible concomitant inhibition of both mTORC1 and mTORC2 activities by modulating the levels of protein constituents present in these signaling complexes, and thus provides a basis for future development of OA-based mTOR inhibitors.
Collapse
Affiliation(s)
- Ruth Chu
- Bionovo Inc., Emeryville, CA 94608, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McClaine RJ, Marshall AM, Wagh PK, Waltz SE. Ron receptor tyrosine kinase activation confers resistance to tamoxifen in breast cancer cell lines. Neoplasia 2010; 12:650-8. [PMID: 20689759 PMCID: PMC2915409 DOI: 10.1593/neo.10476] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/25/2010] [Accepted: 05/27/2010] [Indexed: 12/20/2022]
Abstract
Although tamoxifen treatment is associated with improved survival in patients with estrogen receptor (ER)-positive breast tumors, resistance remains an important clinical obstacle. Signaling through growth factor signaling pathways, in particular through receptor tyrosine kinases, has been demonstrated to confer tamoxifen resistance in an estradiol-independent manner. The Ron receptor tyrosine kinase, a member of the c-Met family of receptors, is expressed in a number of human epithelial tumors, and elevated expression of Ron is associated with poor prognosis in women with breast cancer. In this report, we evaluated the role of Ron receptor activation in conferring resistance to tamoxifen in human and murine breast cancer cell lines. Activation of Ron by its ligand, hepatocyte growth factor-like protein (HGFL) was associated with partial rescue from tamoxifen-induced growth inhibition in Ron-expressing cell lines. Western analysis revealed that treatment of the T47D human breast cancer cell line with tamoxifen and HGFL was associated with increased phosphorylation of mitogen-activated protein kinase (MAPK) 1/2 and phosphorylation of serine residue 118 of ER. Expression of ER-dependent genes was increased in cells treated with tamoxifen and HGFL by quantitative reverse transcription-polymerase chain reaction. All of these effects were inhibited by treatment with either a Ron-neutralizing antibody or a MEK1 inhibitor, suggesting the specificity of the effect to Ron, and the involvement of the MAPK 1/2 signaling pathway. In summary, these results illustrate a novel connection between the Ron receptor tyrosine kinase and an important mechanism of tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Rebecca J McClaine
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
21
|
Klinge CM, Riggs KA, Wickramasinghe NS, Emberts CG, McConda DB, Barry PN, Magnusen JE. Estrogen receptor alpha 46 is reduced in tamoxifen resistant breast cancer cells and re-expression inhibits cell proliferation and estrogen receptor alpha 66-regulated target gene transcription. Mol Cell Endocrinol 2010; 323:268-76. [PMID: 20302909 PMCID: PMC2875375 DOI: 10.1016/j.mce.2010.03.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/02/2010] [Accepted: 03/10/2010] [Indexed: 12/11/2022]
Abstract
Resistance to endocrine therapy is a major clinical problem in breast cancer. The role of ERalpha splice variants in endocrine resistance is largely unknown. We observed reduced protein expression of an N-terminally truncated ERalpha46 in endocrine-resistant LCC2, LCC9, and LY2 compared to MCF-7 breast cancer cells. Transfection of LCC9 and LY2 cells with hERalpha46 partially restored growth inhibition by TAM. Overexpression of hERalpha46 in MCF-7 cells reduced estradiol (E(2))-stimulated endogenous pS2, cyclin D1, nuclear respiratory factor-1 (NRF-1), and progesterone receptor transcription. Expression of oncomiR miR-21 was lower in TAM-resistant LCC9 and LY2 cells compared to MCF-7 cells. Transfection with ERalpha46 altered the pharmacology of E(2) regulation of miR-21 expression from inhibition to stimulation, consistent with the hypothesis that hERalpha46 inhibits ERalpha activity. Established miR-21 targets PTEN and PDCD4 were reduced in ERalpha46-transfected, E(2)-treated MCF-7 cells. In conclusion, ERalpha46 appears to enhance endocrine responses by inhibiting selected ERalpha66 responses.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Millour J, Constantinidou D, Stavropoulou AV, Wilson MSC, Myatt SS, Kwok JMM, Sivanandan K, Coombes RC, Medema RH, Hartman J, Lykkesfeldt AE, Lam EWF. FOXM1 is a transcriptional target of ERalpha and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene 2010; 29:2983-95. [PMID: 20208560 PMCID: PMC2874720 DOI: 10.1038/onc.2010.47] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 01/22/2010] [Accepted: 01/29/2010] [Indexed: 12/12/2022]
Abstract
In this study, we investigated the regulation of FOXM1 expression by estrogen receptor alpha (ERalpha) and its role in hormonal therapy and endocrine resistance. FOXM1 protein and mRNA expression was regulated by ER-ligands, including estrogen, tamoxifen (OHT) and fulvestrant (ICI182780; ICI) in breast carcinoma cell lines. Depletion of ERalpha by RNA interference (RNAi) in MCF-7 cells downregulated FOXM1 expression. Reporter gene assays showed that ERalpha activates FOXM1 transcription through an estrogen-response element (ERE) located within the proximal promoter region. The direct binding of ERalpha to the FOXM1 promoter was confirmed in vitro by mobility shift and DNA pull-down assays and in vivo by chromatin immunoprecipitation (ChIP) analysis. Our data also revealed that upon OHT treatment ERalpha recruits histone deacetylases to the ERE site of the FOXM1 promoter, which is associated with a decrease in histone acetylation and transcription activity. Importantly, silencing of FOXM1 by RNAi abolished estrogen-induced MCF-7 cell proliferation and overcame acquired tamoxifen resistance. Conversely, ectopic expression of FOXM1 abrogated the cell cycle arrest mediated by the anti-estrogen OHT. OHT repressed FOXM1 expression in endocrine sensitive but not resistant breast carcinoma cell lines. Furthermore, qRT-PCR analysis of breast cancer patient samples revealed that there was a strong and significant positive correlation between ERalpha and FOXM1 mRNA expression. Collectively, these results show FOXM1 to be a key mediator of the mitogenic functions of ERalpha and estrogen in breast cancer cells, and also suggest that the deregulation of FOXM1 may contribute to anti-estrogen insensitivity.
Collapse
Affiliation(s)
- J Millour
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zwart W, de Leeuw R, Rondaij M, Neefjes J, Mancini MA, Michalides R. The hinge region of the human estrogen receptor determines functional synergy between AF-1 and AF-2 in the quantitative response to estradiol and tamoxifen. J Cell Sci 2010; 123:1253-61. [DOI: 10.1242/jcs.061135] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human estrogen receptors α and β (ERα and ERβ) greatly differ in their target genes, transcriptional potency and cofactor-binding capacity, and are differentially expressed in various tissues. In classical estrogen response element (ERE)-mediated transactivation, ERβ has a markedly reduced activation potential compared with ERα; the mechanism underlying this difference is unclear. Here, we report that the binding of steroid receptor coactivator-1 (SRC-1) to the AF-1 domain of ERα is essential but not sufficient to facilitate synergy between the AF-1 and AF-2 domains, which is required for a full agonistic response to estradiol (E2). Complete synergy is achieved through the distinct hinge domain of ERα, which enables combined action of the AF-1 and AF-2 domains. AF-1 of ERβ lacks the capacity to interact with SRC-1, which prevents hinge-mediated synergy between AF-1 and AF-2, thereby explaining the reduced E2-mediated transactivation of ERβ. Transactivation of ERβ by E2 requires only the AF-2 domain. A weak agonistic response to tamoxifen occurs for ERα, but not for ERβ, and depends on AF-1 and the hinge-region domain of ERα.
Collapse
Affiliation(s)
- Wilbert Zwart
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Renée de Leeuw
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Mariska Rondaij
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Michael A. Mancini
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rob Michalides
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
24
|
Walf AA. Oestrogen receptor beta is involved in the actions of oestrogens in the brain for affective behaviour, but not trophic effects in peripheral tissues. J Neuroendocrinol 2010; 22:141-51. [PMID: 20025628 PMCID: PMC2917800 DOI: 10.1111/j.1365-2826.2009.01945.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The steroid, 17beta-oestradiol (E(2)) has pervasive psychological and physical effects throughout the lifespan. The question arises as to whether there are divergent oestrogen receptor (ER)-mediated mechanisms for these effects in the central nervous system (CNS) and periphery. This review focuses on results of studies using a whole animal model (i.e. female rats and mice) to investigate the relative effects and mechanisms of oestrogens in the CNS and the periphery. By using this approach, it has been possible to differentiate the enhancing effects of E(2) on behavioural processes mediated by the hippocampus, such as affective behaviour, and the trophic effects that increase tumourigenesis and uterine growth. Studies using pharmacological manipulations and knockout mice suggest that a likely mechanism underlying the beneficial effects of E(2) for hippocampal function (but not proliferative effects in the body) involves actions at ERbeta, changes in cell cycle/division (e.g. cyclin D1) and/or histone modifications. Thus, it may be possible to differentiate the beneficial effects of oestrogens through ERbeta, particularly in the CNS, from the negative proliferative effects on peripheral, E(2)-sensitive tissues.
Collapse
Affiliation(s)
- A A Walf
- Department of Psychology, The University at Albany-State University of New York, Albany, NY 12222, USA.
| |
Collapse
|